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Abstract 
The macula is the central part of the retina responsible for central vision and can suffer 
damage from many diseases, including diabetes, macular degeneration and glaucoma. Es-
tablishing a relationship between functional measurements, such as perimetry, and struc-
tural metrics, such as those obtained through imaging, has proven both clinically appealing 
and challenging, owing to specific features of this area of the retina. The programme of 
work presented in this thesis focuses on improving the accuracy of structure-function anal-
yses of the macula as well as the mechanistic understanding of structure-function relation-
ship in both healthy and diseased eyes. 

The first study revisits and improves previous models quantifying the length of Henle’s fi-
bres. This directly relates to the radial displacement of Retinal Ganglion Cells (RGCs) from 
their photoreceptors and affects structure-function mapping. The study demonstrated the 
inaccuracy of previous methods used to displace perimetric stimuli, proposing a correct im-
plementation of these calculations. These results were made available to other researchers 
in a user-friendly web application. 

The second study explored how natural positioning of observers in front of imaging and 
perimetry devices, as well as their fixation and eye movements, affected the precision of 
macular structure-function mapping. The study analysed data from an eye-tracking perim-
eter used to test both healthy eyes and patients with glaucoma. An optimal strategy for 
structure-function mapping was developed and the mapping error introduced by fixation 
was quantified. 

The third study used data from an eye-tracking perimeter and the framework of an estab-
lished neural model of spatial summation to investigate the structure-function relationship 
in early neural loss in patients with diabetes without diabetic retinopathy, quantified with 
both imaging and functional tests, including Frequency Doubling Perimetry, standard visual 
acuity and contrast sensitivity.  

The fourth study involved the prospective collection of data from healthy observers with 
perimetric stimuli of different sizes and durations, using custom software. The data were 
used to develop a computational model of perimetric sensitivity able to reproduce the in-
teraction between spatial and temporal summation in the context of cortical integration 
and their link to the number of retinal ganglion cells being stimulated. 

In the fifth study, the methodology and mechanistic framework developed in the previous 
studies were applied to test the computational model in glaucoma. The model was used to 
obtain functional estimates of retinal ganglion cell damage from standard automated pe-
rimetry data collected in glaucoma patients and healthy age-related controls. The results 
were correlated with imaging and histology data from previous literature. 
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1. Background 
The macula is the central part of the retina devoted to high resolution visual acuity and plays 
a crucial role in human vision. It covers an area of 5 to 6 mm around the fovea, the central 
depression of the retina containing the highest density of photoreceptors in a healthy eye1. 
The macular region can become damaged by several diseases, including glaucoma, diabe-
tes, and age-related macular degeneration (AMD).  

1.1. Imaging of macular retinal structures 
Many methods can be used to acquire structural data of the eye through imaging. However, 
Optical Coherence Tomography (OCT) has become increasingly popular as a simple, non-
invasive tool to obtain detailed cross-sectional images of the retina. The introduction of 
Spectral Domain OCT devices (SD-OCT) has greatly improved image quality and scanning 
speed, allowing for automated segmentation of the different retinal layers (Figure 1.1). 
This, in turn, allows for the creation of detailed anatomical maps that can be used to inves-
tigate the effect of diseases individual layers. Very briefly, OCT uses laser interferometry to 
generate images by quantifying the reflectivity profile along one axis of a partially transpar-
ent tissue. This profile is called an A-scan. Many A-scans are acquired in a scanning motion 
to generate a two-dimensional section of the tissue, called a B-scan2. These B-scans are then 
combined to form a volumetric reconstruction of the tissue under investigation, such as the 
retina. These volumes can finally be used to reconstruct detailed anatomical maps. The 
most common are thickness maps of the different layers, but reflectivity maps can also be 
used. OCT scans are used to observe and quantify changes to the retinal tissues and monitor 
their evolution over time. 

