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Abstract

Data Distribution Service (DDS) is a specification of networking middleware used in

real-time mission-critical systems such as autonomous vehicles, energy management

systems, and air traffic control. It follows the publish-subscribe communication

pattern and offers a set of Quality of Service (QoS) parameters, allowing the users

to align the data communication to the needs of the application.

Configuring DDS to achieve the required performance is a daunting task, given

the large space of QoS parameters. Evaluation of performance levels by running

experimental performance tests with a real DDS system for different QoS configu-

rations can be complex and require substantial time and resources.

This report provides a detailed overview on our recent work on the use of machine

learning (ML) models to predict the performance of DDS under different configura-

tions. This is done by measuring the performance of some configurations and using

the observations to train an ML model. The trained model can then be used to pre-

dict the performance of DDS under other system configurations. Since the prediction

is computationally inexpensive, we can predict the performance of many different

configurations to find a suitable one for given requirements. To our knowledge, we

are the first to have applied this approach to DDS performance evaluation.

We used linear regression and random forests as ML methods. We selected four

performance metrics, and for each of them, we trained a random forests model and

xi



tuned its hyperparameters. We tested the final models on unseen system configu-

rations. The random forests models show good predictive accuracy and outperform

the predictions obtained with the linear regression ones. Five of the eleven random

forests-based models have a coefficient of determination greater than 0.9 for unseen

system configurations.

We conclude that the proposed ML models offer a way of evaluating the likely

performance of a range of configurations much more cheaply than relying on exper-

imentation and is thus a useful tool to guide system design.
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Chapter 1

Introduction

1.1 Data Distribution Service

The Data Distribution Service (DDS) serves as middleware in systems that require

real-time, mission-critical operations, such as in energy management and air traffic

control. This system operates on a publish-subscribe model, in which the com-

municating entities, encompassing both publishers and subscribers, are collectively

known as participants. In this model, publishers distribute data via DataWriters,

each responsible for generating samples pertaining to a singular Topic. These Topics

act as distinct categories of data. A publisher may employ several DataWriters to

disseminate diverse samples across various topics. On the other end, subscribers

utilise DataReaders to receive these samples, with each DataReader dedicated to a

specific topic. To encompass a broader range of topics, subscribers may deploy mul-

tiple DataReaders, enabling them to access a variety of data samples from different

topics.
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1.1.1 Quality of Service

DDS employs Quality of Service (QoS) policies to delineate the end-to-end communi-

cation, many of which are amendable in real-time. These QoS settings are configured

individually for each DataWriter and DataReader, incorporating Request-Offered

policies. This implies that a DataWriter proposes a certain level of service, whilst

a DataReader solicits a service level. Communication is feasible when the service

level offered by the DataWriter is equivalent to or surpasses that requested by the

DataReader, ensuring policy compatibility.

Two notable QoS parameters are Reliability and Durability. Reliability gov-

erns the acknowledgment status of a received message, offering two choices: reliable

or best effort. Under a reliable setting, it is imperative for subscribers to confirm

message receipt. In such scenarios, if the publisher opts for reliability, it awaits

acknowledgment for a predetermined duration before resending the message. Con-

versely, a best-effort approach signifies message transmission without assurance of

receipt.

Durability pertains to the publishers’ capacity to dispatch previously sent mes-

sages to late-joining subscribers. It encompasses four tiers: firstly, not retaining or

dispatching past samples; secondly, preserving and transmitting samples provided

the DataWriter remains active; thirdly, utilising a memory-based service for saving

and dispatching; and lastly, employing a disk-based service for the same purpose.

The DDS specification is built upon the Real-Time Publish-Subscribe (RTPS)

specification and mentioned within the RTPS specification are several QoS policies

that are most likely to impact the performance of the communication:

1. Durability

2. Presentation
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3. Liveliness

4. Time Based Filter

5. Reliability

6. Destination Order

7. Writer Data Lifecycle

In addition to QoS parameters, other non-QoS factors can also potentially in-

fluence performance. These include the length of the data in transmitted messages,

the number of publishers and subscribers, as well as the employment of multicast in

communication.

Multicast is a network communication methodology, where a single sender ad-

dresses multiple specific recipients. This approach enhances bandwidth efficiency by

circumventing the need to replicate packets. Rather, a solitary packet dispatched

by the sender is duplicated and distributed by the routers and other network com-

ponents involved in the transmission process.

Collectively, DDS encompasses 22 QoS parameters and 4 non-QoS parameters,

each playing a pivotal role in the system’s overall functionality.

1.2 Performance Evaluation and Prediction

Performance evaluation, though a non-functional requirement, holds significant im-

portance in system assessment. The advantages of conducting performance evalua-

tions are manifold. Firstly, it aids in determining the scalability of a system, reflect-

ing its efficiency and capability to handle increased loads. Secondly, performance

assessment can illuminate areas suitable for optimisation, particularly in reducing

operational costs. This includes refining deployment strategies to minimise hardware
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requirements and cut down on data transfer overheads. Furthermore, evaluating a

system’s performance allows for a comparative analysis with alternative solutions,

helping to pinpoint the most effective system for specific workloads.

The predominant method for evaluating system performance is through exper-

imental means. This involves conducting real-time performance tests on an oper-

ational system, a process that demands both time and computational resources.

Ideally, these tests should cover a variety of workloads and conditions, potentially

leading to a considerable number of tests and, consequently, significant resource con-

sumption. It is also worth noting that longer-duration performance tests can yield

deeper insights into system behaviour, though the cumulative time investment can

be substantial across numerous tests.

An alternative to experimental evaluation is the model-based approach. This

method entails developing and fine-tuning statistical or machine learning models that

learn from historical data patterns. Such models can then forecast the performance

of systems under untested workloads. This approach is pivotal for optimising settings

to achieve peak performance, allowing for the simulation of different scenarios in a

fraction of the time and resource expenditure required for experimental evaluations.

Moreover, model-based evaluation is instrumental in efficient resource allocation, for

instance, determining the most effective settings for a given bandwidth to maximise

performance.

Our research focuses on employing Machine Learning models to predict the per-

formance of DDS systems influenced by various settings, including both QoS and

non-QoS parameters.
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1.3 Perftest

Perftest, developed by RTI, a DDS vendor, serves as a performance testing tool dis-

tinct from standard DDS publishers and subscribers. It involves a Perftest publisher

and a Perftest subscriber, each incorporating a publisher and a subscriber within

their application structure. The Perftest publisher employs its DDS publisher to

send continuous sample data to the DDS subscriber within the Perftest subscriber

application. Periodically, it transmits a special sample, prompting a measurement

packet from the Perftest subscriber. At this juncture, the Perftest publisher marks

the time. Upon receiving this request, the Perftest subscriber responds using its

DDS publisher, sending the measurement packet back. The Perftest publisher, upon

receipt, logs another timestamp, allowing the calculation of the round-trip time.

Perftest operates in two modes: throughput and latency. In the throughput

mode, the operation is as previously described. Conversely, in latency mode, each

sent sample is a measurement packet, enabling the assessment of latency without

additional load, as opposed to the throughput test where latency is gauged under a

specific load.

Originally tailored for testing the performance of RTI’s Connext DDS imple-

mentation, Perftest’s versatility allows for its application in evaluating other DDS

implementations. For this study, Perftest was utilised to gather data on the RTI

Connext application, which subsequently aided in training a machine learning model.

1.4 Machine Learning

Machine learning, a branch of artificial intelligence, concentrates on crafting algo-

rithms and models that empower computers to learn from data and make informed

decisions without specific programming directives. This concept revolves around
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the notion that computers can autonomously enhance their task performance by

gleaning experience from data. In our research, we have explored the use of random

forests to forecast the performance of DDS. Additionally, linear regression has been

employed as a baseline model for comparative analysis.

