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Abstract 
 
Electric car batteries generate substantial heat during operation, requiring efficient heat 

dissipation to maintain battery performance and longevity. Nanofluids, suspensions of 

nanoparticles in a fluid base, have emerged as promising solutions for effective cooling systems 

due to their enhanced thermal conductivity and improved properties. This thesis investigates the 

potential of nanofluids for electric car battery cooling systems using Molecular Dynamics (MD) 

simulations to study nanofluid behaviour at the atomistic level. By examining the thermal and 

rheological properties of nanofluids, MD simulations provide valuable insights into the design 

and optimisation of heat transfer fluids for electric car battery cooling systems. Results from the 

simulations show significant thermal conductivity enhancement in polyalphaolefin (PAO)-2/Cu 

and PAO-2/Ag nanofluids, indicating their potential for use in Battery Thermal Management 

Systems (BTMS). This study not only advances our understanding of nanofluids, but also 

contributes to the development of more efficient and sustainable electric vehicle battery cooling 

technologies. 
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1. Introduction 
 

The thermal conductivity of a material is a measure of its ability to transfer heat, and it is an 

important property for the heat transfer liquids of electric car batteries, as it directly affects the 

efficiency of the cooling system. The high energy density of the batteries in electric cars 

generates high levels of heat during operation, and this heat must be dissipated effectively to 

maintain the performance and longevity of the battery. 

The thermal conductivity of the materials used in the cooling system, such as the heat transfer 

fluid and the thermal interface materials (TIMs) between the battery cells and the cooling system, 

plays a crucial role in the effectiveness of the cooling system. High thermal conductivity 

materials are able to transfer heat more effectively and therefore cool the battery more efficiently. 

Thus, there is a crucial need to design heat transfer fluids with high thermal conductivity. 

Fortunately, nanofluids have been studied intensively for around 30 years and are the best 

solution to this problem.  

Nanofluids are suspensions of nanoparticles in a fluid base, such as water or an organic liquid. 

Nanoparticles, which are typically in the size range of 1-100 nanometres, can be made from a 

variety of materials, including metals, metal oxides, and carbon-based materials. The use of 

nanoparticles in a base fluid leads to unique properties that are not found in bulk materials, such 

as enhanced thermal conductivity, increased stability, and improved optical properties. 

One of the most well-studied properties of nanofluids is their enhanced thermal conductivity. The 

addition of nanoparticles to a base fluid leads to an increase in the overall thermal conductivity of 

the fluid, which can be attributed to both the increase in the number of heat-carrying phonons in 

the fluid and the increased convective heat transfer due to the increased fluid viscosity caused by 

the nanoparticles. The enhancement of thermal conductivity is dependent on the type and 

concentration of nanoparticles, as well as the base fluid choice. 

In addition to enhanced thermal conductivity, nanofluids also exhibit improved stability 

compared to suspensions of larger particles. The small size of the nanoparticles leads to a high 

surface area-to-volume ratio, which makes them less likely to settle out of the base fluid. This 

improved stability allows for the use of nanofluids in applications where suspensions of larger 

particles would not be practical. 
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Nanofluids have been proposed for a wide range of applications, including heat transfer, thermal 

energy storage, and biomedical applications. Some of the most promising applications include the 

use of nanofluids as coolants in electronic devices, as heat transfer fluids in solar thermal 

systems, and as a means of enhancing the efficiency of cooling towers in power plants. 

Advancements in nanotechnology made the production of nanoparticles made of metals, oxides, 

and carbides possible. There are various techniques used to create these particles, including 

chemical and vapour deposition, arrested precipitation, sonication, and pulsed laser vaporisation. 

Nanofluids, a type of solid-liquid suspension, hold potential in improving energy-efficient heat 

transfer. These fluids contain metal or oxide nanoparticles suspended in a base fluid and can 

enhance the thermal conductivity of the fluid. Nanofluids have the potential to improve the 

performance of heat exchangers and cooling devices, which are important for industries like 

automotive and aerospace, as they work towards reducing the weight of thermal management 

systems. This is specifically desired in electrical car batteries thermal management systems. 

To that end, new cooling concepts are being explored that focus on using heat transfer liquids 

with customised properties for the specific application, instead of using traditional coolants like 

water or air [1]. Which is why the Battery Thermal Management System (BTMS) is used to 

regulate the temperature of a battery pack in an electric vehicle (EV). The system helps to 

maintain optimal battery temperature for improved performance, extended battery life, and safe 

operation. BTMS typically includes cooling or heating elements, temperature sensors, and a 

control system. The aim of BTMS is to keep the battery temperature within a safe and efficient 

operating range, regardless of external temperature conditions. This leads to increasing the 

lifetime of the battery [2]. The problem with BTMS is that current research is limited and 

fragmented across various cooling techniques, each with their own limitations. For example, 

single-phase forced convection does not provide the necessary cooling efficiency, convective 

flow-boiling requires a large quantity of cooling liquid, and pool-boiling is not sustainable for 

multiple cycles [3]. This results in a need for a more effective and efficient cooling solution for 

BTMS. A proposed solution is to use single-phase immersion cooling with dielectric liquids to 

cool electric vehicle components [4], specifically the battery pack, without the need for excessive 

pumping and large heat exchangers. 
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Novel dielectric coolant fluids are a class of cooling liquids that have unique electrical properties. 

They are being developed as a solution to the limitations of conventional cooling fluids, such as 

water, that are often used in cooling systems [4]. The primary objective of using these fluids is to 

improve the heat transfer processes in future BTMS (heat exchangers), which are essential 

components of many cooling systems. Heat transfer processes in heat exchangers occur through 

the transfer of heat from one fluid to another. The effectiveness of this process is determined by 

several factors, including the properties of the fluids involved and the design of the heat 

exchanger itself.  

One of the key properties of the fluid is its rheology, which relates to the flow behaviour of the 

fluid and its ability to transfer heat. The identification of rheological properties capable of 

enhancing the underlying heat transfer processes is expected to maximise the effectiveness of 

future BTMS. This is because the rheology of a fluid can significantly impact its ability to 

transfer heat. For example, fluids with high viscosity will have a slower flow rate and will 

therefore be less effective at transferring heat than fluids with low viscosity.  

One of the main advantages of using novel dielectric coolant fluids is that they have a high 

thermal conductivity, which allows for efficient heat transfer. Additionally, these fluids are non-

conductive and non-corrosive, which makes them safe to use in a variety of applications. This 

also eliminates the risk of electrical or chemical damage to the components of the cooling system. 

Another important advantage of these fluids is their low vapour pressure, which means that they 

do not boil or evaporate easily. This makes them ideal for use in high-temperature applications, 

where conventional cooling fluids may not be suitable. Additionally, they are also non-toxic, 

which makes them safe for use in applications where human contact is a concern. The 

identification of the rheological properties of these fluids is critical to their effectiveness in 

improving heat transfer processes in future BTMS. This involves characterising the fluid's flow 

behaviour under different conditions, such as temperature and pressure, and measuring its 

thermal conductivity, viscosity, and density.  

Enhancing thermal conductivity on nanofluids is crucial for improving the performance and 

safety of BTMS. It efficiently dissipates heat generated during battery operation, preventing 

overheating and ensuring optimal performance, particularly in high-energy-density batteries like 

those in EVs. This enhancement leads to extended battery life, reduced energy consumption due 
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to lower operating temperatures, and decreased risks of hotspots. Thermal conductivity 

enhancement of nanofluids also enables batteries to operate at higher power densities, benefiting 

applications requiring rapid energy discharge or charging. Additionally, improved thermal 

conductivity reduces the need for heavy and energy-consuming cooling components, making 

designs more efficient and lightweight. This not only enables faster charging but also results in 

cost savings for manufacturers and end-users through longer-lasting batteries and reduced 

maintenance. 

However, novel proposed oil-based fluids with nanoparticle additives [5–7], although showing 

enhanced thermal properties, their rheology is complicated and displays traits of both liquids and 

solids when subjected to forces over time, resulting in an unsuitable heat transfer fluid for BTMS 

for reasons mentioned earlier.  

That is why it is important to study nanofluids in more detail, as they are promising enhanced 

thermal and rheological properties. By designing optimum heat transfer fluids for the mentioned 

application. To achieve such a goal, Molecular Dynamics (MD) simulation must be used, as it is 

an excellent tool to study nanofluids on an atomistic scale. MD is a simulation method that uses 

classical mechanics to model the motion of a large number of particles in a system. This enables 

the study of the nanofluid behaviour at the molecular level, providing insight into the physical 

and thermal properties of the nanofluid that cannot be obtained through experiments alone [8–

11]. These simulations provide a way to study the behaviour of nanofluids in a controlled 

environment and observe the thermal, mechanical, and rheological properties of the fluid. They 

also allow the investigation of the interaction between the fluid and the nanoparticles, the effect 

of particle size, shape, and concentration on heat transfer, and the formation of nanofluid 

structures. Also, it can provide a molecular-level understanding of the fluid-particle interactions. 

This includes the intermolecular forces between the fluid and nanoparticles, and the formation 

and stability of nanoparticle clusters. These interactions are critical for determining the properties 

of the nanofluid, and are essential for understanding how these properties can be optimised for 

specific applications. Another advantage of MD is that it allows researchers to study the 

behaviour of nanofluids under a wide range of conditions. This is particularly important for the 

current application of BTMS, where the performance of the nanofluid is highly dependent on the 

conditions under which it is operating. By using MD simulations, information can be obtained 

about the complex thermal and transport properties of nanofluids that are difficult or impossible 
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to obtain experimentally. This information is crucial for optimising the design and performance 

of nanofluid-based systems, and for understanding the fundamental mechanisms underlying their 

behaviour.  

 

1.1 Project Goals & Objectives 

The primary goal of this project is to investigate the thermal and rheological properties of 

nanofluids and their potential application in improving heat transfer processes in future BTMS. 

To achieve this goal, the following specific objectives have been identified: 

1. Investigate Thermal and Rheological Properties of Nanofluids: 

• Conduct a comprehensive study to understand the thermal conductivity enhancement 

mechanism of nanofluids. 

• Analyse the effect of nanoparticle type, concentration, size, and shape on the thermal and 

rheological properties of nanofluids. 

• Characterize the flow behaviour and viscosity of nanofluids under various temperature 

and pressure conditions. 

 

2. Improve Heat Transfer Processes in Future BTMS: 

• Evaluate the performance of nanofluids in heat transfer applications relevant to BTMS, 

such as cooling electric vehicle battery packs. 

• Determine the optimal nanofluid composition and concentration for efficient heat 

dissipation and temperature regulation. 

• Investigate the feasibility and effectiveness of using nanofluids in different heat 

exchanger designs for BTMS. 

 

3. Design and Optimise Heat Transfer Fluids for BTMS: 

• Develop strategies to tailor the properties of nanofluids for specific BTMS requirements, 

considering factors such as thermal conductivity, viscosity, stability, and non-toxicity. 
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• Optimise the composition and concentration of nanoparticles in nanofluids to maximise 

heat transfer performance, while ensuring long-term stability and compatibility with 

BTMS components. 

• Develop Molecular-Level Understanding through MD Simulations: 

• Utilize Molecular Dynamics (MD) simulations to gain insight into the behaviour and 

interactions of nanofluids at the atomic and molecular scale. 

• Investigate fluid-particle interactions, intermolecular forces, nanoparticle clustering, and 

the formation of nanofluid structures using MD simulations. 

• Correlate the findings from MD simulations with experimental data to validate the 

accuracy and reliability of the simulation results. 

 

4. Provide Insights for Efficient Nanofluid-Based Thermal Management: 

• Generate valuable insights into the potential benefits and limitations of nanofluids as heat 

transfer fluids in BTMS and other thermal management applications. 

