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Abstract

This thesis studies wrist fractures seen on radiographs. Wrist radiographs are anal-

ysed by two different approaches; first by traditional image processing to extract

geometric measurements, then by deep learning to classify risks as normal or abnor-

mal (i.e. fractures or implants). Two data sets are used. The first data set includes

wrist radiographs obtained from the Department of Radiology at the University of

Exeter. The second data set corresponds to MURA X-ray images (MUsculoskeletal

RAdiographs) obtained by the Stanford Machine Learning Team. The MURA data

set provides more X-ray images to explore than the first data set.

In the first task, a semi-automated geometric image analysis algorithm is pro-

posed to analyse and compare the radiographs of healthy controls and patients with

wrist fractures treated by Manipulation under Anaesthesia (MuA). The first dataset

was used in this task. Thirty-two geometric and texture measurements were created.

Image texture emerged as a metric of the most distinct geometric features from wrist

X-rays associated with fractures.

In the second task, eleven pre-trained convolutional neural network (CNN) ar-

chitectures were used. CNN classified the MURA data set into normal and abnormal

categories. Transfer learning technique applied to all eleven pre-trained CNNs to

deal with wrist X-ray datasets. ResNet-50 and Inception-ResNet-V2 were then ex-

plored further using data augmentation strategies. Transfer learning techniques and

data augmentation strategies greatly enhance CNN’s ability to classify wrist X-ray

images.

Class activation mapping (CAM) explores the convolutional neural network’s ac-

tivation associated with the abnormality within the wrist X-ray image. It shows that

CAM can indicate the abnormality area in the wrist’s X-ray image. The graphical

heatmap of CAM overlaid on the wrist X-ray image marks the visual point of the

area that triggers the CNN’s decision.
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Chapter 1

Introduction

1.1 Overview

Image analysis is the process to extract information from an image or collection of

images. Digital image processing as stated by [52] ‘encompasses processes whose

inputs and outputs are images and, in addition, includes processes that extract

attributes from images up to, and including, the recognition of individual objects’.

Digital image processing covers techniques such as edge detection, image filtering,

thresholding, affine transformations, and morphological operations [52].

Digital image processing techniques can be applied to problems such as finding

shapes, removing noise, segmentation, classification, feature extraction, and statistic

calculations for texture analysis [52].

Encyclopedia Britannica defines medical imaging as ‘the use of electromagnetic

radiation and certain other technologies to produce images of internal structures of

the body for the purpose of accurate diagnosis’ [41].

Medical imaging includes many modalities such as X-ray [13], magnetic resonance

imaging (MRI) [133], computed tomography (CT) [92], ultrasound [4], positron emis-

sion tomography (PET) [72], and nuclear medicine [125]. Examples of these medical

imaging modalities show in Figure 1.1.

Medical image analysis provides tools to aid the diagnosis of clinical problems

as well as follow the effects of certain treatments [76]. The origin of medical image

analysis is Computer Vision, which has become a sub-discipline of Computer Science.

This field emerged in the early 1990s when a group of researchers and others with

backgrounds in Computer Vision began applying mathematical methods to analyse
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Medical imaging modalities examples. (a) X-ray [111], (b) MRI [133], (c) CT [92],
(d) Ultrasound [4], (e) PET [72], (f) Nuclear medicine [125]. Each image is credited to its
respective references.

problems related to medical images [141].

Medical image analysis has helped doctors analyse medical conditions like frac-

tures [79, 80], tumours [48, 51], diseases like osteoporosis [69, 89], tuberculosis [78,

100] and cancer [23, 119].

Figure 1.2: An example of the open fractures X-ray images. The image taken from [147].

This thesis is focused on wrist bone fractures, which can be classified into open or

closed fractures. An open fracture is a fracture that has pierced the skin. Open frac-

tures are typically caused by high-energy injuries such as car accidents, a gunshot,
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sports injuries, or falls. Open fractures require immediate surgery to avoid infection

because of the break in the skin. Figure 1.2 shows an example of radiographs of an

open fracture of the distal radius with dislocation of distal radioulnar joint.

A closed fracture is a fracture that has not punctured the skin and has no open

wound. The injured body part may be swollen or bruised. The X-ray images are

used to check how severe the condition is [109]. Figure 1.3 shows an example of a

closed fracture of the distal radius [33] as resulting from a fall onto an outstretched

hand (FOOSH) [67].

X-ray images of the wrist are normally acquired in two projection views. Postero-

Anterior (PA) and the Lateral (LA). The PA view of the wrist (Figure 1.3 (a)) is

obtained with the hand pronated or supinated, the hand resting flat and in direct

contact with the surface of the image receptor. The LA view (Figure 1.3 (b)) is ob-

tained by maintaining the Lateral position of the wrist and on the same horizontal

plane as the surface of the image receptor. The LA view is taken from the side part

of the wrist. The overlapping bones also can be seen from the LA view [129].

(a) (b)

Figure 1.3: An example of the closed fractures X-ray images. (a) Postero-Anterior view. (b)
Lateral view. The images are credited to [49].

Diagnosis, as defined by the Cambridge dictionary, is a judgment about what

a particular illness or problem is, made after examining it [108]. The diagnosis

generally includes a physical observation of the affected body part and medical

imaging. The radiograph is one of the medical imaging technologies to support a
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diagnosis. Radiology is a branch of medicine using radiation for the diagnosis and

treatment of disease [42].

The diagnosis of medical images entirely depends on the radiologist. The in-

terpretation of findings in medical images by a radiologist could be different from

another radiologist [135]. The radiograph interpretation skill takes years of educa-

tion, training, experience, and expertise to identify the abnormality in the image

observed [140]. Radiologists principally rely on visual inspection that makes errors

and discrepancies in radiology practice inevitable [19, 135].

An X-ray image of bone injury is diagnosed by looking at the anatomical location,

type of fracture, the direction of fracture lines, fracture positions, and the joint

between fragments [109]. Radiographic parameters such as Radius Height (RH) and

Volar Tilt (VT) shown in Figure 1.4 are usually used when evaluating wrist X-ray

images.

Radius Height (RH) also known as Radial Height is a radiograph parameter

that measures the difference in length between the ulnar head and the tip of the

radial styloid on the PA view [102]. Volar Tilt (VT) is a radiographic parameter

that measures from an angle at the articular surface of the radius, a tangent line is

drawn from dorsal -to-volar, followed by a line perpendicular to the long axis of the

radius [102].

Radius Height (RH) and Volar Tilt (VT) are then compared with the clinical

outcomes of the patients whilst still requiring general agreement to treat young and

old patients [20]. A systematic approach to diagnosing trauma like wrist fracture

has been proposed by [73]. After a diagnosis is concluded, the treatment process

could be started.

The treatment of wrist fracture can be through a surgical fixation, also known as

Open Reduction and Internal Fixation (ORIF) [11, 94] or through manual therapy

such as Manipulation under Anaesthesia (MuA) [54]. Surgical fixation is needed for

immediate action to avoid infection in open wounds and could involve many treat-

ment options [11, 94]. The Manipulation under Anaesthesia (MuA) which includes

closed reduction and casting, applied when there is no need for a surgical procedure

based on radiologists’ treatment decision. This non-surgical procedure is often the

primary option undertaken in Emergency Departments for displaced fractures in

an attempt to correct the deformity and represents a significant proportion of the

department workload [12]
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(a) (b)

Figure 1.4: Radiographic Parameters. (a) Radius Height (RH). (b) Volar Tilt. The images
are credited to [20].

In this thesis, the main focus is the analysis of wrist fractures observed with

radiographs. The contributions of this thesis are: (i) using geometric attributes

to analyse fracture patterns, (ii) abnormality detection on the wrist X-ray image

through deep learning techniques (iii) visualising suspected abnormalities within

the wrist X-ray through training of convolutional neural networks.

1.2 Motivation

The human wrist is a complex joint between the five metacarpal bones of the hand

and the radius and ulna bones of the forearm [43]. The wrist together with the

hand has interactions that depend on the integrity and function of the ligaments,

tendons, muscles, joints, and bones [104]. Problems in any of these can affect upper

extremity function, causing disruptions of daily activities and negatively impacting

the quality of life [134]. An example of a medical problem related to the wrist is

bone fractures.

In the United Kingdom, wrist fractures have become an intensive study, for

example, the association between frailty with incidence and mortality of fractures

in people aged over 80 years [113] as well as the epidemiology of fractures which

analysed in varieties of demographic factors such as age, sex, geographic location,

ethnicity, and socioeconomic status which may inform public health policy in the
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UK and elsewhere [29, 85].

Globally, the trend of hand and wrist trauma has also been studied. According

to [28], the incidence of hand trauma has modestly decreased but low-middle and

middle Socio-Demographic Index (SDI) nations have demonstrated increased rates

of fracture and amputation in almost three decades as well as the limited access to

better surgical hand care is still an issue [28]. PubMed (https://pubmed.ncbi.nlm.

nih.gov), the on-line tool of the National Library of Medicine of the United States,

reported 51,343 entries of ‘Wrist’, 12,212 entries of ‘Wrist Anatomy’, 10,411 entries

related to ‘Wrist Fractures’, and 8,638 entries indexed as ‘Distal Radius Fracture’

(last accessed on the 11th of April 2022).

The decision to treat a wrist injury is still based on visual observations both

physically and through medical imaging such as X-ray images where errors and

discrepancies occur [19]. The other important factor whilst diagnosing a patient is

the agreement between the doctors which can be related to personal expertise [135].

The decision to treat a patient with Manipulation under Anaesthesia (MuA) is

primarily of lower-level of evidence without widely accepted guidelines [54].

A comprehensive review of radiographs allows the doctor to understand the

injury better and then provide appropriate treatment [18]. The presence of bone-

related diseases such as osteoporosis also needs to be highlighted during the imaging

review which can provide an appropriate fracture diagnosis [69].

Studies related to detecting abnormality such as fracture within X-ray image

of the wrist has become a strategic issue to be explored [69]. An appropriately

performed radiographic examination helped to improve clarity and certainty inter-

pretation of the potential area of bone injury [50].

A medical image’s quality is characterised by contrast, noise, and spatial resolu-

tion. A medical image’s quality depends on the imaging system hardware and how

the radiologist obtained the images. Image defects such as blurry images, images

with too low or high brightness and sharpness levels, and images with an improp-

erly positioned wrist scan can be a visual barrier to the radiologist. Therefore, it is

important to obtain good quality images [62].

Nowadays, the medical image analysis field has evolved by leveraging existing

medical image collections. Exploration opportunities are carried out by utilising

computational capabilities such as machine learning to analyse the patterns of images

in the image collection like X-ray images [31]. Cases such as wrist fractures pattern
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could be analysed through available data sets.

1.3 Research questions

The wrist X-ray images present challenges in detecting abnormalities like fractures.

In this thesis, several research questions with the wrist X-ray image are considered:

1. How can the geometric features of a wrist X-ray be used to analyse the wrist

in relation to fractures?

2. How can Deep Learning be used to classify wrist X-ray images into normal

and abnormal X-ray images?

3. How do we know which part of the wrist X-ray image might trigger the decision

to be abnormal by a deep learning model?

1.4 Aim and Objectives

The aim of this thesis is to analyse wrist fractures as observed with X-ray imaging

through traditional image processing techniques and deep learning models which

are expected to be able to provide a better technological understanding of patient

treatment. The following objectives are presented:

1. To analyse the wrist fractures through the geometric features of a wrist X-ray

image.

2. To investigate the performance of deep learning models in classifying wrist

X-ray images into normal and abnormal categories.

3. To investigate the visualisation of the suspected areas of abnormality within a

wrist X-ray image from a trained Convolutional Neural Network through the

Class Activation Mapping technique.

1.5 Thesis structure

An overview summary of each chapter in this thesis is shown in Figure 1.5. It

provides a graphic description of this thesis and the relation of each chapter in this

thesis.
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Figure 1.5: Graphical outline of the thesis.

Chapter 1. Introduction describes the motivation of the research, problem

definition, aim and objectives of the research and report structure of this thesis. An

illustration outline to give a brief thesis summary.

Chapter 2. Background This chapter is divided into medical background,

computational background and literature review.

Chapter 3. Materials presents the data for this thesis. There are two X-ray

data sets explored. First, the data set that experts from the University of Exeter

acquired. The second data set came from the Stanford Machine Learning Group

named Musculoskeletal Radiographs (MURA).

Chapter 4. Methods describes the most common medical image analysis

techniques. First, general image processing methodologies such as geometric trans-

formations, edge detection, and contrast-limited adaptive histogram equalisation.

Second, an image texture-based technique named Local Binary Patterns (LBP) was

used to analyse texture-based measurements extraction from wrist X-ray images.

Third, the theory of class activation mapping to visualise attention areas within

wrist X-ray images leads to a decision from the convolutional neural networks of an

input image to classify.

Chapter 5. Wrist fractures semi automatic analysis investigates how to

identify features within the wrist X-ray image related to dorsally displaced wrist

fractures. This chapter explains how semi-automatic analysis consists of a manually

identified finger, lunate, and radial styloid as landmarks and automatic processing
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to generate geometric features and texture measurements.

Chapter 6. Wrist fractures classicification using deep learning contains

an explanation of identification of fractures within wrist X-ray images. The wrist

images were categorised as abnormalities identified using eleven convolutional neural

network architectures.

Chapter 7. Class Activation Mapping for wrist fractures image anal-

ysis explores the benefit of class activation mapping as visualisation prediction by

deep learning. Class activation mapping has the benefit of identifying networks’

intentions when deciding on a classified input image.

Chapter 8. Discussion and Conclusion offers a discussion and concludes

the thesis.
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Chapter 2

Background

This chapter describes the background of the thesis. The background is divided into

medical background and computational background. The medical background be-

gins with the anatomy of the human wrist, wrist-related fractures, and the diagnosis

and treatment of wrist fractures. A non-surgical treatment called Manipulation un-

der Anesthesia (MuA) is also described. The computational background includes

imaging techniques for diagnosing wrist fractures.

2.1 Medical background

2.1.1 Human wrist

The human wrist contains 15 unique bone parts: eight carpal bones, one ulna

bone, one radius bone, and five metacarpals. The bones are Trapezium, Trapezoid,

Capitate, Scaphoid, Radial bones such as Radial Styloid Process and Radial Articular

Surface, Ulna Styloid Process, Lunate, Triquetrum, Pisiform, and Hamate [109]

(Figure 2.1). The Radius and the Ulna bones are two bones usually called the

forearm. Lunate, Pisiform, Triquetral, Capitate, Hamate, Trapezoid, Trapezium and

Scaphoid are collectively named the palm. Metacarpals bone from the 1st to the

5th are called the fingers.

A ligament is a fibrous connective tissue that attaches bone to bone (Figure 2.2).

An adult human wrist consists of 16 ligaments connected to each bone in the hand

anatomy. The ligaments are uniquely coded to make it easier to identify which bone

it is connected to (Figure 2.2). Each name of the ligament describes the bones and

where its connected. The anterior interosseous artery (AIA) and radial artery (RA)
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Figure 2.1: The drawing of human wrist anatomy. Image credited to [104].

have connected the Radial and the Ulna bones. The capitohamate (CH) connects

bones of Capitate (C) and Hamate (H). The long radiolunate ligament (LRL) works

around the Radius (R), and the Lunate (L). The palmar radioulnar ligament (PRU)

works to join bones that form the palm, the Radius and the Ulna. There is also a

ligament described based on the ligament’s length size, such as Short Radio Lunate

(SRL). The Triquetrum and the Hamate connected by triquetrohamate (TH) as

well as the Triquetrum and the Capitate by triquetrocapitate (TC). The Trapezoid

(TT) is a ligament to join the Trapezium. The Ulna to the Carpal connected by

the Ulnocarpal (UC) ligament. The ligament between the Ulna and the Lunate is

the Ulnolunate (UL) [104].

2.1.2 Wrist fractures

Wrist fractures problems

A wrist fracture happens when one or more of the bones of the wrist has cracked

or broken. One type of wrist fracture is called the distal radius fracture [33]. This

injury as resulting from a fall onto an outstretched hand (FOOSH) like accidental

slip and falls [67].

The most common wrist fracture is Colles’ fracture. Colles’ fracture is described

as a total break of the radius bone of the forearm resulting from a posterior dis-

placement and changes in deformity (Figure 2.3 (a) and (d)) [25]. The broken
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Figure 2.2: The drawing of human wrist anatomy completed with ligaments and bones. This
image is taken from [104].

radio-carpal joint of a wrist ( Figure 2.3 (b) and (e)) occurs within the distal radius

is named Barton’s fracture. This injury is usually caused by a fall and wrist rotation

of the hand and forearm so that the palm faces backward or downward. It increases

the stress of the Carpal on the brink of the Dorsal. The Chauffeur’s fracture is

another type of wrist fracture possibly caused by falling onto an outstretched hand,

as shown in Figure 2.3 (c) and (f) [109, 55].

The position of image acquisition was also intended to see the side of the part

observed. In Figure 2.3 (a), (b), and (c), there are several types of illustrations of

wrist fractured X-ray images using the Posterior-Anterior (PA) view, where this

position places the patient’s arm where the palms, wrists, and joints are shown.

This PA position can also observe the actual conditions of the Radial, the Ulna, and

the Distal Radio-Ulnar Joint. Small parts like the Scapho-Lunate Distance is also

can be visually determined. The PA position is also can help on faults involving

the Radial and the Ulna bones. The other position usually used is the Lateral (LA)

position. The LA position takes an image from the side of the wrist and the palm.

Figures 2.3 (d), (e), and (f), are taken on the lateral view and fractures that can be
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Illustration of three different types of wrist fractures. Colles’ fracture (a) PA
view [84], (d) Lateral view [84]. Barton’s fracture (b) PA view [47], (e) Lateral view [47].
Chauffeur’s fracture (c) PA view [123], (f) Lateral view [123]. Posterior-Anterior (PA) view
and Lateral (LA) are two common positions the radiologist takes to determine conditions of
wrist bone fractured visually.

seen from this side.

The Osteoporosis is usually described as a risk factor for bone fragility such as

distal radial fractures. This bone fragility is studied by [101] where the osteoporosis

could be distinguished if distal radius fractures occur early in life than hip and

spinal fractures. Bone fragility is a global concern because it also has an impact on

increasing mortality, decreasing the flexibility of movement, and increasing health

costs [46, 134].

Wrist fractures diagnosis

When a patient arrives at a medical facility such as a hospital, clinic, medical cen-

tre, etc., medical staff will handle the patient. The pain is typically reduced with

painkillers. A visual check is performed to look for swelling and deformity of the

wrist. The decreased scope of dynamic movement is checked by moving the patient’s

wrist [109]. Unspecific pain of the hand and the wrist is a diagnostic challenge either

by low specificity of clinical symptoms or due to inadequate imaging results [117].

A wrist fracture is categorised into two conditions: minor fracture and significant
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fracture. A fracture is categorised as minor if there is no excessive bruise, wound,

or open fracture that appears very clear. A plaster cast or splint will be applied to

the patient’s arm. They may also be given a wrist brace with or without an arm

sling, painkillers, instructions on how to look after the injury, and probably follow-

up appointments to re-check healing conditions. Major fractures are followed by

attempting alignment-fractured bone. If needed, the surgery will follow the action

of putting wires, plates, and screws inside the patient’s wrist. It could be temporary,

but there is a possibility of permanent placement. After the surgical procedure, the

patient is asked for regular check fracture healing term-time. X-ray images are taken

in the PA and the LA positions to check the post-surgery condition [109].

During the PA analysis check, there will be going through a subtle increase in

density as impacted fracture, widening of the wrist bone joint, and the surface that

is immediately adjacent is disrupted. The LA view check will be analysed by several

self-asked questions such as the conditions of radial articular surface intact, the

smoothness of the dorsal cortex of the distal radius, bone fragment lying posterior

to the carpal bones and correct position of a cup of the Lunate where the bone

placed. The Scaphoid series check will analyse two standards of the wrist views

as Scaphoid fractures, mostly lucent and thin-line fractures, not sclerotic. This

check also examines the Scaphoid intact, as if the distal radius looks pristine [109].

The patient’s grip and forearm strength are assessed, and if needed splint may be

fitted to the wrist.

The manual procedure of wrist treatment therapy varies based on the type,

location, severity of the injury, age, and overall health status. A physical therapist

can implement specific treatments and exercises for the injury. After the operation

procedure, a physical therapist manages the rehabilitation process. A wrist brace

or splint can help hold the bone fragments together during the healing process.

After treatment, the patient wears the splint to avoid sprained or strained wrist.

The splint should be left in place until it has completely healed, usually under the

supervision of a doctor or physiotherapist.

Wrist fractures treatments

Treatment of fractures has not changed much in time, as Egyptian records describe

the re-positioning of bones, fixing with wood, and covering with linen [34]. Incidents

such as falling, slipping, and tripping may lead to fractures that sometimes are
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ignored by patients who do not seek treatment [109]. Wrist fractures are a common

injury, especially among older patients, in the United Kingdom and worldwide [29,

134, 143, 32, 83]. The bone commonly involved is the radius in its distal region, and

these fractures are called Distal Radius Fractures (DRF) [34].

Distal radius fractures are widespread in older females [29, 44] and are related

to osteoporosis [142, 101]. This type of fracture is also considered as a pathway to a

high risk of poor functional recovery that would prevent the daily independent life

of the patients [134]. In general, clinicians developed best-practice and standard-

ised procedures to handle incidents, including wrist fractures. Clinicians, including

paramedics in the Accident and Emergency room, are trained to diagnose and de-

termine the best treatment they can provide to handle patients [34, 83, 109]. The

treatment also depends on the characteristics of each case where particular methods

of treatment are selected [80].

Wrist injuries surgery was also examined based on the severity of the injury ex-

perienced by the patient. An example of research by [93] helps the surgeon with

joint congruence, which does not prevent stiffness, the main complication of these

injuries, which the surgeon must know how to recognise and treat. Visual examina-

tion before treatment with Computed Tomography (CT) also allows Orthopaedists

to understand the lesion better and help the surgeon propose the best possible treat-

ment for the patient. This study provides sufficiently detailed knowledge of how to

deal with wrist injuries. Surgery by performing Total Wrist Arthroplasty for the

treatment of wrist fractures is also carried out mainly in severe conditions of wrist

trauma [86]. Arthroplasty for wrist trauma is a relatively new technology, despite

its use for hip, shoulder, and elbow surgery.

Not only paying attention to the variables inherent in patients such as age,

gender, ethnicity, location of residence, and complexity level of injuries patients,

but research from the medical side also looks at aspects of body weight on fracture

sites. Research reported on [107], focusing on the relationship between fracture sites

and obesity, especially in the male gender. In many studies, it is reported that the

gender that often experiences bone injury problems is women. However, there was

a connection between Body Mass Index and fracture sites in this study. The results

of this study also indicate that obesity in men does not contribute to injury to the

hip, wrist, forearm, pelvic but has an impact on increasing the risk of rib fractures.

Total Wrist Arthroplasty (TWA) is a surgical procedure by resectioning part of
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the wrist and replacing it with artificial materials like metal implants as described

in [57]. The wrist arthroplasty technique is used as an alternative or substitute if

TWA fails as it is perceived as a safe, effective, and versatile surgical technique in the

area [1]. Biaxial, Universal 2, and Re-Motion are several types of TWA [26]. Never-

theless, the TWA procedure still faces challenges with the complication component

of losing Carpal and unstable joints [26, 57, 86]. Cement extraction techniques,

stabilising radius distal with Cerclage wires, and further bone resection are sev-

eral solutions to revise TWA [57]. Cerclage wires stabilise the radius during the

treatment. The TWA procedure also faces the high-cost issue associated with com-

plications and revisions [57]. The surgery procedure remains an option as it provides

pain relief and motion recovery [26].

