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 

Abstract— Planetary robotics navigation has attracted the 

great attention of many researchers in recent years. 

Localization is one of the most important problems for robots 

on another planet in the lack of GPS. The robots need to be 

able to know their location and the surrounding map in the 

environment concurrently, to work and communicate together 

on another planet. In the current work, a novel algorithm is 

designed to cooperatively localize a team of robots on another 

planet. Consequently, a robust algorithm is developed for 

cooperative Visual Odometry (VO) to localize each robot in a 

planetary environment while detecting both intra-loop closure 

and inter-loop closures using previously observed area by the 

robot and shared area from other robots, respectively. To 

validate the proposed algorithm, a comparison is provided 

between the proposed cooperative VO and the single version of 

VO. Accordingly, a planetary analogue real dataset is employed 

to investigate the accuracy of the proposed algorithm. The 

results promise the concept of cooperative VO to significantly 

increase the accuracy of localization.  

I. INTRODUCTION 

For the last few decades, mobile robots and autonomous 
systems have become a hot research topic resulting in major 
advances and innovations. Nowadays, mobile robots can 
perform complex tasks autonomously in various domains 
including military, medical, space, and commercial 
applications that can operate on the ground, at sea and in 
space. Deploying a team of robotics to lunar for construction 
purposes in the next few years is one of the main plans for 
planetary and space application [1], [2]. In those applications, 
mobile robotic platforms should perform complicated tasks 
including navigation in complex dynamic environments [3], 
[4]. A robotic platform needs to be self-localized if it is 
designed to autonomously navigate itself in its environment 
without any human intervention or even in the absence of the 
Global Navigation Satellite System (GNSS). Visual 
Odometry (VO) has been used for space applications where 
there is no Global Positioning System (GPS) signal. Visual 
cameras are the most used sensors due to low power 
requirements, availability, and highly physical compactness, 
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which can be used for space application to perform visual 
navigation [5]–[7]. Readers may refer to papers that outline 
recent developments in VO [8]–[13] and Simultaneous 
Localization And Mapping (SLAM) [14]–[18]. 
Independently from the mounted sensor on the robotic 
platform, VO can be implemented either on a single platform 
basis, i.e., each robot performs independently self-
localization, or cooperatively, i.e., self-localization for each 
robot is obtained from data fusion between at least two 
robots.  

For the single version of VO, an omnidirectional VO 
approach was investigated by [19] to estimate the motion of a 
planetary rover. In addition, a localization technique was 
proposed in [20] using augmented unscented Kalman filter 
for planetary rovers to estimate the slippage ratio and 
enhance the accuracy of VO estimation. Also, a stereovision 
based VO algorithm was proposed by [21] for a lunar rover 
in sandy terrains. Mouats et al. [22] proposed a method to 
improve the accuracy of VO when there are illumination and 
contrast variations in stereo images. They also investigated a 
performance analysis of the most commonly used feature 
detectors and descriptors in the challenging environment with 
poor lighting conditions [23]. A relative navigation scheme 
for uncooperative and unknown space platforms has been 
proposed in [24] which combines local feature matching 
based on the histogram of distances descriptor [25] and pose 
estimation based on an adaptive H∞ recursive filter.  

To improve the accuracy of single platform visual 
navigation, the literature examines the cases of cooperative 
visual navigation in centralized [26], [27] and decentralized 
[28], [29] manners in which whether all platforms send their 
information to a central visual navigation algorithm 
(centralized) or visual navigation is computed on multiple 
platforms (de-centralized). Thrun and Liu [30] used sparse 
extended information filters and homography to solve the 
multi-vehicle SLAM problem. Nemra and Aouf [31] 
investigated a centralized stereo-vision SLAM technique for 
cooperative Unmanned Aerial Vehicles (UAV) using a non-
linear H∞ filtering scheme. They extended their works in 
[26], where the employed features were an adaptive variant 
of the SIFT features. Additionally, Li and Aouf in [32] 
proposed the stereo vision cooperative SLAM method for 
UAVs where the collaborative estimation was implemented 
with an information filter and covariance intersection 
technique. Nemra and Aouf [28] suggested an adaptive de-
centralized cooperative visual SLAM that was based on a 
stereovision system. With the proposed solution, a group of 
UAVs can construct a large reliable map and localize 
themselves in this map without any user intervention. Also, 
Boulekchour et al. [7] proposed a system for real-time 
cooperative monocular visual SLAM that involves multiple 
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unmanned aerial vehicles. A brief survey on cooperative 
SLAM/VO can be found in [29]. Despite the extensive field 
experiments and research in visual navigation, there has been 
no attempt to tackle cooperative visual navigation in the 
space environment where a long-duration mission is needed 
in a challenging environment. Moreover, to perform VO, it 
has been usually assumed that the operating environment has 
sufficient illumination, enough texture to be extracted and 
sufficient scene overlap between the stream of images, while 
these assumptions are not accepted in the real planetary 
environments. This paper aims to propose a robust algorithm 
to cooperatively navigate two mobile robots during a long 
mission in a challenging planetary environment.  