 
Figure 1.1 Example of how Optical Coherence Tomography imaging can be used to 
characterise structural features of the macula. The side vertical panels show a B-scan 
through the fovea. Many of these B-scans (121 in this example) can be segmented to build 
thickness maps (left, for the Ganglion Cell Layer, GCL) or reflectivity maps (right, for the 
Retinal Nerve Fibre Layer, RNFL). The corresponding layers in the B-scan are shaded in 
green. This example shows the macula of an eye with glaucoma, which demonstrates ar-
eas of thinning of the GCL and reduced reflectivity of the RNFL. 
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1.2. Perimetric testing of the macula 
Standard Automated Perimetry (SAP) is one of the most widely used functional tests in clin-
ical practice. It provides a topographical quantification of the Differential Light Sensitivity 
(DLS) to contrast for each tested retinal location3, 4. In clinical SAP, visual function is often 
tested at multiple pre-defined locations of the visual field (VF) with simple circular stimuli 
of different intensities over a uniform background. A subject being tested is asked to re-
spond, usually by pressing a button, every time a stimulus is perceived. A test strategy would 
then use responses to different stimulus intensities to define some quantities related to the 
sensitivity of the tested locations. In most applications, the quantity of interest is the 50%-
threshold of the psychometric function. The psychometric function describes the probabil-
ity of responding to a stimulus given its intensity (Figure 1.2). For clinical perimetry, espe-
cially for studying damage from glaucoma or neurological diseases, the test is often per-
formed in photopic conditions, with a uniform background intensity (Ib = 10 cd/m2). How-
ever, the test can also be performed in mesopic or scotopic conditions, and this is more 
common in the clinical field of medical retina5. The strength of the stimulus is then defined 
in terms of Weber’s contrast (Wc) 

 𝑊! =
𝐼 − 𝐼"
𝐼"

  

where I is the intensity of the stimulus. In this context, the 50%-threshold of the psycho-
metric function is referred to as contrast sensitivity or Differential Light Sensitivity (DLS). 
Usual choices for stimulus size and duration are 0.43 degrees (diameter) and 200 ms. Dif-
ferent stimulus characteristics can greatly affect the response of the observer. For example, 
larger stimulus sizes are known to reduce the variability of the response yielding steeper 
psychometric functions6. Importantly, contrast sensitivity increases with larger stimuli and 
longer durations, meaning that a progressively lower contrast is needed to detect increas-
ingly larger/longer stimuli.  

 
Figure 1.2 Schematic of a psychometric function.The dashed line indicates the 50%-
threshold. HFA = Humphrey Field Analyzer; DLS = Differential Light Sensitivity. 
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In conventional perimetry, DLS is often expressed in a relative dB scale, reporting attenua-
tion of the brightest stimulus available on the device instead of contrast. For the Humphrey 
Field Analyzer (HFA, Zeiss Meditec, Dublin, CA), the most commonly used SAP device, the 
brightest stimulus is 3185 cd/m2. This, along with a background of 10 cd/m2, has become 
the standard for the vast majority of projection-based perimeters. To convert HFA dB back 
to Weber contrast, the following formula can be used, keeping in mind that in projection 
systems any stimulus is already summed to its background 
 

 𝑊! =
3185 10#$/&'⁄

10	
.  

 
The most commonly used testing pattern for the macular region is the 10-2 grid. This grid 
spans the central 10 degrees of the VF with a spacing of 2 degrees between tested locations. 
This is much more spatially resolved than the more common 24-2 and 30-2 grids, where the 
spacing is 6 degrees. A schematic showing the relationship between the 10-2 and a 24-2 
testing grids is shown in Figure 1.3. 

 
Figure 1.3 Relationship between 10-2 (red dots) and the 24-2 (black circles) for a right 
eye.  
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1.2.1. Spatial summation 
The change in DLS with increasing stimulus area sizes has been widely used to characterise 
specific properties of the visual system. Often, the relationship is studied by evaluating the 
change in log-DLS according to the log-Area of circular stimuli. Such a log-log relationship is 
linear with a slope of 1 (total or complete summation) up to a certain critical size, after which 
the slope is generally shallower (partial summation, example in Figure 1.4). The total sum-
mation behaviour is usually referred to as Ricco’s law, and the critical area size is often 
named Ricco’s area.  

 
Figure 1.4 Schematic exemplifying Ricco’s law. The vertical dashed line represents the 
critical stimulus size; DLS = Differential Light Sensitivity. 