2.1.3 Manipulation under Anaesthesia

Overview

Manipulation under Anaesthesia (MuA) is an orthopaedic procedure performed to

increase articular motion and relieve chronic pain and is minimally invasive [54].

MuA is an old but widely recognised procedure in musculoskeletal-based injured

problems. It is used for treating acute and chronic musculoskeletal conditions with

significant biomechanical dysfunction. The MuA belongs to a variety of therapies

called conservative therapy which does not include a surgical procedure [56].

MuA procedures require a multidisciplinary team, including a chiropractor, but

still lack standardisation and steps of post-treatment care [35]. A patient will be

recommended for a MuA procedure based on the cause of their pain such as chronic

recurrent pain, loosening, or unstable joint [54]. However, these criteria have not

been thoroughly explored [35].

There are no widely accepted procedures on the standard for practice and ther-

apy manipulation under anaesthesia. Doctors will consider this procedure based on

comparing the case with other similar levels of evidence for support and making

consensus [54]. The well-established procedure of MuA is based on generally ac-

cepted by an interdisciplinary team such as an anesthesiologist, an operating room

nurse, and a qualified chiropractor. It is also widely accepted that the MuA phase

is sedation, manipulative procedures, additional stretching or traction procedures,

and no sedation in inpatient care [30].
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Figure 2.4: Operation room set-up for distal radius fracture including instruments for
surgery [9]

Acceptable Patient’s conditions for MuA

Gordon, Cremata, and Hawk [54] explain factors to qualify a patient for MuA clinical

candidacy:

• The patient continues to have pain, a burden in daily activities, and/or biome-

chanical dysfunction after appropriate care such as spinal manipulation and

medical treatment.

• Prior to recommending MuA, sufficient care within a minimum of 4 to 8 weeks

should have been given to the patient. Nevertheless, this also depends on the

condition of each patient. A sooner MuA procedure is considered for patients

with more severe symptoms or little response to surgical procedures.

• Patients have undergone physical medical treatment procedures for 6 to 8

weeks before recommending MuA.

• The pain is intolerable for the patient that interferes with or even disabled

personal daily living activities.

• Conditions of diagnosis must fall within the recognised condition categories

for MuA.
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Recognised condition categories for MuA’s utilisation

The following disorders are classified as acceptable conditions for utilisation of

MUA [54]:

• MuA is a treatment of choice, the patient chooses MuA treatment when the

pain is personally intolerable which hinders the effectiveness of conservative

manipulation.

• Patients choose the MuA when during a minimum of 4 to 8 weeks of care after

a surgical procedure, the pain still exists and a greater degree of movement of

the affected joint(s) is needed to obtain patient progress.

• The doctors chose the MuA due to the severity of the problem and the unsat-

isfactory healing progress of the patient.

• MuA is only being used as an alternative and/or an interim treatment when the

patient is considered for surgical intervention and may be used as a therapeutic

or diagnostic tool in the overall patient’s condition.

• Based on the doctor’s opinion, MuA being utilised when there are no better

treatment options available for the patients.

MuA Procedures

Three stages of MuA procedure are patient sedation, chiropractic adjustments in

distinct positions, and passive traction and stretching of specified bones [27]. The set

of bone maneuvers explicitly determined for each patient before execution depends

on the region of pain and range area of decreased motion [27]. Typically, MuA

procedures are repeated over three days, and monitored by using X-ray images

taken before and after treatment. The first LA view X-ray image was used to

specify the fixation location, and the second image was taken after the second day

of MuA to observe improvements. These two images allow the physicians to adjust

the treatment approaches after executing a set of treatments [27]. Several research

articles studied the MuA procedure for patient care [54, 35, 27].

Protocols and standards of MuA were developed by [54] based on evidence-

informed and consensus-based guidelines. This guideline is intended for practition-

ers. A course of action decided and adopted made by trained practitioners based on

resource availability and patient needs.
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Figure 2.5: Situation inside the operation room where manipulation under anaesthesia per-
formed [115]

Determining MuA progress

This procedure’s success can be seen from subjective visual changes, level of pain,

patient’s ability to engage in active range of motion, changes in daily life activities,

change in mass function, and strength. A fracture may slip or not; if it does not slip,

then the MuA procedure was successful. The procedure’s success can also determine

using diagnostic tools such as X-rays, CT, and MRI. The following items are the

parameters needed but not limited to seeing the success of MuA [54].

2.2 Computational background

2.2.1 X-ray image

X-ray was found as a form of radiation that led to a significant shift in the medical

imaging field when it was discovered in the late 19th century [52] by German physicist

Wilhelm Conrad Röntgen. The image shown in Figure 2.6 is believed as the first

acquired X-ray image. This image was part of the observation publication he mailed

to his colleagues at the end of 1895. This image is believed as his wife’s left hand.

An X-ray image is acquired by a beam of X-rays transmitted through the part of

the body scanned. The light absorbed by the scanned body part and the light that

is not passed through X-ray film in specific amounts of density is recorded on the

X-ray film [13].

Although the rapid development of new technologies such as ultrasound imaging,

magnetic resonance imaging, computed tomography, and plain X-rays remain a vital

20



tool for the radiologist and the cheapest option [52].

In digital radiography, digital images are obtained by digitising X-ray film or

passing the X-rays through the patient and captured by a light-sensitive digitising

system, as illustrated in Figure 2.8. The acquisition of the image starts when the

energy flows from the generator to the output of the system which is the X-ray image.

Energy moved from an X-ray tube where the electrons are converted in it and pass

through the patient on the way to the image intensifier. X-ray is accelerated to the

output phosphor where previously it was converted to light and then to electrons.

The result of the image intensifier then catches by devices like camera and video

camera to produce visualisation of an X-ray image.

Figure 2.6: The X-ray image of Wilhelm Conrad Röntgen wife’s left hand. He took this
image on 22 December 1895 and believed as the first X-ray image. Image is taken from [15].

Röntgen’s X-ray was not the only X-rays-related article published within a year

of discovery; at least four English texts dealt with this, as mentioned in [10]. The

articles are The ABC of the X Rays by William Henry Meadowcroft [82], Practical

Radiography by Henry Snowden Ward [138], Röntgen Rays and Phenomena of the

Anode and Cathode by Edward Pruden Thomson [131], and The X-ray of Photog-

raphy of the Invisible and Its Value in Surgery by William James Morton [87]. The

latter article is the only text authored by a physician and probably an early medical

article that directly pointed to the utilisation of X-rays for surgical procedures [10].

The patient usually lies down under the X-ray tube and is set in the position needed

for the intended part of body being acquired using the X-ray machine, as illustrated

in Figure 2.7.
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Figure 2.7: X-ray machine illustration where the patient lay down under the X-ray tube.
This image is credited to [16].

Figure 2.8: Basic X-ray imaging system illustration adapted from [13].

2.2.2 X-ray image of Wrist

An X-ray image of the wrist is a type of X-ray image taken from the hand part of

the body. This image was usually taken by putting the to-be observed hand above

the collimator, illustrated in Figure 2.9 above the X-ray beam tube.

DICOM standard is applied to the acquired X-ray image. It is an abbreviation

for Digital Imaging and Communications in Medicine. This type of image has stan-

dardised metadata [90]. A DICOM file consists of information on the header and

image data. The header of the DICOM file is organised as standardised series of

attributes. An example of several attributes of the DICOM file is shown in table 2.1.

Attributes in Table 2.1 are some of the metadata attributes found in an im-
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(a) (b)

Figure 2.9: The illustration cartoon of (a) Posterior-Anterior (PA) and (b) Lateral (LA) of
the wrist was scanned using an X-ray machine. These two images are taken from [38].

age with the DICOM standard applied. Complete details can be further explored

in [90]. The currently identified metadata attributes that are important in this

research are BodyPartExamined, SeriesDescription, ViewPosition, PatientSex,

and PhotometricInterpretation. The value of these attributes described the body

position when the image was acquired. The ‘sex’ is the identification of which gender

each image belongs to and the background contrast of the image. These metadata

attributes can be used in image processing, especially when we try to identify the

object inside the X-ray image.

2.3 Literature review

2.3.1 Imaging Technology for wrist fracture problems

Clinical factors to predict incident fracture by a performed algorithm that uses

clinical risk factors, patients’ bone mineral density, and fall history [40]. Falls and

fractures are two factors usually perceived as causes of mortality in adults. [6] has

explored this assumption where a systematic approach to screening and prevention

is proposed.

In the medical field, problems related to bone fragility have been investigated

in prescribing oral anti-osteoporosis drugs. The issue was studied by [132] where

they covered the area of research in the United Kingdom between 1990 and 2012.

Research that looked at the effect of giving this drug on the impact of bone fragility

that led to bone fracture was distinguished based on variations in age, sex, geograph-
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ical location, and ethnicity. Research by van der Velde et al. also shows that women

experience susceptibility to osteoporosis compared to men. Furthermore, the same

research shows that the process of bone fragility is suspected to be more likely to

occur in the female sex, elderly (over 85 years), and are of white ethnicity followed

by South Asian ethnicity. At the same time, other variables such as the location of

residence do not influence the administration of this drug.

Inventions in medical imaging such as X-rays, Computed Tomography scans,

Magnetic Resonance Imaging, and various other forms of medical imaging have

provided much progress toward treatment solutions for bone-related problems, es-

pecially in this case, wrist injuries.

As it aims to restore the normal conditions of the patient, imaging technology was

used as a pre-operative assessment to enable the best possibility of understanding

the fracture as reported by [9]. Scapholunate is a ligament of the wrist, located in the

wrist joint and it is very important for carpal stability. Ardouin et al. explored the

Arthroscopy technique as the standard to identify and grade scapholunate injuries.

Imaging technology is also adapted to manage the increasingly complex trauma of

the wrist fracture with more critical functional requirements.

Research conducted by [89] tries to provide a solution by using computer vision

to distinguish between osteoporosis patients and healthy patients. X-ray technology

is used to visually diagnose abnormalities in the body and as a material for the

utilization of more advanced X-ray images. Images can be used as material for

image processing. Images can be used as data sets to implement artificial intelligence

methods such as neural networks and other machine learning algorithms. Diagnosing

osteoporosis by utilising machine learning methods such as deep learning technology

to obtain information from images at pixel intensity levels is an example of utilising

images in the data set. This research has a challenge with the small data set size

for deep learning.

The new technology approach has been explored through deep learning. Fully

automated learning from the X-ray data of bone proposed by [75] showed the ro-

bustness of the deep learning technology to measure bone age. They studied how

to perform automated Bone Age Assessment (BAA) by distinguished regions of in-

terest, standardise and preprocess input radiographs into the convolutional neural

network (CNN) pipeline.
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2.3.2 Medical Image Analysis

An X-ray image is part of the solution to observe the inner body condition before

taking further steps toward the patient. Clear interpretation through a structured,

systematic approach to describing fractures is vital for clinicians, including practi-

tioners, to correlate clinical perspective with fracture identification on a plain ra-

diograph [18]. Large amounts of clinical data have been generated and increasingly

used for Biomedical and Health-care Informatics research [77, 74, 144]. Clinical ben-

efits from vast patient data for making intelligent decisions and better treatment.

Imaging in Informatics could adapt by integrating cloud computing technology to

make paramedic work more ubiquitous [77].

Medical image analysis is the systematic evaluation of data with an algorithmic

approach, which is similar to evaluating a human expert such as a radiologist, med-

ical doctor, or paramedic. A medical image such as X-ray imaging technology is a

long-time favourite by a radiologist to observe a patient’s medical problem, including

a fracture in the wrist bone and another part of body organs [36]. Imaging tech-

nology like X-rays image is widely used and central support for doctors to diagnose

patients [89, 2, 75].

Image segmentation for medical image analysis is not just for human cases but

also has been applied to the veterinary area, such as diagnosis X-ray images of a

mouse [3, 97]. In these two works, medical image processing techniques have been

implemented for skeletal phenotype where precise segmentation and quick count-

ing ribs are essential. The accurate identification of any perturbation in skeletal

structure is significant biological relevance.

Figure 2.10: A diagram shows a comparison between certain topics of articles stored in the
PubMed database from 2000 to 2022.
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Analysis of medical problems is always an intriguing issue. It is because many pa-

rameters and conditions should be considered before deciding on further treatment

for the patient. Rapid technological developments and medical problems always

collaborate to tackle everyday challenges faced by people from the medical field.

Medical problems always start from symptoms and are solved by the sequence of

procedures. This type of work is aligned with the development of computer algo-

rithms, where every solution came from procedure sequences. Combining these two

will provide a more precise choice of treatment and a higher prediction of recov-

ery success. Not only in terms of treatment for patients but also could build up

preventive actions before disease or problems appear.

Artificial intelligence is a field in the technological world that has been heavily

utilised in solving many medical tasks. The computational ability to mimic human

intelligence, rapidly fast learning, and predict and reduce errors in diagnosing has

tremendous contributions and benefits to medical fields. In the academic world, as

shown in Figure 2.10, this condition is reflected in the increase of published articles

where they put artificial intelligence and medical problems as the centre front to

answer their research problem.

Big data technologies are used increasingly for research in biomedical engineering

and informatics. Large amounts of biological and clinical data have been generated

and collected at an unprecedented speed and scale [77].

Artificial intelligence based on extensive data sources can be utilised through

this. The world of medical practice has begun to apply it in Biomedical Engineering,

such as neurological diseases [122], to a virtual and physical branch of the medic [58].

Most applied along to understand the medical data that hugely produced [74, 118].

The use of X-ray films is still widely used because this technology is stable, inex-

pensive, and available in many hospitals and healthcare centres. Nevertheless, due

to the frequent conditions of misdiagnosis, because the images are inaccurate due to

some circumstances, the results of the acquired image were useless. Big data, Deep

Learning, and a variety of other software algorithm techniques exploit this [77].
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Table 2.1: This table is an example of metadata attributes from the DICOM image. These
attributes are standard for communicating and managing medical imaging information and
related data [90].

No Attributes Value

1 Filename IMG0

2 FileModDate ‘12-Oct-2018 17:17:19’

3 FileSize 1567164

4 Format ‘DICOM’

5 Width 608

6 Height 1287

7 BitDepth 12

8 ColorType ‘grayscale’

9 AcquisitionDate ‘20160811’

10 AcquisitionTime 184202

11 Modality CR

12 ManufacturerModelName
Philips Medical
Systems’

13 StudyDescription XR Wrist Lt

14 SeriesDescription Lateral

15 InstitutionalDepartmentName
Accident &
Emergency’

16 ManufacturerModelName DigitalDiagnost

17 PatientName [1×1 struct]

18 PatientID ANON9731’

19 PatientBirthDate 20100713

20 PatientSex F’

21 PatientAge 006Y’

22 PatientSize 0

23 PatientWeight 0

24 PregnancyStatus 4

25 BodyPartExamined HAND’

26 ProtocolName Wrist L’

28 SpatialResolution 0.1440

29 ExposureTime 10

30 ImagerPixelSpacing [2×1 double]

31 Grid NONE’

32 ViewPosition ‘LL’

33 PatientOrientation A\H’

34 Laterality L’

35 SamplesPerPixel 1

36 PhotometricInterpretation MONOCHROME2’

37 Rows 1287

38 Columns 608

39 RequestedProcedureDescription ‘XR Wrist Lt’

40 RequestedProcedureCodeSequence [1×1 struct]

41 PerformedProcedureStepDescription XR Wrist Lt
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Chapter 3

Materials

In this chapter, detailed information about image materials used in this research is

explained. The first subsection explains the University of Exeter’s DICOM Wrist

data set and the second subsection is a detailed explanation of the Musculoskeletal

Radiographs data set from the Stanford Machine Learning Group. These two data

sets are the data sets used in the thesis.

3.1 University of Exeter’s DICOM wrist data set

This data set is acquired at the University of Exeter. The data consisted of 1,007

X-rays, 884 from wrist fractures, and 123 from healthy controls funded by The Royal

Devon and Exeter Small Grant Scheme:1802595.

The Normals folder consists of two folders named N1 and N2. The N1 folder con-

tains thirty folders named ‘PATx’, where x is the number of anonym patients. This

naming pattern is also considered for the second folder named N2 which contains

forty patient folders. Each folder has the same pattern of data-filled folder naming

which is ‘STDx’, where x is the number of procedures applied to the patients. The

’STDx’ folder contains one or more folders named ‘SERx’ where x is the number of

the SER applied. The ‘SER’ is a series label of an image in a specific position. An

identical labelling pattern was also applied to the N2 folder.

The second major category defined by the expert in this data set is the Patients

folder. This folder contains collections of DICOM images identified as abnormal

patients. This condition means that the expert assumed fractures or any other

abnormalities in an X-ray image. This folder also contains a diverse variation pattern

of folder naming, but generally, the name ‘Txx Tranche X’ was used as the folder
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(a) (b)

Figure 3.1: These two X-ray images are examples of normal wrist X-rays images from The
University of Exeter data set. Image (a) is a type of X-rays position named Lateral. Image
(b) is the type of X-ray taken in the Posterior-Anterior(PA) position.

name pattern. Each ‘Txx Tranche X’ folder consists of the same pattern as ‘PATx’

of the Normals folder. There are fifteen of these folders, and each folder contains

several folders of anonym patient image folder. The rest of the folder naming pattern

is the same as the Normals folder.

Two folders in ‘Patients’ have annotated images. A folder named ‘T01 Tranche

1’ contains 23 annotated Wrist X-ray images and 31 wrist X-ray images in a folder

named ‘T02 Tranche 2’. The data set of images in a folder named Normals does not

have images with annotations. Those are the conditions of the data set received.

The Annotations folder contains images in the JPG image file format that had

previously been manually annotated for fractures or abnormalities. However, not

all images in the Patients’ data set had been annotated. There were no further

descriptions of these annotated images provided. Based on all the annotated X-ray

images, it seems that the location of the fractures was identified in the X-ray image.

Annotated X-ray images also had changed to the JPG file type rather than their

original in the DICOM file type.

The DICOM’s X-ray images in these two folders are raw images. The patient’s

name was the only information that had been removed for anonymisation purposes.

The DICOM images have the identical pattern of names, which are ‘IMGx’, and

30



(a) (b)

Figure 3.2: Image (a) is a type of X-rays position taken used to identify abnormalities of
the bone in the lateral taken position. Image (b) is the type of X-ray taken in the Posterior-
Anterior (PA) position. These are wrist X-rays images with fractures identified from The
University of Exeter data set.

on average, each ‘SERx’ contains one ‘IMGx’ DICOM file where x stands as an

expression of number, e.g. IMG1, IMG2, etc. The size of each DICOM file is at

least 2 MB.

(a) (b)

Figure 3.3: These are examples of wrist X-rays images with different values of Photometric
Interpretation from The University of Exeter data set. Photometric interpretation is one of
the standard attribute metadata of DICOM. Image (a) has a monochrome value of 1, where
intended to be displayed on white background. Image (b) has a monochrome value of 2, where
intended to be displayed in black background [65]

After manual inspections of the 1,005 images, 681 images were selected for further
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processing. Wrist X-ray images were selected based on a single position in an image,

excluding the child’s wrist and non-wrist images. These criteria were used because

the research only focused on the wrist. All data is anonymous and approved to

be used. Figure 3.1 shows the example of a normal X-ray image of a wrist. The

image is from the data set. Images in Figure 3.1 (a) are a type of X-ray image

position taken to identify abnormalities of the bone in the Lateral taken position.

From this position, the radiologist will observe the intact of the radial articular

surface, the smoothness of the dorsal cortex, and the sitting bone still in the cup of

the Lunate. The type of X-rays taken in the Posterior-Anterior (PA) position as

shown in Figure 3.1 (b). Using the Lateral position, the radiologist will observe the

whole intact of the radial articular surface and the ulna styloid.

Photometric Interpretation is one of the attribute metadata of DICOM. X-ray

images in this data set came in one of two values of Photometric Interpretation.

Figure 3.3 (a) has a monochrome value of 1, intended to be displayed on white back-

ground. Image 3.3 (b) has a monochrome value of 2, intended to be displayed on

a black background. These two types of images in different values of Photometric

Interpretation are shown in Figure 3.3. In this data set, several data have been

annotated by the Radiologist. The wrist X-ray images have been marked as iden-

tification to annotated which means the image contains a problem of interest. In

this case, the Radiologist annotated with a circle to point out the fracture’s location

based on their image observation. The example of the expert’s annotated images is

shown in Figure 3.4.

(a) (b)

Figure 3.4: These are annotated wrist X-ray images with fractures identified from The
University of Exeter data set. A green circle is an abnormality annotated by a radiologist.

32



Table 3.1: This table shows the exact number of data from Exeter’s data set, which has a
value of the PatientSex metadata attribute.

PatientSex Normals Patients

Females 43 423

Males 27 50

Table 3.2: This table shows the exact number of data from Exeter’s data set with a value of
SeriesDescription, ViewPosition metadata attribute related to Lateral and Posterior-Anterior
which are focus positions of this work.

X-ray positions Normals Patients

Lateral 63 272

Posterior-Anterior 45 284

Based on the gender attribute values contained in the DICOM image in this data

set, in general, the amount of data coming from the female gender is greater than

the male gender. The values shown in Table 3.1 are the exact values contained in

the image files in the data set. There are 43 data with female sex in the Normals

folder, and 27 data have male gender attribute values. The largest data was in the

Patients folder with 423 female sex attribute values compared with 50 male data.

The total amount of data that can be detected based on the gender attribute value

is 543 data.

Another attribute used for this study related to the position of object acquisition.

This position is obtained from reviewing the values in the DICOM attribute related

to the Posterior-Anterior and Lateral positions. Table 3.2 shows the exact values

of the amount of data contained in the data set related to this. The total data

that can be detected based on the values of this attribute is 664 data, divided into

data contained in the Normals folder and the Patients folder. Table 3.2 shows that

the amount of combination data between Normals and Patients with the Lateral

position is larger than the data with the Posterior-Anterior position. Nevertheless,

with a deeper look, there is a difference where the amount of Lateral data in the

Normals folder is greater than the data with Posterior-Anterior position attribute

values; the inverse thing occurs in the Patients folder.

Photometric Interpretation is a DICOM attribute that is also used in this study.

Based on the detection of the value contained in the DICOM image owned in the

data set, we get the data in Table 3.3. The combined total data from the Normals

and Patients folder shows that most of the data in this data set are Monochrome

1 compared to Monochrome 2. This number is based solely on the values detected
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Table 3.3: This table shows the exact number of data from Exeter’s data set that has a value
of the PhotometricInterpretation metadata attribute.

Photometric Interpretations Normals Patients

Monochrome 1 24 331

Monochrome 2 46 143

from the Photometric Interpretation attribute in the DICOM file.

3.2 Stanford Machine Learning Group’s MURA data

set

The data set has been shared publicly by the Stanford Machine Learning Group

named Musculoskeletal Radiographs (MURA) [111]. This data set consists of 40,561

images from 14,863 studies, where radiologists manually label each study as either

normal or abnormal. To evaluate models robustly and to get an estimate of radi-

ologist performance, they collect additional labels from six board-certified Stanford

radiologists on the test set of 207 musculoskeletal studies, a majority vote of a group

of three radiologists serves as the gold standard [111]. It is not stated explicitly in

Rajpurkar et al. about what happened to the image if six annotators disagree.

The table represented the distribution of X-ray images based on upper body human

anatomy from the MURA data set is shown in Table 3.4.

Table 3.4: Distribution of cases of the Stanford MURA (musculoskeletal radiographs) data
set [111] for studies of the upper body.