In this paper, a new algorithm is proposed to localize a 
team of robots in planetary applications. In the proposed 
cooperative VO algorithm, two main blocks are triggered 
concurrently on each robot including VO and Loop Closure 
Detection (LCD) algorithms. The former obtains the pose of 
the robot using a robust motion estimation algorithm. The 
latter compares the current view of the robot obtained from 
the stereo camera with the shared key-images to detect the 
loop closures in the challenging planetary environment. LCD 
is one of the main challenges in the planetary environment 
due to poor knowledge about existing features, brightness 
variations across the environment and illumination. To tackle 
this problem, a robust visual loop closure module is deployed 
to detect any overlapping fields of view for two or more 
vehicles. In the current work, instead of using conventional 
keyframes to retrieve the previously observed area, a set of 
key-images is shared between the robots to detect the loop 
closures. Once the positive feedback is received from the 
LCD building block, the collaborative optimization process 
will be triggered between any robots involved in the loop 
closure. The proposed cooperative visual navigation is 
relying on the shared views that collaborative and 
cooperative robots might have when conducting their 
respective tasks. The areas are shared at an instant time T 
between the robots, besides the views that have been seen at 
different times by the robots. The proposed approach for 
cooperative VO is validated using an analogue planetary 
dataset named the Erfoud dataset [33]. The rest of this paper 
is organised as follows. Section II provides the details of the 
proposed cooperative VO approach. The obtained 
experimental results using a real dataset in an analogue 
planetary environment are reported in Section III, followed 
by conclusions and the scope of future works in Section IV. 

II. COOPERATIVE VO ALGORITHM 

In this section, the main building blocks of the proposed 
algorithm for cooperative VO is described in detail. It is 
assumed that the robots are equipped with a stereo camera as 
the main observation sensor. An overall scheme of the 
proposed algorithm is illustrated in Fig. 1.  

In the proposed algorithm, a robust stereo-temporal 
matching approach is designed to prevent losing feature 
points during the motion estimation process. Optical flow, 
Kanade-Lucas-Tomasi (KLT) feature tracker is employed to 
track feature points in the stream of stereo images. Also, 
Perspective-n-Point (PnP) algorithm is applied for 2D-3D 
matching in motion estimation. Additionally, the M-estimator 

SAmple Consensus (MSAC) algorithm [34] is used to 
eliminate spurious correspondences in this algorithm. One of 
the main contributions of the proposed algorithm is the 
sharing of the key-images between the robots to detect loop 
closures. The selected key-images including feature points 
and their descriptors along with their 3D position are stored 
on the robots and can be shared between the robots to detect 
any overlapping fields of view for two robots. The 
optimisation process triggers after finding several shared 
areas between any robots involved in the loop closure (inter-
loop closure) and any previously seen area by the robot itself 
(intra-loop closure). The cooperative navigation as described 
above relies on the shared views that cooperative robots 
might have when conducting their respective tasks. The 
shares to be exploited are not limited to the ones that are 
shared at an instant time T, but also the views that have been 
seen at different times by the robots. The blocks of the 
proposed algorithm shown in Fig. 1, can be summarized as 
the following stages to estimate the pose of the robots from 
the stream of stereo images. 