The critical size of the stimulus changes with eccentricity, being larger in the periphery than 
centrally. This is thought to reflect the change in density of the Retinal Ganglion Cell (RGC) 
receptive fields (RFs) across the retina. According to this view, the visual system is organised 
in such a way that the number of RGC-RFs within Ricco’s area is constant across the VF. 
Therefore, the RGC-RF density would act as the scaling factor for Ricco’s law at different 
eccentricities. This has been confirmed by experimental evidence with both simple circular 
and complex stimuli. Many authors also believe that the constant number of RGCs at critical 
size is reflective of how the RGCs are hierarchically connected to the primary visual cortex 
(V1) 7-9. Although the estimates vary, the critical number of RGCs is reported to be between 
~149 and ~ 327, 8, also according to the specific RGC mosaic considered. This view seems also 
coherent with the observation that the Cortical Magnification Factor (CMF, i.e. the millime-
tres of V1 that receive input from one degree of VF) decreases with eccentricity, scaling 
approximately with the density of RGCs8-11. Importantly, this scaling principle appears to 
hold even when the number of RGCs is reduced due to disease, for example in the case of 
glaucoma. Redmond et al.12 demonstrated an increase in Ricco’s area in patients with early 
glaucoma compared to age-matched controls at the same eccentricity. Swanson et al. also 
used the same scaling principle to model sensitivity loss in glaucoma with usual stimulus 
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parameters7, 8, 13, although they highlighted that such a scaling could be obtained by differ-
ent cortical filters independently of the underlying RGC density. However, most of these 
interpretations do not make an effort to incorporate the effect other stimulus properties, 
such as the background or duration of the stimulus, which have been shown to dynamically 
alter spatial summation14-16. 

1.2.2. Temporal summation 
Much of the reasoning regarding spatial summation can be applied to explain the effect of 
different stimulus durations on DLS. As for stimulus sizes, DLS also increases for longer stim-
uli. The relationship between log-Durations and log-DLS is similar to the one described for 
spatial summation: log-DLS increases linearly with a slope of 1 until a critical duration is 
reached. For supra-critical durations, the slope is < 1. This is known as Bloch’s law. Temporal 
summation for perimetric stimuli has been studied to a lesser extent than its spatial coun-
terpart14, 15, 17-19. Most of the studies involving temporal summation focussed either on com-
plex stimuli or on motion detection17, 20-22. However, much like Ricco’s area, critical duration 
increases with eccentricity in healthy observers23 and, importantly, in patients who experi-
ence loss of RGCs due to glaucoma24. Mulholland et al. 24 showed that glaucoma patients 
with early damage had longer critical durations at the same eccentricity compared to age-
matched controls when tested with a stimulus 0.48 degrees in diameter. Interestingly, the 
critical duration could be equated between the two groups by scaling the stimulus to match 
the individual Ricco’s area, compensating for RGC loss in the glaucoma group.  

1.2.3. Interaction between stimulus duration and size 
One aspect that has not been explored in depth is the interaction between stimulus size and 
duration. Barlow15 and Owen14, similarly to Mulholland et al. 24, showed that critical dura-
tion is shorter with larger stimulus sizes. Importantly, they also showed that the converse is 
true, i.e. Ricco’s area decreases with longer stimulus durations. This latter piece of evidence 
is particularly relevant to interpret the results of spatial summation experiments: changes 
to Ricco’s areas would not be expected if the critical number of RGCs only depended on 
spatial ‘hard-wiring’ of the visual system, and specifically of retina-V1 connections. Simply 
put, given this evidence, it seems unreasonable to interpret the results of spatial summation 
experiments to make inference on RGC-V1 convergence, if the measured critical area 
changes with stimulus duration. Critically, most of the work on spatiotemporal integration 
focussed on the use of spatiotemporal receptive fields, which however treat temporal and 
spatial integration as completely separable and independent20, 25. 

1.3. Macular structure-function relationship 
Imaging data, usually referred to as ‘structural information’, and functional data, such as 
visual acuity or VF sensitivity from SAP, are often acquired to diagnose eye diseases and 
monitor their progression. Therefore, linking structural and functional measurements is of 
paramount importance for both clinical and research applications. The macula offers a great 
opportunity to investigate localised structure-function relationship because of the high level 
of spatial detail offered by imaging techniques in this region of the retina (see Figure 1.1). 
In some cases, this link is straightforward. For example, in advanced AMD patients who de-
velop geographic atrophy, areas with atrophic photoreceptors and damaged retinal pig-
mented epithelium show severe functional impairment. Notably, the topography of the 
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corresponding VF defect will match the atrophic area26. This is often the case for many dis-
eases involving the outer retina. On the other hand, such a close correspondence might be 
lacking in pathological changes of the inner retina, such as early damage in diabetic pa-
tients27 and, most importantly, glaucoma. The reasons are several: 

• The inner retina in the macular region has some peculiar anatomical features that 
make the structure-function link difficult. Mainly, bipolar cells and retinal ganglion 
cells (RGCs) are radially displaced from the fovea and connected to their corre-
sponding photoreceptors by Henle’s fibres (Figure 1.5). This implies that the RGCs 
will not co-localise with their corresponding photoreceptors on the retinal plane, 
creating a disagreement between the functional and structural mapping28. 