No. Study
Train Validation

Total
Normal Abnormal Normal Abnormal

1 Elbow 1,094 660 92 66 1,912

2 Finger 1,280 655 92 83 2,110

3 Hand 1,497 521 101 66 2,185

4 Humerus 321 271 68 67 727

5 Forearm 590 287 69 64 1,010

6 Shoulder 1,364 1,457 99 95 3,015

7 Wrist 2,134 1,326 140 97 3697

Total 8,280 5,177 661 538 14,656

MURA data set consists of two folders named Train and Valid. The train folder

is a collection of musculoskeletal X-ray images from parts of the Elbow, Finger,

Forearm, Hand, Humerus, Shoulder, and Wrist. The Valid folder also uses similar

structures. This data set also has trained and valid files of labelled images. The
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train and valid path of the image also provided this data set.

The MURA data set is divided into several image folders that are parts of the

body. The total data in this data set is 40,005 images divided into 36,808 images

in the Train folder and 3,197 in the Valid folder. The largest data held by this data

set is Wrist data, where there are 9,752 images in the Train Folder and 659 data in

the Valid folder as shown in Table 3.5.

Table 3.6 shows the exact amount of Normal and Abnormal images identified in

each part of the body from the MURA data set. Unlike the data shown in Table 3.5,

in Table 3.6 the number of images displayed is based on the amount of data with

Abnormal and Normal status. There is a combination of data from the Train and

Valid folders in each condition. Each body image, data consists of a combination

of Train and Valid data then differentiated into Abnormal and Normal conditions.

The total number of images with Abnormal conditions in this MURA data set is

16,403. Normal conditions are 23,602, so the total image in the data set based on

this condition is 40,005, equal to the total number of images contained in Table 3.5.

The Wrist images remain the most significant amount of data identified based on

this condition. The amount of data in the Normal condition is larger than in the

Abnormal condition. In the Wrist data set, the amount of Abnormal data detected

was 4,282, and the data with normal conditions was 6,129. The Shoulder data set is

the second largest with 8,942 images, and the Finger data set is in the third-largest

position with 5,567 images.

Table 3.5: Distribution of images in MURA (musculoskeletal radiographs) data set for train-
ing and validation.

No. BodyParts
Number Images in

Train Folder
Number Images in

Valid Folder

1 Elbow 4,931 465

2 Finger 5,106 461

3 ForeArm 1,825 301

4 Hand 5,543 460

5 Humerus 1,272 288

6 Shoulder 8,379 563

7 Wrist 9,752 659

Total per condition 36,808 3,197

Total actual images
in data set

40,005

An example of images labelled as Train positive is shown in Figure 3.5. The
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image labelled as a Train positive is based on the training process by the MURA

team shows the image is an X-ray with an abnormal condition. Figure 3.5 (a) shows

abnormality detected in the elbow X-ray image. Abnormality is also detected in the

X-ray image of fingers, as shown in Figure 3.5 (b). Figure 3.5 (c) is an example of

abnormal forearm labelled as ‘Train positive’. As shown in Figure 3.5 (d), the X-ray

image of fingers is identified as a Normal image, but it is not. The humerus X-ray

image in Figure 3.5 (e) is an example of a Train-positive image that is not straightly

aligned during image acquisition. X-ray image with high contrast is also set as Train

positive in MURA data set as its example in the shoulder image of Figure 3.5 (f).

An image with a metal plate is labelled as Train positive in this data set, as seen in

Figure 3.5 (g) which is the wrist image. ‘Train-positive’ is also labelled to an image

in low contrast like the Lateral position of wrist X-ray image in Figure 3.5 (h).

Table 3.6: Distribution of images in the Stanford MURA (MUsculoskeletal RAdiographs)
data set into Abnormal and Normal groups. This work concentrated on the wrist radiographs.

No. BodyParts
Abnormal

(Train + Valid)
Normal

(Train + Valid)

1 Elbow 2,236 3,160

2 Finger 2,215 3,352

3 ForeArm 812 1,314

4 Hand 1,673 4,330

5 Humerus 739 821

6 Shoulder 4,446 4,496

7 Wrist 4,282 6,129

Total per Condition 16,403 23,602

Images total in data set 40,005

MURA data set examples of valid positive are shown in Figure 3.6. A valid

positive is an abnormal detected image with labeled approved by the MURA team

of experts. Most of the images in Figure 3.6 show any obvious abnormality. The

Elbow image in Figure 3.6 (a) shows a clearly visible fracture as well as in Figure 3.6

(b-e). The wrist images of Figure 3.6 (g) and (h) were taken in two different positions

where the fracture can be seen as slightly prominent and these images labelled as

valid positive by the MURA’s experts.

The negative result of training labelled as Train negative image in the MURA

data set. Images in this label contain only a normal-condition image assumed for

the training process. The collage images in Figure 3.7 (a-h) contain X-ray images of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Examples of Train positive X-ray images from MURA data set [111]. These are
images that are positively labelled and have an abnormality in them. These images are part
of the images in the Train folder by MURA. The subfigures show train-positive X-ray images
of the Elbow (a), Fingers (b), Forearm (c), Hand (d), Humerus (e), Shoulder (f), and Wrist in
PA position (g), and Wrist in Lateral position (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Examples of valid positive X-ray images from MURA data set [111] labelled
by MURA team experts. Example of valid positive X-ray image of Elbow (a), Fingers (b),
Forearm (c), Hand (d), Humerus (e), Shoulder (f), Wrist in PA position (g), and Wrist in
lateral position (h).

Elbow (a), Fingers (b), Forearm (c), Hand (d), Humerus (e), Shoulder and Posterior-

Anterior (g) and Wrist on Lateral side positions (h).

The expert team of MURA had put a label of valid negative to an image that

is diagnosed as a normal condition in their observation. Images in this label will
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Examples of Train negative X-ray images from MURA data set. These images
are labelled for the training process of normal data. The subfigures show train negative X-ray
images of Elbow (a), Fingers (b), Forearm (c), Hand (d), Humerus (e), Shoulder (f), Wrist in
PA position (g), and Wrist in Lateral position (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Examples of valid negative X-ray images from the MURA data set. The MURA’s
expert justified that these images in the data set are normal. Images in this label will be used
as validity for the negative result of data training. The subfigures show valid negative X-ray
images of the Elbow (a), Fingers (b), Forearm (c), Hand (d), Humerus (e), Shoulder (f), and
Wrist in PA position (g), and Wrist in Lateral position (h).

confirm training results from data in the Train folder. The image for each part of

the body in the data set can be seen in Figure 3.8(a-h). Visually, all of these images

look normal to the MURA experts.

There are some repeating labels in this data set. The label is per image. The
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Table 3.7: MURA’s Wrist train image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Wrist
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 3,920 5,282

Study 2 64 425

Study 3 3 45

Study 4 0 13

Total 3,987 5,765

Total Data
(Positive + Negative)

9,752

labels are Study 1, Study 2, Study 3, and Study 4. These labels correspond to each

patient who may have visited the hospital several times, and each study corresponds

to one visit. There are also labels related to anonymous subjects’ interpretation con-

ditions: Positive means Abnormal and Negative means Normal. The interpretation

of these labels is based on confirmation with the MURA team. No further informa-

tion was provided by the MURA team regarding whether the fracture healed or not,

for example, an image which has labels Study 4 whether the fracture healed or not.

The fracture’s condition of healed or not healed is not the focus of this thesis.

Each label study is then broken down to determine how many Positive means

Abnormal suspect conditions and Negative means Normal suspect condition data

are contained in this data set. Table 3.7 and Table 3.8 show the amount of detailed

data in the data set for the wrist parts of the body with differentiation based on

the research label and the diagnosis conditions of the subjects obtained during the

acquisition process.

The largest amount of data is obtained in Table 3.7 when anonymous subjects

scan the body at the first visit. This is shown by the large amount of data identified

in Study 1. The abnormal data identified at this first visit was 3,920, and normal

diagnoses were found at 5,282 data. Furthermore, only a few anonymous subjects

carry out the process of image acquisition data up to four times. The Study 4 label

shows that no patients identified as being in an Abnormal condition, and all patients

who took data at the fourth visit were all in Normal condition. The total image

data placed in this Train folder is 9,752 images, consisting of 3,987 Abnormal data

and 5,765 Normal data.

In line with Table 3.7, the data shown in Table 3.8 is a valid data set of the

Wrist images. The total amount of data is not as large as the Train folder’s amount
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Table 3.8: MURA’s Wrist valid image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Wrist
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 287 293

Study 2 5 59

Study 3 3 9

Study 4 0 3

Total 295 364

Total Data
(Positive + Negative)

659

Table 3.9: MURA’s Elbow train image data set breakdown based on the number of studies
taken for the patient and condition detected on the image

Elbow
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 1,993 2,818

Study 2 13 105

Study 3 0 2

Study 4 0 0

Total 2,006 2,925

Total Data
(Positive + Negative)

4,931

with only 659 data images. In this valid data set, the largest number remains in the

‘Study 1’ label with the total Abnormal data of 287 and the normal number of 293.

The total number of the Train folder and the Valid folder is in line with the Wrist

images data in Table 3.5.

The following detailed data is the Elbow train data set shown in Table 3.9 and the

valid Elbow data set shown in Table 3.9. The Elbow train data set in Table 3.9 has

a large amount of data in the Normal data of 2,818 and 1,993 Abnormal. Similar to

the previous pattern in Table 3.7 and Table 3.8, the largest part is the data obtained

at the first anonymous subjects visit the hospital for image scanning as it labels as

‘Study 1’. Total train data with Abnormal conditions is 2,006 images, and Normal

is 2,925 images. In the Elbow valid data set, the data with the ‘Study 1’ label

contained 228 Abnormal images and 222 Normal images. These tables do not have

anonymous subjects who must visit the hospital for up to 4 visits, labelled as ‘Study

4’.

The collections of forearm images in the MURA data set have been divided into

two: the Forearm Train and the Valid data set. Table 3.11 for the train data set and

Table 3.12 for the Valid data set. These second tables also have the same pattern
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Table 3.10: MURA’s Elbow valid image data set details the number of studies taken for the
patient and condition detected on the image.

Elbow
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 228 222

Study 2 2 13

Study 3 0 0

Study 4 0 0

Total 230 235

Total Data
(Positive + Negative)

465

Table 3.11: MURA’s Forearm train image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Forearm
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 657 1,144

Study 2 4 20

Study 3 0 0

Study 4 0 0

Total 661 1,164

Total Data
(Positive + Negative)

1,825

as the data set of body parts that were previously owned. The forearm train data

set has a total image of 1,825, and the valid forearm data set has 301 images. In

the Forearm data set the number of Normal images is greater than the Abnormal,

1,144 versus 657. However, the inverse is seen in a valid data set with the number

of images.

The following data set is the details for the data set shown in Table 3.13 and

Table 3.14. These two tables are the details for the Finger body of the MURA data

set. The train images data set is shown in Table 3.13 based on the amount of data

detected on the labels contained in the data set. The largest data remained in the

data labelled as Study 1 data, namely 1,949 abnormal images and 2,974 Normal

images. There is no data obtained from Study 4, only 11 data images with Normal

conditions in Study 3, and for Study 2, there are 19 Abnormal data images and 153

data images with Normal conditions. The total finger train data set data is 5106

data images.

Table 3.14 shows a smaller amount of data than in Finger’s training data set

contained in Finger’s valid data set. The total data obtained is only 461 data

images. The largest number of labels was still obtained in Study 1, with Positive
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Table 3.12: MURA’s Forearm valid image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Forearm
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 149 144

Study 2 2 4

Study 3 0 2

Study 4 0 0

Total 151 150

Total Data
(Positive + Negative)

301

Table 3.13: MURA’s Finger train image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Finger
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 1,949 2,974

Study 2 19 153

Study 3 0 11

Study 4 0 0

Total 1,968 3,138

Total Data
(Positive + Negative)

5,106

data of 247 images and Negative data of 191. In the data labelled Study 2, there

are no Abnormal data and 20 Normal data. Study 3 only has 3 data with Normal

conditions and none with Abnormal conditions. In this valid data set for Finger,

there is no data labelled Study 4.

MURA’s Finger valid image data set breakdown is based on the number of studies

taken for the patient and the condition detected on the image. Details for the Hand

part of the body are shown in Table 3.15 for the Train data set and Table 3.16 for

the Valid data set. This follows the same pattern as the data sets described, from

Table 3.14: MURA’s Finger valid image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Finger
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 247 191

Study 2 0 20

Study 3 0 3

Study 4 0 0

Total 247 214

Total Data
(Positive + Negative)

461
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previous parts of the body, where the most amount of data acquired labelled in

Study 1. The total data of Hand images acquired for the Train data set is 5543 data

images and for a valid data set is 460 data images. There are 3870 Normal data and

1,470 abnormal data labelled as Study 1. Fourteen data with Study 2 labelled as

Abnormal conditions and 178 data with Normal conditions. In Study 3, there are

no data with Abnormal conditions, and there are 11 data with Normal conditions.

No data were obtained in Study 4 of this Hand train data set as well.

In the Hand valid data set, there are 189 data identified with Abnormal condi-

tions and 248 data with Normal conditions. In this data set, only the Study 1 label

has Abnormal conditions, while the data with the Study 2 label and Study 3 only

have Normal data with a value of 20 data and 3 data. There is no data labelled

Study 4 contained in this data set. A body part named Humerus is included in this

data set as well. The detailed conditions of images identified by this body part are

shown in Table 3.15 and Table 3.16. The total Humerus data in this data set

is 1,560 images consisting of 1,272 images from the Train data set and 288 images

from the Valid data set. In this data set, data is only found on Study 1 and Study

2 labels, whereas for Study 3 and Study 4, there is no data labelled between these

two.

In this Humerus data set, most of the data are still dominated by data with

Normal conditions and labelled as Study 1. There are 1,470 images with Positive

abnormal conditions in the Train data set and 3,870 under normal conditions, both

for the Study 1 label. The valid data set contains 138 images identified as positive

and 145 as Negative conditions, both for the Study 1 label. Data with the Study 2

label contained in the training data set are two Abnormal images and nine images

for Normal. There are two Abnormal images and three Normal images in the valid

data set.

The last body part in this data set is the shoulder. This body part has the

amount of data that includes a more significant part with the other body parts in

this data set: as many as 8,942 images where 8,379 images are Train data, and 563

are Valid data. The Shoulder Train data set consists of 4,063 images and 3,930

images of Normal, and both were labelled as Study 1. For images that were labelled

as Study 2 in this data set consist of 90 images of positive and 244 images negative.

Study 3 in this data set consists of 10 positive images and 27 negative images. The

Study 4 label obtained as many as five images with positive and ten images with
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Table 3.15: MURA’s Hand train image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Hand
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 1,470 3,870

Study 2 14 178

Study 3 0 11

Study 4 0 0

Total 1,484 4,059

Total Data
(Positive + Negative)

5,543

Table 3.16: MURA’s Hand valid image data set breakdown based on the number of studies
taken for the patient and condition detected on the image.

Hand
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 189 248

Study 2 0 20

Study 3 0 3

Study 4 0 0

Total 189 271

Total Data
(Positive + Negative)

460

negative conditions.

For the valid data set, there are images labelled as Study 1 where 261 images

with positive conditions and 241 images with negative conditions. Study 2 labelled

images for abnormal conditions in 17 images and 36 images for normal conditions.

For Study 3 labelled images only can be found in eight suspect normal conditions

and zero for abnormal conditions.

Table 3.17: MURA’s Humerus train image data set breakdown based on the number of
studies taken for the patient and condition detected on the image.

Humerus
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 597 664

Study 2 2 9

Study 3 0 0

Study 4 0 0

Total 599 673

Total Data
(Positive + Negative)

1,272
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Table 3.18: MURA’s Humerus valid image data set breakdown based on the number of
studies taken for the patient and condition detected on the image.

Humerus
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 138 145

Study 2 2 3

Study 3 0 0

Study 4 0 0

Total 140 148

Total Data
(Positive + Negative)

288

Table 3.19: MURA’s Shoulder train image data set breakdown based on the number of
studies taken for the patient and condition detected on the image.

Shoulder
Train data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 4,063 3,930

Study 2 90 244

Study 3 10 27

Study 4 5 10

Total 4,168 4,211

Total Data
(Positive + Negative)

8,379

Table 3.20: MURA’s Shoulder valid image data set breakdown based on the number of
studies taken for the patient and condition detected on the image.

Shoulder
Valid data set

Positive
(Abnormal)

Negative
(Normal)

Study 1 261 241

Study 2 17 36

Study 3 0 8

Study 4 0 0

Total 278 285

Total Data
(Positive + Negative)

563
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Chapter 4

Methods

This chapter explains the methods associated with this thesis research. Image pro-

cessing techniques are explained from the concept of an image, geometric transfor-

mations, and image enhancement techniques to edge detection. A brief explanation

of artificial intelligence is also covered, and the concept of machine learning and deep

learning techniques utilised in the experiments are later explained in this chapter.

4.1 General Methodologies

In this thesis, digital images are used as materials. An image according to [52] is

defined as a two-dimensional function, f(x, y), where x and y are spatial coordinates

and the intensity of any pair of coordinates as the amplitude of f. A digital image

can be defined when x, y and the value of intensity in f are all finite and discrete

quantities. The value of each element in a digital image is called a pixel.

Each pixel can be manipulated according to the needs of the end user. The

manipulation of each pixel will lead us to an area called image processing. The

field of digital image processing includes input and output processing in the form

of images. Extraction of attributes from an image, not limited to recognising the

objects contained in it, is also included in this area. The earliest application of

digital images was in the newspaper industry when they were first transmitted via

an underwater cable between London and New York [52].

Since the 1970s, image processing has thrived and has been used in a broad range

of applications. In the early 1970s, digital image processing techniques began to be

used in medical imaging, astronomy, and space applications. Using an X-ray source,

the invention of computerised axial tomography or Computerised Tomography (CT)
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Figure 4.1: The illustration of the coordinate convention used to represent a digital image.
This image is adapted from [52].

becomes the most critical event in applying image processing in medical diagnosis.

In this study the focus is on images produced by X-rays, hence the emphasis of

explanation in this chapter will always be related to this field.

4.1.1 Geometric Transformations

The images contained in the data set used in this study came in a variety of condi-

tions such as shape, contrast, and brightness. The only visual attribute we have is

the edge of the image, which often also varies in shape and condition. These images

need to be aligned. The process of transforming different sets of pixels data into a

spatial arrangement in an image is called Geometric Transformations. Registration

is necessary in order to be able to compare or integrate data from different mea-

surements. This research mainly focuses on linear transformation models of image

registration. It includes rotation, scaling, shearing, and translation.

Two basic operations of geometric transformations of digital images are coor-

dinates changes in the spatial domain and the intensity interpolation that assigns

values to the spatially transformed pixels. Coordinates transformation may be ex-

pressed as x′
y′

 = T

x
y

 =

t11 t12

t21 t22

x
y

 (4.1)

where (x,y) are pixel coordinates in the original image and (x’,y’) are the coordinates

of pixels corresponding to the transformed image. The Affine transformations are

able to do identity, scale, rotate, translate, and shear operations on an image. The
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thing to do is to transform certain parts of the image by maintaining several things

such as points, straight lines, and planes. Equation 4.1 is an example of how

this transformation process is carried out while Table 4.1 is some example of a

transformation that can be done by using equation 4.2.


x′

y′

1

 = A


x

y

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



x

y

1

 (4.2)

The operations in Table 4.1 can be performed depending on the values used on

the elements of matrix A. In the Identity operation, each value will be processed in

proportion to the values in the existing matrix in the original image so that the same

image results are obtained from the original image. Each pixel in the original image

will be changed according to the magnitude of the multiplier given to the image in

the Scale operation. In this operation, the image will appear bigger or smaller than

the original image.

The pixels in the image can also be processed to get a different result based

on changes in the pixel’s degree position on the image. Changes are applied by

processing the pixel’s value in the degree direction through all regions of interest.

The name of the operation is Rotation. The rotation process outlines appear in

Table 4.1. The image is also can be manipulated by making a shift impression. In

this case, the image seems like doing a movement. This case is referred to as the

Translation. Translation operations are carried out by processing each pixel in the

image by changing the location value by the desired number of values—for example,

tx for pixels on the x-axis and ty for the y-axis.

Changing one of the values of the image axis is also possible to apply. This

process will maintain one axis value and change the value of the other axis to the

value that comes from multiplication with a certain value. This operation is called

Shear. The effect resulting from this operation is an image that appears to have a

certain depth even though the image is actually in two-dimensional conditions. In

Table 4.1, two types of Shear operations are displayed. First is the Shear operation

which changes the x-axis value with a certain value Sv multiplied by they-axis

value. The shear effect obtained is vertical shear. Second, then as it’s also shown in

Table 4.1, the reverse condition from the previous operation will result in an image

in horizontal shear condition.

49



Table 4.1: These are types of geometric transformation usually applied to an image in the
image processing field [52].

Transformation
Name

Affine matrix
Coordinate
Equations

Identity

1 0 0
0 1 0
0 0 1

 x′ = x
y′ = y

Scaling

cx 0 0
0 cy 0
0 0 1

 x′ = cxx
y′ = cyy

Rotation

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 x′ = x cos θ − y sin θ
y′ = z sin θ + y cos θ

Translation

1 0 tx
0 1 ty
0 0 1

 x′ = x+ tx
y′ = y + ty

Shear (vertical)

1 sv 0
0 1 0
0 0 1

 x′ = x+ svy
y′ = y

Shear (horizontal)

 1 0 0
sh 1 0
0 0 1

 x′ = x
y′ = shx + y

Figure 4.2 (b) is an example of Rotation applied to wrist X-ray images. Image in

Figure 4.2 (a) is an original X-ray image in a lateral position, then its 45° rotation

resulted image in Figure 4.2 (b). Figure 4.3shows an example of the translation

operation of an image. In this case Figure 4.3 (b) is resulted from the translation

coordinate of a vector of x = 250.3 and y = -300.1 from the original position of

Figure 4.3 (b). An example of scale operation shows in Figure 4.4 (b). This image

was 50% scaled-down, as it can be observed from the size of the images shown in

the image coordinates. Figure 4.4 (b) appearance still looks like the original image,

but the scale of the image has changed.

4.1.2 Edge Detection

The edge in an image is a condition when the intensity of the pixels of an image

changes abruptly. In many cases of image processing, the detection of this edge can

be a crucial part of the process. Edge detection needs a combination of point, line,
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(a) (b)

Figure 4.2: These are examples of applied Rotation of an image for wrist X-rays images.
Image (a) is an original wrist X-ray image in a lateral taken position. Image (b) results
from 45° rotations from the original position of the image (a).

(a) (b)

Figure 4.3: These are examples of applied image translation of an image for wrist X-rays
images. Image (a) is an original wrist X-ray image in a lateral taken position. Image (b) is the
result translation vector of x = 250.3 and y = -300.1 from the original position of image (a).

and edge detectors to determine sharp, local changes in pixel intensity. Edges are

determined according to the forms of their pixel intensity.

According to [52], there are three edge models in a digital image: Step Edge,

Ramp Edge, and Roof edge models. These three models are illustrated as shown

in Figure 4.6. The ‘Step Edge’, as shown in Figure 4.6 (a), is a type of Edge that

has a transition shape between two steep pixel intensities or can be called vertical

differences. This edge model can be ideal because the differences in values between

pixels are substantial, so differences between pixels can be obtained easily. Edges

with this model do not require further processing because of the shape of the edges
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(a) (b)

Figure 4.4: These are examples of applied image scaling of an image for wrist X-rays images.
Image (a) is an original wrist X-ray image in a lateral taken position. Image (b) is 50 per
cent scaled down from the original position of the image (a), which could be observed from
the value image coordinates.