 

A. Feature Tracking 

After receiving the stream of stereo images, detecting and 
matching feature points across different images are essential 
for both camera tracking and mapping tasks. To obtain more 
stable feature extraction and tracking results, each image is 
divided into buckets to propagate the feature points through 
the whole image. A border is also set around the image to 
avoid the generation of feature points in this region which are 
not reliable due to the movement of the mobile robot. ORB 
feature descriptor is used to match the corresponding feature 
points across different viewpoints, which is robust to large 
viewpoint change. The KLT feature tracker is employed to 
track the binary feature points between the frames. It should 
be noted that a successive stream of stereo images needs to 

 
Fig. 1.  Overall scheme for the proposed cooperative VO algorithm. 
  



  

be capture to track the feature points by using optical flow 
feature tracking.  

B. Motion Estimation 

After successful feature tracking, motion estimation is 
triggered to obtain the relative pose between two frames. By 
concatenation of every relative pose estimation, the full 
trajectory of the robots can be retrieved. A 2D-3D matching 
approach is employed to calculate the pose of the robot from 
3D points on the previous image and their corresponding 2D 
reprojections on the current image. The PnP algorithm is 
applied to obtain the camera pose of one frame with respect 
to the 3D points from the other frame. The relative pose from 
the 2D-3D approach is fully determined as a constraint for 
the next pose graph optimization. The outliers in the set of 
point correspondences result in errors in the PnP algorithm. 
Thus, the RANSAC (RANdom SAmple Consensus) methods 
can be employed to reduce the outliers and consequently 
make the final solution for the camera pose more robust. 
Herein, the MSAC algorithm is used to perform this task.  

C. Loop Closure Detection (LCD) 

One of the main challenging problems in cooperative VO 
is to correctly manage the perceived information from the 
environment. The performance of cooperative VO algorithms 
highly relies on the LCD mechanism, which entails the 
correct identification of previously observed areas. The loop 
closure can be either intra-loop closure when the robot 
detects a loop from its previously observed area, or inter-loop 
closure when the robot detects a loop from the shared images 
from the other robots. If the robot is moving in a long loop, 
the pose estimate error is growing while in reality, the vehicle 
is likely in an already mapped area. If we use traditional 
methods for data association, e.g. gating area, we would not 
be able to detect the loop closure. A robust LCD scheme is 
needed to build a consistent map by adding constraints to the 
map generation process. Although different types of sensors 
can be used to detect loop closure, the visual solutions have 
been frontier, especially motivated by ubiquitous and the low 
cost of cameras, the increase in processing power and the 
richness of the sensor data. The LCD problem can be 
converted into an online image retrieval task to determine if 
the current image has been taken from a known location.  

In this paper, instead of using keyframes to retrieve the 
previously observed area, a set of key-images is shared 
between the robots to find the loop closure. Applying this 
approach leads to reducing the computational time 
significantly while the robots don’t need to generate and save 
the map of the environment. If it is the case to generate the 
map of the environment, obtained point clouds by either 
stereo camera or LiDAR can be registered to the poses as 
well. Therefore, vehicle-to-vehicle relative pose estimates 
can be recovered with a robust registration solution in a 
global optimisation framework that can construct a large 
reliable map and localize themselves in this map without any 
user intervention.  

The proposed LCD is based on binary descriptors to 
retrieve previously seen similar images. A simple but 
effective mechanism can be used to group images close to the 
pose of the robot in a gating area and search within them, 
which reduces the computational efforts.   

D.  Optimisation 

Herein, a pose graph approach is used to store 
information for a 3D pose representation. A pose graph 
contains nodes connected by edges, with edge constraints that 
define the relative pose between nodes and the uncertainty on 
that measurement. An optimisation algorithm modifies the 
nodes to account for the uncertainty and improve the overall 
graph. We represent pose at each time instant with a graph 
node which are unoptimized poses of each node represented 
in the world coordinate system. Once a loop closure has been 
detected, the algorithm uses the graph optimization method 
(i.e. nonlinear least-squares error minimization via the Gauss-
Newton or Levenberg-Marquardt algorithm) to find a 
configuration of the nodes that is maximally consistent with 
all the constraints.  