• The loss of neurons in diseases involving the inner retina is very often gradual. 
This highlights the disconnect between structural measurements, usually acquired 
in the linear scale, and functional measurements, such as perimetry, usually ac-
quired in the logarithmic scale (decibels, dB) for intermediate stages of damage29.  

• The residual tissue measured with structural parameters might not contain func-
tional neural units. This is the basis for the so called ‘floor effect’ in structural 
measurements 29, where a progression in functional damage is observed despite 
negligible changes in structural parameters. 

• The complex elaborations of the visual input performed by the inner retina and 
along higher levels of the visual system can determine a non-linear relationship 
between structural and functional changes7, 8, 30. 

 

Figure 1.5 Schematic anatomy of the retina. The diagram shows the connections be-
tween the photoreceptors and the Retinal Ganglion Cells (RGCs) via Henle’s fibres and bi-
polar cells (whose cell bodies are located in the INL). The B-scan is from a healthy retina. 
Except for the ILM, all the names refer to the layer above the corresponding line. ILM = In-
ner Limiting Membrane; NFL = Nerve Fibre Layer; GCL = Ganglion Cell Layer; IPL = Inner 
Plexiform Layer; INL = Inner Limiting Membrane; OPL = Outer Plexiform Layer; RPE = Reti-
nal Pigment Epithelium. 
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A plethora of methods and techniques can be used to model the empirical structure-func-
tion relationship. These can range from simple linear regression, after accounting for the 
differences in scale (logarithmic for SAP, linear for structural measures such as tissue 
thickness)29, 31 to complex artificial intelligence techniques32, 33. However, more physio-
pathological insight can be gained from the mechanistic modelling of the functional re-
sponse of a biological substrate, such as the RGC and photoreceptor mosaic, because this 
provides a link with the underlying processes of damage. This type of modelling has been 
greatly advanced by the use of computational models7, 8, in-vivo single cell recordings34 
and histology studies in human35 and non-human primates36-38. 

1.4. Objectives of this research 
The work presented in the following chapters focuses on modelling the structure-function 
relationship between perimetric sensitivity and the inner retina in the macula. The research 
presented in this thesis had three main objectives: 

1. To determine the optimal strategies to improve the accuracy of spatial mapping 
of VF locations tested with perimetry and the corresponding tissue in the inner 
retina. 

2. To develop a computational approach linking spatial and temporal summation 
of perimetric stimuli to biological structures in the retina, accounting for cortical 
integration. 

3. To apply these modelling strategies to study the mechanisms of inner retinal 
damage in disease. The two model diseases will be diabetes and glaucoma. 
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2. Revisiting the Drasdo model: implica-
tions for structure-function analysis of 
the macular region 
This paper focuses on a fundamental aspect of structure-function analyses of the macula: 
the correct mapping of perimetric stimuli onto the corresponding area of the inner retina. 
The parafoveal region is in fact characterised by a radial displacement of the ganglion cells 
with respect to the photoreceptors they are connected to. This displacement needs to be 
taken into account in structure-function analyses of the inner retina. This aspect has been 
explored by other investigators in the past. Most notably, the model proposed by Drasdo et 
al.1 is one of the most commonly employed. However, upon starting this research project, 
we noticed inconsistencies between various schematic eyes used in the development of the 
displacement model. Moreover, we found out that the model had been applied incorrectly 
to structure-function analyses in the literature. Finally, the model had been proven hard to 
replicate, leading many researchers to simply approximate the average displacement from 
one of the figures in the original paper. This motivated our effort to produce an extended 
and more accurate version of the model developed by Drasdo et al.1, as well as to show how 
this should be applied to structure-function analysis with perimetric stimuli. Finally, we 
made our results available through an interactive web application, to make the method eas-
ily available for other researchers. The revised model was used extensively in the rest of the 
research presented in this thesis and was fundamental to obtaining correct quantification 
of the structure-function relationship. The results were published in Translational Vision 
Science and Technology (TVST), a journal of the Association for Research in Vision and Oph-
thalmology (ARVO). The paper is freely available at: https://tvst.arvojournals.org/arti-
cle.aspx?articleid=2770797. 
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- David F. Garway-Heath (interpretation of the data, manuscript proofing) 
- David P. Crabb (supervision, interpretation of the data, manuscript proofing) 