(a) (b) (c)

Figure 4.5: These are examples of shear operation to an image of wrist X-rays. Image (a)
is an original wrist X-ray image in a lateral taken position. Image (b) is the result of the
horizontal Shear of the original position of image (a), and image (c) is the result of the vertical
Shear of the original image(a).

visible in the image. The second form of Edge is the Ramp Edge, as shown in

Figure 4.6 (b). The ‘Ramp Edge’ is an edge model with gradually changing values

between pixels to a significant difference. In this model, no point directly becomes

the difference between image pixels, but it has a range of changes with a specific

value. Figure 4.6 (c) illustrates that a third type is Roof Edge. Roof edges are models

of lines where the width of the Edge is determined by the thickness and sharpness of

the line. This type of Edge usually appears in the digitisation of line drawings, which

contain delicate features like satellite images. In this image, delicate features such
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(a) (b) (c)

Figure 4.6: These are the ideal representations of edges. From left to right, a step-edge model
(a), a ramp-edge model(b), and a roof edge model(c). Below each model is corresponding
intensity profiles. These illustrations are adapted from [52].

as roads can be identified as this type of Edge. Three steps commonly performed

for edge detection are image smoothing, Edge points detection, and localisation of

the Edge [52].

How to precisely detect changes in the image pixels‘ intensity is the basic principle

in edge detection. Calculating the gradient of each pixel of the image is a way

to detect the edges of an image. Image gradients provide information about the

strength and the direction of the change in the image value at each pixel.

Image Thresholding

Image thresholding is one common solution to detect the edge in an image. This

method is based on pixel(s) value to differentiate between the foreground and the

background of an image. The basic idea of thresholding is illustrated in Figure 4.7.

These two graphics illustrate how the thresholding point can be put in the sud-

den spike difference of value between pixels. Figure 4.7 (a) illustrates the contrast

stretching of the corresponding pixel value that transformed the image from dark

contrast to light colour contrast.

The difference point can be taken as a threshold to transform an image into

one the case needed. If the difference value between the pixels totally contrasts like

Figure 4.7 (b) illustrated, the threshold point can be easily defined. Suppose the

intensity histogram in Figure 4.8 corresponds to an image f(x, y), we can define T

as a threshold and the region above or below this threshold can be determined by

using this value. In general this case denoted by g(x, y) where

g(x, y) =


1 f(x, y) > T

0 f(x, y) ≤ T
(4.3)
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(a) (b)

Figure 4.7: (a) Contrast stretching function (b) Thresholding function. These graphics are
adapted from [52]

T can be applied over an entire image and able to refer as global thresholding, but

if the value of T dynamically changes over the process of the image, it can be also

referred to as variable thresholding. In some cases, there can be more than one

threshold defined along the process of the image, like denoted in following multiple

thresholding. The following classified equation can be changed depending on the

situation applied to the case of the image, where a, b, and c are any three distinct

intensity values.

g(x, y) =


a f(x, y) > T

b T1 < f(x, y) ≤ T2

c f(x, y) ≤ T1

(4.4)

(a) (b)

Figure 4.8: (a) An example of the wrist X-ray image, (b) Intensity histogram that can be
partitioned by T (threshold).

Otsu’s method [99] and image filter are several methods related to this field,
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like Canny’s edge detector [21]. An automatic threshold was proposed by Otsu’s

method, which was selected for image segmentation without any parameters and

unsupervised methods. This method maximises the difference of grey-level in the

image. The method utilises image separation of foreground and background. The

separation is based on the threshold of cumulative intensity pixels in the grey-level

area colour space histogram. This method is quite general as it covers a broad scope

of unsupervised decision procedures. Details of Otsu’s method are explained in [99].

Canny’s edge detector [21], named after the inventor of this method John Canny,

was introduced in 1986 through his paper. Canny’s approach is based on three

primary objectives to find the edges. First, there must be a comprehensive set of

goals for the computation of edge points whilst making minimal assumptions about

the form of the solution. Second, edge points should be well localised close to the

actual edges. The third objective is that the detector should only return one response

to a single edge. It means that the detector should not identify multiple edge pixels

where only one exists.

Examples of implementing Canny’s edge detector [21] and Otsu’s method [99] in

digital images are shown in Figure 4.9. In this image, Figure 4.9(b) is the processing

result of an image in Figure 4.9 (a) as the implementation of edge detection using

the Canny edge detector as well as Figure 4.9 (c) is the result of implementing edge

detection using Otsu’s method. Based on the results shown in Figures 4.9 b and

c, these methods provide an opportunity for edge detection of objects in the image.

This is because these two exemplified can reduce the pixels that are suspected to be

not the edges of the image. This capability provides a way for fracture research on

digital wrist X-ray images.

Linking Edge Points

Canny’s and Otsu’s are applicable when pixel information belonging to certain con-

ditions is available. If the image does not provide unique information or we only

have an edge map and no knowledge of where objects of interest might be, we need

global processing of the image. The idea that each pixel has its unique information

and is possibly connected can be utilised as linking candidates for us to reserve or

eliminate during edge detection. Hough’s transforms are used to detect lines in the

image [60].

Figure 4.10 is an illustration of the basic idea of the connections between two
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(a) (b) (c)

Figure 4.9: These are applied edge detection techniques examples to an image for wrist X-
rays images. Image (a) is an original wrist X-ray image in a lateral taken position. Image (b)
is the result of the Canny edge detection method [21]. Image(c)is the result edge detection
using Otsu’s method [99].

(a) (b)

Figure 4.10: (a) xy-plane as an illustration of the idea of a connection between two points.
(b) An example of parameter space to describe the general equation of a straight line where
infinitely lines pass through. These graphics are adapted from [52].

points that could link each other. In this picture, there are two illustrations of basic

interactions between points and in the image, these kinds of points will consider as

lines and could probably lead to the edge(s) of the object in the image. Figure 4.10(a)

explains about two points(xi, yi) and (xj , yj) in the xy−plane. Figure 4.10(b) illus-

trates the parameter space to describe the general equation of a straight line of

yi = axi + b, where infinitely many lines pass through (xi, yi) and values of vari-

ables a and b. Each point represents and probably consists of various line intersects

and these lines are equivalent to the original line. However, a difficulty with this

approach is that a as the slope of a line, approaches infinity as the line approaches

the vertical direction. Hough’s transform uses the normal representation of a line:

x cos θ + y sin θ = ρ. Figure 4.11(a) illustrates the geometrical interpretation of the

parameters ρ and θ. Illustrations of Figure 4.11 are adapted from [52]. A horizontal
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line has θ = 0°, with ρ being equal to the positive x−intercept. Similarly, a vertical

line has θ = 90°, with ρ being equal to the positive y−intercept. For Figure 4.11(b),

each sinusoidal curve represents the collection of lines that pass through a particu-

lar point (xk, yk) in the xy−plane. Figure 4.11(b) describes the intersection point

(ρ′, θ′) that corresponds to the line that passes through both (xi, yi) and (xj , yj) in

Figure 4.11(a).

(a) (b) (c)

Figure 4.11: (a) The geometrical interpretation of the parameters ρ and θ. (b) Each sinu-
soidal curve represents the collection of lines that pass through a particular point (xk, yk) in the
xy−plane. (c) An example of the accumulator cells, where every non-zero pixel, this sinusoidal
curve will be created and counted in these cells. These graphics are adapted from [52]

In assumption of θ range between −90° to 90° or also can describes as −90° ≤ θ ≤

90°, aligned with the ρθ parameter in Figure 4.11(c), the accumulator cells can be

defined by subdividing this the ρθ parameter. The expected range of the parameter

are (ρmin, ρmax) and (θmin, θmax). The range for this parameter is −90° ≤ θ ≤ 90°

and −D ≤ ρ ≤ D, where D is the maximum distance between the opposite corners

in an image. The looping process operates through all the image pixels. Initially,

these cells are set to zero and identified this value as not an edge during the looping

process of entire pixels in the image. If the pixel is non-zero, a sinusoidal curve is in

the ρθ space. The θ = −90 and calculate the corresponding value of ρ using equation

ρ = xk cos θ + yk sin θ, where k is relate to (xk, yk) of non-background point. Every

single line through this procedure counts as a ’vote’ in accumulator cell (θ, ρ) and

increases the value of the cell by 1. For every non-zero pixel, this sinusoidal curve

will be created and counted. A lot of points ‘voted’ for this spot which means as

the parameters to describe the lines in the original image.

Figure 4.12(a) is a wrist X-ray image that we try to identify its Edge through

Hough’s transform. Visually, the interest of the image that wants to identify is the

square shape edge created by the collimator plate during image acquisition. Once

Hough’s transforms technique is applied, Figure 4.12(b) will appear to represent
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(a) (b)

Figure 4.12: An example implementation of Hough’s transform to align the X-ray wrist
image in a certain angle degree. (a) An example of the wrist X-ray image, (b) The result of
vote pixels in accumulator cells between ρ and θ on the image proceeds through the transform
where the brightest colour represents potential lines in the input image.

accumulator cells between rho and theta value of the image. The bright colour parts

of this graphic represent the potential lines in the image. The value of potential

lines can be traced to get the maximum theta value in the image. This value can be

used to align the image vertically.

4.1.3 Contrast Limited Adaptive Histogram Equalisation

An image often comes in unpredictable conditions. Poor contrast and a low level

of brightness could be reasons for an imperfect image condition. It needs the effort

to make it visually better. Image enhancement could be translated as the effort to

make an image better visually from the viewer’s point of view. One classic strategy

is manipulating the image’s pixels. Pixels within an image could be manipulated by

modifying their values. The pixel‘s value could give the different effects of contrast

and level of brightness.

Contrast is a part of the image which gives a nuance of luminance or colour that

makes an object distinguishable. The difference in luminance can give a contrast

effect to the image. The contrast gives colour and sometimes further interpretation

when it combines with brightness. The idea to enhance image visualisation by

adjusting the grayscale of the image’s pixels based on its pixel’s distribution in a

histogram was penned by [63] and referred it as Histogram Equalisation.
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Histogram equalisation aims to obtain an even distribution of the histogram,

such that each degree of grey has a relatively equal number of pixels. This strategy

then widens the range of grayscale values to increase the contrast of the image. It

changes the current grayscale value of pixel r with a new grayscale value s based on

its equalised histogram transformed an image as a function T .

s = T (r). (4.5)

and the probability of a pixel with a certain grayscale value within the image as

Pr(rk) =
nk
n

(4.6)

where nk is a number of pixels with a certain value of rk. n is the total number

of pixels within an image. For instance, the average r value of grayscale k is also

normalised to the maximum length gray’s L value of the image as it calculated as

rk =
k

L− 1
, 0 ≥ k ≤ L− 1 (4.7)

for example if L = 8, the values of rk can be calculated as follow

Table 4.2: Values of rk if L = 8

k rk
0 0/7 = 0

1 1/7

2 2/7

3 3/7

4 4/7

5 5/7

6 6/7

7 7/7 = 1

A transformation of pixels using histogram equalisation of a range of colour-scale

and a size of an image could be expressed as follows :

sk = T (rk) =

k∑
j=0

nj
n

=

k∑
j=0

Pr(rj) (4.8)

where 0 ≥ rk ≤ 1, k = 0, 1, 2, ..., L− 1

A modest example of an image like Figure 4.14 has size 4x4 and consists of 16

pixels. It has a 10 level of gray level which can be spread from 0 to 9 grayscale level.
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Figure 4.13: An graphic illustration of transformation T grayscale r value of an image to a
new grayscale value of pixels s

Histogram distribution of pixels to its gray level is shown in Figure 4.15 and it is

used as an explanation of how histogram equalisation applied to an image.

Figure 4.14: An example of an image which has size of 4x4 and 16 pixels.

Figure 4.15: A distribution of pixels within image in Figure 4.14. In assumption, this image
has ten levels of the grayscale colour map. This histogram will be the basis of the histogram
equalisation process.
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After the distribution of pixels on the image calculated as shown in Figure 4.15,

then formula 4.8 applied to pixels within Figure 4.14. Details are explain below in

Table 4.3.

Table 4.3: Detail calculation of histogram equalisation of image Figure 4.14. Abbreviations:
Frequency (freq), Cumulative Distribution (Cumltv Dist).

Gray
level

Pixel’s
value
Freq

Cumltv
Dist

Pixel’s
grayscale

probability

Pixel’s new
gray level value

(s =
∑k

j=0
nj

n )

New pixel’s
value
(s ∗ 9)

0 0 0 0/16 0 0

1 0 0 0/16 0 0

2 6 6 6/16 6/16 3.9 ∼3

3 5 11 5/16 11/16 6.1 ∼6

4 4 15 4/16 15/16 8.4 ∼8

5 1 16 1/16 16/16 9

6 0 16 16/16 16/16 9

7 0 16 16/16 16/16 9

8 0 16 16/16 16/16 9

9 0 16 16/16 16/16 9

The new pixel’s values from the equalisation procedure are then mapped through

the related pixels within the image. The comparison of images before and after the

histogram equalisation process is shown in Figure 4.16.

Figure 4.16: These are comparisons between an original image (a) and the result (b) after
proceeding through the histogram equalization technique.

This phenomenon then developed as an image enhancement technique named

Adaptive Histogram Equalization (AHE) as it has been published by [106]. This

method works well if the pixel values distribution is similar throughout the image.

Figure 4.20 (b) shows a result of the histogram equalisation process of Figure 4.20

(a). Comparison of pixel distribution between the original image and after histogram

equalization applied to the image shows in Figure 4.21. The distribution of pixels

before and after equalisation spreads through all levels of the grayscale colourmap,

and it gives a brighter looks image, as shown in Figure 4.18 (b). In this case, the
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Figure 4.17: A distribution of pixels within image in Figure 4.16(b). In assumption, this
image has 10 levels of the grayscale colour map. This histogram is the result of image (a) as
the basis of the histogram equalization process.

Figure 4.18: An example of histogram equalisation applied to a medical image. Image (a) is
an original image and (b) is an image resulting from the classic histogram equalization process.

classic histogram equalisation does not work well because, from a visual perspective,

much of the bone details within the X-ray image were lost as pixel values turned

significantly white-coloured. This is the weakness of the original histogram equali-

sation where the significantly lighter or darker pixel values dominate the image as

such an X-ray image can affect the result of pixels distribution after the equalisa-

tion process. The need for slightly mild or adaptive contrast-related enhancement

of pixel values within the image that had been developed relating to the image con-

trast. Transforming each pixel from a neighborhood region with a transformation

function then named Adaptive Histogram Equalization (AHE) and its specific work
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Figure 4.19: Two histograms applied to medical image in Figure4.18. Image (a) is a his-
togram of the original image of Figure4.18(a) and (b) is a histogram of Figure4.18(b) resulting
from the histogram equalization process.

with contrast updated to The Contrast-Limited Adaptive Histogram Equalization

(CLAHE).

The Contrast-Limited Adaptive Histogram Equalization (CLAHE) is an image

processing method that addresses the loss of local contrast by dividing the image

into small regions called tiles or blocks and performs histogram equalization indepen-

dently on each tile [106]. The result of applying CLAHE is an image with increased

contrast and increased detail, particularly in areas of low contrast or uneven illumi-

nation. This thesis’ colour range is primarily binary black and white and grayscale

colour range.

Figure 4.20: An example of contrast limited histogram equalisation applied to a medical
image. Image (a) is an original image and (b) is an image resulting from CLAHE process.
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Figure 4.21: Two histograms of a wrist X-ray image in Figure 4.20. Image (a) is a histogram
of original image of Figure 4.20(a) and (b) is a histogram of Figure 4.20(b) resulted from
contrast limited histogram equalisation process.

4.1.4 Local Binary Patterns

An image is built by pixels. Each pixel contains a value in the range of colour space.

Pixel has relations with other pixels around it. Pixel neighbourhood is usually used

to describe the relationship between a pixel and the pixels surrounding it. Pixel

neighbourhood has relative intensity but not a strict relation as a whole image.

Relation between pixels and their neighbourhood has an intensity to construct a

texture. The small intensity value of the neighbourhood of pixels explores using a

technique named Local Binary Patterns (LBP).

Local Binary Patterns was originally proposed by [137]. It is based on the Tex-

ture Unit’s foundation and the Texture Spectrum concept, described in [136]. The

standard LBP operator is defined as a grayscale invariant texture measure derived

from a general texture definition in a local neighbourhood. An example of the

relationship between pixels of a 3 × 3 neighbourhood is proposed by [136]. Pixels

neighbourhood in small units called Texture Units. It connects eight directions from

the central pixel and is considered the smallest complete texture unit within this

neighbourhood.

For instance, a neighbourhood of given 3×3 pixels contains a set of nine elements

V = {V0, V1, ...V8}, where V0 represents the central pixel’s intensity value and Vi

represents the pixel ith intensity value of this neighbourhood. The set of texture

units is defined by these eight elements as TU = {E1, E2, ..., E8} where Ei is the
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threshold by

Ei =


0 if Vi < V0

1 if Vi = V0

2 if Vi > V0

(4.9)

for i = 1.2, ..., 8 and Ei is the same position as the ith pixel. Each element of

the texture unit (TU) has three possible values. If we considered those values as

0,1 and 2 obtained from a neighbourhood of 3 × 3 pixels then we have 38 = 6561

possible Texture Units. [136] has found a way to label all texture units and named

the Texture Unit Number (NTU ). It was found by using the following formula:

NTU =
8∑

i=1

3i−1Ei, NTU ε {0, 1, 2, ..., 6560} (4.10)

Pixels are clockwise ordered starting from the top-left, to the middle-left as shown

below.

Figure 4.22: An illustration of eight pixels neighbourhood. These pixels are ordered in
clockwise as the eight elements of Texture Unit. The first element is a as element of E1

clockwise-way through h as the element E8

A square shape of a neighbourhood is not a strict rule for Local Binary Patterns.

It could be other shapes such as circularly symmetric neighbourhoods as proposed

by [95] as an updated technique of their work [96].

The method proposed by [137] as it explains in [96] is using a two-level version as

it shows in Figure 4.23. The possibility of 38 equals 6561 possible Texture Unit could

have resulted from 3× 3 pixels neighbourhood then elaborated in Figure 4.23 as an

example. A region of 3× 3 pixels in Figure 4.23 (a) is then thresholded to two-level

of the binary distinction of 0 and 1 by comparing it to the value of the centre pixel

which has a value of 6. It gives results in 4.23( b). If we put an assumption that

Figure 4.23 (c) as weights given to the corresponding pixels then multiplied it with

those in 4.23 (b). The results are shown in 4.23 (d). The total values of pixels in

Figure 4.23 (d) is 180 as the number of texture units of this neighbourhood.
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Figure 4.23: An ilustration to describe Local Binary Patterns (LBP) in a texture. A 3 × 3
neighbourhood (a) is tresholded by the center pixel’s value. The values of each pixel in (c)
then multiplied with two-level thresholding results in (b) resulted (d). Texture unit of this
neighbourhood is obtained by sum up the eight pixels which got TU = 180. Images inspiration
from [96].

An image is usually composed of texture elements and random noises. More

immense proportions of texture than noise may be seen by human vision. This

certainty to differentiate between the wanted and unwanted value of pixels becomes

the advantage of the LBP. This technique could apply in a grayscale colour range

and be combined with a contrast measure.

Different distributions of texture spectra within particular texture units could

lead to various image textures [137]. This technique was first described by [96] that

were using the grey-level differences with classification based on feature distributions

to determine image texture measures. A Texture Unit was calculated by differen-

tiating the grey level of a central pixel from the grey level of its neighbours. The

occurrence of the distribution of texture units computed over a region is called the

texture spectrum. In the Texture Spectrum, an increase in the percentage of tex-

ture components in an image will tend to form a particular distribution of peaks.

This method is further developed by [95], which generalised grayscale and rotation

invariant operator which allows detecting similar patterns for any quantisation of

the angular space and any spatial resolution and presents a method for combining

multiple operators for multiresolution analysis.

Classification of an image could benefit from the texture spectrum of an image

and become its descriptor. In a recent development, texture and colour as descriptors

for visual recognition would be possible to cooperate in a data-driven approach to

potentially replace the manual-driven approach as it has been overview historically

by [14].

In a medical image, texture interpretation is crucial to determine the abnormality
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Table 4.4: Details of convolutional neural networks (CNNs) that were used in this work.

No. Network Depth Image Input Size Reference

1 GoogLeNet 22 224-by-224 [126]

2 VGG-19 19 224-by-224 [121]

3 AlexNet 8 227-by-227 [70]

4 SqueezeNet 18 227-by-227 [64]

5 ResNet-18 18 224-by-224 [59]

6 Inception-v3 48 299-by-299 [128]

7 ResNet-50 50 224-by-224 [59]

8 VGG-16 16 224-by-224 [121]

9 ResNet-101 101 224-by-224 [59]

10 DenseNet-201 201 224-by-224 [61]

11 Inception-ResNet-v2 164 299-by-299 [127]

observed in the image. The opportunity to use Local binary pattern variants as

texture descriptors for medical image analysis was evaluated by [88].

Information within the image could be seen from the value of features of the

image. Features of the image contain a specific value that builds up the image

itself. Fractures, in general, are challenging to distinguish from an X-ray image.

It happened because of various levels of colour intensity related to image texture.

Fractures are connected, and separating abnormality within a medical image is a

difficult task. Image noise such as a blurred result of scanned images could be

another challenge. The opportunity of using this technique for a specific analysis of

wrist X-ray images is explored in Chapter 6.

4.1.5 Convolutional Neural Networks (CNN)

Convolutional Neural Networks are a subclass in the hierarchic terminology that

includes artificial intelligence (AI), machine learning, and deep learning. CNN is a

specialised neural network for processing data with a grid-like topology [53].

Overview of CNN architectures

The convolutional neural network research design process includes defining the clini-

cal question, choosing a predefined computer vision task, generating data acquisition

and preprocessing, selecting hardware and software solutions, developing a network

architecture, and validating the algorithm performance. In this report, eleven con-

volutional neural network architectures have been tried to adapt to a given data set.

The following section explains the eleven CNN architectures that were used.
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AlexNet

AlexNet is a convolutional neural network that is trained on more than a million

images from the ImageNet database [70]. This network has eight deep layers and is

able to classify into 1000 categories of objects. The network has an image input size

of 227-by-227-by-3.

Architecture details of this network can be found in [70]. This architecture is the

simplest architecture among other architectures that have been tried in this report

with only 8 layers of depth. The architecture model is shown in fig. 4.24. It can be

seen that each image will be put in a convolution process in a different dimensions

of filter size.

Figure 4.24: A diagram showing AlexNet CNN Architecture [70]

VGG-16

VGG-16 is a convolutional neural network based on a paper published by [121]. This

network has 16 layers deep and able to classify images into 1000 categories. The

network has an image input of size 224-by-224. This architecture is 16 layers in

depth and uses very small convolution filters (3 x 3).

VGG-19

VGG-19 is a convolutional neural network also based on a paper published by [121].

The difference is in the depth of the layers it has. This type of convolutional neural

network architecture has 19 layers. The network has an image input of size 224-by-

224.
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Figure 4.25: A diagram showing VGG-16 CNN Architecture which is adapted from [121].

Figure 4.26: A diagram showing VGG-19 CNN Architecture which is adapted from [121].