1.4.1 Linear Regression

Linear regression stands as a prevalent statistical technique for modelling the cor-

relation between a dependent variable (the target) and one or multiple independent

variables (predictors or features). In our context, the target is the performance,

while the features encompass the values of both QoS and non-QoS parameters. This

method presupposes a linear interrelation between the variables, implying that vari-

ations in the features consistently influence the target. Linear regression calculates

the coefficients for each independent variable, signifying the intensity and tendency

of their relationship with the dependent variable. Its high interpretability stems

from the way these coefficients elucidate the effect of changes in the independent

variables on the target.

1.4.2 Random Forests

Random forests, an ensemble learning technique, enhances prediction accuracy by

amalgamating the outputs of multiple individual models. Constructed using Deci-

sion Trees, random forests are trained with a randomly chosen subset of the training

data. Not every feature is taken into account for decision-making at each node split

within a tree. For prediction purposes, each tree in the forest contributes its own

forecast, with the final prediction typically being an average of these individual pre-

dictions. The ensemble nature of random forests, coupled with the randomness in

both sampling and feature selection, significantly mitigates the risk of overfitting,
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thereby augmenting their robustness against noisy data. This attribute renders

random forests particularly effective for predicting the performance of distributed

systems, including DDS. Additionally, like linear regression, random forests can as-

certain feature importance, highlighting which features exert the most influence on

the model’s predictions.

1.4.3 Model Evaluation

Numerous metrics are available for assessing the performance of a model. In our

study, we have chosen to concentrate specifically on two of these metrics: Root Mean

Square Error (RMSE) and the coefficient of determination, denoted as R2.

RMSE

The Root Mean Squared Error (RMSE) measures the average size of the errors or

residuals between predicted and actual observed values. The formula for RMSE is

given by:

RMSE =

√√√√ 1

n

n∑
i=1

(ypredicted,i − yactual,i)2

This calculation involves taking the square root of the average of the squared dif-

ferences between the predicted and actual values, as demonstrated in the formula

above. RMSE is expressed in the same units as the dependent variable, enhancing

its interpretability in relation to the problem at hand. A lower RMSE value signifies

a more accurate model, as it indicates that the predictions are closer to the actual

observations. However, RMSE is particularly sensitive to outliers, as the squaring of

errors disproportionately emphasises larger discrepancies, which can markedly affect

the RMSE value.
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Coefficient of Determination

The coefficient of determination, denoted as R2, is a statistical measure used in

regression analysis to assess the fit quality of a model. It usually ranges between

0 and 1, indicating the fraction of the variance in the dependent variable that is

accounted for by the independent variables. The R2 formula is as follows:

R2 = 1−
∑n

i=1(yactual,i − ypredicted,i)
2∑n

i=1(yactual,i − ȳ)2

This metric can be interpreted as the ratio of the explained variance (the sum of

squares of the fitted values) to the total variance (the sum of squares of the actual

values). A higher R2 value signifies that a greater portion of the variance in the

dependent variable is explained by the model, implying a better fit. However, it is

important to note that R2 does not convey the direction or clinical significance of

the relationship. Even with a high R2, scrutinizing the individual coefficients and

the context of the data remains crucial, which is why RMSE is also considered in

our analysis.
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Chapter 2

Related Work

This study pioneers the application of Machine Learning (ML) models for predicting

Data Distribution Service (DDS) performance. A thorough literature review found

no direct precedents in this specific area. However, expanding the scope of our search

revealed relevant studies under broader terms in adjacent fields.

The first pertinent field is Performance Prediction of Distributed Systems. Here,

studies like (Bouloukakis et al. 2018) have utilised Stochastic Petri Nets (SPNs) for

assessing the performance of publish-subscribe systems, while (Sachs et al. 2013)

applied them in the context of message-oriented middleware.

The second relevant area is Performance Prediction of Configurable Systems us-

ing Machine Learning. Numerous studies have focused on predicting the perfor-

mance of systems with adjustable parameters, where different configurations impact

overall performance. These investigations predominantly leverage ML techniques,

but typically they forecast a single statistical figure representing a chosen perfor-

mance metric, such as the mean value.

In works like (Bao et al. 2018), a random forests-based comparative model is

employed to identify the optimal system configuration for maximising throughput.
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(Guo et al. 2018) and (Siegmund et al. 2015) integrate ML methods and sampling

strategies to predict performance in configurable systems. These strategies select

training data based on configuration positions within a multi-dimensional space

defined by the configuration options’ values. (Ha et al. 2019a) employs a deep

feed-forward neural network to predict performance across different configurations,

representing the performance with a singular value. An innovative approach is seen

in (Shu et al. 2020), where adversarial learning via Generative Adversarial Networks

(GANs) is applied to predict and optimise performance with fewer samples than

traditional techniques. Moreover, (Zhang et al. 2015) and (Ha et al. 2019b) explore

performance prediction in systems with solely Boolean configuration options.

Our work draws substantial inspiration from (Rausch & Sanders 2020), which

mirrors our process conceptually. The ML methodologies we adopted are based on

insights from (Grebhahn et al. 2019), a comprehensive survey reviewing ML tech-

niques and sampling strategies for performance prediction in configurable systems.

This survey advocates using three primary ML methods: random forests, multiple

linear regression, and classification and regression trees.
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Chapter 3

Method

This work can be broken down into 4 main parts:

1. Experimental Setup (Testbed)

2. Dataset Creation

3. Configuration Space Exploration

4. Model Training and Evaluation

Section 3.1 looks at the machines involved in the performance tests, the tools, the

network setup, and how the data is collected. Section 3.2 gives an overview of how

the raw data collected from the tests was processed into a dataset for the exploration

of the configuration space to take place. Section 3.3 takes this dataset and explores

the configuration space to split up the data in preparation for the model training.

Finally, section 3.4 looks at how the ML training took place and the various metrics

used for evaluating the ML models.
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3.1 Experimental Setup (Testbed)

Perftest serves as the foundational tool for executing DDS performance tests to

collect data. Yet, it exhibits limitations in terms of automation. Primarily suited

for a limited number of tests, Perftest requires setting up publisher and subscriber

applications through command line instructions, with options provided as command

line parameters. To overcome these constraints, we have developed a supplementary

tool, named AutoPerf. This tool enhances Perftest by facilitating the execution of

numerous tests across multiple machines, offering flexibility in test duration and

enabling pre-set variations in parameter options.

3.1.1 AutoPerf

To initiate test campaigns using AutoPerf, it is essential first to populate the config-

uration file with the requisite settings prior to executing the tool. The configuration

file serves as the hub for defining each campaign. It allows for the definition of

multiple campaigns, which can be executed sequentially, thus providing consider-

able flexibility. The concept revolves around pre-defining all the tests intended for

execution before starting the tool, enabling a set-and-forget approach. For every

campaign, the user is required to specify the following settings:

• use_random_combination_generation

• random_combination_count

• custom_tests_file

• settings

• machines

12



The two important options to focus on are settings and machines. settings

contain the QoS and non-QoS parameters and the values they should take. These

include:

• Duration (seconds)

• Data Length (bytes)

• Publisher Count

• Subscriber Count

• Reliability Usage

• Multicast Usage

• Durability Level

• Latency Count Value

Below is an example of the settings configuration and the values it could take:

” s e t t i n g s ” : {

” dura t i on s ” : [ 6 0 0 ] ,

” da ta l en byt e s ” : [ 1 , 100 , 1000 , 10000 ] ,

”pub count ” : [ 1 , 5 , 1 0 ] ,

” sub count ” : [ 1 , 5 , 1 0 ] ,

” r e l i a b i l i t y ” : [ true , f a l s e ] ,

” u s e mu l t i c a s t ” : [ true , f a l s e ] ,

” du r ab i l i t y ” : [ 0 , 1 , 2 , 3 ] ,

” l a t ency count ” : [ 1 0 0 0 ]

}

13



The machine configuration in AutoPerf delineates details about the machines

utilised in the test, functioning as slaves in the setup. The machine running Au-

toPerf interacts with these configured machines in a slave-controller relationship,

with the latter being the slaves. This configuration encompasses various details

such as machine names, host IP addresses, locations of SSH keys, usernames for au-

thentication, home directory paths, Perftest file paths, and participant allocations.