• Identify key factors and parameters that influence the performance and efficiency of 

nanofluid-based thermal management systems. 

• Propose guidelines and strategies for the effective utilisation of nanofluids to enhance 

heat transfer efficiency and ensure reliable and safe operation of BTMS. 

 

5. Contribute to Knowledge in Nanofluid Applications: 

• Contribute to the existing body of knowledge on nanofluid technology by advancing 

understanding of nanofluid behaviour and its application in heat transfer systems. 

• Publish research findings in peer-reviewed journals and present results at relevant 

conferences and academic forums to share knowledge with the scientific community. 

 

6. Generate Practical Recommendations for Industry Integration: 

• Translate research outcomes into practical recommendations and guidelines for the 

integration of nanofluid-based thermal management systems in relevant industries, 

particularly in the automotive and energy sectors. 
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• Provide insights and recommendations to industry stakeholders regarding the selection, 

design, and implementation of nanofluids for improved heat transfer in BTMS. 

• Foster collaborations with industry partners to facilitate the adoption of nanofluid-based 

solutions and contribute to the advancement of thermal management technologies. 

The project objectives presented above are a comprehensive and ambitious vision for exploring 

nanofluids and their potential impact on BTMS. However, due to practical constraints, such as 

limited time and resources, it was necessary to re-evaluate the scope of the project. In section 1.2, 

a detailed overview will be provided to identify the specific goals and objectives that were 

successfully achieved. Additionally, a list of the project's accomplishments will be discussed, 

considering the factors that influenced its scope and limitations. By discussing the achieved 

milestones and identifying the limiting factors, a comprehensive understanding of the project's 

outcomes will be presented. 

 

1.2 Project Scope 

While MD simulations fundamentally and originally fall under the discipline of Computational 

Physics or Computational Chemistry, their application in engineering requires additional steps to 

bridge the gap between simulations and engineering solutions. MD simulations utilise principles 

from physics, chemistry, and computer science to simulate the behaviour and interactions of 

atoms and molecules at the atomic scale, offering valuable insights into complex engineering 

systems. 

However, in practice, reaching engineering solutions typically involves multiple stages beyond 

MD simulations. For instance, in this study, further MD investigations are necessary to explore 

various nanofluids comprising different nanoparticle materials, concentrations, and sizes. These 

additional studies would recommend the optimal nanofluid system that exhibits the most 

favourable thermophysical, thermodynamic, and kinetic properties. 

Following this, computational fluid dynamics (CFD) studies would be required to evaluate the 

recommended nanofluid in a heat exchanger system, examining how it impacts the heat transfer 
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process. Only through these comprehensive investigations can sound engineering solutions be 

developed. 

Consequently, it is unrealistic to expect definitive engineering solutions from one or two MD 

studies alone. Rather, MD serves as a valuable tool in engineering, guiding engineers and 

providing them with insights into the behaviour of the systems they study. This information can 

be used to inform the design and optimisation of engineering systems, ultimately leading to more 

effective solutions. 

Based on the presented information and the original goals and objectives of this project, the 

project scope is as follows: 

• Investigating one of the thermal properties of nanofluids, namely, thermal conductivity. 

• Limited investigation of rheological properties (PAO vs PAO-2). 

• How BTMS can benefit from nanofluids with enhanced thermal conductivity. 

• Detailed literature review to understand the different MD approaches in studying 

nanofluids. 

• Comparing and choosing the appropriate MD method. 

• Utilizing MD simulations to gain insight into the behaviour and interactions of nanofluids 

at the atomic scale. 

• Potential application for PAO-2/Cu & PAO-2/Ag nanofluid. 

 

One of the main limiting factors that changed the original project goals and objectives is the 

project timeline. Originally, the research proposal of this project was designed for a longer 

timeline. However, the timeline of the project was cut short. 
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2. Literature Review 
 

2.1 Introduction 
 

Molecular dynamics (MD) simulations have been widely used in the study of nanofluids, which 

are suspensions of nanoscale particles in a fluid medium. The literature on the use of MD 

simulations in nanofluids research spans a wide range of topics. This literature review will focus 

on the use of MD to study thermal conductivity of nanofluids. 

Thermal conductivity of nanofluids refers to the ability of a fluid to transfer heat, and it is an 

important factor in many industrial and energy applications. Nanofluids, which are suspensions 

of nanoparticles in a fluid matrix, have been shown to have improved thermal conductivity 

compared to conventional fluids, making them attractive for use in thermal management systems. 

The study of thermal conductivity of nanofluids is important, as it can provide valuable 

information for the design and optimisation of nanofluids for specific applications. However, the 

complex behaviour of nanofluids, including the interactions between nanoparticles and the fluid 

matrix, makes it challenging to study their thermal transport properties experimentally. MD 

simulation provides a powerful tool for the study of thermal conductivity of nanofluids, as it 

enables the modelling of the motion of individual atoms and molecules in real time. MD 

simulation can provide detailed information on the mechanism of heat transfer in nanofluids and 

enable the optimisation of nanofluid design for specific applications, making it an important tool 

in the field of thermal management. 
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2.1  Molecular Dynamics   
 
In the 1980s, atomistic descriptions started to get introduced in the modelling of materials by 

researchers, rather than just using the classical continuum mechanics theories [12]. Atomistic 

simulations are capable of probing the fundamental behaviour of materials, because it considers 

the behaviour of the individual particles and assumes they cannot be divided further. They solve 

systems with a very large number of particles; thus, they cannot be solved analytically, and so 

computational models are generated instead.  

Atomistic simulations are mainly adopted to study the numerous mysterious phenomena and 

mechanisms that are associated with materials to gain a better understanding of the different 

processes, its causes and effects, also pursuing the development of the materials and optimising 

its microstructure. There are many computational and numerical methods that work on an array 

of different scales, these methods are divided into three sectors; atomistic modelling, continuum 

modelling and multi-scale modelling. However, the focus of this report is on atomistic modelling.   

The main atomistic methods used are the Quantum Mechanics (QM), Monte Carlos (MC) and 

Molecular Dynamics methods (MD).  The MC method deals with complex models where the 

input is a set of random numbers, and the output is based on the concepts of probability. MD, 

however, uses the classical equations of motion to evaluate the interactions between the atoms or 

molecules [13] and it is considered a virtual microscope because of its high spatial and temporal 

resolution. It is a computational method that simulates the movement of atoms and molecules. 

MD is the most used method, Alder and Wainwright were first to introduce it, and the details of 

the approach are presented in their book [14]. 

a.  Initial Assumptions  
 

Due to the complexity of these many particle systems and their interactions, some initial 

assumptions must be made. The first one is that the nucleus of the atoms is only taken into 

consideration because the mass of electrons is negligible compared to that of the nucleus. The 

second one is that there are no changes in the mass of the system at all during the simulation; no 

atoms are added or removed, and the total kinetic energy is constant. The equations of motions 

are integrated over a number of time-steps to investigate the behaviour of the position and 

velocity vectors of each particle.  
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Thus, the MD method first describes the initial positions and velocities of each atom, and then 

calculates the forces between them by the interatomic potentials that come from quantum 

mechanics studies. After that, these initial values are changed by a time interval after calculating 

the forces, and then these forces are recalculated for the new positions and velocities.  

b. Interatomic Potentials  
 

In a MD simulation, the interaction potential can either be bonded or non-bonded. Most non-

bonded potentials are represented as pair potentials, which consider the interactions between 

atoms as one pair at a time. The most commonly used pair potential in molecular dynamics 

simulations is the Lennard-Jones (LJ) potential. This potential is a 12-6 potential that is attractive 

when the molecules are far apart, and becomes strongly repulsive when they are close together. 

The Lennard-Jones potential has an attractive term represented by r6, which represents the van 

der Waals interaction between atoms at large distances, and a repulsive term represented by r12, 

which becomes dominant when the atoms come close and represents the resistance to 

compression between the atoms. The Lennard-Jones pair potential for atoms i and j is given as 

[17]: 

 
 

2-1 

where ε is the depth of the potential well, σ is interatomic length scale, and rij is distance between 
two interacting particles. 
 

The expression for the potential energy between two atoms interacting through the Lennard-Jones 

potential is given by the equation above. It includes two parameters, ε and σ, which determine the 

depth and shape of the potential curve respectively. ε represents the energy of the potential well 

and σ represents the distance at which the potential curve crosses the zero line. These parameters 

can be obtained through quantum chemistry calculations or by fitting the experimental data. The 

repulsive force, which dominates at short distances, is represented by the r12 part of the potential. 

The attractive force, which dominates at longer distances, is represented by the r6 part of the 

potential. The combined potential curve is shown in figure 2-1 . 
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Figure 2-1Potential energy of a particle in LJ model. 

Some of the potentials can include the effects of the interactions between three or more atoms, 

such as the Tersoff potential, which sums the group of atoms taking the angles between them into 

consideration, and the EAM potential [15–16] which calculates the electron density from the 

surrounding atoms.  

Thus, the reliability of the simulations greatly depends on the chosen potential function.  

c. Force Calculation 
 
The force between a pair of atoms is calculated by using the interaction pair potential. This is 

done by adding up the interactions between atom i and all other atoms in the system. The force on 

atom i is obtained by taking the derivative of the potential function, as shown in equation 2-1. 

The interatomic force between two atoms in the Lennard-Jones potential is given by [17]: 

 
 

2-2 

d. Cut-off Radius 
 

The most time-consuming part of a molecular dynamics simulation is the calculation of forces 

between atoms, which requires calculating the force on each atom by all other N-1 atoms in the 

simulation domain at each time step, leading to an O(N2) growth in computation time. To reduce 

computation time, a cut-off radius is applied, such that the interaction between atoms outside of a 

sphere with this radius is ignored. The most commonly used cut-off radius for Lennard-Jones 
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potential is between 2.5σ and 3.2σ [17]. The Lennard-Jones potential with the cut-off radius 

implemented is represented as shown in equation 2-1. 

 
        if  

                                  if  
2-3 [17] 

 

e. Verlet Neighbour List 
 

To save computational time in a molecular dynamics simulation, where the calculation of force is 

the most time-consuming step, a technique called the neighbour list was developed by Verlet 

[18]. This method creates a list of neighbours for each atom, only considering the atoms in this 

list when calculating the force on that atom. The neighbour list is updated after a few time steps, 

such as 10, and takes into account any atoms that may have moved outside the cut-off radius or 

new atoms that may have entered the radius. To account for this movement, the list is generated 

using a slightly larger radius, known as rlist, where rlist =  rcut-off + Δr.  

Figure 2-2 shows the impact of rlist on the generation of the neighbour list. 

 

Figure 2-2 Neighbour-list construction with radius rlist [19]. 
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f. Equations of Motion  

 

MD is based on solving the classical Newtonian equations of motion for a system that is 

interacting through its potential function. Newton's law describes the equation of motion as 

follows [20]:  
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where atom i has a force of F, which is described by [20]:  

  2-5 

 

and the behaviour of the interacting particles is described by the Lagrangian equation [20]: 
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The equation of motion of Lagrangian is identical for all coordinate systems, taking into 

consideration the interaction between the particles. Thus, the following function describes the 

properties of these interactions as well [20]: 
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which can also be written in the Newtonian form as follows [20]: 
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This all means that potential energy is only dependent on the spatial configurations of the atoms, 

and that when they move, their potential energy changes as well. 
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g. Solving the Equation of Motion 

 

In MD simulations, numerical schemes are used to solve the equations of motion and simulate the 

behaviour of a system of interacting particles over time. The primary goal is to obtain trajectories 

of the particles' positions and velocities as they evolve in time.  

An integration algorithm to update the positions and velocities of particles at each time step must 

be used. The most commonly used algorithms in MD include the Verlet algorithm, velocity 

Verlet algorithm, and leapfrog integration. 