2.1. Introduction 
The health of the macula is of central importance for everyday functions, such as reading 
and recognising faces2-4. It is now recognised that the macula can be affected by glaucoma, 
even in the early stages of the disease process5. Loss and dysfunction of Retinal Ganglion 
Cells (RGCs) in glaucoma is monitored using both structural and functional measurements. 
Structural assessment of the macular region can be performed using Spectral Domain 

https://tvst.arvojournals.org/article.aspx?articleid=2770797
https://tvst.arvojournals.org/article.aspx?articleid=2770797
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Optical Coherence Tomography (SD-OCT), which provides volumetric measurements of var-
ious retinal layers. The layers of most interest for glaucoma are the Retinal Nerve Fibre Layer 
(RNFL), the Ganglion Cell Layer (GCL) and the Inner Plexiform Layer (IPL). Together, they 
form the inner retina. RGC loss from glaucoma causes thinning of the RNFL (which contains 
RGC axons), the GCL (which contains RGC cell bodies) and the IPL (which contains the RGC 
dendritic arbours).  
Functional assessment for glaucoma is typically measured with the visual field (VF) test in 
the form of Standard Automated Perimetry (SAP). For the macular region, dense testing 
grids, such as the standard 10-2, are used. The 10-2 spans the central 10 degrees from fix-
ation with a spacing of 2 degrees between test locations. There is some evidence to suggest 
that these grids are more sensitive to early glaucoma damage in that region when compared 
to less dense testing grids, such as the 24-2 test pattern.5, 6  
Combining structural and functional information should further improve the identification 
of glaucomatous macular damage and the detection of its progression. Moreover, studying 
the relationship between the two measurements offers useful insights into the kinetics and 
pathophysiology of RGC loss and dysfunction in glaucoma7, 8. Models seeking to match 
structural and functional data to histology measurements of RGC density have been used 
to explore this relationship9-12. Recently, a method proposed by Raza and Hood13 has been 
used to convert the GCL thickness into RGC density in order to investigate the relationship 
between RGC number and SAP sensitivity14, 15 in healthy subjects and glaucoma patients. 
The unique features of the inner retina in the macular region need to be considered when 
comparing structural and functional measurements. The most significant of these is the ra-
dial displacement of RGCs from the fovea so that RGCs receiving a stimulus in the parafoveal 
region are displaced toward the periphery with respect to the location of their correspond-
ing photoreceptors1, 16, 17. RGCs are connected to the corresponding photoreceptors via 
Henle’s fibres, which have an oblique pathway in the parafoveal region. This displacement 
diminishes with eccentricity, becoming minor at around 10 visual degrees from the fovea1, 
18. Different numerical models, based on, or verified by, histological measurements of 
Henle’s fibres have been proposed to account for this displacement1, 18-20. The most widely 
used of these models is the one proposed by Drasdo et al.1. This model is valuable in the 
context of structure-function analyses since the displacement calculation requires equiva-
lence between the cumulative number of RGC Receptive Fields (RGC-RF), estimated through 
psychophysical measurements, and the number of RGC bodies, estimated through histol-
ogy16. Theoretically, when applied correctly, this model would allow a one-to-one corre-
spondence between the number of RGCs, estimated from structural maps, and psychophys-
ical measurements, estimated from SAP sensitivity (which depends on the number of RGC-
RFs stimulated during the test). 
Although widely used, the implementation of the model reported by Drasdo et al.1 is not 
straightforward. For example, Drasdo et al. only reported numerical calculations for the four 
principal meridians and the average displacement, in microns1. Therefore, a method to gen-
eralise to any arbitrary meridian has not been available.  A second example is that the sche-
matic eye used by Drasdo et al.1, 21 to convert visual degrees to millimetres of retina assumes 
a spherical shape for the retina of a certain radius. However, that radius is not the same as 
that assumed by Curcio and Allen16 in their published histology map of RGC density. More-
over, the radius of the sphere should be adjusted for the axial length (AL), when this is avail-
able. However, Drasdo et al. only provided average displacement values regardless of axial 
length. A third example is that, in many cases, a simple displacement of the stimulus centres 
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was applied8, 14, 22. However, the displacement should be applied to the perimeter of the 
stimulus, so that different points of the stimulus edge are independently displaced radially 
outward according to the model. For example, in the parafoveal region, the stimulus edge 
nearer the fovea is displaced further than the stimulus edge further from the fovea15, 23. This 
is especially important when RGC counts are involved, since small differences in the area 
used for calculations can result in large differences in the counts. 
The objective of our work was to: develop a revised version of the displacement model for 
any retinal location and with a customisable schematic eye, to account for variations in AL,  
determine the correct displacement model for circular perimetric stimulus (covering RGC-
RFs) to corresponding RGC location. Moreover, we develop a web application to allow re-
searchers to apply the revised model to their own structure-function data, in an attempt to 
improve the comparability of findings from different research groups. 
 