SqueezeNet

SqueezeNet is a convolutional neural network that is trained on more than a million

images from the ImagesNet database [64]. The network is 18 layers deep and can

classify images into 1000 object categories. The network has an image input of size

227-by-227

ResNet-18

ResNet-18 is a convolutional neural network that is trained on more than a million

images from the ImageNet database [59]. The network has an image input size of

224-by-224. The network is 18 layers deep.
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Figure 4.27: A diagram showing Squeezenet CNN Architecture which is adapted from [64].

Figure 4.28: A diagram showing ResNet-18 CNN Architecture which is adapted from [59].

GoogLeNet

GoogLeNet is a convolutional neural network that is trained on more than a million

images from the ImageNet database [126]. The network has 22 layers deep. It has

an image input size of 224-by-224.

Figure 4.29: A diagram showing GoogLeNet architecture which is adapted from [126].

ResNet-50

ResNet-50 is a convolutional neural network that is trained on more than a million

images from the ImageNet database [59]. The network has 50 layers deep and can
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classify images into 1000 object categories. It has an image input size of 224-by-224.

Figure 4.30: A diagram showing ResNet-50 CNN Architecture is adapted from [59].

Inception V-3

Inception V-3 is a convolutional neural network that is trained on more than a

million images from the ImageNet database [128]. The network has 50 layers deep.

It has an image input size of 299-by-299

Figure 4.31: A diagram showing Inception-ResNet-v2 CNN Architecture which was taken
from Inception-V3 on Google Cloud as it adapted from [127].

ResNet-101

Resnet101 is a convolutional neural network that is trained on more than a million

images from the ImageNet database [59]. The network has 101 layers deep. It has

an image input size of 224-by-224.

DenseNet-201

DenseNet-201 is a convolutional neural network that is trained on more than a

million images from the ImageNet database [61]. The network is 201 ( or 709 as

shown in Matlab®) layers deep. It has an image input size of 224-by-224.
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Figure 4.32: A diagram showing ResNet-101 CNN Architecture is adapted from [59].

Figure 4.33: A diagram showing DenseNet-201 CNN Architecture is adapted from [61].

Inception-ResNet-v2

Inception-ResNet-v2 is a convolutional neural network that is trained on more than

a million images from the ImageNet database [127]. The network has 164 (or 825

as its shown in Matlab®) layers deep. The network has an image input size of

299-by-299.

Figure 4.34: A diagram showing Inception-ResNet-v2 CNN Architecture. The diagram is
adapted from [127].

All of these architectures are designed for colour images. Modifications were

applied to the pre-training CNN architecture so that it can be used for grayscale

images which are colour-scaled wrist X-ray images used in this thesis. To address

this challenge, several modifications were applied to these architectures:

• Input layer modification. The input layer of pre-trained CNN architecture is

72



designed to accept three-channel colour (Red, Green, Blue)images as input.

A modification was made to the first layer which is usually an input layer to

accept single-channel grayscale images. Input The network would adapt to

accept one channel input instead of three.

• Transfer learning. Once the architecture is adapted to grayscale images as

input, then the network can adjust to retraining the architecture on a grayscale

data set. Replace the final layers or the layer that is usually used to classify

the image with the classes needed for this research which are normal and

abnormal. Sub-chapter 4.1.7 Radiograph Transfer Learning explains further

how the transfer learning method is applied to pre-trained CNN architectures.

4.1.6 X-ray data set augmentation

Machine learning architecture with a specific purpose also depends on what data set

has been trained for it. The size of the data set is always an obstacle to getting a

better result from the machine learning architecture. The medical-related data set

is not commonly available in large size due to many reasons such as data security,

privacy protection or rarity of the disease or abnormality. On the other hand, the

best way to improve machine learning is to train it on more data.

An approach to making a data set seems bigger than reality by creating synthe-

sized data and summing it to the training set [53]. Data augmentation is widely

adopted as a solution to the overfitting problem due to limited data available and a

common problem in medical image computation [120]. Data augmentation creates

various images from existing images within a data set. It is aligned to adapt with a

general notion of better results of deep learning architectures relies on more images

within data set [124] which is not easy to achieve in the real world, but it could

make variations from an existing image within a data set.

Image data augmentation could be done in two ways. First, manipulate the data

set using basic image manipulation techniques such as filters, colour space trans-

formations, texture, and other image processing techniques. Second, by using deep

learning approaches to make data augmented. This strategy could be adversarial

training, neural style transfer or even training the data set through indirect training,

in which the data set itself is updated dynamically such as a generative adversarial

network [120]. A taxonomy of data augmentation proposed by [120] based on survey
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methods could be used to enhance the performance of the architecture where limited

data or diverse data is needed.

A tree-structured image data augmentation that illustrates the variation in image

data augmentation is shown in Figure 4.35. Kernel filters are a common technique

in image processing. The filter directly manipulates the image, which usually aims

to sharpen or blur an image. Changing the contrast value of the image is also

a kind of kernel filter technique. One popular technique relates to this, such as

Canny’s edge detector [22] and the Histogram Equalisation method [106]. Random

Erasing is a technique specifically designed to give a solution to a few data sets by

randomly erasing some part of an image within the data set [145]. This technique

is believed could enhance image varieties within a limited-size data set. The image

has a specific colour space when it has been acquired. Transformed the image’s

colour space could be counted as the augmentation of the image data. The pixels

of an image could be manipulated by using geometric transformation. The result

of manipulation could change the visualisation of the image whilst it is the same

image but geometrically manipulated. Pixel-based geometric transformations such

as rotation, shift, and mirroring are some of the geometric transformation strategies

which could be applied to augment the data set.

In this study, the initial dataset contained a small number of images, however,

during the study, other datasets were found to be publicly available and relevant

to the case study. Mixing images together to create a new image could be counted

as the image data augmentation as well as geometric transformations, kernel filters,

random erasing, and colour space transformations [120]. Basic image manipulation

techniques which can be used to create image data augmentation have been explained

in Sub-chapter General Methodologies.

Creating synthesized data to tackle a few data owned to train the deep learning

architecture is an exciting approach to the image-based case. This approach is

suitable for image and classification problems. Teaching a machine to learn a specific

task related to image cases needs a classifier where it takes high dimensional input x

and encapsulates it to an identity category y. A new pair of (x, y) could be produced

by transforming the x inputs in the training data set.

Data augmentation is also suitable to work with medical image data sets. Ra-

diograph images are obtained under various conditions though it has a standardised

acquisition procedure. The augmented data gives a broad possibility of data points.
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Figure 4.35: An illustration in the tree model of image data augmentation varieties. The
graphic is adapted from [120].

It could minimise the gap between the training, validation set, and testing set. An

example of augmented images resulting from an X-ray of the wrist is shown in Fig-

ure 4.36. An original X-ray image could produce several synthesized images through

the augmentation technique. These images in Figure 4.36 can be counted as six new

images. When specific portion images within the data set are duplicated through

this technique, it can significantly increase the amount of data.

Figure 4.36: An example of the wrist being augmented into several techniques to make
a variety of images within the limited size of a data set through image data augmentation
strategy.
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4.1.7 Radiograph Transfer Learning

Transfer learning is a deep learning method in transferring knowledge and then

fine-tuning it to a task from a previous task within a network. The most obvious

difference between conventional machine learning and transfer learning is the learn-

ing process. Conventional machine learning techniques learn a task from scratch,

whilst transfer learning tries to get knowledge from previous tasks and then apply

it to a new task [103]. Domain adaptation and knowledge transfer are aimed to

exploit what has been learned in a specific setting and then use it to improve results

in another setting [53]. It is used as a starting point to learn a new task. It has been

a solution to reduce the need for the annotation process. One of the first ideas to

use transfer learning was to adopt pre-trained architectures of the ImageNet data

set instead of training from the ground [110].

Annotating the image is part of the pre-processing data set before training it

to the deep learning network. The annotation process is time-consuming, easily

mistaken, and high-cost as well. The transfer learning method was introduced to

reduce this pressure. It is believed to help with the problem of limited sources of

images within a data set to train [5].

Transfer learning is widely employed from pre-trained architectures in many

medical image classification methods. A pre-trained network is being reused as a

starting point to learn a new task. Reusing a pre-trained network to get a fine-tuning

network with a transfer is usually faster than training the new architecture network

that has not been trained. A newly trained network always depends on randomly

initialized weights from scratch.

The transfer learning process is illustrated in Figure 4.37. Low-level image fea-

tures such as edges and colours are learned in the early layers of the network. Specific

task features to determine and decide the intention of what network is being trained

is learned in the last layers of the network. Final layers replace to adapt the network

for new knowledge from the data set. It could be more data or fewer classes and,

hopefully, learn faster. By changing the final layers, the network could be trained in

new training options and a new data set. A trained network could give predictions,

and the network’s accuracy assessed whether it fulfills its aim. The performance

of the network to determine the abnormality possibility within the image could be

seen when the network deployed. These learned features then reiterate to retrain
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the network with existing knowledge from the previous iteration.

Figure 4.37: A generic illustration of the transfer learning process from a pre-trained convolu-
tional neural network. This image has been adapted from Matlab®documentation materials.

The combination of pre-trained CNN architectures with medical images affects

learned features transferred during the transfer learning process. It happens because

pre-trained CNN has different ‘knowledge’ than the intended result of working with

medical images. Modification by replacing the final layers of the pre-trained network

with new layers to accommodate a new data set to be learned gives opportunities

to utilise many pre-trained networks to explore in this thesis. Transfer learning

is applied in this work. This thesis used eleven pre-trained convolutional neural

networks to explore this method. X-ray images were used as the new data set to be

trained to the existing pre-trained networks.

4.2 Class Activation Mapping

Class activation mapping generates a visualisation of the intention of the targeted

class on the image. This technique was first introduced by [146]. This technique

uses global average pooling to perform object localisation without box annotations.

Global average pooling on the convolutional feature maps is used for the fully-

connected layer that produces the output.

Class activation mapping allows us to visualise the predicted class scores on any

given image, highlighting the discriminative object parts detected by the CNN. It

benefits from exploiting and visualising what the network thinks when deciding on

a subject during its process. In general, the convolutional neural network unit has

various layers. Despite a lack of supervision, these layers act as object detectors

in the provided location. The pipeline proposed by [146] to generate this map is

shown in Figure 4.38.

Global average pooling on the input image to perform class activation mapping is

applied to ResNet-50 and Inception-ResNet-v2 at the end tail of softmax. This layer
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Figure 4.38: Illustration of the Class Activation Mapping. It generates the highlight of the
class intention regions within an X-ray image of the wrist.

categorises the image input. As illustrated in Figure 4.38, The last convolutional

layer consists of the result of global average pooling which spatial average of each

unit feature map.

Based on [146], an input image f(x, y) added with k to represent the activation

of unit k at a specific spatial location of a pixel (x, y). The global average pooling

is counted as

F k =
∑
(x,y)

fk(x, y) (4.11)

For a given class c, the softmax input as Sc where weight of class c for unit k

defined as wc
k, thus

Sc =
∑
k

wc
kFk (4.12)

the output of class c is named as Pc where

Pc =
exp(Sc)∑
c exp(Sc)

(4.13)

in [146], the input bias of the softmax set to 0. In their assumption, it has almost

zero impact on the performance of classification.
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Then the global average pooling of formula F k =
∑

(x,y) fk(x, y) is join into the

class score Sc, then obtain

Sc =
∑
k

wc
k

∑
x,y

fk(x, y) =
∑
x,y

∑
k

wc
kfk(x, y). (4.14)

where [146] define Mc as the class activation map of class c, then each pixel is

given by

Mc(x, y) =
∑
k

wc
kfk(x, y). (4.15)

As it defines on the softmax of the networks Sc as
∑

x,yMc(x, y). It is obvious

that the Mc(x, y) gives an indication of activation importance at the spatial layout.

This leads to how class c is decided for the identified image.

This method is a visual pattern at different spatial locations resulting from a

weighted linear sum of the presence of fk. The network has been trained to classify

abnormalities within wrist X-ray images in this research. The presentation map

allows it to identify the most intention within the image to a specific category that

the network has trained.

It provides what the network precisely focuses its attention on. The mapping

is represented with a rainbow-coloured or jet colour map where the intensity spec-

trum ranges from the lowest represented by blue, then green to red as the highest

possibility of activation of the targeted class on the image. Exploration of Class

Activation Mapping (CAM) as a localiser for abnormality within the wrist X-ray

image explains further in Chapter 8.

4.3 Performance evaluation

Performance evaluation is used to determine the possible characterisation of the

classification output. The ground truth in this research is the wrist X-ray images

that classified Patients as images with abnormalities within the image. The possible

characterisation of the output of image classification, given its output and the value

of the same image’s pixel in the ground truth.

Four possible classifications, depending on the comparisons: (i) True positive

(TP) as the pixels where both the output and ground truth show a positive or ‘1’;

(ii) True negative (TN) in pixels where both images show a negative or 0; (iii) False
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positive (FP) where the classifiers show a ‘1’ but the ground truth shows a ‘0’, and

(iv) False negative (FN) where the classifiers show a ‘0’, but the ground truth shows

a ‘1’. In this research case, each pixel whose class is correctly determined by the

classifiers will be counted as Correct; every pixel assigned a different class will be

considered Incorrect.

In the work by Fawcett [45], two measurements are presented. First, precision,

which measures how many detected pixels are relevant, by computing the ratio of

true positives and the overall number of detected pixels, TP + FP . Second, the

work presents the recall measurement, which computes the ratio of true positives

with the sum of the true positives (TP) and the false negatives (FN) — or points

that should have been detected, but was missed—, this measurement can be seen as

a ratio of the relevant image’s pixels that were detected.

Randen and Husoy [112] present a calculation of accuracy which compares the

number of correct detection, whether positives or negatives against the overall num-

ber of image’s pixels.

The accuracy as Ac, precision as Prec, and recall are calculated in the following

way.

Ac =
(TP + TN)

(TP + TN + FP + FN)
(4.16)

prec =
TP

TP + FP
(4.17)

recall =
TP

TP + FN
(4.18)

Cohen’s Kappa (κ) [24] is also calculated as it is the metric used to rank the

MURA challenge [111]. This method is considered more robust as it takes into

account the possibilities of random agreements [81]. Cohen’s Kappa κ is calculated

in the following way. With

Tot = (TP + TN + FP + FN), (4.19)

being the total number of events, the probability of a ‘yes’ or TP is

PY = (TP + FP )(TP + FN)/Tot, (4.20)
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the probability of a ‘no’, or TN is

PN = (FN + TN)(FP + TN)/Tot, (4.21)

and the probability of random agreement PR = PY + PN , then

κ = (Ac− PR)/(1− PR). (4.22)
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Chapter 5

Wrist Fractures Semi Automatic

Analysis

5.1 Introduction

This chapter explores a geometric semi-automatic image analysis algorithm to anal-

yse and compare the X-rays of healthy controls and patients with dorsally displaced

wrist fractures (Colles’ fractures) presents. A series of 161 posterior-anterior radio-

graphs from healthy controls and patients with Colles’ fractures were acquired and

analysed. The semi-automatic analysis consisted of the manual location of three

landmarks (finger, lunate and radial styloid) and automatic processing to generate

32 geometric and texture measurements. These three landmarks have been chosen

because these could have been related to a certain condition such as wrist swelling

and osteoporosis [17, 66, 139]. This work has been published as a journal [114].

The main objective is to determine if there are geometric differences between the

successful and unsuccessful cases of Manipulation under Anaesthesia (MuA). The

MuA is the main procedures for Colles’ fractures and open surgery [11]. The use

case of pre and post the MuA classification is to determine if the procedure was

successful or unsuccessful. The semi-automatic comparisons extracted a series of

measurements, e.g. widths of forearm and metacarpal, based on three manually-

placed landmarks. In particular, texture measurements at the radial bone were also

explored.

83



5.2 Methods

This study was using one hundred and sixty-one posterior-anterior radiographs of

wrist fractures. The activity of Manipulation under Anaesthesia had supervised or

undertaken by fully accredited emergency clinicians. These wrist X-ray images were

acquired by clinical experts and were approved by the Health Research Authority

through the Integrated Research Application System (IRAS). Data were anonymised

which followed ethical procedures with Caldicott Guardian approval, from the Royal

Devon and Exeter Hospital.

The data set is divided into two categories which are Patients and Normals. The

controls corresponded to patients who required wrist radiographs, mostly following

injury, to rule out fractures. As these cases did not present fractures, they were

considered as healthy and used as controls.

The wrist fractures were divided by the acquisition time: before (Pre) or after

(Post) MUA and the outcome of these: successful or unsuccessful therefore creating

four classes pre-successful (n=50), pre-unsuccessful (n=31), post-successful (n=40),

post-unsuccessful (n=18). These cases and the clinical outcome were retrospectively

identified from electronic attendance logs and electronic records.

X-ray is the modality in this work. Images were obtained with five X-ray units

which were DigitalDiagnost DidiEleva01 (Philips Medical Systems, Netherlands),

Mobile tablet workstation (Thales, France), DirectView CR 975 and CD 850A (Ko-

dak, USA), Definium 5000 (GE Healthcare, USA) with a variety of exposure factors

and saved in DICOM format [90].

Images were obtained in various conditions. Most of those conditions are colli-

mators and many types of angle degrees wrist position. Despite common positions

being Postero-Anterior and Lateral but those could come in many types of PA and

Lateral positions. So that the first pre-processing step removed the lines caused by

the collimator and then aligned the forearm vertically. DICOM and its metadata

were read and converted to the binary data container format that the MATLAB

program uses which is the integrated development environment for this work.

The lateral position of the wrist contains the forearm bone. Area selection of

the forearm bone was then selected as a focal point to align the image vertically.

Identification of bone line to indicate the orientation of the arm was determined by

using Canny edge detector [22]. How far is rotation required to align the image,
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Hough’s transform [60, 37] was used in this matter. The collimator is detected

as pixels with zero value and differentiated with the region inside the line of the

collimator, which has a pixel value above zero. These regions are then processed

with dilation operation and removed from the image.

The wrist X-ray images were analysed based on three manually chosen unique

feature markers within each image. These three markers are lunate, middle finger,

and radial styloid. Unique feature markers or landmarks of the wrist’s bone were

used to extract bone textures. Each landmark was used to analyse its texture with a

strong belief in its correlation with a clinical condition. Lunate’s textures was used

to determine the typical condition of swelling. The middle finger was used to extract

texture that correlates to bone thickness. This could correlate to an indication of

osteoporosis. The third landmark, Radial Styloid, was used to extract texture that

correlates with fracturing in the wrist area.

Figure 5.1: Graphical illustration of the demographic distribution of the population of the
study. (a) The age distribution is shown with boxplots, one per group of the study. (b) Female
and Male distribution is shown with bars, one per group of the study.

Variation of pixel values within observed bone could be seen as the intensity of

bone texture. It was analysed through line profile intensity of the bones. The line is

a trace between landmarks of the Lunate and the Radial Styloid. This step gained

30 degrees and 45 degrees lines from the Radial Styloid up to the edge of the radius.

A drastic intensity drops into a darker region between bones is detected as the edge.

Measurements were extracted both from the intensity profiles and also the profiles

after these were adjusted by removing the slope with the idea that measurements

like the standard deviation would not be biased by a line that increases its intensity.

This analysis provided 10 measurements, e.g. length, slope, and standard deviation
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of the profile.

The measurements are analysed through five groups within the data set. These

groups are Pre-successful, Pre-unsuccessful, Post-Successful, Post-unsuccessful, and

Control. The total measurements from this texturing process are 32. Lunate-based

landmarks consist of 10 measurement categories. Finger-based measurement results

in two measurements which are values from the Trabecular area and width of the

finger. Local Binary Patterns are derived from Lunate to Radial Styloid parts.

Slope profiles were obtained in four types of measurements which are two full lines

profiles, two short segment profiles, and three standard deviation profiles. Two

distance profiles are also obtained from Radial Styloid. These 32 measurements are

the basis for the geometric analysis of wrist fracture radiographs.

For each of the measurements, the statistical difference between the following

cases was tested with paired t-tests: (i) healthy controls against patients. (ii) Pre-

intervention (successful and unsuccessful) against post-intervention (successful and

unsuccessful). (iii) Successful against unsuccessful. (iv) Pre-intervention successful

against pre-intervention unsuccessful. (v) Post-intervention successful against post-

intervention unsuccessful. (vi) Pre-intervention successful against post-intervention

successful. (vii) Pre-intervention unsuccessful against post-intervention unsuccess-

ful.

5.3 Results

Geometrical analysis of wrist X-ray images was obtained through those 32 texture-

based measurements of five groups.

Pre-processing steps are applied to remove objects that are unnecessary to the

analysis. Removed the lines caused by the collimator and then aligned the forearm

vertically. The forearm bones were selected by dividing the image into three parts

and selecting the central region of the radiograph as the obvious part of the bones.

It was then rotated at certain degrees to make the wrist look standing still. The

edge was detected by applying the Canny edge detector [22]. It gives the bone’s line

and uses it to indicate the arm’s orientation. It is not enough that only Canny is

used to detect line orientation, then Hough‘s transform [37] is applied as well. The

maximum peak value resulting from the Hough transform was used to determine the

degrees of rotation required to align the image. The X-ray image’s collimator lines
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were detected as pixels by the drastic difference between the darkest region inside

the collimator lines and beyond it. The outer region(s) of the line is then removed

by dilating it. An example of how preprocessing steps has been affected in cases is

shown in Figure 5.3.

Profile texture within the image was made by making a line across points of

interest. An example of Figure 5.7‘s three profile lines was made to generate the

specific texture along these lines. Lines were made on three points marked with

green, red and blue. The green line is traced between Lunate and Radial Styloid.

The red line is also in this directive but using 30 degrees increase from Radial

Styloid to Radius edge. Blue is using a similar strategy but different degrees which

are 45 degrees. The grey level intensity of these three profile lines has been observed

with and without the slope. Profile lines captured bone intensity variations over a

straight line. A drastic dropped in intensity is considered as the edge between bones.

Standard deviation is not biased by an increased intensity of a line. This slope was

then removed as shown in Figure 5.7.

Abnormalities on the X-ray images relating to the wrist or part of the forearm

can be caused by swelling or osteoporosis. The boundaries of the forearm have been

detected to indicate a swelling within the forearm on the image. The landmark of

the lunate (Red dot in Figure 5.4 a) was used to determine the base of the wrist.

The region of interest was determined from this point towards the forearm, and the

region of the hand was removed.

Blue-coloured landmarks are then being used to get the region of interest from

the middle finger part of the hand (Figure 5.5 a). This region’s bone (Figure 5.5 b)

was vertically aligned, obtained finger, trabecular and cortical regions edge. Those

were calculated by using a vertical projection of the image intensities (Figure 5.6 c).

It was conjectured that the thickness of the cortical and trabecular regions of the

bone would be an indication of osteoporosis [17, 66, 139]. The width of the finger

and the ratio of the trabecular area to the total area were taken as measurements.

The potential correlation of X-ray-based texture measurements with clinical out-

comes was given results with two ways of analysis. First, the texture was analysed

by using a small region of bone selected from the radius area. The local binary

patterns technique was applied to analyse this part. It explored the relationship be-

tween neighbourhood pixels within a concentration area. The local binary pattern

is focused on the relative intensity relations between the pixels in a small neigh-
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bourhood. A neighbourhood size of 3x3 pixels is the base of this texture analysis.

The difference between the grey level between the central pixel with its neighbours.

LBP’s values are shown as histograms in Figure 5.6 c which gives 10 measurements.