• The Verlet algorithm is a simple and widely used method in MD. It updates the positions 

and velocities of particles based on their current positions, velocities, and forces. It is 

numerically stable and conserves energy in many cases. 

• Velocity Verlet algorithm is similar to the Verlet algorithm, but also updates velocities in 

the middle of the time step, making it more accurate for some systems. 

• Leapfrog integration is an algorithm that updates positions and velocities in a staggered 

manner, which is useful for conserving energy. 

Only the Verlet algorithm will be explained in detail below. 

The Verlet algorithm is particularly popular because of its simplicity and ability to accurately 

conserve energy over long simulation times. The Verlet algorithm updates particle positions and 

velocities based on their current positions, velocities, and forces. 

Its fundamental concept involves crafting two third-order Taylor expansions for particle positions 

, one advancing in time and the other regressing. By denoting the velocities  as well as the 

accelerations  and the third derivatives of positions  with respect to time  as their respective 

counterparts, the following relationships emerge [20]: 
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Adding equations 2-9 and 2-10 gives: 

  2-11 

This is the basic form of the Verlet algorithm. 

h. Running the Simulation  

 

To run an MD simulation, the initial dimensions and positions of all atoms, the potential function, 

and a time step must be defined. First, the simulation calculates the forces between the atoms, 

then using the equations of motions over the specific time step, the atoms are moved to a second 

position and the forces are calculated again. This sequence is repeated until the number of time 

steps required are done.  

There are also some conditions that need to be specified, such as the ensemble average and the 

boundary conditions. There are two ensembles used, the NVE and the NVT, which ensure that 

the time and ensemble averages are equal. The NVE assumes that the number of atoms, the total 

volume and energy of the system is constant, which is not true in our case. Thus, the NVT 

ensemble is used, which assumes that the number of atoms, the total volume, and the temperature 

of the system is constant rather than the energy. Also, NPT ensembles are used to keep the 

number of atoms, total pressure of the system, and temperature constant. 

 

i.  Advantages and Limitations of MD Simulations 
 

The major advantage of molecular dynamics simulations is that they are very effective in 

simulating the dynamics of physical and chemical processes at both microscopic and 

macroscopic scales. MD simulations can accurately predict the structure, dynamics, and 

interactions of atoms and molecules in a variety of conditions. Additionally, these simulations 

can calculate thermodynamic and kinetic properties, such as heats of formation, partition 

functions, and reaction rates. 

On the other hand, the main limitation of MD simulations is that they are computationally 

intensive, requiring large amounts of computational power. Furthermore, because of the 

complexity of the systems being simulated, it is sometimes difficult to accurately determine force 

fields and parameters needed for the simulation. Additionally, MD simulations typically require a 
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large amount of time to reach equilibrium, and due to the complexity of the systems being 

simulated, some effects may not be accurately captured. 

 

j. Non-equilibrium Molecular Dynamics (NEMD) Method 
 
NEMD, otherwise known as the direct method, is used in Molecular Dynamics simulations to 

predict thermal conductivity. It is a useful tool, as it can offer insight into the heat transportation 

of partial systems instead of the thermal conductivity of the entire system – especially helpful for 

non-isotropic systems such as polymers [21]. To ensure steady heat flux, the temperature gradient 

and heat flux are often applied with the Langevin heat bath method, which is easier to employ 

than other methods like Muller’s Plathe [22]. 

 

Figure 2-3 NEMD Model. (a) A periodic boundary condition model can be used to calculate the 
thermal transport of materials. It entails a red region as the heat source area, and blue region as 
the heat sink area. Vacuum is added at the two ends of the boundary to avoid horizontal heat 
transfer across the boundary. From the heat source, heat is only able to move to the heat sink, 
resulting in a heat current of Jz. (b) In the thermal transport simulation, a temperature 
distribution can be observed. ΔT is the temperature difference between the heat source and heat 
sink, while ΔL is the fitting length for thermal conductivity by Fourier’s Law. 
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By rescaling particle velocities at each MD time step, the heat ΔE is added to a thin slab, while an 

equivalent amount is removed from another cantered slab of the same thickness. This will result 

in an increase or decrease of net kinetic energy, while potential energy remains unchanged. 

Eventually, when the system reaches a steady state, the heat current is given by   , where 

 is the period of the simulation, and Fourier's law is used to calculate the thermal conductivity.  

 

The thermal conductivity relates the heat current to the temperature gradient via Fourier’s law as 

[22]:  
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where  is a component of the thermal current,  is an element of the thermal conductivity 

tensor, and  is the gradient of the temperature T. 

By running simulations with different systems sizes, the behaviours of an infinite system can be 

extrapolated. In, a schematic representation of the simulation cell is used to compute the thermal 

conductivity, with the presence of heat sources and sinks creating a current in the z-direction. 

However, this method only allows for the calculation of thermal conductivity in a single lattice 

direction. In contrast, the Green Kubo method does not suffer from this limitation and can 

calculate the entire thermal conductivity tensor in one simulation.  

The direct method involves using high temperature gradients, which may not provide accurate 

results due to potential nonlinear effects that can occur outside the experimental range. To 

address this, it is important to test the effect of changing the thermal current on the calculated 

thermal conductivity. However, nonlinearity is acceptable with a specific set of temperature 

differences. In NEMD simulations, the boundaries of the heat source and sink can alter the 

atomic dynamics and limit the mean-free path, known as the Casimir limit. The mean-free path 

can be estimated by analysing smaller systems. NEMD is a commonly used method to calculate 

thermal conductance, as it directly shows the system's response to applied perturbations and is 



 
27 

 

efficient for large structures and perturbations. However, it has a larger size effect than the EMD 

method, as it can be impacted by scattering from the boundaries [23]. 

k. Equilibrium molecular dynamics (EMD) method  
 

The Green-Kubo method is a technique for computing thermal conductivity using the EMD 

approach. This method involves linking the equilibrium current-current autocorrelation function 

to thermal conductivity through the Green-Kubo equation as follows [23]: 
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where  is the volume, T is the temperature,   is the Boltzmann constant, and  is 

the heat current autocorrelation function (HCACF). 

At each molecular dynamics step, the heat current is calculated and saved. As the simulation 

proceeds in discrete MD steps with a step size of , the calculation of heat current follows the 

equation above as a summation. The resulting equation, which is computed including the time 

averaging, is as follows [23]:  
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where  is M  and  is the th term of the heat current at time-step m+n. 

It's important to remember that the number of integration steps (M) must be fewer than the total 

number of simulation steps (N). Typically, M is significantly smaller than N to ensure accurate 

statistical averaging. The bulk thermal conductivity, which is obtained in the limit M t → ∞, can 

be determined from the equation above as long as the integration time (Mt) is longer than the 

time required for current-current correlations to become negligible. Wang et al. suggest 

controlling the uncertainty of thermal conductivity predictions from the Green-Kubo method by 
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ensuring the ratio of integration time to total simulation time meets the convergence requirement 

[24]. 

Simulations are performed in equilibrium and transport coefficients are calculated using the 

Green-Kubo formula based on the fluctuation-dissipation theorem. This means there is no driving 

force, so the system is always in the linear-response regime. However, finite-size effects can 

impact the accuracy of the Green-Kubo method [25–26]. In addition, obtaining convergence in 

the current-current autocorrelation function may require very long simulation times [27]. 

EMD is used to determine the thermal conductivity and equilibrium state information of a 

system, considering discrete time-steps. Unlike NEMD, EMD doesn't involve any external 

perturbations. It provides the thermal conductivity in three dimensions in a single simulation, 

with a smaller size effect than NEMD, but at the cost of longer computation time.  

 

l. Choosing the Appropriate Method 
 
Schelling et al. provide a comprehensive review of atomic-level simulation methods for 

computing thermal conductivity and highlights the trade-offs and considerations involved in 

selecting the most appropriate method for a given problem [28]. It evaluates various atomic-level 

simulation methods for computing thermal conductivity and compares the strengths and 

weaknesses of each method, including their accuracy, efficiency, and computational resources 

required. It provides guidance for choosing the appropriate method for a given application, based 

on factors such as the size and complexity of the system, the desired level of accuracy, and the 

available computational resources. 

The Non-Equilibrium Molecular Dynamics (NEMD) method is used according to Schelling et al. 

because it can overcome some of the limitations and challenges associated with other methods. 

The NEMD method involves applying a temperature gradient to a system and measuring the 

resulting heat flow, which allows for the direct calculation of thermal conductivity. This method 

can be more accurate and efficient than other methods, especially for systems with complex 

behaviour or nonlinear thermal transport properties like nanofluids. According to Schelling et al., 

NEMD can be more reliable for some systems, especially those with large temperature gradients 

or high thermal conductivity and can provide a more direct measurement of thermal conductivity. 
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However, NEMD can also be more computationally expensive and requires careful consideration 

of factors such as the size of the system and the desired level of accuracy. 

In addition, Nejatolahi et al. [29] provide insights into the challenges and limitations of 

calculating the thermal conductivity of nanofluids using molecular dynamics simulations and 

highlight the importance of selecting the appropriate method based on the specific requirements 

of the system. In that study a comparison is made of Non-Equilibrium Molecular Dynamics 

(NEMD) and Equilibrium Molecular Dynamics (EMD) methods for calculating the thermal 

conductivity of nanofluids. Analysis of the accuracy and efficiency of NEMD and EMD methods, 

with a focus on their ability to accurately simulate the thermal conductivity of nanofluids in 

different regimes. The advantages and disadvantages of NEMD and EMD methods, including 

their computational cost, numerical stability, and applicability to different types of nanofluids, are 

discussed. The impact of various factors, such as fluid concentration, fluid type, and simulation 

conditions, on the accuracy and reliability of thermal conductivity calculations is examined. 

Nejatolahi et al. conclude by saying “We showed that, unlike the NEDM method, the traditional 

EMD method does not give physically acceptable results for the thermal conductivity of 

nanofluids”. This is in perfect agreement with Schelling et al. analysis.  
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2.2 Computer Simulations of Nanofluids 
 
There have been numerous efforts to understand the thermal transport in nanofluids using 

simulation methods that can accurately depict the complex phenomena at the nanoscale. One 

such technique is Molecular Dynamics Simulation, which tracks the movement of solid and 

liquid atoms at a molecular level. 

Different simulation techniques in MD simulations are described in table 2-1 like EMD, NEMD, 

and RNEMD. 

Equilibrium Molecular Dynamics (EMD) is a computational simulation technique used to study 

the behaviour of molecules or atoms in a system at thermodynamic equilibrium. In EMD, the 

system is allowed to evolve over time under the influence of intermolecular forces, such as van 

der Waals and electrostatic interactions. Starting from an initial configuration, the positions and 

velocities of particles are tracked as they interact with each other. EMD simulations are valuable 

for understanding the properties of a system under specific thermodynamic conditions, like 

temperature and pressure, once equilibrium is achieved.  

Non-Equilibrium Molecular Dynamics (NEMD) is a molecular simulation technique that deviates 

from equilibrium by applying external forces or gradients to a system. These perturbations drive 

the system away from thermodynamic equilibrium, allowing researchers to study transport 

properties and dynamic behaviour. For example, NEMD simulations can apply shear forces to 

study fluid flow or temperature gradients to investigate heat transport. By measuring the system's 

response to these perturbations, NEMD provides critical insights into transport coefficients like 

viscosity, thermal conductivity, and diffusion coefficients. 