The main challenge of the space environment is the high 
similarity of the images in the space environment acquired 
from different views of the robots involved in the 
cooperation. Outlier LCDs result in incorrect relative pose 
constraints and consequently ruin the pose graph 
optimisation. False LCD may happen in high similarity 
environment including space environments even if the 
descriptor is perfectly designed. It is more challenging in the 
space environment where there is a lack of knowledge about 
the existing features, brightness variations across the 
environment and illumination. To improve the robustness of 
pose graph optimization, we may increase the level of 
confidence for similarity matching by setting a high matching 
threshold but this will significantly reduce the number of 
accepted loop closures. 

 

III. RESULTS AND DISCUSSION 

There are many challenges in space environments in 
terms of existing features, brightness, and illumination. To 
validate the proposed approach and compare the results with 
available existing methods in the literature, a planetary 
analogue real dataset is used [33]. The planetary analogue 
dataset was obtained by two mobile robots shown in Fig. 2. 
This dataset was collected by the two mobile robots on three 
different planetary analogue sites in the Tafilalet region of 
Morocco [33].  

 

 
Fig. 2.  mobile robots in the planetary analogue real dataset [33]. 



  

The robots were traversed on large scale motion 
trajectories from a few hundreds of meters up to one 
kilometre. Although the dataset was recorded for single-agent 
application, it can be applicable for cooperative planetary 
purposes by dividing one of the obtained datasets into two 
parts and assumed that two robots are moving in the 
planetary environment at the same time. 

The ground truth (GT) of the robots in the selected dataset 
(Minnie in Merzouga, Trajectory 22, Replay 1)1 and their 
initial position are shown in Fig. 3. It is assumed that the 
robots are starting to move at the same time from the shown 
initial positions quite far away from each other (~170 m). 
During the motion of Robot 1, it is expected to observe part 
of the trajectory of Robot 2 as inter-loop closure at Zone 3 
and a part of the previously observed area by itself at Zone 2. 
Since both robots are starting at the same time by the same 
speed, Robot 2 is expected to observe the previously seen 
area by Robot 1 at Zone 1. It should be noted that since 
robots are moving in the opposite direction at Zone 4, it was 
not expected to detect the loop closure at this zone. 
Additionally, since Robot 2 is passing through Zone 3 earlier 
than Robot 1, it was not expected to detect the loop closure at 
this zone by Robot 2. The motion direction of the robots is 
marked in Fig. 3 by the arrows.  

Some of the detected loop closures and the corresponding 
matched images using the LCD algorithm are shown in Figs. 
4-9. The matched feature points are illustrated by the red 
circle marker and green plus marker in the left and right 
images, respectively. The corresponding feature points are 
connected by the yellow lines.  

It can be seen that, although the shape of the terrain has 
been changed in the environment due to the movement of the 
robots, the LCD algorithm is robust to match the similar 
images and identify the previously observed areas. 

 

 

 
1https://www.laas.fr/projects/erfoud-dataset/minnie-merzouga-trajectory-

22-replay-1 

 

 

 

 

 

 

In the following, the accuracy of the single version of the 
VO algorithm is investigated in Fig. 10 where the trajectory 
of the robots is plotted and compared with the GT. In this 
figure, the obtained trajectory by applying the proposed CVO 
algorithm is also compared with the GT.  

 
Fig. 9.  Corresponded images and matched feature points using the 

LCD algorithm (images: 3239 vs 6493). 

 
Fig. 6.  Corresponded images and matched feature points using the 
LCD algorithm (images: 3104 vs 6359). 

 
Fig. 5.  Corresponded images and matched feature points using the 

LCD algorithm (images: 2862 vs 3712). 

 
Fig. 8.  Corresponded images and matched feature points using the 

LCD algorithm (images: 3229 vs 6482). 

 
Fig. 7.  Corresponded images and matched feature points using the 

LCD algorithm (image 3161 vs 6415). 

 
Fig. 4.  Corresponded images and matched feature points using the 

LCD algorithm (images: 0013 vs 1974). 

 
Fig. 3.  Ground truth and the initial position of the robots for selected 

trajectory from the Erfoud dataset along with loop closures zones. 