2.2. Methods 
2.2.1. Datasets 
For our analyses we used two datasets. The first (Dataset 1) was a collection of macular 
volume scans collected for the Northern Ireland Sensory Ageing (NISA) study (https://clini-
caltrials.gov/ct2/show/NCT02788695),  which originated from a population based aging co-
hort (NICOLA study  https://www.qub.ac.uk/sites/NICOLA/ ) conducted in Belfast at Queen's 
University, Belfast. Scans were acquired with a Spectralis SD-OCT (Heidelberg Engineering, 
Heidelberg, Germany) comprised 61 horizontal B-scans centred on the fovea (ART 9, 30 x 
25 degrees with a fixed 7 degree rotation, counter-clockwise for right eyes, clockwise for 
left eyes). In this dataset, 417/726 scans were classified as having a healthy outer retina by 
2 graders. In 299 of these eyes, AL was measured using a Lenstar LS 900 Biometer (Haag-
Streit AG, Switzerland). These scans were further screened by an ophthalmologist (GM) for 
pathological changes of the inner retina. Seventeen scans were excluded because of poor 
quality that prevented a clear identification of the inner retinal layers or the Bruch’s mem-
brane within 15 degrees from the fovea, 13 scans had local thinning that could be attributed 
either to glaucoma or local ischemia and four were excluded for vitreoretinal alterations. 
The segmentation of the retinal layers was checked and manually corrected where neces-
sary leaving 265 scans for analysis. This dataset was used exclusively to extract metrics on 
the shape of the GCL profile. No thickness values were measured. The median [Interquartile 
range] Quality Index (QI) was 30.6 [28.98, 32.26] dB. 
The second dataset (Dataset 2) was a collection of SD-OCT scans acquired for a cross-sec-
tional study on structure-function relationship in the healthy macula. The study was ap-
proved by the ethical committee Comitato Etico Milano Area 1 (code OCU_SSSF) and the 
data collection took place at the eye clinic at San Paolo Hospital (University of Milan) in 
Milan, Italy. The dataset included 28 macular scans from 28 subjects collected with a Spec-
tralis SD-OCT and composed of 121 B-scans, centred on the fovea (ART 9, 25 x 30 degrees, 
oriented vertically). AL was measured using an IOL-Master V3 A-scan (Zeiss Meditec, Dublin, 
CA). The subjects had no known or detectable ocular disease and younger than 40 (range 
23 – 37) years, to match the age range of the histological dataset collected by Curcio and 
Allen16 (see next section). Descriptive statistics for the two datasets are given in Table 2.1. 
Best Corrected Visual Acuity (BCVA) in Dataset 2 was 0.00 logMAR for all subjects and was 

https://www.qub.ac.uk/sites/NICOLA/


 

 21 

not measured further. All data collections were performed in agreement with the declara-
tion of Helsinki after explicit written consent from the participants. All scans were of good 
quality and none was excluded (QI = 26.47 [25.36 – 27.47] dB). 
 

 

Dataset 1 
(N = 265) 

Dataset 2 
(N = 28) 

Median [Interquartile range] 
Age (years) 58 [63, 68] 28 [26, 31] 
Male : Female 134 : 131 15 : 13 
BCVA (Letters) 89 [85, 92] - 
Spherical equivalent (Diopters) 0.5 [-0.5, 1.5] -1.19 [-3.50, 0] 
Axial length (mm) 22.94 [23.67, 24.34] 24.50 [23.89, 25.02] 
Average macular GCL thickness (μm)* 33.34 [31.36, 35.39] 35.73 [33.89, 37.64] 
Table 2.1 Descriptive statistics for relevant variables in the two datasets BCVA = Best 
Corrected Visual Acuity. * Calculations performed on the whole thickness map within 3.5 
mm from the fovea. 