Reverse Non-Equilibrium Molecular Dynamics (RNEMD) is a specialized variant of NEMD 

used for calculating transport properties. In RNEMD, instead of applying an external perturbation 

to the system, simulations are run in reverse time after the system has achieved a non-equilibrium 

state. This unique approach involves time-reversal symmetry principles and carefully constructed 

algorithms to compute transport coefficients accurately. RNEMD is particularly useful in 

scenarios where applying an external perturbation is challenging or impractical. 

  showcases a list of molecular simulation studies on nanofluids, and some of the most 

noteworthy studies are discussed below. 
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Table 2-1: Molecular dynamics simulation studies of nanofluid using EMD & NEMD methods 

(where SS, LL, SL refer to the interaction of solid-solid, liquid-liquid, and solid-liquid particles 

respectively). 

Reference Potential Used Method Volume 
Concentration 

Thermal Conductivity 
Enhancement 

Nejatolahi et al. 
[29] 

LJ for LL, SL, 
SS NEMD 4.2% 1% 

Nejatolahi et al. 
[29] 

LJ for LL, SL, 
SS EMD 4.2% 51.5% 

Sarkar et al. [11] 
LJ for LL, SL, 

SS 
EMD 8% 52% 

Li et al. [30] 
LJ for LL, SL  

EAM for SS 
EMD 0.5–2 vol% 10% 

T. Khamliche et 

al. [31] 

LJ for LL, SL  

EAM for SS 
EMD 1% 

15-24 % 

(Temperature dependant) 

Lu Zhou et al. 

[32] 

LJ for LL, SL  

EAM for SS 
NEMD 1.28–5.12% 12.5-34.8% 

J. Chen et al. [33] 
LJ for LL, SL, 

SS 
RNEMD 0.5-1.5% 4.77-12.95% 

Achhal et al. [34] 
LJ for LL, SL  

EAM for SS 
EMD 0.19-7.66% 0.07-59% 

 

Nejatolahi et al. [29] compares two MD simulation methods for calculating the thermal 

conductivity of nanofluids. The author used both NEMD and EMD to simulate thermal 

conductivity of nanofluids composed of copper (Cu) nanoparticles dispersed in argon, and 

compared the results. The first method, EMD, predicts a significant enhancement of the thermal 

conductivity of nanofluids, while the second method, NEMD, predicts almost no enhancement. 

An analysis is made to determine the minimum and maximum limits of the thermal conductivity 

of nanofluids and addresses the role of various mechanisms in enhancing thermal conductivity, 

such as Brownian motion and micro-convection. The study finally discusses the effects of 
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external forces on the centre of mass and linear momentum of the nanoparticles, and shows that 

they do not have a significant impact on the results. The authors conclude that NEMD 

simulations are more accurate than EMD simulations for calculating the thermal conductivity of 

nanofluids. 

Sarkar et al. [11] used MD simulation and the Lennard-Jones potential to model the behaviour of 

a nanofluid system consisting of Argon and Copper. They used the Lennard-Jones potential for 

liquid atoms from Ar [17] and for solid atoms from Cu [35]. The solid-liquid interactions were 

determined using the Lorentz-Berthelot mixing rule. The thermal conductivity was calculated 

using Green-Kubo correlation. They found that thermal conductivity increased with increasing 

particle volume fraction, with a maximum enhancement of 52% at 8% volume fraction. They also 

observed two regimes of conductivity enhancement and found that the mean square displacement 

(MSD) of liquid atoms in the nanofluid was higher than liquid atoms in the base fluid. They 

concluded that the thermal enhancement was due to the enhanced motion of the liquid atoms 

caused by the presence of solid nanoparticles. 

T. Khamliche et al. [29] investigates the thermal conductivity of Cu nanoparticle-based 

nanofluids using both experimental and molecular dynamics studies. The nanofluids were 

fabricated using a laser ablation process, and the thermal conductivity was measured using a 

transient hot-wire method. The molecular dynamics simulations were performed to study the 

behaviour of the nanofluids at the molecular level and to validate the experimental results. In the 

simulation, the nanofluid was modelled as a suspension of Cu nanoparticles in a liquid base fluid 

of ethylene glycol. The solid-liquid and liquid-liquid interatomic interactions were described 

using Lennard-Jones potential. For the solid-solid interactions, embedded atom model (EAM) 

potential was used. The thermal conductivity was calculated from the temperature gradient in the 

nanofluid by using the Green-Kubo method. In this method, the thermal conductivity was related 

to the autocorrelation function of the heat flux, which was obtained from the MD simulation. In 

the simulation, the size and concentration of the Cu nanoparticles were varied to study their effect 

on the thermal conductivity of the nanofluid. The simulations were carried out under isothermal 

conditions and were run for a sufficient amount of time to reach steady state. The results showed 

that the thermal conductivity of the nanofluids increased with increasing nanoparticle 

concentration. The enhancement in thermal conductivity was attributed to the enhanced heat 

transfer between the nanoparticles and the fluid, due to the presence of strong thermal bridges 
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between the nanoparticles and the fluid. The simulations showed that the nanoparticles in the 

nanofluids enhance the thermal conductivity by reducing the phonon mean free path and 

increasing the phonon-phonon scattering rate. Overall, the results of this study suggest that the 

laser fabrication of Cu nanoparticle-based nanofluids results in enhanced thermal conductivity 

compared to pure fluids. The combination of experimental and molecular dynamics studies 

provides a comprehensive understanding of the thermal behaviour of nanofluids, which can be 

useful for the design of efficient heat transfer systems. Overall, the results of this paper suggest 

that the laser fabrication method is effective in producing copper-based nanofluids with high 

thermal conductivity. The molecular dynamics simulations confirmed the experimental results 

and provided additional insights into the thermal transport mechanisms in the nanofluids.  

Lu Zhou et al. [32] investigated the effect of nanoparticle aggregation on thermal conductivity 

enhancement in nanofluids. NEMD was used to analyse the thermal conductivity of nanofluids 

containing nanoparticles with different aggregation levels. The nanofluids were modelled as 

suspensions of copper nanoparticles in an argon base fluid. The solid-liquid, liquid-liquid, and 

solid-solid interatomic interactions were described using the Lennard-Jones potential. The 

simulations were designed to study the effect of nanoparticle size, concentration, and aggregation 

on the thermal conductivity of the nanofluids. To investigate the effect of nanoparticle 

aggregation, the simulations were performed for both isolated nanoparticles and nanoparticles 

that were allowed to aggregate.  The simulation results were compared with experimental data to 

validate the accuracy of the simulations, and to identify the key factors that contribute to thermal 

conductivity enhancement in nanofluids. The results showed that nanoparticle aggregation can 

enhance the thermal conductivity of nanofluids due to the increased thermal transport caused by 

the higher surface area-to-volume ratio of the aggregates. The study found that the thermal 

conductivity of nanofluids increased significantly when the nanoparticles aggregated to form 

large clusters, and the thermal conductivity increased with the increase in the size of the clusters. 

However, the increase in thermal conductivity was found to be limited by the formation of stable 

nanoparticle clusters. The study also showed that the size of the nanoparticles and the type of 

base fluid had a significant impact on the thermal conductivity of the nanofluids. Based on these 

findings, the author concludes that nanoparticle aggregation plays a crucial role in the thermal 

conductivity enhancement of nanofluids, and that the structure of the aggregates and the size of 

the nanoparticles have a significant impact on the thermal conductivity of the nanofluids. The 
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importance of considering both the size and the concentration of nanoparticles in the design of 

nanofluids for thermal management applications is also highlighted. 

J. Chen et al. [33] used reverse non-equilibrium molecular dynamics (RNEMD) simulations to 

investigate the enhanced thermal properties of CuAr nanofluids. The main difference between 

RNEMD and NEMD lies in the direction of heat flow. In NEMD, the heat flow direction is from 

a high temperature region to a low temperature region, whereas in RNEMD, the heat flow 

direction is from the low temperature region to the high temperature region. The solid-liquid, 

liquid-liquid, and solid-solid interatomic interactions were described using the Lennard-Jones 

potential. The simulations were performed on nanofluids with different volume fractions of 

copper particles. The simulation process involves introducing thermal heat flux from one end of 

the nanofluid system to the other, with the temperature gradient driving the molecular motion in 

the nanofluid. The temperature profile, heat current, and thermal conductivity of the nanofluids 

are then analysed. The results showed that the thermal conductivity of nanofluids increases as the 

volume fraction of nanoparticles increases, and non-linearly decreases with the increase of the 

particle size. The concentration of nanoparticles in the nanofluid affects the energy transfer 

process and has a significant impact on the fluid's temperature gradient when the particle size is 

small. The improvement of the thermal conductivity of nanofluids is also linked to the adsorption 

of nanoparticles by the liquid molecules. As the concentration of nanoparticles increases, the 

particles within the nanofluid become more closely associated and interact more with each other. 

However, as the particle size increases, the aggregation and interaction between the particles 

decreases. The solid-liquid interaction causes the nanoparticles to adsorb liquid molecules more 

readily, leading to the nanofluid having a crystal-like microstructure. 

Achhal et al. [34] carried out simulations to study the effect of particle size and temperature on 

the thermal conductivity of nanofluids. The study was done using EMD, for a nanofluid system 

of copper and argon. The solid-liquid and liquid-liquid interatomic interactions were described 

using Lennard-Jones potential and solid-solid interactions using Embedded Atom Model (EAM) 

potential that takes the metallic bonding into account. The results showed that the relative thermal 

conductivity enhancement of the nanofluid increased as the volume fraction increased from 

0.19% to 7.66% due to the decrease of fluid condensation around the nanoparticles. Additionally, 

it was found that thermal conductivity and relative thermal conductivity both increased with 

temperature in the range of 86 K to 102 K, with a more significant effect observed at high particle 
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concentrations. The study highlights the importance of particle size and temperature in improving 

the efficiency of nanofluids. 

As discussed, several studies have been conducted to understand the thermal conductivity 

behaviour of nanofluids, with different methodologies and simulation approaches being used. The 

general consensus was that the thermal conductivity of nanofluids can be enhanced by the 

presence of nanoparticles, with the extent of enhancement depending on various factors such as 

nanoparticle size, concentration, and aggregation. The use of molecular dynamics simulations 

was found to be useful in understanding the thermal behaviour of nanofluids, and the 

combination of experimental and simulation results provided a comprehensive understanding of 

thermal transport mechanisms in nanofluids. These results can be useful for the design of 

efficient heat transfer systems using nanofluids. 
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2.3 Thermal Conductivity Enhancement Mechanisms in Nanofluids 
 

Different studies [36–38] have discussed various thermal conductivity enhancement mechanisms 

in nanofluids, including Brownian motion of nanoparticles, clustering of nanoparticles, 

nanolayering of the liquid at the liquid/nanoparticle interface, ballistic transport and nonlocal 

effect, thermophoretic effect, and near-field radiation. Many models have been developed to 

explain these mechanisms or a combination of them, and they have been successful in fitting 

experimental data. However, the fact that different models based on different mechanisms can 

explain the same or similar data does not provide a deeper understanding of the mechanisms. A 

closer examination uncovers that the fitting parameters are often not physically accurate. 

a. Brownian Motion 
 

In various studies [37], [39], [40], there have been differing opinions regarding the significance 

of Brownian motion in enhancing thermal conductivity. Einstein laid the foundation for the 

theory of Brownian motion and derived the basic relationship between the diffusivity  of a 

particle in a fluid with viscosity  [41]: 
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where “d” is the diameter of the particle, and “ ” the Boltzmann constant. 

The conventional theory for Brownian motion often begins with the Langevin equation, which 

governs the instantaneous velocity of the Brownian particle and can be expressed as [44]: 
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where “m” represents the Brownian particle, “R(t)” is the random driving force, and “ ”is the 

friction coefficient. For a spherical Brownian particle in a fluid, the Stokes law determines that  

= 3πd /m. Solving the Langevin equation shows that the velocity of the Brownian particle 

decreases exponentially with a time constant [44]:  
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The average speed of the Brownian particle is expressed as [44]: 
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Typically, the thermal conductivity of bulk crystalline solids decreases with temperatures at or 

above room temperature. Phonons in crystalline solids have a diverse range of mean free paths. 