The participant allocation can be specified as “pub”, “sub”, or “both”. A setting

of “pub” restricts the machine to hosting only publishers, and similarly, “sub” for

subscribers. Conversely, a “both” value allows a machine to accommodate both pub-

lishers and subscribers. This flexibility is crucial, particularly for scenarios where

an equal distribution of publishers and subscribers across machines is desired.

AutoPerf operates in two distinct modes: Preset Combination Generation (PCG)

and Random Combination Generation (RCG). In this research, both modes were

employed to facilitate comprehensive data collection.

Preset Combination Generation (PCG)

PCG works by taking all of the settings and their values and applying the Cartesian

product to produce all possible combinations of values for all settings. For example,

in the scenario with the following settings:

” s e t t i n g s ” : {

” dura t i on s ” : [ 6 0 0 ] ,

” da ta l en byt e s ” : [ 1 0 0 ] ,

”pub count ” : [ 1 , 2 5 ] ,

” sub count ” : [ 1 , 2 5 ] ,

” r e l i a b i l i t y ” : [ t rue ] ,

14



” u s e mu l t i c a s t ” : [ t rue ] ,

” du r ab i l i t y ” : [ 0 ] ,

” l a t ency count ” : [ 1 0 0 ]

}

When applying the Cartesian product, the produced combinations would be:

• 600SEC_100B_1P_1S_REL_MC_0DUR_100LC

• 600SEC_100B_1P_25S_REL_MC_0DUR_100LC

• 600SEC_100B_25P_1S_REL_MC_0DUR_100LC

• 600SEC_100B_25P_25S_REL_MC_0DUR_100LC

Notice how there are four combinations as a result of two pub_count options per

sub_count option. Each combination is treated as it’s own test and is run for the

prescribed duration (in this case, 600 seconds).

Random Combination Generation (RCG)

RCG works by defining a minimum and maximum value for each setting that is

numeric. For non-numeric settings, you define all possible options. The tool will

then pick a random value between the minimum and maximum values and treat

that as a random combination and its test to run. For example, with the following

settings:

” s e t t i n g s ” : {

” dura t i on s ” : [ 6 0 0 ] ,

” da ta l en byt e s ” : [ 100 , 128 000 ] ,

”pub count ” : [ 1 , 2 5 ] ,

15



” sub count ” : [ 1 , 2 5 ] ,

” r e l i a b i l i t y ” : [ true , f a l s e ] ,

” u s e mu l t i c a s t ” : [ true , f a l s e ] ,

” du r ab i l i t y ” : [ 0 , 3 ] ,

” l a t ency count ” : [ 1 0 0 ]

}

A random value would be defined for datalen_bytes, pub_count, sub_count,

and durability. In the case of reliability and use_multicast, a value of “true”

or “false” is randomly chosen. A valid combination as a result of random selection

could be 600SEC_34353B_7P_3S_BE_MC_2DUR_100LC. This process is repeated for a

number of tests defined by the value of the random_combination_count. The case

for repeating the same random values for all parameters is incredibly small. However,

we have still accounted for this by keeping track of all generated combinations and

regenerating a new combination where the exact values of the combination have

already been seen.

Perftest only lets the user run an executable for each Perftest publisher or Perftest

subscriber application. The configuration parameters passed into the executable

command must match for the publisher and subscriber applications to communicate.

Any configuration mismatch will result in an error, and the test won’t run. Autoperf

has been created to deal with this by checking that the parameter values match

between applications before deploying them. Once the parameter values have been

confirmed to be valid, autoperf generates bash files consisting of multiple executable

commands glued together. Each slave machine has its own defined bash file, and

the publisher and subscriber applications are allocated as evenly as possible onto

each machine. Therefore, each bash file only contains the publisher and subscriber
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applications that have been allocated to it.

When running a test, autoperf starts multiple different processes to execute the

scripts remotely on each machine and also records the statuses of the machines

during execution to keep track of which machines have failed during run time. In

the case of a failure, the test is recorded as failed, and the tool attempts to rerun

the failed test up to 3 times before moving on to the next combination. At the end

of each test, autoperf moves all data related to that test, including the status of the

machines, to the campaign folder. Once the campaign of multiple tests is finished,

autoperf compresses the results to allow for easy transmission.

3.1.2 Testbed

All of the data collected for this work was carried out by 3 Raspberry Pis. As

mentioned in the previous section, the use of Autoperf requires the usage of the slave-

controller pattern. Therefore, 1 of the 3 Raspberry Pis was the controller while the

other 2 were slaves. The controller machine was Version 4 Model B released in 2018,

while both slaves were Version 3 Model B Version 1.2, released in 2015. All three

machines were connected in a closed LAN environment via an Ethernet connection.

The controller machine executed autoperf, allowing the slaves to communicate with

themselves.

3.2 Dataset Creation

This section is split into two further sections. The first looks at how much data was

collected for each operational mode of autoperf. The second section looks at how

the raw data collected from the tests is processed for the modelling phase.
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3.2.1 Data Acquisition

Initially, we used PCG to capture a grid from the various parameter options. Below

are the values used for the setting configuration:

” s e t t i n g s ” : {

” dura t i on s ” : [ 6 0 0 ] ,

” da ta l en byt e s ” : [ 100 , 1 000 , 32 000 , 128 000 ] ,

”pub count ” : [ 1 , 5 , 10 , 2 5 ] ,

” sub count ” : [ 1 , 5 , 10 , 2 5 ] ,

” r e l i a b i l i t y ” : [ true , f a l s e ] ,

” u s e mu l t i c a s t ” : [ true , f a l s e ] ,

” du r ab i l i t y ” : [ 0 , 1 , 2 , 3 ] ,

” l a t ency count ” : [ 1 0 0 ]

}

This collectively results in a total of 1,024 different combinations. However,

only 633 tests were successful - a 62% success rate. We suspect a large failure

rate due to the hardware limitations. The majority of the tests with more than 10

publishers would fail. Of all PCG tests that were run successfully, the median and

average values for the publisher count were 5 and 6, respectively, indicating that

tests with more publishers would most likely fail. The median and average values

for the subscriber count were 5 and 9 respectively indicating that the tests with more

subscribers more often succeeded compared to the higher number of publishers.

The rest of the data was collected using RCG mode. A total of 952 tests were

successfully run in this mode. Figures 3.2 and 3.3 show the histograms of the

publisher and subscriber counts for all RCG tests. These diagrams confirm the

above hypothesis that tests with higher numbers of publishers (the figure indicates
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Figure 3.1: Histogram of the values of data length (bytes) for RCG data.

Figure 3.2: Histogram of the values of publisher count for RCG data.

any value greater than 10) are more likely to fail.

In total, 1,585 tests were successfully run (633 in PCG mode and 952 in RCG

mode). Figures 3.4, 3.5, and 3.6 show the histograms for the data length (bytes),

publisher count, and subscriber count. There are peaks that correspond to the

values ran in PCG mode indicating that there is more data to learn on for the

options specified in PCG mode.
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Figure 3.3: Histogram of the values of subscriber count for RCG data.

Figure 3.4: Histogram of the values of data length (bytes) for all data (PCG and RCG).

3.2.2 Data Processing

Each test involves x publishers and y subscribers, which means that in total, y + 1

files are generated: only the first publisher records the latency and one file for each

subscriber. The files generated by subscribers record the following metrics:

• Total Samples: Total samples received by the subscriber.