The intensity of the bone line profile has given an alternative way to analyse

the bone texture. An example is shown in Figure 5.7 gives a visualisation of how

intensity profiles are extracted and compared their texture. Figure 5.7 shows profile

lines of the Radial Styloid. In the beginning, a line (green) is traced across the lunate

(red in Figure 5.7 a) to the radial styloid (green in Figure 5.7 a) landmarks. Two

different degrees lines were produced to get texture information when it corresponds

to the different angles of lines being taken as shown in Figure 5.7 b. Removed the

slope of intensity profiles is shown in Figure 5.7 c.

Each X-ray image within the previously describe five groups has extracted 32

measurements. These measurements are presented in Table 5.1. Measurement re-

sults were tested through paired t-tests. Measurements were compared between the

Healthy control data set against the Patients’ collection of images. Condition be-

fore intervention named Pre-intervention and after intervention were also observed.

Successful interventions and unsuccessful results were compared. Measurements of

images with the pre-successful record were compared with measurements extracted

from Pre-unsuccessful. Postconditions of successful and unsuccessful measurements

were compared to each other. Pre-successful against Post-successful was tested as

well. In the end, Pre-unsuccessful and Post-unsuccessful are the final comparisons

in these paired t-tests.

Three anatomic landmarks which are Lunate, Finger, and Radial Styloid were

chosen to extract texture-based measurements. Lunate-based landmark has ex-

tracted 10 measurements. Each measurement corresponds to the bone’s width. The

trabecular area is a focus for measurements extraction of the finger’s landmark which

also include the measurement of its width.

The combination between Lunate and Radial Styloid has resulted in 10 mea-

surements using the Local Binary Pattern technique. Radial Styloid ’s landmark

has given 10 measurements which are three measurements of slope profile, 2 stan-

dard deviation intensity profiles, 2 adjusted standard deviation profiles, and two

measurements of distance profile.

Boxplot chart on Figure 5.8 shows that between control and patients and both

pre-and post-intervention, the difference is able to distinguish. The results of pre-and
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post-intervention groups are near to each other.

Table 5.1: Measurements extracted from the radiographs. The third column corresponds to
the landmark used to calculate the measurement. Columns 4 − 10 show the p-values result of
paired t-tests between different groups. Values lower than 0.05 are highlighted in bold. Abbre-
viations: Ratio of width line 1 / width line 4 (W1/W4), Local Binary Pattern (LBP), Standard
Deviation (Std), Measurement (Msrmt), Landmark (Ldrk), Control (Ctrl), Patient (Pat) Un-
successful (Unsucc), Successful (Succ), Pre-Successful (Pre-Succ), Post-Successful (Post-Succ),
Pre-Unsuccessful (Pre-Unsucc), Post-Unsuccessful (Post-Unsucc)

No Msrmt Ldrk Ctrl

v
Pat

Pre-

Succ

v
Post-

Succ

Succ

v
Unsucc

Pre-

Succ

v
Pre-

Unsucc

Post-

Succ

v
Post-

Unsucc

Pre-

Succ

v
Post-

Succe

Pre-

Unsucc

v
Post-

Unsucc

1 W1/ W4 Lunate <
0.01

0.01 0.55 0.16 0.51 0.01 0.74

2 W2/ W4 Lunate <
0.01

0.21 0.96 0.53 0.44 0.09 0.99

3 W3/ W4 Lunate 0.04 0.36 0.37 0.37 0.68 0.19 0.78

4 W5/ W4 Lunate 0.10 0.30 0.38 0.19 0.33 0.94 0.09

5 W6/ W4 Lunate 0.22 0.37 0.39 0.30 0.76 0.88 0.27

6 W7/ W4 Lunate 0.92 0.31 0.41 0.53 0.68 0.49 0.51

7 W8/ W4 Lunate 0.45 0.25 0.65 0.50 0.77 0.54 0.33

8 Min
width/
Max
width

Lunate 0.22 <
0.01

0.16 0.39 0.41 <
0.01

0.11

9 W1+W8/
W4+W5

Lunate <
0.01

0.01 0.72 0.21 0.72 <
0.01

0.53

10 W1+W2/
W7+W8

Lunate 0.06 0.50 0.58 0.35 0.60 0.23 0.73

11 Trabecular
Area /
Total
Area

Finger <
0.01

0.07 0.13 0.11 0.49 0.07 0.43

12 Width
Finger

Finger 0.85 0.02 0.66 0.86 0.52 0.04 0.40

13 LBP 1 L+Rad
Sty

0.02 0.01 0.28 0.96 0.07 0.01 0.54

14 LBP 2 L+Rad
Sty

<
0.01

<
0.01

0.41 0.83 0.09 <
0.01

0.01

15 LBP 3 L+Rad
Sty

<
0.01

<
0.01

0.22 0.68 0.13 <
0.01

0.03

5.4 Discussion

This chapter aimed to analyse wrist fractures with minimal user intervention. A

series of measurements were obtained to achieve this. Three manually selected body
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16 LBP 4 L+Rad
Sty

<
0.01

<
0.01

0.14 0.45 0.26 < 0.01 < 0.01

17 LBP 5 L+Rad
Sty

<
0.01

<
0.01

0.16 0.46 0.13 < 0.01 < 0.01

18 LBP 6 L+Rad
Sty

<
0.01

<
0.01

0.08 0.24 0.30 < 0.01 < 0.01

19 LBP 7 L+Rad
Sty

<
0.01

<
0.01

0.17 0.60 0.07 < 0.01 < 0.01

20 LBP 8 L+Rad
Sty

<
0.01

<
0.01

0.06 0.22 0.23 < 0.01 < 0.01

21 LBP 9 L+Rad
Sty

<
0.01

<
0.01

0.15 0.57 0.11 < 0.01 < 0.01

22 LBP 10 L+Rad
Sty

<
0.01

<
0.01

0.46 0.78 0.09 < 0.01 0.01

23 Slope
profile
1 (full
line)

Radial
Sty-
loid

<
0.01

<
0.01

0.88 0.29 0.35 < 0.01 0.09

24 Slope
profile
2 (full
line)

Radial
Sty-
loid

0.04 <
0.01

0.39 0.78 0.52 < 0.01 0.02

25 Slope
profile
1 (short
seg-
ment)

Radial
Sty-
loid

<
0.01

<
0.01

0.91 0.53 0.85 < 0.01 < 0.01

26 Slope
profile
2 (short
seg-
ment)

Radial
Sty-
loid

<
0.01

0.06 0.82 0.74 0.85 0.11 0.29

27 Std pro-
file 1

Radial
Sty-
loid

<
0.01

<
0.01

0.92 0.39 0.59 < 0.01 0.05

28 Std pro-
file 2

Radial
Sty-
loid

<
0.01

<
0.01

0.74 0.84 0.77 < 0.01 0.06

29 Std pro-
file 1 ad-
justed

Radial
Sty-
loid

<
0.01

<
0.01

0.50 0.80 0.47 < 0.01 < 0.01

30 Std pro-
file 2 ad-
justed

Radial
Sty-
loid

<
0.01

<
0.01

0.10 0.42 0.22 < 0.01 < 0.01

31 Distance
profile 1

Radial
Sty-
loid

<
0.01

0.23 0.78 0.99 0.75 0.28 0.63

32 Distance
profile 2

Radial
Sty-
loid

<
0.01

0.25 1.00 0.98 0.86 0.42 0.38
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Figure 5.2: Six representative radiographs that were collected from previous clinical ac-
tivity at Royal Devon and Exeter NHS Foundation Trust Emergency Department. The im-
ages present considerable variability in the quality, positioning of the arm and presence of
lines caused by the collimator also caught during X-ray image acquisition. The images were
anonymised and metadata such as age, date of acquisition, gender and clinical outcome was
available.

markers were selected to get their texture value extracted. Images came in a variety

of qualities which resulted in all measurements being validated visually however this

did not effect measurement extraction.

Comparisons scenarios to get the statistical differences between groups such

as successful and unsuccessful, pre-intervention successful and pre-intervention un-

successful, and post-intervention successful and post-intervention unsuccessful have

shown an indication of interesting perspective. Within the patient groups, the tex-

ture features, both those extracted from the profile lines as the LBP features, showed

a statistical difference between controls and patients, as well as between X-rays of

pre-and post-intervention. Twenty-five of the 32 measurements indicated statistical

differences between controls and patients. The local binary pattern measurements

were showing distinct results in four out of the seven groups. Similar indications

were followed by values from intensity profile measurements.

Results from the Local Binary Patterns could be extended for further studies,

specifically texture analysis from different regions. Larger area’s texture differences

could be diverse and might relate to bone mineral density as reported on [116].
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Figure 5.3: Automatic pre-processing of the radiographs. The six representative cases shown
were automatically rotated so that the forearm‘ position aligned vertically. In addition, the
artifacts due to the collimator were removed.

None of the measurements indicated a statistical difference between the following

MuA groups as shows in Table 5.1 : successful and unsuccessful, pre-intervention

successful and pre-intervention unsuccessful, post-intervention successful and post-

intervention unsuccessful. Texture-based measurements of fractures within wrist

X-ray images have not given significant results between successful and unsuccessful

MuA categories.

5.5 Summary

Texture-based measurements which were derived from geometrical calculation within

an X-ray image have been experimented with in this chapter. Pixels within an image

are sources to explore in image processing and image analysis fields. Works in this

chapter have given a prospect of replacing half-manual wrist fracture identification

procedures with automatic procedures. The collection of images in this work can be

used as the basic learning for convolutional neural networks.

The results were then explored with statistical and machine learning techniques

to determine the most discriminant features and consider new features to be ex-

tracted [91]. Local Binary Patterns measurements were giving a better performance
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Figure 5.4: Semi-automatic extraction of measurements of the forearm. (a) Original radio-
graph that presents rotation of the arm and artefactual lines due to the collimator. Three
landmarks have been manually located in the base of the lunate (red), Radial Styloid (green),
and centre of the middle finger (blue). (b) Automatic pre-processing of the image where the
forearm was aligned vertically and the lines removed. (c) Using the lunate landmark as a guide,
the boundaries of the forearm were automatically delineated and lines were traced between the
boundaries. The distance between the lines is 1 cm and was being used to derive swelling
measurements of the wrist.

Figure 5.5: Semi-automatic extraction of measurements of the finger (a) Region of interest
(ROI) of the central finger generated from the landmark, blue dot in Fig 5.4 (a). (b) Identifi-
cation of regions of cortical bone (shaded in cyan) and trabecular bone (shaded in pink) from
which the ratio of cortical to total area was calculated. Notice that the finger was rotated to
align vertically as the previous rotation aligned the forearm but the fingers are not necessarily
vertical. (c) Intensity profile of the ROI with the following key points: edges of the bone
(magenta diamond), the peak of cortical bone (blue asterisk), and centre of the bone (red
circle).

Figure 5.6: Semi-automatic extraction of texture measurements of a region of interest. (a)
To analyse the texture of the radius, an ROI is automatically located by traversing a fixed
distance from the Radial Styloid landmark. (b) Zoom of the region of interest. (c) Texture
coefficients generated by Local Binary Pattern analysis.

to indicate differences between pre-intervention and post-intervention among 32

measurements acquired. Combination of two anatomical landmarks of Lunate and
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Radial Styloid. This study includes a low number of cases but has given encouraging

statistical differences in measurements.

Extraction of image measurements based on its texture gives a channel for further

work in combining this with a complex computational technique such as convolu-

tional neural networks. Even though experiment results show a slight difference

between pre-and post-intervention. The Local Binary Patterns have given the best

results to distinguish differences among compared groups. This technique could be

further used to distinguish abnormality within wrist X-ray images and furthermore

other areas of bone diseases. This work has been published as an article on [114].

The next chapter describes an analysis of abnormality within wrist X-ray images by

exploring this case through a deep learning methods perspective.

Figure 5.7: Semi-automatic extraction of texture measurements from intensity profiles. (a)
Profile lines from the Radial Styloid. Initially, a line (green) is automatically traced between
the lunate (red in Figure 5.4 a) the Radial Styloid (green in Figure 5.4 a) landmarks. Two
lines are automatically derived from the first, one at 30 degrees (red) and one at 45 degrees
(blue) from the Radial Styloid up to the edge of the radius, which is automatically detected.
(b) Intensity profiles correspond to the lines traced in (a). Notice the increasing slope. (c)
Intensity profiles are adjusted by removing the slope.
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Figure 5.8: Boxplots corresponding to distributions of four representative measurements.
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Chapter 6

Wrist Fractures Classification

using Deep Learning

6.1 Introduction

In this chapter, the abnormality identification within the X-ray image as the first

step to assist a radiologist is explored. A supervised machine-learning technique was

used to classify X-ray images of the wrist into normal and abnormal conditions like

fractures. This work has been published as a paper at a conference [7].

Identification of wrist abnormality depends on the integrity and function of bones

and muscles. The internal condition of this could be checked using an X-ray. The

abnormality within an X-ray image is observed by a certain region area of intention.

In this work, a method is developed to identify fractures only based on their related

region.

The wrist region is a region between the hand and the forearm. An X-ray image

taken of this region often includes anatomical features of the forearm and hand.

The data sets often came with diverse conditions. In this work, we used a publicly

available data set named MURA. Details of this data set have been explained in

Chapter 3. The data set was used in this work, particularly the wrist subset of

MURA. The data set used in this experiment has labels based on anatomy conditions

observed by MURA’s expert team. It has two major labels which are positive and

negative. Abnormality is labelled as positive and normal is labelled as negative.

Detail of these two labels is shown in Table 6.1.

The data set has been trained to classify wrist X-ray images into two categories
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which are normal and abnormal. The actual labels from the MURA data set were

based on the times of patient visited the clinical facility. Each visit labelled as

StudyX and if experts diagnosed the image as containing abnormality then a Pos-

itive label is added at end of the StudyXpositive. A similar fashion with negative

conditions was identified within the investigated X-ray image of a patient.

The strategy of changing the value of hyperparameters and optimisers and mixing

domain knowledge of anatomy data sets has been explored in experiments. Compu-

tation times were recorded to explore the effect of adding more domain knowledge

into the train data set on CNN’s performance.

Radiography classification as the foundation of this work takes benefit of con-

volutional neural networks. Eleven widely-known CNN architectures were used to

assess the classification of wrist fractures into these two classes. The classification

of wrist radiographs into two categories (Normal / Abnormal) was considered with

eleven CNN architectures.

There architectures considered were: GoogLeNet, VGG-19, AlexNet, SqueezeNet,

ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-

ResNet-v2. In addition, the training process of the architecture was tested with

different numbers of epochs (10, 20, 30), different mini-batch sizes (16, 32, 64) and

with and without data augmentation. The details of the architectures are displayed

in Table 4.4. The experiment pipeline is illustrated in Figure 6.2. No pre- or post-

processing was applied in any case.

In humans, the scapula, humerus, and clavicle form the shoulder joint; the

humerus is the single bone that forms the arm and it articulates with the ulna

and radius at the elbow. Each region related to wrist anatomy has been added

to the training data set. Wrist fractures have often been seen on other regions of

scanned X-ray images such as the hand and forearm. Train networks with many

types of anatomic regions as part of strategies to increase network performance but

the diversity of its form. We experiment with hyperparameters, various values of

epoch, and all three solvers for training networks such as Adam, RMSProp, and

SGDM.

The time of computation was recorded as well as the accuracy and area under

the curve for each training process. These measures were applied to all regions of

the added anatomic region of the training data set.

Fractures surrounding the area of the wrist are not just in a specific location but
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also could be seen through another part of upper-body anatomy specifically in the

region of the hand and forearm. The wrist itself has two different parts of the angle

of image acquisition, as those have been explained in Chapter 2. This is because

alike information within different parts of upper body anatomy relates to the wrist.

These additional data came also come from the MURA data set. Added data from

different regions of anatomy to identify abnormalities within an X-ray image was

explored in this chapter.

Table 6.1: MURA’s wrist radiographs are subdivided into four studies.

Wrist-Train data set Abnormal Normal

Study 1 3,920 5,282

Study 2 64 425

Study 3 3 45

Study 4 0 13

Total 3,987 5,765

Total Wrist Train Images 9752

Wrist-Valid data set Abnormal Normal

Study 1 287 293

Study 2 5 59

Study 3 3 9

Study 4 0 3

Total 295 364

Total Wrist Valid Images 659

Total Images of Wrist 10411

6.2 Methods

This study analysed the wrist radiographs from the public data set Musculoskeletal

Radiographs (MURA) [111]. The data set has been manually labelled by board-

certified radiologists between 2001 and 2012. The radiographs (n = 14, 656) are

divided into images for training (n = 13, 457), and validation (n = 1, 199). Fur-

thermore, the radiographs belong to a group called abnormal (i.e. fracture, foreign

body, etc.) (n = 5, 818) or normal (n = 9, 045). The distribution per anatomical

region is shown in Table 3.4 and selected cases are illustrated in Figure 7.1. Of

these, the subset of the wrists was selected for this study. In experiments, the

actual numbers of data have been checked as it is shown in Table 3.5. Furthermore,

this study emphasises in the classification of wrist X-ray images to abnormal and

normal categories. Table 3.6 shows the actual distribution of labelled images in the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1: Illustration of different radiographs of the Musculoskeletal Radiographs (MURA)
data set corresponding to the training set and negative (no abnormalities) in the top row, and
positive (abnormalities) in the bottom row. (a) Elbow, (b) Forearm, (c) The Postero-Anterior
view of Wrist, (d) Lateral view of Wrist, (e) Elbow, (f) Fingers, (g) Forearm, (h) Hand.
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Table 6.2: Summary of convolutional neural networks (CNNs) hyperparameters.

1 GoogLeNet

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.01 0.001 0.001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

2 VGG-19

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.001 0.001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

3 AlexNet

Optimizer SGDM Adam RMSProp
Epoch 50 50 50

Mini batch size 128 128 128
Init. Learn. R. 0.001 0.001 0.001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

4 SqueezeNet

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

5 ResNet-18

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

6 Inception-v3

Optimizer SGDM Adam RMSProp
Epoch 10 10 10

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001
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7 ResNet-50

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

8 VGG-16

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 128 128 128
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

9 ResNet-101

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

10 DenseNet-201

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

11
Inception-
ResNet-v2

Optimizer SGDM Adam RMSProp
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

102



data set. Each condition is a combination of data labelled as Valid images and data

labelled as Train images.

Figure 6.2: Block diagram which illustrates the classification of the wrist radiographs with 11
different Convolutional Neural Network (CNN) architectures. 9752 images from Musculoskele-
tal Radiographs (MURA) Wrist data set were used for training CNN architectures and 659
images were used for validation. Two different metrics, Accuracy (Ac) and Cohen’s Kappa (κ)
were computed to assess the performance of 11 pre-trained CNNs. Image data augmentation
was used during training and a different number of epochs and mini batch sizes were tested.

A typical CNN combines a series of layers: convolutional layers followed by sub-

sampling layers (pooling layer), then another convolutional layer followed by pooling

layers, and can continue for a certain number of times after which fully-connected

layers are added to produce a prediction (e.g. estimated class probabilities). This

layer-wise arrangement allows CNNs to combine low-level features to form higher-

level features, learn features and eliminate the need for hand-crafted feature extrac-

tors. In addition, the learned features are translation invariant and incorporate the

two-dimensional (2D) spatial structure of images, contributing to CNN’s achieving

state-of-the-art results in image-related tasks [39].

The input to a CNN, i.e. an image to be classified, transits through the different

layers to produce the end scores (one score per neuron in the last layer). In the

case of image classification, these scores can be interpreted as the probability of the

image belonging to each of the classes. The goal of the training process is to learn

the weights of the filters at the various layers of the CNN. The output of one of

the layers before the last layer, which is fully connected, can be used as a global

descriptor for the input image. The descriptor can then be used for various image

analysis tasks, including classification, recognition, and retrieval [71].
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6.3 Results

Figures 6.3 and 6.4 illustrate some cases of the classification for the lateral and

the postero-anterior views of wrist radiographs. In these two figures, images had

labelled ‘Study Negative’ and ‘Study Positive’. Label ‘Study Negative’ correlates to

a normal condition within the X-ray image, and label ‘Study Positive’ correlates to

an abnormal wrist condition within the X-ray image.

Illustration of identified results of Postero-Anterior of the wrist in Figure 6.4

shows trained networks have been able to identify abnormality within the image.

An unobvious appearance of fractures as we can see in Figure 6.4 (b) was correctly

identified as well as Figure 6.4 (c) which was labelled as Study Negative means it

is a normal condition image determined by experts. The other part of this graphic,

Figure 6.4 (a) has an obvious fracture but is classified as Study Negative means it

normal image by the trained network. Figure 6.4 (d) classified as abnormal despite

labelled as a normal image by experts.

The lateral position has a challenging problem where the abnormality does not

appear obvious in the whole picture because it was taken from the side position of

the wrist. Some samples of results can see in Figure 6.3. Lay out in a similar fashion

to Figure 6.4. The trained CNN network wrongly identified an obvious abnormality

within the image in Figure 6.4 (a), which has been labelled as positive by the experts.

Figure 6.4(b) and (c) images were correctly classified by trained networks but it was

not for Figure (d).

General knowledge to enhance the performance of CNN architecture by putting

more data into the training data set. The MURA data set has seven parts of a

human anatomy data set. Most of this subset of the data set has a relation with

wrists such as the hand, forearms, fingers, and elbow. Data are shown in Table 6.5

exposed and the effect of mixing anatomy to the training data set. It was measured

by using Area under Curve (AUC) and recording the times of how long did it take

to compute the gradually mixed data set.

The growing size of the data set gives a longer time for the machine to finish

its training process. Wrist only data set which contains a 10, 411 image takes 420

minutes to process and an AUC of 0.8564. Times of computation are getting longer

when more sets of parts of the body are put in the train data set where the longest

time was 1, 800 minutes to process 7 parts of the body data set containing 40, 005

104



X-ray images. Details can be seen in Table 6.5. The Area Under Curve for this

multiple-domain knowledge added to the training data set was not hugely affected.

Table 6.3: Results of accuracy for eleven architecture of Convolutional Neural Networks used
to classify the wrist images in MURA data set experiments. The best results for each row
are highlighted in italics and the overall best results are highlighted in bold. Abbreviations:
Epoch (Ep).

No. CNNs SGDM Adam
RMS
Prop

Mean Ep.
Mini-
batch
Size

1 GoogLeNet 0.650 0.671 0.640 0.654 30 64

2 VGG-19 0.680 0.681 0.590 0.650 30 64

3 AlexNet 0.674 0.690 0.657 0.674 50 128

4 SqueezeNet 0.683 0.657 0.690 0.677 30 64

5 ResNet-18 0.704 0.709 0.668 0.693 30 64

6 Inception-v3 0.710 0.689 0.707 0.702 10 64

7 ResNet-50 0.686 0.718 0.716 0.707 30 64

8 VGG-16 0.692 0.713 0.716 0.707 30 128

9 ResNet-101 0.715 0.706 0.701 0.707 30 32

10 DenseNet-201 0.733 0.695 0.722 0.717 30 32

11
Inception-
ResNet-v2

0.712 0.747 0.710 0.723 30 32

The effect of the number of epochs, size of mini-batch, and data augmentation

was evaluated on the classification of wrist radiographs in eleven CNN architec-

tures. Tables 6.3 and 6.4 present the aggregated best results for each architecture

in prediction accuracy and Cohen’s Kappa score, respectively.

These eleven CNN architectures have been chosen because of those widely avail-

able to access. Details of CNNs used in this work can be referred to Table 4.4. Those

architectures represented the range of progressive development of deep learning tech-

nology from classic AlexNet to complex and thick network layers of DenseNet-201.

Accuracy results from these eleven architectures show an increasing value. Clas-

sic CNN architectures such as AlexNet and GoogLeNet gave 60% accuracy with

given training settings. Similar results were resulted by VGG-based CNN architec-

tures such as VGG-19, VGG-16, and SqueezeNet as well.