Based on the kinetic theory, the thermal conductivity can be represented as [48]:
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were “C” being the specific heat per unit volume, “V” the phonon group velocity, and “ ” the 

mean free path. 

By utilising the above relations, it is possible to quickly calculate the maximum contribution from 

Brownian motion. Based on the kinetic expression in the equation above, despite its limitations 

for liquid environments, the thermal conductivity contribution from Brownian particles is 

proportional to [48]: 
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Using the same reasoning, the above expression can also be applied to the liquid itself, and the 

ratio of the Brownian particles' contribution to the thermal conductivity to that of the base fluid is 

[48]: 
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where bf and np stand for base fluid and nanoparticles, respectively. 

The thermal conductivity contribution from Brownian motion is likely to be two orders of 

magnitude smaller than that of the base fluid, as the molecular diameter of the base fluid is 
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usually much smaller than that of the nanoparticle. This is true even if the specific heat per unit 

volume of the nanoparticles is assumed to be equal to that of the base fluid, since the Brownian 

motion of the nanoparticles causes the surrounding fluid molecules to move at a similar pace. If 

only the specific heat of the nanoparticles is considered, the thermal conductivity ratio will be 

further reduced by the volume fraction of the nanoparticles. Therefore, models that are based 

purely on the motion of the nanoparticles are questionable. This was pointed out early in the 

debate on the role of Brownian motion by Keblinski and Cahill [42].  

An argument in favour of the significance of Brownian motion is the microconvection argument. 

Expressions for convective heat transfer coefficients between a heated sphere and a cold 

surrounding fluid have been used to explain thermal conductivity enhancement in nanofluids, 

with a good fit to experimental data [39], [43]. This is based on the assumption that the velocity 

of the surrounding fluid is equal to the average thermal velocity of the Brownian particles. 

However, these models lack a clear physical explanation connecting heat conduction through 

liquids and nanoparticles to heat transfer from a nanoparticle maintained at a constant 

temperature. 

In models that only consider the kinetic motion of nanoparticles, the potential interactions 

between the particles were not taken into account. Bhattacharya et al. [44] studied the potential 

interactions by using the Langevin equation and the Green—Kubo formulation. However, the 

parameters used in their potential function were found to be too strong compared to real 

nanofluids. In another study, the electrothermal effect, which involves the long-range energy 

exchange between nanoparticles through the electrical double layer and their random Brownian 

motion, was considered [45]. Although the theoretical treatment was sound, an error in numerical 

substitution led to the incorrect conclusion that the electrothermal effect was significant. 

Numerical calculations showed that the effect was too weak to explain the experimental 

observations. As a result, it was concluded that the potential interactions between the Brownian 

motion of nanoparticles are not enough to explain the experimental data. 

One key aspect of the Brownian motion picture that has yet to be fully understood involves the 

steady state assumption made in the Langevin equation. This equation assumes that the 

nanoparticle is in a constant state of motion, and the drag on it remains the same. However, 

including the transient effect of the Stokes flow would result in a memory effect and an integral 
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Langevin equation. The solution of this equation shows that the velocity decay follows a power 

law instead of an exponential function, as originally discovered through computational simulation 

[46]. This power law decay is much slower than the exponential decay, and this has been used as 

a basis for developing a kinetic argument by Xuan et al. [47] and Yang [48]. However, a rigorous 

solution of the retarded Langevin equation has shown that the Einstein relation, which was 

obtained under the assumption of exponential decay, still holds true, casting doubt on the power-

law based kinetic picture. Additionally, molecular dynamics simulations have indicated that the 

hydrodynamic effect caused by Brownian motion is not enough to explain the increased thermal 

conductivity [49–50]. 

b. Clustering 
 

Although the simplest explanation for nanofluids is that nanoparticles are isolated and evenly 

dispersed in the liquid, the reality of suspensions of nanoparticles in liquids is more complex. 

Nanoparticles can interact, group together, and form internal structures [51–53]. Studying these 

structures falls under the field of soft materials, a large branch of condensed matter physics. 

These internal structures of nanofluids may be able to explain experimental results. The idea that 

nanoparticles form clusters and that these clusters can explain experimental results, has been 

mentioned in several studies [54–57]. Prasher et al. [54] started with the notion that clusters of 

nanoparticles, which have a larger effective volume, along with their Brownian motion, can 

account for the experimental data, and then moved on to develop a three-level homogenisation 

model based on effective media theory without considering Brownian motion, and suggested that 

these models can explain experimental observations. 

c. Liquid Layering 
 

The structure of liquids near solid surfaces can be impacted by the potential of the solid, leading 

to the formation of crystalline layers, usually 1 to 5 atomic layers thick [58]. This is sometimes 

suggested as a reason for the increased thermal conductivity in nanofluids. However, as noted by 

Xue et al. [59], the liquid layering is unlikely to be the explanation for the experimental 

observations. In addition, the reduced thermal conductivity of 1 to 5 atomic layer crystal films 

due to phonon size effects in solids further weakens the possibility that liquid layering is the 

cause of increased thermal conductivity. 
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d. Ballistic Transport and Nonlocal Effects 
 

Ballistic transport occurs when internal scattering mechanisms are insufficient, leading to a 

dominance of boundary and interfacial scattering [60]. This results in nonlocal heat conduction. 

Reduced thermal conductivity in solid nanostructures is one example of ballistic transport, while 

nonlocal transport outside a nanostructure occurs when the heat carrier mean free path in the 

surrounding medium is much greater than the length of the nanostructure itself [61–62]. Both 

ballistic and nonlocal transport processes are expected to result in lower heat transfer than 

predicted by diffusion theory based on bulk material properties. Thus, it is unlikely that these 

processes are responsible for the observed enhanced thermal conductivity in nanofluids. Kumar et 

al. [63] proposed a kinetic theory model that considers ballistic transport of nanoparticles in the 

liquid, but this would require the solid nanoparticles' mean free path in the liquid to be in the 

centimetre range, which is unrealistic [42]. 

e. Thermophoresis 
 

Thermophoresis refers to the movement of nanoparticles caused by a temperature gradient. When 

the temperature is higher on one side, the particles on that side experience greater force from the 

energetic molecules, causing them to move to the cooler side. This could impact the thermal 

conductivity measurements [64]. However, when the hot-wire temperature was altered in the 

experiment, leading to a change in the temperature gradient, no significant change was observed 

in the measured thermal conductivity. This indicates that thermophoresis is not a significant 

factor. An analysis by Koo and Kleinstreuer also concluded that thermophoresis does not 

contribute significantly to thermal conductivity enhancements [65]. 

 

f. Near-field radiation 
 

Domingues et al. [66] conducted molecular dynamics simulations that showed that heat transfer 

between two nanoparticles increases rapidly as they get closer. This led to the suggestion that 

near-field radiation may be responsible for the increased thermal conductivity. While 

experiments have shown that near-field radiation can be much higher than the maximum 

radiation exchange described by blackbodies [67], it is still much smaller than heat conduction 
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through a medium. When two surfaces are in close proximity, the distinction between radiation 

and conduction becomes less clear. If the surfaces are in complete contact, the thermal boundary 

resistance between them would apply. Therefore, it is unlikely that near-field radiation is the 

cause of the observed increased thermal conductivity. 

 

2.4 Parameters That Govern Thermal Conductivity Enhancement in 
Nanofluids 
 

It is evident that the thermal conductivity of a nanofluid is influenced by various factors, such as 

the base fluid material, nanoparticle material, the shape and size of the nanoparticles, the use of 

surfactants, and the pH of the nanofluid, among others [68]. 

 
a. Type of Carrier Fluid Used 

 

It was discovered that the thermal conductivity of the synthesised fluid is largely influenced by 

the thermal conductivity of the base fluid used. In a study by Barbes et al. [69], CuO 

nanoparticles of average size 25 nm were dispersed in a water-ethylene glycol base fluid. Results 

showed that, regardless of the volume fraction and temperature of the nanofluid, the thermal 

conductivity of water-CuO nanofluid was higher compared to that of ethylene glycol-CuO 

nanofluid. 

Agarwal et al. [70] investigated the thermal conductivity of different nanofluids by dispersing 

CuO nanoparticles with an average size of 45 nm in various carrier fluids, including distilled 

water, ethylene glycol, and engine oil. They found that the thermal conductivity of the distilled 

water-based nanofluid was the highest due to the higher thermal conductivity of distilled water 

compared to the other two base fluids. 

 

b. Type of Nanoparticles Used 
 

It was found that the type of nanomaterial has a significant impact on the thermal conductivity of 

the nanofluid, but the thermal conductivity of the nanomaterial alone is not the sole determining 
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factor. The size and clustering of particles also play a crucial role in the thermal conductivity of 

the nanofluid [71–75]. This was demonstrated in a study by Yoo et al. [76] who synthesised 

nanofluids using TiO2 and Al2O3 nanoparticles in water. Although Al2O3 nanoparticles have 

higher thermal conductivity than TiO2 nanoparticles, the nanofluid made with TiO2 showed 

higher thermal conductivity. This was attributed to the smaller average particle size (25 nm) of 

the TiO2 nanoparticles compared to the Al2O3 nanoparticles (48 nm). The researchers concluded 

that the thermal conductivity of the nanoparticles is not the main factor that determines the 

thermal conductivity of the nanofluid; rather, the surface area-to-volume ratio of the particles 

plays a key role. Another study by Pang et al. [77] measured the thermal conductivity of Al2O3-

methanol and SiO2-methanol nanofluids and found that the former had higher thermal 

conductivity due to higher aggregation of SiO2 nanoparticles. 

c. Nanoparticle size 
 

Researchers found that the higher the surface area to volume ratio of nanoparticles, the higher the 

thermal conductivity of the nanofluid. This can be achieved by using smaller particles [78]. Wang 

et al. [79] studied the effect of particle diameter and volume fraction on thermal conductivity 

using Al2O3 and CuO nanoparticles in deionised water, engine oil, and ethylene glycol. Results 

showed that thermal conductivity increased as particle size decreased at a given volume fraction 

of nanoparticles. Patel et al. [80] investigated the effect of particle size on thermal conductivity of 

Al2O3 nanofluid in water and ethylene glycol and concluded that thermal conductivity is 

inversely proportional to particle size. The authors attribute this to a higher surface-to-volume 

ratio, higher particle velocity, and more rapid Brownian motion caused by smaller particles. 

 

d. Nanoparticle Shape 
 
The surface area to volume ratio of nanoparticles has a significant impact on thermal conductivity 

of nanofluid, and this ratio is also affected by the shape of the nanoparticles. Maheshwary et al. 

[81] found that the maximum thermal conductivity was seen in cubical TiO2 nanoparticles (52 

nm in size), followed by cylindrical (40 nm to 53 nm), and spherical (25 nm) particles. Despite 

their lower thermal conductivity, spherical particles are widely used in heat transfer applications 

because of their lower cost, higher stability, and better tribological properties. On the other hand, 



 
43 

 

cubical particles are less popular due to their higher cost, despite their better thermal conductivity 

performance. Murshed et al. [82] investigated the effect of TiO2 nanoparticle shape on thermal 

conductivity and found that rod-shaped particles had higher thermal conductivity compared to 

spherical particles for all volume fractions. 

 

e. Temperature of Nanofluid 
 
Many studies have been conducted to understand the effect of temperature on the thermal 

conductivity of nanofluid, with results indicating an increase in thermal conductivity with rising 

fluid temperature. The variation in thermal conductivity with temperature can be attributed to the 

influence of Brownian diffusion and thermomigration on the temperature of the nanofluid. 