• Samples/s: Sample rate. Number of samples received per second by the

subscriber.
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Figure 3.5: Histogram of the values of publisher count for all data (PCG and RCG).

Figure 3.6: Histogram of the values of subscriber count for all data (PCG and RCG).

• Avg Samples/s: Moving sample rate average.

• Mbps: Throughput of the subscriber.

• Avg Mbps: Moving throughput average.

• Lost Samples: Number of samples lost.

• Lost Samples (%): Percentages of all samples lost.

The publisher file generated only by the first publisher records the following

metrics:
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• Latency (us): One-way latency (round trip time divided by two).

• Ave (us): Moving latency average.

• Std (us): Moving latency standard deviation.

• Min (us): Minimum latency observed throughout entire test.

• Max (us): Maximum latency observed throughout entire test.

The first step of the data processing pipeline involves extracting the important

columns from the files. For the publisher, this is simply extracting the latency

column. For the subscriber files, we extracted the throughput, sample rate, number

of lost samples, and lost samples as a percentage. The lost samples percentage is used

to calculated the percentage of samples received from the total samples count. Each

of the columns from the subscriber has the ID of the subscriber prepended to the

name e.g. “mbps” becomes “sub 1 mbps”. All columns are then placed into a single

file. This reduces all files from a single test into a single file containing the latency

column from the publisher and throughput, sample rate, number of lost samples, lost

samples percentage, and received samples percentage for each subscriber. Therefore,

each test is reduced to a single file and each campaign is reduced to a single folder

containing a CSV file per test.

To make the subscriber-related data comparable between tests, the data was

summarised using aggregation and averaging over all subscribers. This means that

for each metric from the subscriber e.g. throughput, two new columns would be

generated, one for the averaged value and one for the total over all subscribers.

Therefore, all subscriber related columns are reduced to just two per metric meaning

that the final version of the data for an individual test had the following columns:

• Latency (us)
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• Avg. Throughput (Mbps)

• Total Throughput (Mbps)

• Avg. Sample Rate

• Total Sample Rate

• Avg. Received Samples Count

• Total Received Samples Count

• Avg. Lost Samples Count

• Total Lost Samples Count

• Avg. Samples Received Count

• Total Samples Received Count

• Avg. Samples Received (%)

• Avg. Lost Samples (%)

At this point, the processed data was ready for transient analysis.

3.2.3 Transient Analysis

We visually inspected the data to look for transient periods at the start of the test.

This was done for both the latency and throughput.

We randomly sampled 100 tests and plotted the data in a 10x10 grid. We plotted

a vertical dashed line at the 10% for reference. We then identified any plots that

showed visibly different performance at the start of the test (preferably within the

first 10%). We counted the number of tests that showed this behaviour and noted

the numbers. In the case of latency, the average number of tests out of the 100 that
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showed transient behaviour at the start of the test was 25. In the case of throughput,

this number was 61 out of 100. Figures 3.7 and 3.8 show examples of the 10x10 grid

of data and which tests were deemed to show transient behaviour.

Figure 3.7: Example of visual inspection of latency data.

It is essential to remove the transient period as this often clouds the true be-

haviour of the system during the performance test. We concluded that many of the

tests showed transient periods, especially in the case of the throughput. We, there-
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fore, decided to cut out the first 20% of the data to be sure that all transient periods

do not affect the overall performance behaviour (despite the transient periods only

showing up within the first 10%).

Figure 3.8: Example of visual inspection of throughput data.
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3.2.4 Dataset Processing

After removing the first 20% of all data, it was time to reduce the files per test into

rows per test. This section describes the creation of a single CSV file capturing the

performance of every test for each row.

When predicting the performance of a system, it is usual to predict a single

value - the average. In some cases, researchers also predict the standard deviation

or variance. However, our aim is to best capture the performance and ideally by

capturing the distribution of the data. There is one end of the spectrum which is to

predict a single value to capture the performance and the other end of the spectrum

is to predict the entire distribution. We have opted to take an approach somewhere

in the middle. Models theoretically perform worse in the case where there are more

targets to predict. Therefore, we have chosen to recreate the distributions according

to various statistics gathered from the data. These statistics include: mean, standard

deviation, minimum, maximum, and the following quantiles:

1, 2, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 99

We wanted to capture the worst case performances. In the case of the latency

this would be the highest values which reside in the tail of the distribution while

for the throughput, the worst values would be the lowest in magnitude and would

reside in the head of the distribution. This is why the first, second, fifth, ninety-fifth,

and ninety-ninth percentiles have specifically been included in the statistics used to

recreate the distribution of the performance.

Therefore, for each metric column produced from the previous data processing

steps, we gathered the mentioned statistics. This means that we reduce a single

column of a metric down to 20 numbers and given that there are 13 metrics, a

total of 260 columns are created to capture the distribution of the metrics per
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test. All of this data was combined with the parameter settings used for the test

including the duration in seconds, data length in bytes, publisher count, subscriber

count, reliability, multicast, latency count, and durability. All Boolean columns e.g.

reliability were parsed into integers with 0 representing False and 1 representing

True and categorical columns e.g durability had one-hot encoding applied to them

meaning that the durability column would be split into 4 columns because of the 4

options. A value of 1 would mean that that durability specific option would be used

e.g if a durability value of 3 was used in the test then a 0 would be shown for all

durability columns except for “durability 3” which would have a value of 1.

Figure 3.9: The columns that make up the dataset.

Figure 3.9 visually shows how the columns are split in the dataset where the

parameter values are the duration in seconds, data length in bytes, publisher count,

subscriber count, reliability, multicast, latency count, and durability and the dis-

tribution recreations statistics are the 19 statistics gathered for every metric e.g.

latency, throughput, etc. We therefore end up with one CSV file where each row

represents a single test with the parameter values of the test in the first few columns

and the distribution recreation statistics per metric for all other columns. In total,

this dataset has 1,585 rows and is ready for an exploration of the configuration space.
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3.3 Configuration Space Exploration

There are two techniques for predicting values: interpolation and extrapolation.

Interpolation involves the estimation of values within the range of known data points

whilst extrapolation involves the estimation of values outside of the range. Ideally,

the perfect scenario would be a model that can accurately extrapolate. This would

mean that one could collect data of configurations that are not too resource-intensive

to predict configurations that could be too resource-intensive. Therefore, we had to

define the range differentiating between interpolation and extrapolation.

Figure 3.10: 3D scatter plot of the values for publisher/subscriber count and data length
(bytes).

Of the six parameters, 3 took numerical values and we created a 3-dimensional

grid according to these parameters: publisher count, subscriber count, and data

length. Figure 3.10 shows a 3D scatter plot, while figure 3.11 shows three 2D scatter

plots where the axes show all variations of combinations of the 3D plot.

Ideally, the data should be split in an 80-20 ratio, with 80% of the data used

for training and the other 20% used for testing. Then, for interpolation, the model
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Figure 3.11: All variations of the 3D scatter plot as seen in 2D.

would train and test within the range while in the case of extrapolation, the model

would train within the range and test outside of the range as shown in Figure 3.12.

Figure 3.12: How the data is allocated per train/test phase for interpolation and extrapola-
tion.

It should be noted that in either case (interpolation or extrapolation), the amount

of data used for training and testing should remain the same to allow for a fair

comparison.

To define the range that also fits with the 80-20 split, we started off by defining

values for the 3 parameters as shown below:

pub counts = [ 5 , 10 , 15 , 20 , 25 ]

sub counts = [ 5 , 10 , 15 , 20 , 25 ]
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data l en byt e s = [40 000 , 60 000 , 80 000 , 100 000 , 120 000 ]

The Cartesian product would then be applied to all 3 lists, producing all possible

combinations of values for the 3 parameters. For each combination, the number of

tests with values lower than or equal to the chosen values were counted as well as the

opposite case: tests with values greater. The inside and outside percentages were

also calculated to find the best match of 80% inside and 20% outside. There were

over hundred different combinations with various inside and outside percentages.