For the eleven architectures without data augmentation, Inception-ResNet-v2

performs the best with mean accuracy (Ac = 0.723) and mean Cohen’s kappa (κ =

0.506). DenseNet-201 fares slightly lower (Ac = 0.717, κ = 0.497). The lowest

results are by GoogLeNet (Ac = 0.654, κ = 0.381). ResNet-50, VGG-16, and

ResNet-101 have a similar mean value of accuracy which is 0.707. The epoch value
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Table 6.4: Cohen’s Kappa results from eleven architecture of Convolutional Neural Networks
used to classify the wrist images in MURA data set experiments. The best results for each row
are highlighted in italics and the overall best results are highlighted in bold. Abbreviations:
Epoch (Ep).

No. CNNs SGDM Adam
RMS
Prop

Mean Ep
Mini-
batch
Size

1 GoogLeNet 0.373 0.412 0.358 0.381 30 64

2 VGG-19 0.433 0.446 0.335 0.404 30 64

3 AlexNet 0.420 0.450 0.390 0.420 50 128

4 SqueezeNet 0.438 0.390 0.448 0.425 30 64

5 ResNet-18 0.474 0.484 0.408 0.455 30 64

6 Inception-v3 0.487 0.450 0.482 0.473 10 64

7 ResNet-50 0.441 0.496 0.494 0.477 30 64

8 VGG-16 0.453 0.491 0.492 0.479 30 128

9 ResNet-101 0.495 0.475 0.472 0.481 30 32

10 DenseNet-201 0.524 0.458 0.507 0.497 30 32

11
Inception-
ResNet-v2

0.485 0.548 0.484 0.506 30 32

Table 6.5: The effect of mixed domain knowledge of anatomy data set to the area under curve
and times of computation (ResNet-50 case study). Abbreviations: Times of computation (Time
of comp), Area Under the Curve (AUC).

No MURA data set
Total

Images
AUC

Times of comp
per fold

(10 folds)

1 Wrist only data set 10,411 0.8564 420 minutes

2 Wrist+Hand 16,414 0.8244 649 minutes

3 Wrist+Hand+Forearms 18,540 0.8338 724 minutes

4
Wrist+Hand+
Forearms+Finger

24,107 0.8333 1032 minutes

5
Wrist+Hand+Forearms+
Finger+Elbow

29,503 0.8393 1344 minutes

6
Wrist+Hand+Forearms+
Finger+Elbow+Humerus

31,063 0.8415 1406 minutes

7
Wrist+Hand+Forearms+
Finger+Elbow+Humerus+
Shoulder

40,005 0.8402 1800 minutes
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Figure 6.3: Illustration of classification results for Lateral (LA) views of wrist radiographs.
(a) Corresponds to positive (abnormal) diagnosis image but predicted as negative (normal),
(b) Abnormal diagnosis, and abnormal prediction. (c) Normal diagnosis image and normal pre-
diction. (d) Normal diagnosis and abnormal prediction. Notice that the errors in classification
may have been biased by artefactual elements on the images.

was static on 30 and only Inception-v3 used 10 as the value for an epoch. The value

of the mini-batch was implemented in several different values which were 32, 64, and

128. Different values of Mini-Batch size were applied between VGG-19 which used

64 mini-batch size and VGG-16 which used 128 mini-batch size. VGG-19’s mean

accuracy is 0.650 and VGG-16‘s mean accuracy is 0.707. It results in an increased

accuracy output of 0.057. CNN architectures with 32 as the value of mini-batch size

were the top three in this experiment leaderboard. Among CNN architectures were

used 64 as the value for the mini-batch size, ResNet-50 got the highest outcome of

the accuracy of 0.707 but a note is taken that Inception-v3 has the second best result

with only 10 epoch and the same value of mini-batch size. The highest value of mini-

batch size in this experiment was 128. This was applied to AlexNet and VGG-16.

There is an increased output of accuracy of 0.057 between those two architectures.

There were three ResNet-based CNN architectures which are ResNet-18, ResNet-

50, and ResNet-101. Each of them has reached accuracy values of 0.693, 0.707, and
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Figure 6.4: Illustration of classification results for Postero-Anterior (PA) views of wrist
radiographs. (a) Corresponds to positive (abnormal) diagnosis image but predicted as negative
(normal), (b) Abnormal diagnosis and abnormal prediction. (c) Normal diagnosis image and
normal prediction. (d) Normal diagnosis and abnormal prediction. Notice again that the errors
in classification may have been biased by artefactual elements on the images.

0.707 respectively.

Cohen’s Kappa value for each CNN architecture was calculated for this exper-

iment as well. A summary of Cohen’s Kappa for each CNN result is shown in

Table 6.7. The highest score of Cohen’s Kappa among 13 CNN architectures in this

table belongs to Inception-ResNet-v2 (augmentation) with Cohen’s Kappa mean of

0.703. The GoogLeNet has the lowest mean score of 0.301.

Data augmentation is implemented for the two best-performing architectures,

namely ResNet-50 and Inception-ResNet-v2. These two networks had given results

of accuracy and Cohen’s Kappa as well. The ResNet-50 has resulted in mean accu-

racy of 0.845 and Inception-ResNet-v2 has resulted in 0.857. Complete details are

presented in Table 6.6 for accuracy and Table 6.7 for Cohen’s Kappa.

The results in Table 6.6 and Table 6.7 show a significant improvement when

data augmentation is added to the training data set. Accuracy (Ac) increases by

0.314 and Cohen’s Kappa (k) by 0.197. In other words, accuracy (Ac) improved by
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Table 6.6: Results of accuracy for eleven Convolutional Neural Networks used to classify the
wrist images in the MURA data set. The best results for each row are highlighted in italics
and the overall best results are highlighted in bold. Abbreviation: augmentation (aug).

No. CNN SGDM Adam
Rms
Prop

Mean Epoch
Mini-
batch
Size

1 GoogLeNet 0.650 0.671 0.640 0.654 30 64

2 VGG-19 0.680 0.681 0.590 0.650 30 64

3 AlexNet 0.674 0.690 0.657 0.674 50 128

4 SqueezeNet 0.683 0.657 0.690 0.677 30 64

5 ResNet-18 0.704 0.709 0.668 0.693 30 64

6 Inception-v3 0.710 0.689 0.707 0.702 10 64

7 ResNet-50 0.686 0.718 0.716 0.707 30 64

8 VGG-16 0.692 0.713 0.716 0.707 30 128

9 ResNet-101 0.715 0.706 0.701 0.707 30 32

10 DenseNet-201 0.733 0.695 0.722 0.717 30 32

11 Inception-ResNet-v2 0.712 0.747 0.710 0.723 30 32

12 ResNet-50 (aug) 0.835 0.854 0.847 0.845 30 64

13
Inception-
ResNet-v2 (aug)

0.842 0.869 0.860 0.857 30 32

Table 6.7: Cohen’s Kappa results from eleven Convolutional Neural Networks architectures
used to classify the wrist images in the MURA data set. The best results for each row are
highlighted in italics and the overall best results are highlighted in bold. Abbreviation: aug-
mentation (aug).

No. CNN SGDM Adam
Rms
Prop

Mean Epoch
Mini-
batch
Size

1 GoogLeNet 0.373 0.412 0.358 0.381 30 64

2 VGG-19 0.433 0.446 0.335 0.404 30 64

3 AlexNet 0.420 0.450 0.390 0.420 50 128

4 SqueezeNet 0.438 0.390 0.448 0.425 30 64

5 ResNet-18 0.474 0.484 0.408 0.455 30 64

6 Inception-v3 0.487 0.450 0.482 0.473 10 64

7 ResNet-50 0.441 0.496 0.494 0.477 30 64

8 VGG-16 0.453 0.491 0.492 0.479 30 128

9 ResNet-101 0.495 0.475 0.472 0.481 30 32

10 DenseNet-201 0.524 0.458 0.507 0.497 30 32

11 Inception-ResNet-v2 0.485 0.548 0.484 0.506 30 32

12 ResNet-50 (aug) 0.655 0.696 0.683 0.678 30 64

13
Inception-
ResNet-v2 (aug)

0.670 0.728 0.711 0.703 30 32
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19% and Cohen’s Kappa (k) by 39%. About 10 of 13 architectures experimented

has Cohen’s Kappa below 0.5. Only Inception-ResNet-v2 has got better than 0.5.

This was the result before data augmentation was added to the training data set.

Afterward, the data set is augmented for the two architectures chosen. Cohen’s

Kappa score increased to above 0.6 which means better than 11’s Cohen’s Kappa

without data set augmentation applied.

These improved accuracy and Cohen’s Kappa also gives a sign that potentially

indicates better feature extraction with deeper layer network architectures.

6.4 Discussion

The classification of wrist X-ray images toward properly identified abnormality

within the wrist X-ray image. In this work, Deep learning is used to classify X-

ray images into normal and abnormal conditions. A normal condition is a condition

without any obvious strange visibility in the image. The abnormal condition is a

condition of obvious fractures or deformity of the wrist within the X-ray image.

The main focus of this work is the wrist, then the wrist subset data set of MURA

at the beginning of this work. We gradually added more images into the Train data

set because the wrist part was often captured when another part of the hand, fingers,

and forearm was acquired. The perspective of collecting more images will increase

the performance network to detect abnormality in general applied in this work.

In this work, eleven publicly available CNN architectures to classify wrist radio-

graphs were studied. The ability to identify abnormality within X-ray images based

on learning of a given data set could expose its benefit for fracture image analysis.

Various hyperparameters were attempted during the experiments. It was observed

that Inception-ResNet-v2 provided the best results (Ac = 0.747, κ = 0.548), which

were compared with leaders of the MURA challenge, which reports 70 entries. The

top three places of the leaderboard were κ = 0.843, 0.834, 0.833, the lowest score

was κ = 0.518 and the best performance for a radiologist was κ = 0.778. Thus,

without data augmentation, the results of all the networks were close to the bottom

of the table. Data augmentation significantly improved the results to achieve the

25th place on the leaderboard with (Ac = 0.869, κ = 0.728). Whilst this result

was above the average of the table, the positive effect of data augmentation was

confirmed to be close to the human-level performance.
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To improve the results from the standard CNN architectures, such as those

analysed in this work, the classification pipelines could include extra steps. Namely:

1. Pre-processing steps, which may consist of Low pass filtering to remove high-

frequency noise, and cropping of images to remove excessive background region

(notice that some of the incorrect classifications in Figure 6.3 have large back-

ground regions). More elaborate pre-processing approaches such as location

and orientation of bones [114] could help detect the areas of real interest, and

discard any region that may be biasing results, such as the labels for the right

or left hand, which is always very bright might be confusing the architectures.

2. Post-processing steps may also be considered, for instance, the association

between key features and the predicted classes [130, 98]. Furthermore, the

visualisation of key features may be useful to stakeholders(e.g. clinicians or

radiologists) who might be more interested in the attributes of the original

data rather than the architectures themselves [91].

3. Ensembles or combinations of different configurations may also help increase

the results of individual configurations.

4. Finally, adding domain knowledge in terms of knowledge of the anatomical

region (i.e. elbow or hand) with the possible cases (i.e. fracture or implant)

may allow the fine-tuning of the architectures to detect not only an abnormality

but the type of abnormality and the location of this.

6.5 Summary

This section describes the classification of wrist fractures explored through eleven

convolutional neural network architectures. Modifying the data set where mixed

body parts were performed to better identify wrist fractures. Each part of the body

data set was added. The time of computation and value of the area under the curve

is then collected through this process. Eleven CNN architectures were used to train

wrist-only data sets and similar training settings. It shows that results in accuracy

and Cohen’s Kappa of Inception-ResNet-v2 have the best result of all eleven other

CNN architectures.

It is shown that the perspective of gradually adding more images into the train

data set does not significantly increase the performance of the network even though
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it still has a good outcome for the area under the curve. But this perspective cannot

be obeyed because the wrist part is often captured when other parts related to the

hand are captured, such as the hand, fingers, and forearm. This work has been

published as a conference article [7].

The next chapter describes explorations of data augmentation to enhance CNN’s

performance and class activation mapping of trained deep learning architectures to

visualise the area of suspect abnormality within an X-ray image.
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Chapter 7

Class Activation Mapping for

Wrist Fractures Image Analysis

7.1 Introduction

This chapter explores the convolutional neural networks’ intention to decide abnor-

mality within an image. The process of identifying abnormalities within the X-ray

image through a training data set turned out to be possible. Despite the classic

problem of a limited quantity of images, from the deep learning point of view, this

problem could be optimised using the data augmentation technique. Class activa-

tion mapping was used to exploit visual prediction from the trained network when

deciding the conditions of a wrist X-ray image. Part of the works in this chapter

has been published as an article on [8].

Experiments in Chapter 7 have allowed further exploration of deep learning to

identify abnormalities within a wrist X-ray image. Medical image data sets always

have quantity limitations and often come with unstructured conditions. The learning

process of this limited data set in this chapter has been explored by applying the

data augmentation strategy. The aim of using the data augmentation strategy is to

increase the accuracy as well as Cohen’s Kappa resulting from previous experiments

in chapter 7. The data augmentation technique was applied to the top two best-

performance CNNs. These two are ResNet-50 and Inception-ResNet-v2.

Adam, SGDM, and RMSProp are used as optimizers for CNN. Summary details

of hyperparameters for this work show in Table 6.2. Hyperparameters were applied

to each CNN architecture. This setting was similar to previous experiments.
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After training CNN using specific hyperparameters and data augmentation then

accuracy and Cohen’s Kappa was calculated. ResNet-50 and Inception-ResNet-v2

were given a better performance than without data augmentation applied.

Class activation mapping (CAM) was used to observe what the CNN actually

focus on in deciding which part within identified the image classified as abnormal

or normal. The CAM-based visualisation depends on a specific layer to observe the

location of abnormalities. The CAM-based visualisation was applied to the final

convolution layer in this case. It was generated at layer ‘activation\_49\_relu’

for ResNet-50 and ‘conv\_7\_bac’ for Inception-ResNet-v2, respectively.

Visualisation using Class Activation Mapping gives us a graphical understanding

of CNN’s performance. A comparison between before and after data augmentation

modification could be used for further analysis. It gives us a window into what

exactly this network learned through a given data set.

7.2 Materials

The data set for this experiment was obtained from the public data set MURA from

Stanford University. This data set has been manually labelled by board-certified ra-

diologists. The radiographs studies (n = 14,656) are divided into images for training

(n = 13,457), and validation (n = 1,199). Furthermore, the radiographs belonging to

group studies have been allocated in groups called abnormal (i.e., those radiographs

that contained fractured bones, foreign bodies such as implants, wires or screws,

etc.) (n = 5, 715) or normal (n = 8, 941).

We also used a second data set specifically acquired for wrist fracture research.

It consists of 2 labels named Normals (n = 122) and Patients (n = 882). Image

labels were changed where Normal to Negative and Patients to Positive. The wrist

X-ray image labels were changed because the data set came in different names but

in general, could be simplified into two categories of labels which are Negative and

Positive. Negative labelled images mean images do not have any abnormality within

them. Positive labelled images mean images have abnormality within.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: Eight examples of radiographs without abnormalities (considered negative) of the
Musculoskeletal Radiographs (MURA) data set. (a) Elbow, (b) Forearm, (c) Shoulder, (d)
Wrist (lateral view), (d) Lateral view of Wrist, (e) Finger, (f) Hand, (g) Humerus, (h) Wrist.
It should be noted the variability of the images in terms of dimensions, quality, contrast, and
the large number of labels (i.e., R for right and L for left), which appear in various locations.

7.3 Methods

In general, there are several strategies to increase the accuracy of CNN such as data

augmentation, changing values of hyperparameters, and increasing the size of the

data set means bringing more related images into the data set.

Data augmentation means making a variety of current data set we own. It

includes changing the value range of rotation, reflection, and shear. Each image

within the data set was rotated from -5 to 5 degrees, reflected through x axis and y

axis, shear it through x -axis of -0.05 to 0.05 and y-axis of -0.05 to 0.05.

We also experiment with hyperparameters values such as epoch values, batch

size values, and initial learning rate. We also have made changes to the data set

such as pre-processing it with Contrast Limited Histogram Equalisation (CLAHE)

and its label structure. Image translation technique was not applied because images

were captured with a good range of translation shifts.

During experiments, combining data sets is a strategy to increase image variety

within the data set. In this case, the university’s owned acquired data set combined

with MURA’s subset data set of the wrist. The university’s data set has not had
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.2: Eight examples of radiographs with abnormalities (considered positive) of the
Musculoskeletal Radiographs (MURA) data set. (a) Elbow, (b) Forearm, (c) Shoulder, (d)
Wrist (lateral view), (e) Finger, (f) Hand, (g) Humerus, (h) Wrist (PA view). As for the cases
without abnormalities, it should be noted the variability of the images and in addition the
abnormalities themselves. There are cases of metallic implants some of which are smaller (a)
than others (b), as well as fractures.

Figure 7.3: Illustration of Class Activation Mapping which generates the highlight of the
class intention regions.

many images but important to be added to the experiment because this small-size

data set focuses on research we carrying on which is wrist fractures.

The data set was also modified by applying a data augmentation technique. This

technique was performed for both data sets. The training process for the mixed data
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set strategy had performed in all three optimizers (SGDM, Adam, and RMSProp).

Class activation mapping is applied to visualise the actual intention decision of

the network of images identified. The targeted class is based-on labels from the train-

ing data set. The visualisation provides an indication of what the network actually

focuses on. It generates from the last layer of the convolutional network. The CAM

representations were generated at layer ‘activation\_49\_relu’ for ResNet-50 and

‘conv\_7\_bac’ for Inception-ResNet-v2, respectively. The CAM’s maps were up-

scaled to the input resolution and overlaid on top of the original radiography for the

location of the abnormalities.

Schematic illustration of Figure 7.3 shows the X-ray classification process and

class activation mapping through layer-wise activation maps across different dense

blocks. At each level, a series of feature maps are generated, and the resolution

decreases progress through the blocks. Colours indicate the range of activation:

blue corresponds to low activation, and red for highly activated features. The final

output, visualised here using Class Activation Mapping, which highlights the area(s)

where abnormalities can be located.

Accuracy was calculated as the prediction among the total number of cases

examined. Cohen’s Kappa was also calculated, as it is the metric used to rank the

MURA challenge [111] and because it also takes an account of random agreements

possibilities makes it considered more robust.

Experiments were implemented with several scenarios of training options. Each

training option was used to observe its ability to produce higher accuracy and Co-

hen’s Kappa. Each training solver was implemented with a similar exact setting for

consistency reasons.

Data augmentation strategy to enhance network performance was evaluated as

well. The following augmentations have been performed to each of the training

images: (1) rotations of (−5◦ to 5◦), (2) vertical and horizontal reflections, (3)

shear deformations of (−0.05◦ to 0.05◦) in horizontal and vertical directions, and (4)

contrast-limited adaptive histogram equalisation (CLAHE) [105]. Translations were

not applied as the training images were captured with a good range of translation

shifts. Settings of hyperparameters were referred to Table 6.2. Adam and RMSProp

have similar hyperparameter settings and SGDM has a slightly different ‘Initial

Learning’ value which is 0.001 rather than 0.0001 of the other two. This is the

default value of the ‘Initial Learning’ value from these optimisers. Complete settings
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of hyperparameters are shown in Table 6.2. Epoch values and mini-batch sizes were

referred to Table 4.4.

Due to the hardware limitations, the number of folds increases little by little.

In the beginning, it started with only 2 folds then increase to 5 and 10 folds. Each

fold will transfer its learned network to a new one to increase the final network’s

accuracy and Cohen’s Kappa we assumed. In the end, we hope this experiment will

answer our question about the size of the data set and will enhance the network’s

ability to identify abnormalities within the X-ray image.

Several images were tested to understand visually how the network determined

abnormality within the identified wrist X-ray image. The images tested by the CAM

technique are valid labelled images from both the dataset and random images taken

from the Internet. Then, the performance results between optimizers, combined

dataset strategies, and variation in hyperparameter values are analysed.

7.4 Results

The results of class activation mapping (CAM) were visualised and overlaid on

top of the representative images. CAM is applied to those images in Figures 7.1

and 7.2. The focus of the CAM’s heat map on images on both figures is on the

‘suspected’ abnormality within each image. The cases in Figure 7.2 reflected positive

abnormality within images to trigger red-coloured activation region to get the most

attention by the networks. On the other side, Figure 7.1 is used to show how

networks pay attention to the region where the CAM is being activated to determine

whether the X-ray image is without abnormality within.

The result summary of overlaid CAMs is shown in Figure 7.4 and Figure 7.5. Vi-

sualisations of CAM for ResNet-50 could be seen on Figure 7.4 (a) and and Figure 7.5

(a). Inception-ResNet-50’s result of CAM-based visualisations are on Figure 7.4 (b)

and Figure 7.5 (b). All images have been able to detect based on what should be de-

cided. CAM visualisation is focused on suspected abnormality within the image and

then gives a prediction of the detected image. All images give results of prediction

over 90%.

Inception-Resnet-v2 presented a more focused and smaller area of activation

maps. It should also be noted that whilst for correct classifications, the highlighted

regions are similar, for some incorrect classifications Figure 7.5(a,b, top left and
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(a) (b)

Figure 7.4: Illustration of the Class Activation Mapping overlaid on the four classification
results for (a,b) Postero-Anterior views shown in Figure 6.4.

(a) (b)

Figure 7.5: Illustration of the Class Activation Mapping (CAM) overlaid on the four classi-
fication results for (a,b) Lateral views shown in Figure 6.3

bottom right), the activation is quite different, which suggest that the architectures

may not be confusing salient regions that are not related with the condition of

normal or abnormal.

The CAMs obtained for ResNet-50 are shown in Figures 7.9 and 7.6, whilst those

for Inception-ResNet-V2 are shown in Figures 7.7 and 7.8. In all cases, the CAMs

were capable of indicating the region of attention used in the two architectures

applied. This is especially valuable for identifying where the abnormalities are in
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Figures 7.6 and 7.8.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.6: Illustration of activation maps overlaid over the eight radiographs with abnor-
malities of Figure 7.2 to indicate the regions of the image that activated a ResNet 50 archi-
tecture. (a) Elbow, (b) Forearm, (c) Shoulder, (d) Wrist (lateral view), (e) Finger, (f) Hand,
(g) Humerus, (h) Wrist. The activation maps illustrate the location of the abnormalities,
e.g., (a,e), but appears spread in other cases (b,g) where the abnormality is detected together
with a neighbouring region. In other cases (c), the abnormality is not detected.

Whilst both architectures indicate similar regions of attention, Inception-ResNet-

v2 appears to have smaller attention regions (i.e., more focused) than those in

ResNet-50. This may indicate a better extraction of features in the Inception-

ResNet-v2 leading to a better prediction. The class activation mapping correspond-

ing to Figures 6.3, and 6.4 are presented in Figures 7.4 for PA view and 7.5 for

Lateral view.

A small set of X-ray images consisting of 30 wrist radiographs was selected and

analysed using CAM. Figure B.1 shows images with class activation maps triggered

from ResNet-50. The same 30 images were also evaluated in Inception-ResNet-v2

and the results are shown in Figure B.2.