2.2.2. Histology map 
The original model developed by Drasdo et al.1 used the histology map provided by Curcio 
and Allen16. This reports the density of ganglion cells (cells/mm2) obtained from six retinas 
of five healthy subjects, aged 27 - 37 years (range), for a retinal sphere with a radius of 
11.459 mm. Details are reported in Appendix 1. 

2.2.3. Schematic eye 
The schematic eye used in this work replicated the one described by Drasdo and Fowler21 
and later used by Drasdo et al.1 for their displacement model. We used numerical ray tracing 
through the schematic eye to calculate the correspondence between visual degrees and 
mm, and solid visual angle (degrees2) and mm2, on the retina. The data to build the sche-
matic eye was derived from the table reported in the original paper21. Importantly, this ap-
proach aligns with the original methodology unlike that applied in previous studies18, 19.  
Note the radius of the retinal sphere has been changed to match the one used for the his-
tology map (r0 = 11.459 mm, originally 11.06 mm in Drasdo and Fowler21). The distance 
between the centre of the retinal sphere and the corneal vertex has also been scaled pro-
portionally (c0 = 12.38 mm, originally 11.95 mm). Therefore, the default AL (AL0) of our sche-
matic eye was 23.84 mm (originally 23.01 mm). These changes had a small impact on the 
degrees-to-mm conversion, but a more important effect of the mm2/solid degree ratio (Fig-
ure 2.1). The schematic eye was coded in Matlab (The MathWorks, Natick, USA). Additional 
details are reported in Appendix 2. 
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Figure 2.1 Rendering of the schematic eye, with a projection of a 10-2 grid (red dots, top 
panel). The bottom panel shows a cross section of the same schematic eye with additional 
examples of short and long axial lengths. Right panels show the distance travelled on the 
retina per visual degree (top) and the mm2/solid degree ratio at various retinal eccentricities 
(bottom). The latter represents the ratio between retinal areas in mm2 to visual degrees2. 
The curved relationship with eccentricity is a consequence of the nonlinear projection ob-
tained by numerical calculations of ray tracing through the cornea, lens and vitreous, which 
varies with visual angle. It is important to acknowledge that the relationship between retinal 
mm and degrees of visual angle is also not linear. In black, the curves obtained from the 
original schematic eye described by Drasdo and Fowler21 (in black). In red, the results of the 
schematic eye used in this study.  

2.2.4. Scaling of eye structures and cell density 
A customised displacement model must account for how retinal structures scale with AL, 
especially the size of the displacement area (see later) and the planar density of ganglion 
cells derived from histology. The assumption of a spherical shape for the retina for all ALs is 
prone to the adoption of a global expansion model. In this model, the planar RGC density 
would scale inversely with the square of the retinal radius, whereas the radius of the dis-
placement zone (rDZ = 4.034 mm in the original paper1) would scale linearly with the retinal 
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radius. The two scaling equations, where r is the retinal radius corresponding to a given AL, 
are given as: 

 𝑟()(𝐴𝐿) = 	4.034 ∗ 4
𝑟
𝑟'
5 (2.1) 

 
 𝑅𝐺𝐶	𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐴𝐿) = 	𝑅𝐺𝐶	𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐴𝐿') ∗ @

𝑟'
𝑟
A
*
. (2.2) 