We therefore ordered the rows of data according to the highest inside percentage

first before narrowing the range of inside values between 75% to 85%. This resulted

in 6 combinations as shown in Table 3.1.

pub
count

sub
count

datalen
in

count
out
count

in
percentage

out
percentage

20 25 80000 1235 235 84.0136 15.9864

15 25 80000 1231 239 83.7415 16.2585

10 25 80000 1227 243 83.4694 16.5306

25 20 120000 1145 325 77.8912 22.1088

5 25 120000 1125 345 76.5306 23.4694

25 20 100000 1104 366 75.102 24.898

Table 3.1: All combinations of values for publisher count, subscriber count, and data length
alongside the allocation of data inside and outside the range.

This was narrowed down further to look for percentages between 76% and 84%

(inclusive). This eliminated the top and bottom combinations in Table 3.1. On

top of this, we decided to eliminate the case with 5 publishers as this value was

too low to appropriately spread the data across the parameter as well as the case

of 25 publishers which covered all publisher values. A split across all values of all

parameters would have been ideal, though this was not achievable because the final

two cases are shown in Table 3.2. The closest percentage to the 80-20 split is the

combination of 10 publishers, 25 subscribers, and 80KB for the data length.

That concludes the explanation on how the configuration space was reduced to
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pub
count

sub
count

datalen
in
count

out
count

in
percentage

out
percentage

15 25 80000 1231 239 83.7415 16.2585

10 25 80000 1227 243 83.4694 16.5306

Table 3.2: The final two combinations of values for publisher count, subscriber count and
data length when looking for the ideal split for interpolation and extrapolation.

the 3 numerical parameters to find the closest values for all 3 parameters that would

suit the 80-20 data split for training and testing. The final split is visually shown in

Figure 3.13 showing the values of the 3 parameters for the boundary, the number of

tests inside (green), the number of tests outside (blue) and the percentage of tests

inside and outside.

Figure 3.13: Chosen values for the 3 numerical parameters and allocated tests within (green)
and outside (blue) of the range.

The aim was to split the dataset into a training and testing set where the training

set takes up 80% of the data and the testing set takes up the rest. Ideally we would

have liked to split the numerical data accordingly i.e. if the publishers ranged from

1 to 100 then train on 1 to 80 publishers and test on 81 to 100 publishers. However,

this could not be achieved because of how the data is spread within the configuration

space. The tests are not equally spread throughout the space and allocating an 80-20

split according to the values of the axes is therefore not feasible. Thus, we have opted

for the best option regarding the parameter values (10 publishers, 25 subscribers and

80KB).
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3.4 Model Training and Evaluation

The training of the model was carried out separately for interpolation and extrapola-

tion. In both cases, the input parameters were standardised and the target variables

were transformed (though we did experiment with the raw values for both the input

parameters and the target variables). This section will cover the various standardis-

ation procedures applied to the input parameters, transformation functions applied

to the target variables, and evaluation metrics recorded.

3.4.1 Standardisation

Standardisation in the context of ML and statistics refers to the process of rescaling

or transforming features. The usual method of standardisation is known as “z-

score normalisation” and rescales the data to have a mean of 0 and a standard

deviation of 1. The standardisation methods used in the model training include no

standardisation, z-score, min-max, and robust.

Z-Score

standardised X =
X − µ

σ

For z-score normalisation, one must first calculate the mean and standard deviation

of the feature. Then, for each data point of the feature, the mean is subtracted from

the data point and the result is divided by the standard deviation of the feature.

This results in the data having a mean of 0 and a standard deviation of 1.

Min-Max

Min-Max Scaled X =
(X −min val)

max val−min val
· (b− a) + a
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Min-max scaling works by first calculating the minimum and maximum values of the

target. For each data point the minimum value is subtracted from the data point

and the result is divided by the range (maximum minus minimum) of the feature.

This scales the data to a specified range, typically this lies between 0 and 1 though

this can be customised according to the desired conditions.

Robust

Robust Scaled X =
X −M

IQR

In the case of robust scaling, the median and interquartile range of the feature are

calculated. The median is subtracted from every data point in the future and the

result of this subtraction is divided by the interquartile range. Robust scaling is

less sensitive to outliers compared to min-max scaling and z-score normalisation. It

brings the data into a consistent range based on the median and interquartile range.

Overall, standardisation is a useful preprocessing technique for several reasons.

Firstly, standardisation equalises the scales of all features since all features are scaled

to have a mean of 0 and standard deviation of 1. This makes all features directly

comparable and prevents features with larger numeric values such as the data length

from dominating those with smaller values e.g. publisher count and subscriber count.

Secondly, many ML algorithms, particularly those based on gradient descent such as

linear regression, converge faster when the input features are standardised because

it helps them reach their optimal solution faster, reducing training time. There are

many other reasons but one of the main reasons to use robust scaling is because it

is less affected by outliers compared to min-max scaling. This is because outliers

have a small impact on the mean and standard deviation and so they don’t dispro-

portionately influence the scaling. In our work we have only applied the mentioned
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standardisation methods to the numerical input parameters: publisher/subscriber

count and data length.

3.4.2 Transformation

Transformations in machine learning refer to the process of applying mathematical

or statistical operations to the data to modify its features or structure. These trans-

formations can be crucial for improving model performance, handling non-linear

relationships, and making the data more suitable for specific algorithms. We mainly

focused on using variations of the log transformations as we noticed when analysing

the data that there were often large values that would impact the modelling. When

applying the log transformation, these larger values have as equal of an impact

on the modelling as the smaller values. We explored the following transformation

functions: log, log10, log2, log1p, and square root.

log, log2, and log10

log(x)

This transformation applies the natural logarithm function to each data point and

compresses larger values more than smaller ones. This is useful when dealing with

data that exhibits exponential growth or decay because it stabilises the variance

of data with a multiplicative effect. It can transform data with exponential rela-

tionships into linear ones, making it suitable for linear models such as the one we

use - linear regression. log2(x) is similar to the log transformation but uses base 2

logarithms while log10(x) uses base 10.

log1p

log(1 + x)
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This transformation adds 1 to each data point before applying the natural logarithm

and is often used when dealing with data containing zero values. This is the case

with the number of lost samples when reliability is being used, and that is why we

have opted to use this transformation.

Square Root

The square root transformation takes the square root of each data point, which also

compresses larger values more than smaller ones, similar to the log transformations.

This is useful for dealing with data with non-constant variance, a characteristic

often seen in the performance of distributed systems. Like the log transformation,

the square root transformation can also make data more linear and suitable for linear

models such as linear regression.

3.4.3 Training

Linear regression was chosen as a baseline for comparison, whilst random forests was

the selected model to be used as the first step in using ML with DDS for performance

prediction. Regardless, both models went through the same training process. For

both models, the inputs were standardised and the outputs were transformed for all

combinations of standardisation on inputs and transformation on outputs, e.g. for

z-score on inputs, all transformations were used (log, log2, log10, log1p and square

root).

Before processing is applied to the inputs and outputs, the dataset is split into

the training and test splits. For interpolation, this involves randomly sampling 80%

of the data within the range for training and using the remaining 20% of the data

within the range as testing. Given that there are 1,585 tests in total and we defined

the boundary at 10 publishers, 25 subscribers, and 80KB, the number of tests inside
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the boundary is 1,227 whilst outside is 243. Therefore, in the case of interpolation

80% of 1,227 which is 982, tests are used for training and the remaining 20% (245)

are for testing.