Sundar et al. [83] found that the thermal conductivity of Fe3O4 water and ethylene glycol 

nanofluid increased with temperature. Kole and Day [84] investigated the thermal conductivity of 

CuO lubricating oil nanofluid at various temperatures and found that thermal conductivity 

increased by 10% and 12% at 30°C and 80°C, respectively, for a 2.5% volume fraction. 

 

2.5 Impact of Enhanced Thermal Conductivity on BTMS 
 

Thermal conductivity enhancement can lead to significant improvements in the performance, 

efficiency, and reliability of BTMS [85]. 

Thermal conductivity in nanofluids can efficiently dissipate heat generated during battery 

operation. This efficient heat removal is crucial in preventing the battery from reaching excessive 

temperatures, ensuring it operates within a safe and optimal thermal range. This is particularly 

crucial in high-energy-density batteries, such as those used in electric vehicles, which can 

generate significant heat during charging and discharging.  

Batteries operating at elevated temperatures can experience reduced efficiency, accelerated 

degradation, and even safety risks. With improved thermal conductivity, it becomes easier to 

maintain optimal operating temperatures, thereby extending battery life and ensuring safer 

operation. Batteries operating at higher temperatures are less efficient. By maintaining lower 
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operating temperatures through improved thermal management, the overall energy efficiency of 

the battery system can be enhanced. 

Hotspots, localized areas of elevated temperature, can develop within battery packs, leading to 

thermal stress and potential safety hazards. Enhancing thermal conductivity helps distribute heat 

more evenly throughout the battery, reducing the risk of hotspots and associated problems. 

Higher thermal conductivity enables batteries to operate at higher power densities, which is 

essential for applications requiring rapid energy discharge or charging. Electric vehicles, for 

example, could benefit from improved acceleration and regenerative braking capabilities. 

In BTMS, cooling components such as fans or liquid cooling systems can add weight, 

complexity, and energy consumption. Improved thermal conductivity can reduce the reliance on 

these cooling mechanisms, leading to more energy-efficient and lightweight designs. 

Fast charging is desirable in electric vehicles and consumer electronics. Improved thermal 

conductivity can enable faster charging by dissipating the heat generated during rapid charging 

more effectively, thereby reducing the risk of overheating. 

Longer battery lifespans and reduced cooling requirements can translate into cost savings for 

manufacturers and end-users. Batteries that last longer and require less maintenance are more 

economically attractive. 
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3. Methodology  
 

In this section, a comprehensive overview of the methodology employed in this study to 

determine the thermal conductivity of a nanofluid system through Non-Equilibrium Molecular 

Dynamics (NEMD) simulations is provided. The primary focus of this study is modelling a 

nanofluid system composed of copper and silver nanoparticles dispersed within a base fluid, 

polyalphaolefin (PAO-2) at different volume fractions. 

 

3.1 Software 

List of all the software used in this work is mentioned in this section. 

 
a.  LAMMPS 

 
All simulations in this study were preformed using LAMMPS. 

LAMMPS, which stands for Large-scale Atomic/Molecular Massively Parallel Simulator, is a 

molecular dynamics program that was developed by Sandia National Laboratories [86]. This 

software is free and open source, distributed under the GNU General Public License, and was 

first released in 1995. LAMMPS uses the Message Passing Interface for parallel communication 

and is available for various operating systems including Linux, OS X, and Windows. The original 

code was written in C++ and was developed under a joint agreement between two laboratories 

from the US Department of Energy and three private sector firms. 

LAMMPS is known for its efficient computation, and it achieves this through its use of 

neighbour lists (Varlet lists) to track neighbouring atoms. The simulation can be optimized for 

each system by adjusting the neighbour list. For parallel computing, LAMMPS uses spatial-

decomposition techniques where the simulation domain is divided into partitions, with each 

processor responsible for a specific subdomain. These processors communicate with each other 

and store information about atoms that are located on the boundary of their subdomains [86], 

[87]. LAMMPS has made significant contributions in fields such as heat transfer, fluid 

mechanics, composite materials, biological science, and more. 
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b.  Moltemplate 
 
Moltemplate is a general and flexible tool for creating molecular dynamic (MD) simulation input 

files [88]. It is used to define molecular systems using a simple and intuitive text-based format. 

Moltemplate automatically generates valid simulation input files for various MD simulation 

engines (such as LAMMPS) from these definitions. It supports a wide range of inter-particle 

potentials and provides a variety of built-in options for defining bond, angle, dihedral, and 

improper interactions. This allows users to define complex molecular systems efficiently and 

effectively, which can be useful in various applications such as studying the properties of 

materials, predicting reaction kinetics, and modelling biological systems. Moltemplate is written 

in Python and is freely available under an open-source license. 

Moltemplate was used in this study to prepare the input data file for the PAO-2 simulations. 

c.  OVITO 
 

OVITO, or Open Visualization Tool, is a free software for visualizing and analysing atomistic 

data from large-scale molecular dynamics and Monte-Carlo simulations [89]. Its aim is to provide 

flexibility and reliability in visualization. These simulations are widely used to model materials at 

an atomic level and generate 3D atomic configurations and the movement of atoms. To 

effectively analyse and understand these complex systems, a powerful visualization tool is 

crucial. OVITO serves this purpose by converting raw data into an understandable atomic 

representation, allowing for deeper insights into the simulation. OVITO is written in C++ and can 

run on Microsoft Windows, MacOS, and Linux. Some of its key features include coordination 

number analysis, radial distribution function, displacement vector calculation, atomic strain 

tensors, and histogram, scatter plot, and bin-and-reduce functions. 

All simulations were visualised by OVITO.  
 

d. Visual Molecular Dynamics (VMD) 
 

Visual Molecular Dynamics (VMD) is an open-source molecular visualization and analysis 

software primarily designed for researchers in the fields of chemistry, biology, and biophysics. 

Developed by the Theoretical and Computational Biophysics Group at the University of Illinois 
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at Urbana-Champaign [90], VMD is a powerful tool that enables scientists to visualize, analyse, 

and manipulate large biomolecular systems, such as proteins, nucleic acids, and lipid bilayers. 

VMD provides a wide range of features, including: 

• VMD can read and write a wide variety of molecular file formats, including PDB, 

CHARMM, AMBER, GROMACS, and NAMD, among others. 

• VMD is equipped with advanced algorithms and rendering techniques that enable real-

time visualization of large molecular systems, even on modest hardware. 

• VMD offers a comprehensive set of built-in analysis tools, such as distance 

measurements, angle calculations, hydrogen bond identification, secondary structure 

analysis, and more. 

• Users can tailor the VMD interface to their specific needs and preferences, thanks to a 

robust scripting language that allows for the creation of custom scripts and plugins. 

• TopoTools is a plugin for the VMD software that provides utilities for the creation, 

manipulation, and analysis of topological information in molecular systems. Developed 

by Axel Kohlmeyer [91], TopoTools is particularly useful for preparing and processing 

input and output data for molecular dynamics simulations using LAMMPS. 

• VMD runs on various operating systems, including Windows, macOS, and Linux, and can 

be used on a wide range of hardware, from desktops to high-performance computing 

clusters. 

All pictures of the simulations shown in this thesis were obtained using VMD. 

 

3.2  General Methodology Used in this Study 
 

NEMD simulations were carried out to determine the thermal conductivity of a Nanofluid 

system. Nanofluid systems were modelled by suspending copper and silver nanoparticles of 

different volume fractions in base fluid PAO-2.  

Using PAO-2 as a base fluid was not based on scientific reasoning. The choice was made due to 

the availability of information about PAO-2 in the research group and its use in other projects. 

In this study, the properties of polyalphaolefin (PAO-2), a commonly used synthetic oil is 

simulated. With a kinematic viscosity of 2 cSt or 2 mm2 s−1 at 373 K, PAO-2 is a popular choice 
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as the base fluid for lubricants due to its high viscosity index, low-temperature fluidity, and high 

oxidative and chemical stability [92]. Additionally, its biodegradable properties [93] and safe 

usage make PAO-2 a suitable option for use as a coolant in various electromechanical devices. 

The PAO-2 base fluid is represented by 9,10-dimethyloctadecane (C20H42), which is commonly 

found in PAO-2 oil [94]. To simulate the base fluid, a simulation box containing molecules of 

9,10-dimethyloctadecane [95] was created.  

System setup:  

The system was modelled using a cubic simulation box of size 50 x 50 x 100 Å filled with copper 

atoms and PAO-2 molecules. The initial configuration was generated using a random placement 

of atoms with a specified number density. This have been achieved using the Moltemplate 

software [88]. The time-step used in this study is 0.04 fs. 

Force field:  

In this simulation, the L-OPLS-AA force-field [44–45] is utilized to model the PAO-2 

interactions, which has a generic form as follows [97]: 

 

 
 

3-1 

where the right-hand side of the equation computes the bonded interaction energies from bond 

stretching, bending, and torsions. The van der Waals and electrostatic interactions are calculated 

by the last two terms. The bonding energies, Lennard-Jones parameters for modelling van der 

Waals energies, and partial charges for electrostatics used are listed in the tables below [96–99]. 
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Table 3-1 Bonding parameters used in term 1 in equation v(r). 

Bond kb (kcal mol-1Å-2) b0 (Å) 
C-C 268 1.529 
C-H 340 1.090 

 

Table 3-2 Angle parameters used in term 2 in equation v(r). 

Angle (kcal mol-1 rad-2) (deg) 
C-C-H 37.50 110.7 
H-C-H 33.00 107.8 
C-C-C 58.35 112.7 

 

Table 3-3 Dihedral parameters used in term 3 in equation v(r). 

Dihedral  (kcal mol-1)  (kcal mol-1)  (kcal mol-1)  (kcal mol-1) 
C-C-C-C 0.6446926386 -0.2143420172 0.1782194073 0.0000 

H-C-C-H 0.0000 0.0000 0.3000 0.0000 

C-C-C-H 0.0000 0.0000 0.3000 0.0000 

C-CCH-C-C 1.3000 -0.0500 0.2000 0.0000 

CCH-C-C-C 1.3000 -0.0500 0.2000 0.0000 

C-CCH-CCH-C 1.3000 -0.0500 0.2000 0.0000 

CCH-CCH-C -C 1.3000 -0.0500 0.2000 0.0000 

 

Table 3-4 LJ parameters & partial charges of the atoms used in terms 4 and 5 in equation v(r). 

Atom type  (kcal/mol)  (Å)  
CCH3 0.066 3.5 -0.222 
CCH2 0.066 3.5 -0.148 
CCH 0.066 3.5 -0.060 
HCH3 0.030 2.5 0.074 
HCH2 0.026 2.5 0.074 
HCH 0.030 2.5 0.060 

 

Minimization: 

Minimization in molecular dynamics refers to the process of finding the minimum energy 

configuration of a system of interacting particles. This process is used to remove any initial 
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positional or thermal fluctuations in the system and bring the particle coordinates to a 

configuration that corresponds to the minimum potential energy. The minimization is achieved by 

iteratively adjusting the particle positions so as to minimize the potential energy of the system. 

This is typically done using a gradient-based optimization method, such as conjugate gradient or 

steepest descent, in which the particle positions are updated in the direction of the negative 

gradient of the potential energy. The minimization process is typically performed prior to 

performing the actual molecular dynamics simulation, in order to ensure that the system is in a 

physically meaningful configuration before the dynamics are computed. 

The Polak-Ribiere version of the conjugate gradient algorithm, referred to as "cg", is utilized in 

this study. The algorithm computes the force gradient at each iteration and combines it with 

previous iteration information to determine a new search direction, which is conjugate to the 

previous direction. The PR variant of the CG method is known to be the most effective choice for 

many problems, as it adjusts the direction choice and restarts the CG method when progress 

ceases. 