7.5 Discussion

The class activation mapping technique provides a way to visualise what the con-

volutional neural network has learned to classify an X-ray wrist image. Thirty
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.7: Illustration of activation maps overlaid over the eight radiographs without abnor-
malities of Figure 7.1 to indicate the regions of the image that activated an Inception-ResNet-
V2 architecture. (a) Elbow, (b) Forearm, (c) Shoulder, (d) Wrist (lateral view), (e) Finger,
(f) Hand, (g) Humerus, (h) Wrist. It should be noted that the activation regions are more
localised than those of the ResNet-50.

wrist X-ray images were evaluated using the CAM technique. Its aim is to show

how those two architectures work with randomly picked wrist X-ray images. Those

thirty images were tested to ResNet-50 and Inception-ResNet-V2 architectures. As

mentioned in Chapter 6, those two architectures were trained to learn about nor-

mal and abnormal wrist X-ray images from the MURA data set. In this chapter

where the focus is on Class Activation Mapping for wrist X-ray images then those

two architectures are evaluated. The representation of Class Activation Mapping

was generated at layer ‘activation\_49\_relu’ for ResNet-50 and ‘conv\_7\_bac’

for Inception-ResNet-v2, respectively. The CAM map is then adjusted to the input

resolution and overlaid over the top of the wrist X-ray image to indicate the location

of the network intention to classify the images. The CAM’s visualisation also might

give an indication to highlight the area(s) where abnormalities are possibly located.

The results are shown in Figure B.1 and Figure B.2. Those results showed the

visualisation of this through the activation layer within the networks. Visually,

both architectures could point out the location of suspected area(s) that lead the

network to decide whether the wrist X-ray image is normal or abnormal. Those

two architectures were tested with the same thirty wrist X-ray images but in this
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.8: Illustration of activation maps overlaid over the eight radiographs with abnormal-
ities of Figure 7.2 to indicate the regions of the image that activated an Inception-ResNet-v2
architecture. As for the cases without abnormalities, the activation regions are more located,
e.g., ((c) Shoulder,(d) Lateral view of Wrist, and (h) Posterior-Anterior view of Wrist)) and
in addition, the abnormalities are better located, e.g., ((a) Elbow, (b) Forearm, (e) Finger, (f)
Hand, and (g) Humerus).

particular case, ResNet-50 shows more focus location of the suspected location of

abnormal or normal image. Inception-ResNet-v2 has a more complex architecture

than ResNet-50 but for some images such as image no (1), (2), (9), it shows a

broad-covered heatmap style visualisation compared to the same images tested on

ResNet-50.

The depth of the network also becomes a factor in its ability to detect better. For

instance, the result of identification from Inception-ResNet-v2 has more precise and

focuses on the abnormality suspected area compared to the same image identified

by using ResNet-50. If we look furthermore, the activated regions in ResNet-50

appeared more broad-brushed than those of the Inception-ResNet-v2. This applied

to the cases without abnormalities (Figures 7.9 and 7.7) and those with abnormalities

(Figures 7.6 and 7.8); second, the localisation of regions of attention by Inception-

ResNet-v2 also appeared more precise than the ResNet-50. When it comes to a non-

fractures abnormality such as an image containing a metallic implant, the activation

provides a consistent focus in areas where abnormalities are expected to appear.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.9: Illustration of class activation mapping overlaid over the eight radiographs with-
out abnormalities of Figure 7.1 to indicate the regions of the image that activated a ResNet-50
architecture. (a) Elbow, (b) Forearm, (c) Shoulder, (d) Wrist (lateral view), (d) Wrist (lat-
eral view), (e) Finger, (f) Hand, (g) Humerus, (h) Wrist. As these cases are positive (no
abnormality), the regions of activation are not as critical as those with abnormalities.

The correct class prediction suggests that the network has learned the features from

regions properly.

This result could be optimised by modifying training strategies such as a similar

body of anatomy data set. In this work, as we have read, the combination of the

data sets provided by the University of Exeter and MURA has given a promising

outcome.

Several strategies to increase network performance, such as additional steps

within pre-processing data sets like features irrelevant removing, appropriate data

augmentations turn to provide higher accuracy of prediction. Not just modifying

images within the data set before putting it up in the deep network training process

but also after post-training. As the base of visualisation for class activation map-

ping, the activation layer allows architectures to be re-trained with additional data

to avoid bias and distinction of the CNN architecture.

The comparison between SGDM, Adam, and RMSProp shows no indicative su-

periority implying that each of these optimisers was capable of achieving the optimal

solution. Incremental change to the number of epochs beyond step 30 yields no im-

provement in accuracy indicating that the architectures have converged. The choice
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of the attempted mini-batches shows no difference in results.

Ensemble architectures have shown better results than individual settings. A

combination of architectures means data being learned further within the network.

Which combination of architectures gave better results specifically for wrist analysis

must be studied further. The wrist is part of human anatomy that directly connects

with the hand, elbow, and forearm. The features such as the hand, elbow, and

forearm bone structure can be added to the training data set to provide robust fine-

tuning in anomaly detection. This strategy also gives guidance to the network for

better outcomes.

7.6 Summary

This work investigated the analysis of fractures within detected wrist X-ray images

using CNN. Eleven convolutional neural networks were performed to classify wrist

radiographs into two groups which are abnormal and normal. Wrist X-ray cate-

gorised by experts as abnormal contains fractures or metallic plates. Normal images

are categorised as healthy and nothing suspicious the image by experts. Accuracy

and Cohen’s Kappa value were obtained to measure the performance of each CNN.

Data augmentation and mixed data sets were used to enhance its performance.

Data augmentation was applied to give additional knowledge variations to the net-

works during the network training phase. The augmented data set has shown a

positive contribution to predicting an abnormality within the image-predicted clas-

sification outcome. As shown in this chapter, the tweak strategy with CNN hyper-

parameters can be used further by paying attention to the specific settings of the

epoch, initial learning rate, and mini-batch size to avoid the misunderstood result.

Adam optimiser has performed well compared to SGDM and RMSProp. This op-

timiser can further train CNN-based networks in medical image analysis cases. The

optimiser’s choice is important in enhancing trained-based image-predicted classifi-

cation outcomes.

The highest score of accuracy and Cohen’s Kappa were achieved by Inception-

ResNet-v2, which has the thickest depth among the eleven architectures evaluated.

Figure 7.10 shows how each architecture is represented by a circle, except those with

augmentation represented by an asterisk.

Numbers in Figure 7.10 were added and these corresponded to the order of
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Table 7.1: Summary of CNNs Activation Size and Parameters

No CNN
Total of

Activation Size
Total

Parameters

1 GoogLeNet 10,062,768 6,998,552

2 VGG-19 31,411,664 143,667,240

3 AlexNet 2,080,811 58,639,715

4 SqueezeNet 7,990,891 1,235,496

5 ResNet-18 8,532,432 11,694,248

6 Inception-v3 32,657,126 24,310,664

7 ResNet-50 35,597,968 25,562,762

8 VGG-16 28,802,512 138,357,544

9 ResNet-101 54,896,592 44,618,216

10 DenseNet-201 76,359,248 20,034,304

11 Inception-ResNet-v2 93,359,072 57,134,728

Total 381,751,084 532,253,469

Table 6.7 for visualisation purpose where 1 correlated to GoogLeNet, 2 for VGG-19,

3 for AlexNet, 4 for SqueezeNet, 5 for ResNet-18, 6 for Inception-v3, 7 for ResNet-50,

8 for VGG-16, 9 for ResNet-101, 10 for DenseNet-201, 11 for Inception-ResNet-v2, 12

for ResNet-50 (augmentation), 13 for Inception-ResNet-v2 (augmentation)). Notice

the slight improvement provided by deeper networks and the significant improvement

that corresponds to data augmentation.

The top two best-performance architectures (ResNet-50 and Inception-ResNet-

v2) are considered for further experiments using these extra techniques. Inception-

ResNet-v2 could deliver a better prediction of visualisation outcome even though

we have seen Resnet-50 has been applied and showed good performance to identify

abnormalities within the wrist X-ray image in many studies. The result of the

classification of wrist X-ray images between normal and abnormal conditions has

been improved.

A convolutional neural network architecture contains large numbers of activation

sizes and parameters depending on how many layers the architecture has. The

thicker layers architecture has translated to more activation and parameter it has.

Table 7.1 shows the summary of CNNs activation size and parameters each of the

eleven CNNs has.

The Class Activation Mapping technique has been adopted to exploit visual

prediction from the trained network by overlaying it onto the predicted X-ray image.

This layer-wise activation predicted area of abnormality within an image shows that

extra steps of augmentation to the training process of the network have contributed
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Table 7.2: Summary of accuracy within chosen activation layer of CNN.

No CNN Activation Layer Accuracy

1 AlexNet fc7 0.6591

2 GoogLeNet inception 5b-output 0.6956

3 SqueezeNet relu conv10 0.6991

4 ResNet-50 fc1000 0.6997

5 VGG-19 fc8 0.7036

6 VGG-16 fc8 0.7039

7 ResNet-101 fc1000 0.7074

8 Inception-v3 predictions 0.7218

9 ResNet-18 fc1000 0.7279

10 DenseNet-201 fc1000 0.7286

11 Inception-ResNet-v2 predictions 0.7442

to determining the position of abnormality. A better visualisation of the predicted

area of abnormality within the image using the CAM technique to bridge the gap

between what deep learning-based machines has been learned from the image and

the human perspectives such as radiologists.

Figure 7.10: Illustration of the effect of the number of layers of architectures against the two
metrics used in this work accuracy and Cohen’s Kappa.

Visual prediction from the trained network using Class Activation Mapping de-

pends on which activation layer is used. Table 7.2 shows a sample of the accuracy of

chosen activation layer of CNN. The hidden activation layer will control how well the

network architecture learns the training data set. In this work, the activation layer

of each of the eleven CNN architectures was chosen and took the learning accuracy

from the training process. The activation layer‘s accuracy determined which archi-

tecture of CNN architectures worked well to detect abnormality within the wrist

X-ray image. The activation layer named ‘predictions’ shown in Table 7.2 has the

highest accuracy compared to other CNN architectures experimented with in this

work.
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This study concludes that the parameters and combinations of data sets are

necessary to improve the classification results. The problem of the small size of

the dataset can be solved by combining it with a similar publicly available dataset.

Visualizing suspicious areas of abnormalities in an established network-based image

can facilitate the work of stakeholders, e.g. radiologists.
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Chapter 8

Discussion and Conclusion

8.1 Discussion

The analysis of wrist X-ray images was started by exploring DICOM’s metadata

attributes. Metadata was used to classify the wrist X-ray image data set into the PA

and LA positions and ‘Photometric Interpretation’ as a metadata parameter. Several

image processing techniques such as edge detection and refining the image’s position

were applied to classified images. An image profile was also used to characterize the

wrist position inside the X-ray image.

Texture features of the wrist within the X-ray image were also explored. Lo-

cal Binary Patterns (LBP) is a visual descriptor to classify the texture features of

an image. The aim to use the texture features is to determine if there are geo-

metric differences in wrist X-ray images between the successful and unsuccessful

cases of Manipulation under Anaesthesia (MuA) of wrist X-ray images. The semi-

automatic comparisons extracted a series of measurements, e.g. widths of forearm

and metacarpal, based on three manually-placed landmarks. This study has given

an encouraging statistical difference in measurements.

The next part of the work focused on identifying abnormalities within an X-ray

of the wrist. Eleven models of CNN were explored. Training strategies include

modification of the data set, data augmentation, hyperparameters settings, and

applying the geometric transformation to the augmented data set. The depth of the

architecture is also related to the increase of network’s performance to classify the

wrist X-ray image. In this case explained in Chapter 6, Inception-ResNet-V2 has

more network layers performed better than the ResNet-50.
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Transfer learning was also applied to the CNNs training. This strategy has been

applied to the eleven convolutional neural networks that have been used in this

research. Those eleven deep learning architectures were pre-trained in non-medical

images, i.e. ImageNet. This thesis used those eleven deep learning architectures

to recognise medical images, specifically wrist X-ray images. The transfer learning

technique was adopted to train those eleven networks with the wrist X-ray images.

The strategy of CNN’s network training to detect abnormalities has been taken

further by using a more complex data augmentation strategy and testing separate

from each of the three optimizations (SGDM, ADAM, RMSProp) available.

Although the prediction results were not straightly comparable because of differ-

ent strategies and details in some hyperparameters, the changing value of hyperpa-

rameters has affected the classification results. To enhance its performance, a data

augmentation strategy was also applied to the data set. It was applied to ResNet-

50 and Inception-ResNet-v2. Better results were obtained by Inception-ResNet-v2

(mean accuracy = 0.723, mean Cohen’s Kappa = 0.506). These were significantly

improved with augmentation to Inception-ResNet-v2 (mean accuracy = 0.857, mean

Cohen’s Kappa = 0.703). Furthermore, by using the strategies mentioned above,

this research using wrist X-ray image classification has to perform slightly better

than [68]’s wrist X-ray image classification results.

The identified result is then supported by the visualisation of the area of abnor-

mality located in the wrist X-ray image. Class Activation Mapping is a technique

to exploit visual prediction from the trained network by overlaying it onto the pre-

dicted X-ray image. This visualisation supports the predicted result by CNN. The

CAM is mapped to the suspect abnormal area predicted in the wrist X-ray image

by the CNN. It can be a better understand of what deep learning-based machine

has learned from the wrist X-ray image.

The experiments and the results described in this thesis are available through

the author‘s GitHub repository on https://github.com/amno/WristMatlab.

8.2 Contributions

This work in the wrist fractures analysis as observed with X-ray imaging has several

contributions to knowledge

1. The geometric analysis contributes to a new perspective of using several body
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landmarks as tools to extract the texture of bone, which can be used to learn

about bone-based illnesses like osteoporosis.

2. Through the use of Local Binary Patterns (LBP) as a visual descriptor, the im-

age texture has come out as the most distinct among extracted measurements

to analyse X-ray image-based wrist fractures.

3. Dataset augmentation can be used to enhance the performance of the con-

volutional neural network model to classify a wrist X-ray image. This thesis

implemented data augmentation strategies such as using geometric transfor-

mation like rotation, reflection, translation, shear operation of the wrist X-ray

images, Hough‘s transform, Contrast Limited Adaptive Histogram Equalisa-

tion and combining data sets with other anatomical images that still contain

the wrist as the area of interest.

4. In this thesis, transfer learning is adapted into eleven CNN architectures. It

has been proven that those eleven CNN architectures can be used to train

collections of wrist X-rays without having to build networks from scratch and

still benefit of pre-trained model.

5. It has been demonstrated that the Class Activation Mapping (CAM) technique

can be used for medical image analysis, especially to highlight abnormal areas.

It visually displays the network’s intention whilst deciding the area of interest

to classify the identifiable objects based on the learning network input.

8.3 Conclusions

Several conclusions to the knowledge of the area wrist fractures analysis based on

X-ray image are

1. Image texture is a geometric feature of an image that comes up as the most

distinct among the measurements extracted for analysing wrist fractures based

on radiographic images. Measurements were extracted using Local Binary

Patterns (LBP). The LBP technique can also be used to identify abnormalities

in radiographs of the wrist and other areas associated with bone disease.

2. The deep learning model can be used to classify normal and abnormal wrist

X-ray images through the use of pre-trained CNN architectures. Classifica-
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tion performance can be improved by Transfer Learning techniques and data

limitations can be enlarged by implementing data augmentation strategies.

3. The Class activation mapping (CAM) techniques can be used to determine

which parts of the wrist X-ray images might trigger a decision to be abnormal

like fractures using a Convolutional Neural Network model. The CAM is

visualised and superimposed on the predicted image.

8.4 Future work

This section is dedicated to some ideas for future works related to this research.

Future work could focus on a different anatomical part other than the wrist, such

as the forearm, hand, and fingers. Training data sets of combinations of anatomical

parts have been carried out during the research period but need further analysis to

obtain better information.

Medical problems such as wrist fractures are caused by accidents and can also

be triggered by other things, such as reduced bone mass, which puts patients at

risk for osteoporosis [69]. This situation could be explored further as it requires a

unique multi-modal analysis of medical data related to the patient’s case to provide

appropriate treatment.

The performance of deep learning to identify abnormality within the wrist X-ray

images in this thesis is also promising for further explorations. Predicting post-

surgical results before their understanding of the problem spreads widely can be

explored further.

The Class Activation Mapping can be further investigated to support the post-

surgical results so that clinicians can get not just visualisation prediction area of

abnormality within the image but also the possibility of post-treatment.
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Appendix A

The MIUA 2019 Poster

Figure A.1: Poster presented at the MIUA 2019 conference
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Appendix B

Samples of CAM on Wrist

X-Ray

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)
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(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30)

Figure B.1: Thirty sample images of Wrist X-ray overlaid with CAM based on ResNet-50
architecture.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)
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(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30)

Figure B.2: Thirty sample images of Wrist X-ray overlaid with CAM based on Inception-
ResNet-V2 architecture.
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for detection of fractures using transfer learning,” Journal of Imaging, vol. 6,

no. 1111, p. 127, Nov 2020.

[69] K. M. Knapp, R. M. Meertens, and R. Seymour, “Imaging and opportunistic

identification of fractures,” Pavilion Publishing, vol. Vol.48(11), pp. 10–12,

Nov 2018.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification

with Deep Convolutional Neural Networks. Curran Associates, Inc.,

2012, p. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[71] H. Laga, Y. Guo, H. Tabia, R. Fisher, and M. Bennamoun, 3D Shape Analysis:

Fundamentals, Theory, and Applications. United States: Wiley-Blackwell,

2019.

[72] K. Lameka, M. D. Farwell, and M. Ichise, Chapter 11 - Positron Emission

Tomography, ser. Neuroimaging Part I. Elsevier, Jan 2016, vol. 135, p.

209–227. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/B9780444534859000118

[73] C. F. Larsen, V. Brøndum, G. Wienholtz, J. Abrahamsen, and J. Beyer, “An

algorithm for acute wrist trauma: A systematic approach to diagnosis,” Jour-

nal of Hand Surgery, vol. 18, no. 2, p. 207–212, Apr 1993.

[74] C. H. Lee and H.-J. Yoon, “Medical big data: promise and challenges,” Kidney

Research and Clinical Practice, vol. 36, no. 1, p. 3–11, Mar 2017.

[75] H. Lee, S. Tajmir, J. Lee, M. Zissen, B. A. Yeshiwas, T. K. Alkasab, G. Choy,

and S. Do, “Fully automated deep learning system for bone age assessment,”

Journal of Digital Imaging, vol. 30, no. 4, pp. 427–441, Aug 2017.

146

https://radiopaedia.org/articles/fall-onto-an-outstretched-hand?lang=us
https://radiopaedia.org/articles/fall-onto-an-outstretched-hand?lang=us
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.sciencedirect.com/science/article/pii/B9780444534859000118
https://www.sciencedirect.com/science/article/pii/B9780444534859000118


[76] P. R. Lokhande, S. Balaguru, G. Deenadayalan, and R. R. Ghorpade, “A

review of contemporary researches on biomedical image analysis,” in Recent

Trends in Image Processing and Pattern Recognition, ser. Communications in

Computer and Information Science, K. C. Santosh and R. S. Hegadi, Eds.

Springer, 2019, p. 84–96.

[77] J. Luo, M. Wu, D. Gopukumar, and Y. Zhao, “Big data application in biomed-

ical research and health care: A literature review,” Biomedical Informatics

Insights, vol. 8, p. BII.S31559, Jan 2016.

[78] P. MacPherson, E. L. Webb, W. Kamchedzera, E. Joekes, G. Mjoli, D. G.

Lalloo, T. H. Divala, A. T. Choko, R. M. Burke, H. Maheswaran, M. Pai, S. B.

Squire, M. Nliwasa, and E. L. Corbett, “Computer-aided x-ray screening for

tuberculosis and hiv testing among adults with cough in malawi (the prospect

study): A randomised trial and cost-effectiveness analysis,” PLOS Medicine,

vol. 18, no. 9, p. e1003752, Sep 2021.

[79] H. Malik, A. Appelboam, and G. Taylor, “Colles’ type distal radial fractures

undergoing manipulation in the ed: a multicentre observational cohort study,”

Emergency medicine journal: EMJ, vol. 37, no. 8, p. 498–501, Aug 2020.

[80] M. K. Manhard, J. S. Nyman, and M. D. Does, “Advances in imaging ap-

proaches to fracture risk evaluation,” Translational Research, vol. 181, pp.

1–14, Mar 2017.

[81] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia Medica,

vol. 22, no. 3, p. 276–282, Oct 2012.

[82] W. H. Meadowcroft, The ABC of the X Rays. American Technical Book

Company, 1896, no. 2.

[83] S. Meena, P. Sharma, A. K. Sambharia, and A. Dawar, “Fractures of distal

radius: An overview,” Journal of Family Medicine and Primary Care, vol. 3,

no. 4, pp. 325–332, 2014.

[84] L. Monfils, X-ray of a collesfracture of the left wrist accompanied by an ulnar

styloid fracture. [Online]. Available: https://commons.wikimedia.org/wiki/

File:Collesfracture.jpg

147

https://commons.wikimedia.org/wiki/File:Collesfracture.jpg
https://commons.wikimedia.org/wiki/File:Collesfracture.jpg


[85] R. J. Moon, N. C. Harvey, E. M. Curtis, F. de Vries, T. van Staa, and

C. Cooper, “Ethnic and geographic variations in the epidemiology of child-

hood fractures in the united kingdom,” Bone, vol. 85, pp. 9–14, Apr 2016.

[86] N. T. Morrell and A.-P. C. Weiss, Total Wrist Arthroplasty for Treatment of

Distal Radius Fractures. Springer International Publishing, 2018, pp. 81–90.

[Online]. Available: https://doi.org/10.1007/978-3-319-94202-5 6

[87] W. J. Morton, The X-ray; or, Photography of the invisible and its value in

surgery. American Technical Book Company, 1896.

[88] L. Nanni, A. Lumini, and S. Brahnam, “Local binary patterns variants

as texture descriptors for medical image analysis,” Artificial Intelligence in

Medicine, vol. 49, no. 2, p. 117–125, Jun 2010.

[89] Y. Nasser, M. E. Hassouni, A. Brahim, H. Toumi, E. Lespessailles, and R. Jen-

nane, “Diagnosis of osteoporosis disease from bone x-ray images with stacked

sparse autoencoder and svm classifier,” in 2017 International Conference on

Advanced Technologies for Signal and Image Processing (ATSIP), May 2017,

pp. 1–5.

[90] N. National Electrical Manufacturers Association. Dicom standard. [Online].

Available: https://www.dicomstandard.org/

[91] K. H. Ngan, A. d. Garcez, K. M. Knapp, A. Appelboam, and C. C. Reyes-

Aldasoro, “Making densenet interpretable, a case study in clinical radiology,”

medRxiv, p. 19013730, Dec 2019.

[92] Q. Nguyen, S. Chaudhry, R. Sloan, I. Bhoora, and C. Willard, “The clinical

scaphoid fracture: Early computed tomography as a practical approach,” An-

nals of The Royal College of Surgeons of England, vol. 90, no. 6, p. 488–491,

Sep 2008.

[93] L. Obert, F. Loisel, E. Jardin, N. Gasse, and D. Lepage, “High-energy injuries

of the wrist,” Orthopaedics & Traumatology : Surgery & Research, vol. 102,

no. 1, Supplement, pp. S81–S93, Feb 2016.

[94] L. Obert, P. B. Rey, J. Uhring, N. Gasse, S. Rochet, D. Lepage, A. Serre,

and P. Garbuio, “Fixation of distal radius fractures in adults: A review,”

148

https://doi.org/10.1007/978-3-319-94202-5_6
https://www.dicomstandard.org/


Orthopaedics & Traumatology: Surgery & Research, vol. 99, no. 2, p. 216–234,

Apr 2013.

[95] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7,

p. 971–987, Jul 2002.
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