In the case of extrapolation, training is done with a randomly sampled proportion

of 80% of the data within the range - the same case as interpolation. However, the

key difference with extrapolation is the testing data. For the case of extrapolation,

245 tests are used for testing. However, there are only 243 tests outside of the

boundary. Therefore, for any random set of training data for extrapolation, the

testing data always consists of the same 243 tests outside the boundary.

Models are trained on a single DDS performance metric, so there is one model

per DDS performance metric e.g. number of lost samples. After allocating the

training and testing datasets, the standardisation is applied to the inputs and the

transformations to the outputs. The model is then trained and the error metrics are

calculated on the predictions. It is critical to highlight that the error metrics are

calculated for each statistic used to recreate the distribution of the metric, e.g. 5th

percentile of latency. This means that all evaluation metrics mentioned later e.g.

Root Mean Squared Error, are applied for each statistic, e.g. 60th percentile. On

top of this, the error metrics are averaged over all outputs. We should mention that

when transformations are applied to the outputs, the transformations are reversed

before calculating the error metrics.

After the model has been trained, all data associated with that model are written

to files including the model name, model type, training example count, testing ex-

ample count, input variables, output variables, DDS performance metric of interest,

standardisation function, transformation function, and errors per output variable.

This data is then used later on for comparing all models to find the ones with the
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best performance.

3.4.4 Evaluation Metrics

Evaluation metrics in machine learning are used to assess the performance of models

and quantify how well they are making predictions. These metrics help you under-

stand how effectively your model is performing on a given task. We have recorded

the following metrics in our works: Mean Squared Error (MSE), Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE), Median Absolute Error

(MedAE), and Explained Variance.

Mean Squared Error

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Mean Squared Error (MSE) is calculated as the average of the squared differences

between predicted and actual values and penalises large errors, making it sensitive

to outliers. This is useful for tasks where you want to quantify the magnitude of

prediction errors and penalise larger errors more heavily. In our work, we focus on

using the Root Mean Squared Error (RMSE), which is the squared root of the MSE.

The reason for this decision is that the RMSE is more interpretable because it is in

the same units as the variable.

Mean Absolute Error

MAE =
1

n

n∑
i=1

|yi − ŷi|

This is calculated as the average of the absolute differences between predicted and

actual values, is less sensitive to outliers compared to MSE and is useful when you

want a straightforward measure of prediction accuracy and do not want to heavily
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penalise outliers.

Mean Absolute Percentage Error

MAPE =
1

n

n∑
i=1

(
|yi − ŷi|

|yi|

)
× 100%

This is calculated as the average absolute percentage differences between predicted

and actual values. This is useful when you want to express prediction errors as a

percentage of the true values, making it easier to interpret.

Median Absolute Error

MedAE = median (|yi − ŷi|)

This is calculated as the median of the absolute differences between predicted and

actual values and is less affected by outliers than MAE. It is useful when the data

dataset may contain outliers and a robust measure of prediction error is needed.

Explained Variance

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

This metric measures the proportion of the variance in the dependent variable ex-

plained by the independent variables. While R2 and Explained Variance are often

used interchangeably, they typically refer to the same concept: measuring the good-

ness of fit of a regression model.
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Chapter 4

Results

To recap, one model (linear regression or random forests) is trained for a specific DDS

performance metric (e.g., throughput) in interpolation and extrapolation. For each

model, the error metrics are taken for the training and testing phases. Therefore,

for each DDS performance metric, there are two possible models (linear regression

or random forests) trained under two possible situations (interpolation or extrapo-

lation) with two specific error metrics of focus (RMSE and R2) for the two phases

(training and testing). This means every model trained on a specific DDS perfor-

mance model has 2×2 = 22 = 4 variations. All source code and data including error

metrics over the DDS metric distribution for all models can be found in Appendix

A.
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Metric

R2
Train
LR
Int

R2
Test
LR
Int

R2
LR
Int

% Diff

R2
Train
LR
Ext

R2
Test
LR
Ext

R2
LR
Ext

% Diff

R2
Train
RF
Int

R2
Test
RF
Int

R2
RF
Int

% Diff

R2
Train
RF
Ext

R2
Test
RF
Ext

R2
RF
Ext

% Diff

Avg Lost Samples 0.198 0.159 -20% 0.083 0.277 234% 0.994 0.982 -1% 0.996 0.699 -30%

Avg Lost Samples (%) 0.251 0.207 -18% 0.146 0.237 62% 0.984 0.933 -5% 0.986 0.907 -8%

Avg Received Samples 0.387 0.453 17% 0.397 0.028 -93% 0.998 0.999 0% 0.999 0.78 -22%

Avg Received Samples (%) 0.251 0.201 -20% 0.24 -0.023 -110% 0.986 0.893 -9% 0.988 0.908 -8%

Avg Sample Rate 0.494 0.534 8% 0.431 0.363 -16% 0.994 0.969 -3% 0.994 0.952 -4%

Avg Throughput (Mbps) 0.497 0.536 8% 0.511 0.192 -62% 0.982 0.94 -4% 0.986 0.921 -7%

Latency (us) 0.083 0.225 171% 0.117 0.029 -75% 0.723 0.636 -12% 0.734 0.188 -74%

Total Lost Samples -0.268 -62.23 -23120% 0.009 -0.187 -2178% 0.113 -1.211 -1172% 0.311 -1.816 -684%

Total Received Samples 0.313 0.241 -23% 0.275 -0.082 -130% 0.984 0.922 -6% 0.965 0.427 -56%

Total Sample Rate 0.52 0.259 -50% 0.434 -1.548 -457% 0.958 0.885 -8% 0.898 0.711 -21%

Total Throughput (Mbps) 0.333 0.37 11% 0.522 0.466 -11% 0.987 0.939 -5% 0.988 0.901 -9%

Table 4.1: R2 values during training and testing for Linear Regression (LR) and Random Forests (RF) for interpolation (int) and extrapolation (ext).
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Table 4.1 shows all R2 scores averaged for the model trained for a specific DDS

performance metric, while Table 4.2 shows the same for RMSE.
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Metric

RMSE
Train
LR
Int

RMSE
Test
LR
Int

RMSE
Train
LR
Ext

RMSE
Test
LR
Ext

RMSE
Train
RF
Int

RMSE
Test
RF
Int

RMSE
Train
RF
Ext

RMSE
Test
RF
Ext

Avg Lost Samples 898,871.4 988,578.1 980,807.9 1,044,115.3 77,933.5 142,382.6 59,083.9 123,808.7

Avg Lost Samples (%) 14.4 13.7 14.5 13.2 1.9 3.2 1.6 4.4

Avg Received Samples 866,112.6 717,621.7 835,644.4 1,082,257.3 28,213.8 31,133.4 25,825.6 261,104.7

Avg Received Samples (%) 14.4 13.8 13.7 15.6 1.8 4.2 1.5 4.4

Avg Sample Rate 4,704.5 4,026.4 4,711.9 6,796.4 202.0 379.2 205.8 1,126.8

Avg Throughput (Mbps) 25.9 26.4 26.2 30.8 1.6 5.3 1.3 8.6

Latency (us) 3,045,001.4 1,454,728.3 2,848,990.0 9,509,031.8 1,139,337.4 771,102.4 916,733.7 7,903,234.4

Total Lost Samples 7,337,539.8 31,204.0 4,131,444.1 2,691,201.6 7,304,408.1 76,398.2 5,656,594.0 183,124.5

Total Received Samples 756,761.8 791,921.4 712,238.7 1,295,118.4 109,964.1 235,794.3 163,318.2 753,747.7

Total Sample Rate 1,839.6 2,018.7 1,745.8 4,918.2 454.0 615.0 651.0 2,206.5

Total Throughput (Mbps) 326.6 361.5 319.2 278.1 23.1 47.3 23.9 149.6

Table 4.2: RMSE values during training and testing for Linear Regression (LR) and Random Forests (RF) for interpolation (int) and extrapolation (ext).
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The analysis of the results will initially break down into looking at linear re-

gression and random forests. We analyse interpolation versus extrapolation for each

model by analysing the R2 and RMSE.