The stopping tolerance for energy used is 1x10-13 (unitless) and stopping tolerance for force used 

is 1x10-12 (kcal/mol)/Angstrom. In addition, the maximum iterations of the minimizer were 

chosen to be 1000 and the maximum number of force/energy evaluations was 10000. 

Equilibration:  

The system was equilibrated first for 40 picoseconds at temperatures ranging 293, 313, 333, 353, 

and 373 K, where separate runs were performed for each temperature separately. This 

equilibration was preformed using an NPT ensemble.  

The second equilibration step was performed for 40 picoseconds also at temperatures ranging 

293, 313, 333, 353 , and 373 K, where separate runs were performed for each temperature 

separately. This equilibration was preformed using an NVT ensemble.   

This equilibration was performed to remove any residual forces from the initial configuration and 

to reach a steady state. 

The third and final equilibration step was performed to apply the heat flux under an NVE 

ensemble. This equilibration took 80 picoseconds. The heat added and subtracted from the two 

regions is 0.0001 kcal/mol. 
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Production Run:  

After equilibration, the production run was performed for 160 picoseconds. The temperature of 

the system was kept constant via an NVE ensemble, and the heat flux was calculated.  

 

In the discussed MD simulations, random initial velocities and temperatures was used as a means 

to ensure the statistical representativeness of their findings while averting the introduction of 

potential biases. It is important to note that this common practice in MD simulations was 

complemented by the implementation of a seeding number or random number generator (RNG) 

to govern the stochasticity of the initial conditions. 

More specifically, a meticulously defined seed value was adopted for the RNG. This particular 

seed value played a pivotal role in establishing uniformity in the generation of random numbers 

at the commencement of each simulation run. This uniformity, engendered by the constant seed, 

bore significance for three primary objectives: 

Firstly, the utilization of a fixed seed value guaranteed the reproducibility of the simulations. This 

was of paramount importance, as it allowed for the precise replication of simulation conditions—

a fundamental aspect for results validation and the facilitation of additional runs and subsequent 

analyses. 

Secondly, in scenarios necessitating multiple simulation runs for the purpose of ensemble 

averaging or the attainment of statistically robust outcomes, the steadfast use of a fixed seed 

ensured that the randomness introduced across individual runs remained consistent. This 

congruity formed the bedrock for confident ensemble averaging and various other essential 

statistical procedures. 

Lastly, the employment of a fixed seed acted as a proactive measure to avert the introduction of 

systematic bias. By mitigating the impact of variability stemming from initial condition 

disparities, the researchers effectively minimized the potential for inadvertent prejudicial 

influences. 

It should be noted that the definition of simulation parameters in MD simulations, such as the 

time step and the size of the simulation box, involves a combination of scientific judgment, 

computational considerations, and physical principles. The choice of the time step often depends 
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on the physical properties of the system being simulated. It should be small enough to accurately 

capture the fastest motions in the system. The Nyquist theorem suggests that the time step should 

be smaller than half of the fastest oscillation or vibration period of interest. A critical factor in 

choosing the time step is numerical stability. A time step that is too large can lead to numerical 

instability in the simulation. Stability criteria depend on the integration algorithm used (e.g., 

Verlet, leapfrog) and the force field parameters. Initial time step values are often chosen based on 

experience and prior knowledge, and then the simulation is run and monitored for stability. If 

instability is observed, the time step is reduced until stability is achieved. 

 

3.3  Calculating Thermal Conductivity  
 

The fix eHEX command in LAMMPS can be used to calculate thermal conductivity using the 

NEMD direct method. The NEMD direct method is a non-equilibrium method that involves 

applying a heat flux to a system and measuring the resulting temperature gradient. The thermal 

conductivity can then be calculated from the heat flux and temperature gradient using the Fourier 

law of heat conduction. 

To use fix eHEX to calculate thermal conductivity in the direct method NEMD, two regions are 

created in the simulation box: a hot region and a cold region, where energy is being added and 

subtracted respectively. eHEX fix is an implementation of the asymmetric version of the 

enhanced heat exchange algorithm developed by Wirnsberger [100]. The eHEX algorithm 

extends the heat exchange algorithm developed by Ikeshoji [101] by incorporating additional 

coordinate integration to account for higher-order truncation terms in the operator splitting. In 

this method, heat is transferred by rescaling velocities appropriately, adding a certain amount of 

heat to one region and removing it from another. Fix eHEX was chosen because of the excellent 

energy conservation of this method.  

To add or subtract energy, the velocities of atoms in the heat source or heat sink regions are 

rescaled. The thermal conductivity of a system can be determined using Fourier's law of 

conduction, which states that [100]: 

 
 

3-2 
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where

 

 
 

3-3 

 

Lx and Ly are the lengths of the simulation box in the x and y directions. The value of  is 

obtained by averaging the slopes of the linear profiles on the left and right sides. Q (kcal/mol) is 

the energy added and subtract from the 2 regions. The factor of 2 in the denominator is due to the 

periodic boundary conditions, which result in half of the added energy to the heat source flowing 

to the left. Temperature profile data is collected during the final 40000000 k timesteps. 

 



 
54 

 

4. Results & Discussions 
 

4.1 Validation  
 

To ensure accuracy and validity of the used model, the methodology and interatomic potentials 

employed in this research was validated by comparing the thermal conductivity of the base fluid 

(liquid argon) with both experimental data and other molecular dynamics (MD) studies. The 

same has been done for the argon copper nanofluid with varying degrees of volume fractions of 

the nanoparticle. 

a. First Validation 
 

First the validation was performed for an argon - copper nanofluid system by using the same 

configuration of Achhal et al. [34]. 

System setup:  

The system was modelled using a cubic simulation box of size 68.64 Å × 68.64 Å × 68.64 Å. The 

simulation box is filled with argon atoms arranged in a face-cantered cubic (fcc) lattice with a 

lattice parameter of 5.72 Ǻ. The time-step used in this simulation is 1 fs.  

Force field:  

In this simulation, the argon-argon interaction is modelled with L-J potential, using 

 & .The copper-copper interaction is modelled with L-J 

potential, using  &  [34]. The argon-copper 

interaction was obtained using the mixing rule. 

Equilibration:  

The system was equilibrated first for 2000 picoseconds at 86 K. This equilibration was preformed 

using an NVT ensemble.  

This equilibration was performed to remove any residual forces from the initial configuration and 

to reach a steady state. 

The second equilibration step was performed for 2000 picoseconds also at 86 K. This 

equilibration was preformed using an NVE ensemble.  
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Production Run:  

After equilibration, the production run was performed for 2000 picoseconds. The temperature of 

the system was kept constant via an NVE ensemble, and the heat flux was calculated.  

The results of the validation study are shown in the table 4-1 and compared to the results 

published by Achhal et al. [34]. It should be noted that the results reported by Achhal et al. [34] 

was obtained using the green-kubo method. 

Table 4-1 Results of the validation study & comparison. 

Volume 
fraction % 
CuNanoparticle 

Number 
of 
CuAtoms 

Number 
of 
ArAtoms 

Radius (Ǻ) 
of 
CuNanoparticle 

Calculated 
Thermal 
conductivity 
(W/mK) 

Thermal 
conductivity 
(W/mK) by 
Achhal et al. 
[34] 

Percentage 
Error (%) 

0.19 14 6897 4 0.1419 0.1351 5.03 

0.65 80 6877 6 0.2596 0.2155 20.46 

1.52 188 6836 8 0.4846 0.4188 15.71 

2.93 370 6773 10 0.8718 0.8430 3.416 

 

The percentage error shown in table 4-1 is highly inconsistent. Which is probable given that the 

thermal conductivity was obtained by two different methods, namely, NEMD direct method and 

EMD green-kubo method. Refer to section 2.1 “l Choosing the Appropriate Method” for a 

detailed discussion on the two methods.  

b. Second Validation 
 

Second the validation was performed for an ethylene glycol - copper nanofluid system by using 

the same configuration of Khamliche et al. [31]. 

System setup:  

The system was modelled using a cubic simulation box of size 100 Å × 100 Å × 100 Å. The 

simulation box is filled with ethylene glycol atoms arranged in a face-cantered cubic (fcc) lattice 

with a lattice parameter of 5.0553 Ǻ. The time-step used in this simulation is 0.04 fs. The 

nanoparticle was added in the centre of the box with a diameter of 3 nm. 

 



 
56 

 

Force field:  

In this simulation, the ethylene glycol interactions are modelled with L-J potential, using the 

values in the table 4-2 [31]. 

Table 4-2 LJ parameters for the EG/Cu nanofluid system. 

Atom (i-j) εij (kcal/mol) σij (Å) 
H-C 0.03 2.5 
C-C 0.066 3.5 
O-H 0.17 3.07 
H-Cu 0.03396 1.335 
O-Cu 0.06387 2.7172 

 

And the copper-copper interaction is modelled using embedded atom model (EAM) [16].  

The ethylene glycol – copper interaction was obtained using the mixing rule. 

Equilibration:  

The system was equilibrated first for 100 picoseconds at 298 K. This equilibration was preformed 

using an NVT ensemble.  

This equilibration was performed to remove any residual forces from the initial configuration and 

to reach a steady state. 

The second equilibration step was performed for 100 picoseconds also at 298 K. Th is 

equilibration was preformed using an NPT ensemble.   

Production Run:  

After equilibration, the production run was performed for 100 picoseconds. The temperature of 

the system was kept constant via an NVE ensemble, and the heat flux was calculated.  

The thermal conductivity was calculated at 0.2868 W/mK which is in good agreement with the 

published thermal conductivity of Khamliche et al. [31] at 0.29 W/mK. 
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4.2 Lennard-Jones Parameter Optimisation  
 

The Lennard-Jones (LJ) potential is a simple, yet powerful mathematical model used to describe 

the pairwise interaction between particles in molecular dynamics simulations. Its importance in 

computational chemistry and biophysics lies in its ability to capture the key features of 

intermolecular forces, such as the attractive van der Waals forces and the repulsive forces due to 

electron cloud overlap. However, the accuracy and reliability of the LJ potential depend on the its 

parameters, which determine the depth of the potential well and the distance at which the 

potential is at its minimum.  

The optimisation of Lennard-Jones parameters plays a critical role in ensuring accurate and 

reliable molecular dynamics simulations. The optimised parameters enable researchers to obtain 

meaningful insights into the behaviour of molecular systems, improve the stability of simulations 

and facilitation of computational efficiency. Optimised LJ parameters are crucial for accurately 

representing the interactions between particles in a simulated system. This ensures that the 

simulation results closely resemble experimental observations and provide reliable insights into 

the behaviour of the system. Also, properly optimised parameters lead to more stable simulations, 

reducing the likelihood of numerical instabilities and artifacts. This results in more reliable and 

consistent outcomes in molecular dynamics studies.  

The initial LJ parameters used in the PAO-2/Cu nanofluid system is shown in table 4-3. 

Table 4-3 LJ parameters used in the PAO-2/Cu nanofluid system 

Atom (i-j) εij (kcal/mol) σij (Å) 
C-C 0.066 3.5 
H-H 0.026 2.5 
C-H 0.0445 2.958 
C-Cu 0.31152 2.5 
H-Cu 0.03396 1.335 

 

The C-C, H-H, and C-H interactions were obtained from Khamliche et. al [31].  

C-Cu and H-Cu interactions were obtained using the mixing rules or combination rules. The 

combination rules for the Lennard-Jones parameters are used when simulating mixed systems 

with different types of particles. These combination rules are known as the Lorentz-Berthelot 

rules:  
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4-1 

 

  4-2 

In the PAO-2/Cu simulations these parameters worked well in keeping the nanoparticle intact 

during NPT and NVT ensembles. However, it did not result in an accurate density and thermal 

conductivity of the system. 