  

 

It can be seen that the single version of the VO algorithm 
has a high drift for Robot 2 during its motion in the 
environment which is shown by the green line. Since Robot 1 
has detected part of the observed environment by Robot 2 at 
Zone 3, the optimisation process triggers for Robot 1 after 
detecting the inter-loop closures. It can be seen that by 
exploiting the proposed method a significant improvement 
happens in the accuracy of the trajectory of Robot 1 which is 
shown by dark blue in Fig. 10. It should be noted that the 
intra-loop closure at Zone 2 is also taken into account when 
the optimisation process for Robot 1 is triggered. Moreover, 
Robot 2 has detected part of the observed environment by 
Robot 1 at Zone 1 as the inter-loop closure. The impact of the 
optimisation process on improving the trajectory of the robot 
in the area close to the GT can be observed at this zone. 
Furthermore, the error of the estimated trajectory by a single 
and cooperative system is investigated. Figures 11 and 12 
show the error between the estimated trajectory of the GT for 
Robot 1 and Robot 2, respectively. The detection of a 
previously seen area by Robot 2 results in a high impact on 
the estimated trajectory of Robot 1. From Fig. 11, the 
accuracy of localization is drastically improved in both X and 
Y directions by applying the proposed algorithm where the 
improvement is not limited to the loop closure area and is 
distributed through the whole trajectory. From Fig. 12, an 
improvement in the accuracy of the estimated trajectory can 
be also observed where a previously seen area from Robot 1, 
has been detected by Robot 2.  

To provide a statistical sense regarding the estimated 
error by applying the proposed algorithm, a quantity 
comparison is also reported in Table 1.  Herein, the average 
error of the estimated trajectories by the single version of VO 
is compared with CVO. It can be observed that by applying 
the proposed algorithm for CVO, the average error of the 
estimated trajectory is considerably decreased from 20.32m 
to 6.75m in the X direction for Robot 1. Similar behaviour 
happens in the Y direction where the average error is 
drastically decreased from 21.63m to 5.60m for Robot 1. 
Also, the average error of the estimated trajectory is reduced 
from 3.66m and 3.98m to 3.43m and 3.29m in the X and Y 
direction, respectively, for Robot 2.  

 

 

TABLE I.  THE AVERAGE ERROR OF THE ESTIMATION TRAJECTORIES 

FOR COOPERATIVE VO (CVO) AND SINGLE VERSION OF VO  

Direction 

The Average Error 

Robot 1 - 

CVO 

Robot 2 - 

CVO 

Robot 1 - 

VO 

Robot 2 - 

VO 

X (m) 6.7580 3.4321 20.3292 3.6682 

Y (m) 5.6038 3.2993 21.6346 3.9856 

 

IV. CONCLUSION 

This article develops a novel cooperative VO algorithm to 
collaboratively localize a team of robots by only checking the 
key-images on other planets. The building blocks of the 
proposed cooperative VO algorithm was described in detail. 
VO and LCD blocks were deployed concurrently to localize 
the robots and detect any overlapping fields of view for any 
possible loop closure. The proposed cooperative VO 
algorithm was tested on the planetary analogue Erfoud 
dataset to investigate the accuracy of the estimated 
trajectories. After describing the possible shared area 
between the robots in the environment, some of the detected 
loop closures and the corresponding matched images using 
the LCD block were shown. Feeding the detected loop 
closures into the optimisation process by checking the shared 
key-images, significantly improved the accuracy of the 
estimated trajectory of the robots. It can be concluded that by 
applying the proposed cooperative algorithm in conjunction 
with successful LCD, promising results are achievable. 
Future directions for this work include, not limited to, 
investigation of the effectiveness of the proposed algorithms 

 
Fig. 12.  Comparison of estimation error between single VO and 
cooperative VO (CVO) for Robot 2. 

 
Fig. 11.  Comparison of estimation error between single VO and 
cooperative VO (CVO) for Robot 1. 

 
Fig. 10.  Comparison of the estimated trajectory of the robots by 

cooperative VO (CVO) and the single VO. 



  

corroborated through the representative experimental dataset 
and extension to cooperative visual SLAM. 
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