4.1 Linear Regression

4.1.1 Interpolation

In the context of our performance analysis, it is evident that linear regression models

may not be the most suitable choice for modelling performance metrics. Among the

12 models under consideration, only 9 exhibited R2 scores exceeding the threshold

of 0.2, highlighting that the remaining three models performed inadequately. The

highest R2 score recorded in our analysis was 0.54, achieved by the model focusing

on the average throughput metric. Another model, specifically designed to capture

variations in the average sample rate, demonstrated relatively promising results with

an R2 score of 0.53. Further inspection reveals three additional models surpassed the

0.4 R2 threshold, while four models exceeded 0.3. In summary, our comprehensive

evaluation indicates that the overall performance of these linear regression models

can be characterised as sub-optimal for the given dataset and metrics.

4.1.2 Extrapolation

Our comprehensive performance evaluation shows that the overall performance of the

models under consideration falls short of expectations. The observed performance

is notably inferior to that achieved by interpolation methods. Specifically, only 4

of the considered models managed to attain R2 scores exceeding the threshold of

0.2. Among these models, a mere two could surpass a more stringent threshold of

0.3. Notably, the highest-performing model in our analysis was associated with the
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total throughput metric, achieving an R2 score of 0.47. Our rigorous evaluation

underscores the sub-optimal performance of the models in question, which fails to

meet the desired standards.

Metric
R2
LR
Int

R2
LR
Ext

R2
LR
% Diff
(Int vs Ext)

Avg Lost Samples 0.159 0.277 74%

Avg Lost Samples (%) 0.207 0.237 14%

Avg Received Samples 0.453 0.028 -94%

Avg Received Samples (%) 0.201 -0.023 -111%

Avg Sample Rate 0.534 0.363 -32%

Avg Throughput (Mbps) 0.536 0.192 -64%

Latency (us) 0.225 0.029 -87%

Total Lost Samples -62.23 -0.187 100%

Total Received Samples 0.241 -0.082 -134%

Total Sample Rate 0.259 -1.548 -698%

Total Throughput (Mbps) 0.37 0.466 26%

Table 4.3: Interpolation vs extrapolation for linear regression focusing on the r-squared
metric.

Metric
RMSE
LR
Int

RMSE
LR
Ext

RMSE
LR

% Diff
(Int vs Ext)

Avg Lost Samples 988,578.1 1,044,115.3 6%

Avg Lost Samples (%) 13.7 13.2 -4%

Avg Received Samples 717,621.7 1,082,257.3 51%

Avg Received Samples (%) 13.8 15.6 13%

Avg Sample Rate 4,026.4 6,796.4 69%

Avg Throughput (Mbps) 26.4 30.8 17%

Latency (us) 1,454,728.3 9,509,031.8 554%

Total Lost Samples 31,204.0 2,691,201.6 8525%

Total Received Samples 791,921.4 1,295,118.4 64%

Total Sample Rate 2,018.7 4,918.2 144%

Total Throughput (Mbps) 361.5 278.1 -23%

Table 4.4: Interpolation vs extrapolation for linear regression focusing on the RMSE metric.

Table 4.3 compares R2 scores between interpolation and extrapolation techniques

in linear regression. The focus here lies on instances where extrapolation exhibits

superior performance, resulting in a positive percentage difference.

In four specific cases, extrapolation outperforms interpolation: Average Lost
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Samples, Average Lost Samples (%), Total Lost Samples, and Total Throughput.

Regarding the Lost Samples category, it’s worth noting that a significant portion

of the data consists of zeroes, making extrapolation advantageous. In this scenario,

the model predicts zero values due to the high frequency of zeroes in the data. This

is evident in the R2 scores, where interpolation achieves 0.16, while extrapolation

notably improves to 0.28, as observed in Average Lost Samples.

An intriguing case arises with Total Throughput. Interpolation yields anR2 score

of 0.37, while extrapolation achieves an impressive 0.47, marking a noteworthy 26%

improvement. This suggests that linear regression has the potential for effective

extrapolation, albeit with room for improvement in R2 performance.

Notably, the R2 scores for extrapolation, while showing improvement in these

cases, still indicate room for enhancement. Further refinement and optimisation of

the linear regression model to better accommodate extrapolation scenarios may be

warranted.

In examining the RMSE, we find that in the case of Total Throughput, the RMSE

decreases from 362 to 278, implying a 23% reduction. This reduction in RMSE

reinforces that linear regression holds promise for extrapolation but underscores the

need for continued improvement.

The results encourage consideration of improving the existing linear regression

model to enhance its extrapolation capabilities. A thorough investigation into the

model’s limitations and potential enhancements could provide valuable insights into

its suitability for extrapolation tasks.

4.1.3 Summary and Conclusion

The comprehensive analysis of linear regression models across 12 performance met-

rics yields mixed results, with significant implications for interpolation and extrap-
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olation methods. The R2 scores indicate that linear regression may not be ideally

suited for modelling these specific performance metrics, with only a subset of models

surpassing minimal performance thresholds. The highest R2 score observed was 0.54

for average throughput in interpolation, but overall, the models generally showed

sub-optimal performance.

Extrapolation results were notably inferior to interpolation, with only a few mod-

els achieving R2 scores above 0.2, and even fewer surpassing 0.3. However, metrics

like Total Throughput exhibited better performance in extrapolation than interpo-

lation, suggesting potential areas where linear regression might be more effective.

The analysis of RMSE metrics further complements these findings, with signif-

icant variations observed between interpolation and extrapolation. In some cases,

such as Total Throughput, a notable decrease in RMSE during extrapolation was

observed, indicating better predictive accuracy.

These findings highlight the nuanced and context-specific nature of linear regres-

sion’s applicability to performance metric prediction. While certain metrics show

promise, particularly in extrapolation, the overall performance suggests a need for

refinement and optimisation of the models. Future work should focus on enhancing

linear regression techniques for specific metrics, especially those that have shown

potential in extrapolation scenarios. This would involve a more detailed investiga-

tion into the underlying factors influencing model performance and incorporating

more sophisticated modelling approaches.
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4.2 Random Forests

4.2.1 Interpolation

In the evaluation of the 11 models, one model fell within the 0.6 to 0.7 range in terms

of performance, specifically in relation to latency. Two models scored between 0.8

and 0.9, namely the average received samples percentage and the total sample rate.

Notably, seven models demonstrated very good performance, each scoring higher

than 0.9.

The model with the lowest performance registered a score of -1.2, associated with

the total lost samples. This poor performance is likely attributable to the predomi-

nance of zero values in the dataset. Conversely, the best-performing model achieved

a near-perfect score of 0.999, specifically in the category of predicting average re-

ceived samples.

Overall, an impressive 9 out of the 11 models displayed incredibly good perfor-

mance in terms of the R2 metric. Only one model was considered mediocre, and

the worst-performing model was significantly poor. The nine models that exhib-

ited superior performance are as follows: average lost samples, average lost samples

percentage, average received samples, average received samples percentage, average

sample rate, average throughput, total received samples, total sample rate, and total

throughput.

The root mean square error (RMSE) is challenging to interpret in isolation,

requiring a comparison with the average value of the metric for meaningful insights.

To address this, the RMSE has been divided by the mean for all metrics under

consideration, producing the relative RMSE (RRMSE).