After further investigation, the problematic H-Cu parameter was identified. Thus, the parameter 

 was simulated at different values of 0.043, 0.053, 0.063, 0.073, 0.083, 0.093. The best 

candidate was identified as  with density equal to 0.85029685 g/cm3 at 1% volume 

fraction of Copper. This is in good agreement with the density of pure PAO oil of 0.8318 g/cm3 

[102]. Indeed, the calculated density is slightly higher than the reported PAO oil density due to 

the presence of copper atoms. 

The LJ parameters for the PAO-2/Ag nanofluid system shown in table 4-4, on the other hand, 

worked perfectly and was obtained from Sarkar et al [102]. Except for the H-H interaction which 

was obtained from Khamliche et. al [31]. 

Table 4-4 LJ parameters used in the PAO-2/Ag nanofluid system. 

Atom (i-j) εij (kcal/mol) σij (Å) 
C-C 0.0665 3.506 
H-H 0.03 2.5 
C-H 0.030 2.958 
C-Ag 0.744 2.9905 
H-Cu 0.657 2.316 

 

In conclusion, the LJ potential obtained from the mixing rule used for the C-Cu and H-Cu 

interactions were not describing the PAO2-Cu system accurately. Thus, an attempt was made 

through trial and error to get the optimised values for the C-Cu and H-Cu interactions that 

accurately described the PAO2-Cu system. 
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4.3 Nanofluid Simulations 
 
Two nanofluid systems were prepared to preform thermal conductivity calculations. 

The first system consists of PAO-2 base fluid with copper nanoparticle which is 1 nm in 

diameter. 

The second system consists of PAO-2 base fluid with silver nanoparticle which is 1 nm in 

diameter. 

Silver nanoparticle was chosen in the nanofluid due to its unique properties that contribute to 

enhanced thermal conductivity, heat transfer, and stability. Silver has one of the highest thermal 

conductivities among metals, which makes it an excellent material for improving the heat transfer 

efficiency of a base fluid when used as nanoparticles. Silver nanoparticles exhibit good chemical 

stability in various fluids, ensuring that the nanofluid retains its desired properties over time. The 

unique properties of silver nanoparticles make them suitable for various applications, such as heat 

exchangers, cooling systems, and electronic devices, where enhanced heat transfer and thermal 

management are essential. Silver nanoparticles can be easily dispersed in different base fluids, 

resulting in stable nanofluids with minimal particle agglomeration [103]. 

In both cases the size of the periodic box is 46.459 x 46.459 x 46.459 Å and consists of 10044 

PAO-2 atoms.  

The simulations were performed for 5 different volume fractions for each system from 1% to 5% 

volume fraction. 

For the copper nanoparticle the volume fractions of 1%, 2%, 3%, 4%, and 5% translates to 133, 

265, 398, 530, and 648 copper atoms respectively. 

For the silver nanoparticle the volume fractions of 1%, 2%, 3%, 4%, and 5% translates to 80, 

160, 239, 319, and 399 silver atoms respectively. 

The periodic box is partitioned into 46 sections along the z-direction. The first through third 

sections function as the heat source, whereas the twenty-third through twenty-sixth sections serve 

as the heat sink region. 

The system was equilibrated under NPT ensemble for 2,000,000 timesteps, followed by 

2,000,000 timesteps in the NVT ensemble, where the timestep is equal to 0.5 fs. Subsequently 
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under NVE ensemble, during the next 4,000,000 timesteps, a consistent heat flux is applied in the 

z-direction by simultaneously adding energy (0.0001 kcal/mol) to the heat source region and 

removing an equivalent amount of energy from the heat sink region over equal time intervals. 

First and last timesteps of the simulation box is shown in the figures below. 

 

Figure 4-1 First timestep after minimisation: Copper NP. 
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Figure 4-2 Last timestep of the production run: Copper NP. 

 
As you can see in Figure 4-2 the nanoparticle kept its shape and stayed intact throughout the 

simulation. 
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4.4 Thermal Conductivity 
 

The result of the PAO-2 base fluid thermal conductivity was obtained through MD simulation 
using the same methodology described in section 3. 

The calculated thermal conductivity at temperature 293 K is shown in Figure 4-3. 

  
Figure 4-3 Calculated thermal conductivity at 293 K. 

The calculated thermal conductivity enhancement of PAO2/Cu and PAO2/Ag nanofluids at 

volume fraction of 1% and 2% at temperature of 293 K is shown in table 4-5. 

The thermal conductivity enhancement of the PAO2/Ag is noticeably higher than that of 

PAO2/Cu at the two different volume fractions. This result is logical and expected since the 

thermal conductivity of the silver is higher than copper and has one of the highest thermal 

conductivities amongst metals.  



 
63 

 

Table 4-5: Thermal conductivity enhancement of PAO2/Cu and PAO2/Ag. 

Nanofluid 

 

Nanoparticle 

vol. fraction 

(%) 

Nanofluid 

Thermal 

conductivity 

(W/mK) 

Base fluid 

thermal 

conductivity 

(W/mK) 

Enhancement 

(%) 

PAO-2/Cu 1 0.2563 0.1706 50% 

PAO-2/Ag 1 0.3011 0.1706 76% 

PAO-2/Cu 2 0.3153 0.1706 84% 

PAO-2/Ag 2 0.3415 0.1706 100% 

 

Since data regarding the properties PAO-2 is limited in literature, the base fluid thermal 

conductivity of PAO-2 at 0.1706 W/mK is compared to the thermal conductivity of PAO at 0.143 

W/mK according to Xu et al [104].  

Also, there are no studies to date that explore PAO-2 nanofluids. Thus, the calculated thermal 

conductivity was compared to comparable base fluids like ethylene glycol and oil. 

The calculated results for 1% volume fraction of copper shows significant thermal conductivity 

enhancement of 50% compared to 15% thermal conductivity enhancement of 1% volume fraction 

of copper in ethylene glycol base fluid, where the ethylene glycol base fluid thermal conductivity 

is 0.252 W/mK and the nanofluid thermal conductivity is 0.29 W/mK [31]. 

Another comparison can be made to the experimental study of engine oil/Cu nanofluid by 

Aberoumand et al [105]. They reported 16% thermal conductivity enhancement of engine oil/Cu 

nanofluid, where the engine oil base fluid thermal conductivity is 0.13 W/mK and the thermal 

conductivity of the nanofluid at 1% volume fraction of copper is 0.152 W/mK. 

Extra comparison can be made to the experimental study of mineral oil/Cu nanofluid by Esfahani 

et al. [106].They reported 8% thermal conductivity enhancement of mineral oil/Cu nanofluid, 

where the mineral oil base fluid thermal conductivity is 0.157 W/mK and the thermal 

conductivity of the nanofluid at 0.05% volume fraction of copper is 0.17 W/mK. 

Thus, the PAO-2/Cu nanofluid at 1% volume fraction of copper shows significant enhancement 

in thermal conductivity and would be a good candidate for heat transfer liquid for BTMS.  
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As mentioned earlier, silver nanoparticle was chosen for its enhanced thermal conductivity and 

that was reflected in the 76% thermal conductivity enhancement. However, this type of nanofluid 

wasn’t explored in literature, thus it is difficult to compare the results. 

Overview of the discussed comparison is shown in table 4-6. 

Table 4-6: Comparison of thermal conductivity enhancement.  

Base fluid 

Base fluid 

thermal 

conductivity 

(W/mK) 

Nanofluid (1% 

vol. fraction of 

Cu) 

Nanofluid 

Thermal 

conductivity 

(W/mK) 

Enhancement 

(%) 

Reference 

PAO-2 0.1706 PAO-2/Cu 0.2559 50 Own calculation 

Ethylene 

glycol 
0.252 

Ethylene 

glycol/Cu 
0.29 15 

[31] 

Engine oil 0.13 Engine oil/Cu 0.152 16 [105] 

Mineral oil 0.157 
Mineral oil/Cu 

(0.05% vol. 

fraction of Cu) 

0.17 8 
[106] 

 

Refer to section 2.5 on a discussion of the importance and impact of enhanced thermal 

conductivity of nanofluids on BTMS. 
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5. Conclusions 
 

In this thesis, the potential of nanofluids for electric car battery cooling systems was investigated 

through Molecular Dynamics (MD) simulations. The study focused on exploring the thermal 

properties of nanofluids and provided valuable insights into the design and optimization of heat 

transfer fluids for electric car battery cooling systems. Two nanofluid systems were studied, with 

one consisting of a PAO-2 base fluid with copper nanoparticles, and the other with silver 

nanoparticles. 

The results of this study demonstrated a significant enhancement in thermal conductivity for both 

nanofluid systems. The PAO-2/Cu nanofluid at 1% volume fraction of copper showed a 50% 

enhancement in thermal conductivity, while the PAO-2/Ag nanofluid at 1% volume fraction of 

silver showed a 76% enhancement. These enhancements in thermal conductivity indicate that 

both nanofluids are promising candidates for use in electric car battery cooling systems. 

Moreover, this study identified crucial factors that impact the thermal conductivity of nanofluids 

and highlighted the importance of optimizing Lennard-Jones parameters for accurate and reliable 

MD simulations. 

In conclusion, the use of Molecular Dynamics simulations has proven to be an invaluable tool for 

understanding the complex thermal and transport properties of nanofluids, leading to the 

identification of potential solutions for improving the performance and longevity of electric car 

batteries. This study paves the way for future research on the optimization of nanofluids and their 

application in Battery Thermal Management Systems, contributing to the advancement of electric 

vehicle technology. 
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6. Future Work 
 

I hope to continue working on this research at a PhD level, and of course these recommendations 

are for anyone who would like to work in this area. 

The findings of this study provide valuable insights into the potential of nanofluids for enhancing 

the thermal performance of electric car battery cooling systems. Molecular dynamics simulations 

have revealed the enhanced thermal conductivity of PAO-2/Cu and PAO-2/Ag nanofluids, 

demonstrating their potential for application in Battery Thermal Management Systems (BTMS). 

However, there are several avenues for future research that could further advance our 

understanding of nanofluids and their application in electric car battery cooling systems. 

• Investigation of other nanoparticles:  

While this study focused on copper and silver nanoparticles, future research could explore the 

potential of other metal, such as aluminium, graphene, or carbon nanotubes, for enhancing the 

thermal performance of nanofluids. This would allow for a broader understanding of the range of 

materials that can be utilized to improve the thermal properties of heat transfer fluids. 

Also, the use of hybrid nanoparticles of different metals and size/shape configurations can be 

explored to design a nanofluid with optimized thermal and rheological properties. 

• Study of nanoparticle shape and size effects:  

The influence of nanoparticle shape and size on the thermal conductivity of nanofluids could be 

investigated. This would provide insights into the optimal nanoparticle characteristics for 

achieving maximum thermal performance in BTMS applications. 

• Study of nanofluids at different temperature 

While this study focused on studying the thermal conductivity at 293 K, the effect on the thermal 

conductivity enhancement should be explored at different temperatures. 

• Experimental validation:  

Experimental studies could be conducted to validate the findings of the molecular dynamics 

simulations and to assess the real-world performance of the proposed nanofluid-based BTMS 

solutions. 
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• Environmental impact 

The environmental impact should be considered when comparing between the best nanofluids 

candidates. The production and synthesis of nanoparticles may involve the use of hazardous 

chemicals and energy-intensive processes. The energy required for production and the waste 

generated can contribute to environmental pollution and greenhouse gas emissions. 

 

By addressing these areas in future research, we can build upon the findings of this thesis and 

further advance our understanding of nanofluids for electric car battery cooling systems, 

ultimately contributing to the development of more efficient and sustainable transportation 

solutions. 
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