The lowest relative error observed was 4% for the average received samples per-

centage, indicating a high degree of accuracy for this model. On the other end of
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Metric
R2
RF
Int

R2
RF
Ext

R2 RF
% Diff

(Int vs Ext)

Avg Lost Samples 0.982 0.699 -29%

Avg Lost Samples (%) 0.933 0.907 -3%

Avg Received Samples 0.999 0.78 -22%

Avg Received Samples (%) 0.893 0.908 2%

Avg Sample Rate 0.969 0.952 -2%

Avg Throughput (Mbps) 0.94 0.921 -2%

Latency (us) 0.636 0.188 -70%

Total Lost Samples -1.211 -1.816 -50%

Total Received Samples 0.922 0.427 -54%

Total Sample Rate 0.885 0.711 -20%

Total Throughput (Mbps) 0.939 0.901 -4%

Table 4.5: Interpolation vs extrapolation for random forests focusing on the r-squared metric.

the spectrum, the worst relative error was found in latency, at a significant 64%.

In terms of relative RMSE (RRMSE), the performance varied across models:

Two models had an RRMSE of less than 10%, specifically average received samples

and average received samples percentage. Two models fell within the 10 to 20%

range, namely average sample rate and average throughput. Three models exhibited

RRMSEs between 20 to 30%, including total lost samples, total sample rate, and

total throughput. One model was in the 30 to 40% range, specifically total received

samples. Finally, two models had their RRMSEs between 50 to 60%, which were

average lost samples and average lost samples percentage.

The most outstanding model in this analysis was the average received samples

model, boasting an R2 of 0.999 and a remarkably low RRMSE of 4%. This reflects its

exceptional accuracy and precision. Additionally, several other models demonstrated

very good overall performance. The average received samples percentage model, with

an R2 of 0.89 and an RRMSE of 4%, performed almost as well as the top model,

albeit with a slightly lower R2 score. The average sample rate model showed a strong

correlation with an R2 of 0.95, though its RRMSE was higher at 33%. Similarly, the

average throughput model recorded an R2 of 0.94 and an RRMSE of 13%, indicating

48



a high level of accuracy with a moderate error relative to the mean. Finally, the

total throughput model also presented a strong predictive capability with an R2 of

0.94, but a somewhat higher RRMSE of 21%, reflecting a reasonable level of error

in relation to the mean.

4.2.2 Extrapolation

Figure 4.1: Scatter plots of predicted values on y-axis and actual values on x-axis for 9
randomly picked tests using the random forests model to extrapolate for latency.

In the evaluation of a total of 11 models, the performance varied significantly

across different metrics. Five models scored between 0.9 and 1, demonstrating high
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efficacy, while two models were in the 0.7 to 0.8 range. The average received samples

was noted at 0.78, and the total received samples were considerably lower at 0.43.

Latency, with a value of 0.19, was identified as particularly poor. Scatter plots shown

in 4.1 indicated a trend where poor predictions often significantly underestimated

actual values. Notably, 5 out of the 11 models excelled in extrapolation, a critical as-

pect for predictive analysis. These models included average lost samples percentage,

average received samples percentage, average sample rate, average throughput, and

total throughput, highlighting that percentage-based metrics are generally more reli-

able for extrapolation, especially in throughput-related data where percentage values

are more insightful than absolute figures.

Metric
RMSE

RF
Int

RMSE
RF
Ext

RMSE
RF

% Diff
(Int vs Ext)

Avg Lost Samples 142,382.6 123,808.7 -13%

Avg Lost Samples (%) 3.2 4.4 38%

Avg Received Samples 31,133.4 261,104.7 739%

Avg Received Samples (%) 4.2 4.4 5%

Avg Sample Rate 379.2 1,126.8 197%

Avg Throughput (Mbps) 5.3 8.6 62%

Latency (us) 771,102.4 7,903,234.4 925%

Total Lost Samples 76,398.2 183,124.5 140%

Total Received Samples 235,794.3 753,747.7 220%

Total Sample Rate 615.0 2,206.5 259%

Total Throughput (Mbps) 47.3 149.6 216%

Table 4.6: Interpolation vs extrapolation for random forests focusing on the RMSE metric.

Focusing on RRMSE, the average received samples percentage model emerged as

the best, with an RRMSE of 5%. The average throughput model followed with an

RRMSE of 22%, and the average sample rate had an RRMSE of 33%. Two models

each had an RRMSE of 47% and 60-70%, respectively, while the total sample rate’s

RRMSE was disappointingly high at 94%, and the total received samples even higher

at 108%. Latency fared the worst with an RRMSE of 654%, possibly due to cases
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where predictions were significantly off, resulting in high errors that skewed the

average. To further understand this, an analysis of relative errors is necessary.

Moreover, the best performing model in terms of R2 was the average received

samples percentage, with an R2 of 0.91 and an RRMSE of 5%. Other models showing

commendable performance included the average sample rate with an R2 of 0.95 and

RRMSE of 33%, and the average throughput with an R2 of 0.92 and RRMSE of

22%. In stark contrast, latency was the worst-performing model with an R2 of 0.19

and an RRMSE of 654%, and the total lost samples model also fared poorly with

an R2 of -1.82 and an RRMSE of 69%.

4.2.3 Summary and Conclusion

In summary, the comprehensive evaluation of 11 Random Forest models revealed

a diverse range of performances across different metrics. The analysis highlighted

a clear distinction in model capabilities, particularly in terms of R2 scores and

RRMSE. Models like the average received samples and average received samples

percentage demonstrated exceptional accuracy, with high R2 scores and low RRM-

SEs, indicating their robustness in both interpolation and extrapolation scenarios.

Conversely, models such as latency and total lost samples performed poorly, char-

acterised by low R2 values and high RRMSEs, suggesting significant room for im-

provement in these areas.

The findings also underline the importance of considering both the R2 metric

and RRMSE for a holistic understanding of model performance. While some models

showed high R2 scores, their relative errors were significantly higher, emphasising

the need for a balanced approach in model evaluation. The analysis of scatter

plots further enriched these insights, revealing trends in prediction accuracy and the

tendency of some models to underestimate values in certain scenarios.
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Overall, this evaluation of Random Forest models underscores the effectiveness

of certain models in handling complex data predictions, especially in cases where

percentage values are more relevant than absolute numbers. However, it also points

to the challenges faced by models in accurately predicting metrics with a high vari-

ance or a significant number of zero values. These insights are invaluable for guiding

future improvements and optimisations in model development.
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Chapter 5

Conclusion

In conclusion, this study marks the inaugural introduction of a machine learning-

based method to predict Data Distribution Service (DDS) performance, taking into

account both Quality of Service (QoS) and non-QoS parameters. A comparative

analysis between linear regression and random forests for both interpolation and

extrapolation was conducted. Random forests emerged as the superior model, es-

pecially for interpolation, exhibiting high performance as indicated by R2 values

exceeding 0.9. For extrapolation, the models showed varied performance, with some

achieving close parallels to interpolation models in terms of R2 and (RMSE). The

high efficacy of the random forests interpolation model is further underscored by its

ability to predict latency with an R2 of 0.64 and RMSE of approximately 770,000,

indicating mixed accuracy. Despite a lower R2, the latency model can still yield

sufficiently accurate predictions. Machine learning models present a cost-effective

approach for estimating DDS performance in untested conditions. However, ex-

ceptional performance across all DDS metrics is not assured. Reconstructing DDS

metric distributions aids in understanding performance behaviour, particularly fo-

cusing on specific parts of the distribution. One limitation of this study is its reliance
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on a DDS performance benchmark, which may not perfectly mirror real-life appli-

cations. The methodology is versatile, applicable to various workloads, and requires

only the collection of data and training of machine learning models. Future work

will explore the use of neural networks, diverse sampling strategies, and examine the

impact of configuration locations on prediction accuracy.
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Appendix A

Source Code and Data

All source code and data used in this report can be found in the following GitHub

repository: https://github.com/Blitz3r123/Machine-Learning-for-Performance-Prediction-of-DDS-Oct-2023?

tab=readme-ov-file.
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