An alternative model to the assumption of global expansion is ‘equatorial stretch’, where 
the posterior pole is simply moved further away from the corneal vertex with no change in 
the relative size of the retinal structures. Although the actual expansion process in myopia 
is likely to be a mixture of the two phenomena24-26, psychophysical evidence suggests that 
a global expansion model is a reasonable approximation for most axial lengths27-30. Global 
expansion is also implied in the RGC-RF model proposed by Drasdo et al., which assumes a 
constant density of RFs per solid visual degree1 (see later).  
A global expansion model also implies that the amount of radial RGC displacement, when 
measured in mm on the retina, should increase with axial length. This is a consequence of 
the stretching of the retinal tissue and Henle’s fibres with increasing eye size. Although di-
rect evidence of this is not yet available, indirect confirmation can be obtained by observing 
how the GCL profile scales with axial length in healthy eyes. To explore this, we used the 
265 macular volume scans from Dataset 1 and identified the maximum GCL thickness peak 
for several meridians, centred on the anatomical fovea (Figure 2.3). An ellipse was then 
fitted through a least-squares method to the locations of the peaks. We then measured the 
length of the major and minor axes of the ellipse. All measurements were corrected for 
ocular magnification using the schematic eye defined in the previous section. The relation-
ship between the length of the ellipse axes and the axial length was explored through linear 
regression. The ellipse dimensions were also predicted for an exact scaling with axial length, 
assuming a global expansion, by multiplying the ellipse dimensions predicted from the linear 
regression at AL0 by the same scaling factor used for the rDZ (geometric scaling model). The 
goodness-of-fit of the linear regression and the geometric scaling model were compared 
using the Mean Absolute Error (MAE), calculated for each model as the average of the ab-
solute residuals.  

2.2.5. OCT data processing 
All OCT data were exported as RAW files (.vol) using the Heidelberg Eye Explorer. The files 
were then imported in Matlab using a custom routine. The segmentations were then used 
to generate thickness maps for the whole retina and the GCL. The maps were interpolated 
and smoothed to match the size of the reference infrared fundus image (768 x 768 pixels, 
30 x 30 degrees field of view), padding with zeros where the OCT data were missing, i.e. 
outside the scanning pattern. The interpolation was performed using a thin plate spline 
(tpaps function in Matlab) with anisotropic smoothing parameters, so that smoothing was 
stronger across B-scans than within a B-scan. The fovea was automatically identified 
through a template matching. Correct detection was confirmed through visual inspection. 
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2.2.6. Conversion of GCL thickness maps into estimated 
RGC counts 

We used the method proposed by Raza and Hood13 to convert the OCT GCL thickness maps 
into customised estimates of RGC density and applied this to Dataset 2. In brief, the histol-
ogy map was divided point-by-point by an average healthy GCL thickness map (768 x 768 
pixels), obtained as the average from all eyes in Dataset 2, after aligning the fovea and the 
position of the optic nerve head (ONH). This yielded a volumetric density map (RGC/mm3). 
The map can then be multiplied point-by-point by a GCL thickness map from a new subject 
to obtain a customised RGC density map (RGC/mm2). We accounted for AL by applying a 
magnification correction to the GCL macular volume scans and by rescaling the histology 
density map according to the global expansion model given by equation (2.2).  

2.2.7. Displacement model 
For the displacement model, we followed the same methodology proposed by Drasdo et al. 
in their original paper1. The first step was to calculate the RGC-RF density along a specific 
meridian obtained from a generic model based on psychophysical measurements, the der-
ivation of which is described in detail in the original paper. The final formula, where e is the 
eccentricity in visual degrees, Dgcrf is the density of RGC-RF (number/solid degree), Rv = 
0.011785 and Ro = 0.008333 and k is a parameter that depends on eccentricity (see Appen-
dix 3), is given as: 
 𝐷+!,-(𝑒) = 	

𝑘 ∗ (1.12 + 0.0273 ∗ 𝑒)

1.155 ∗ FG𝑅. @1 +	𝑒 𝑬𝟐𝒗I AJ
*

−	@𝑅1K1 +	𝑒 20I LA
*
M

. 
(2.3) 

The parameter E2v in equation (2.3) was used by Drasdo et al. to scale the RGC-RF for each 
principal meridian1. A key objective of our new approach was to determine its value for any 
arbitrary meridian. Similarly to Drasdo et al. 1, we performed a numerical optimization of 
this parameter by simply requiring that the total counts of RGC-RF and RGC bodies are equal 
within the maximum displacement zone (DZ). From Drasdo et al. 1, the DZ ends at 4.034 mm 
from the fovea and is assumed symmetric. This value was used for AL0 and was scaled pro-
portionally with the retinal radius for different axial lengths, as previously explained. The 
displacement is finally computed as the difference between the eccentricities at which the 
cumulative count of RGC bodies (Cgcb) and the cumulative count of RGC-RF (Cgcrf) are equal. 
Additional details are reported in Appendix 3. 

2.2.8. Displacement of perimetric stimuli 
We compared two methods of applying the Drasdo model to perimetric stimuli. The first 
commonly-applied method 14 (Method 1) consisted of a simple displacement of the centre 
of the stimuli, without any changes to its shape (Figure 2.2, left panel). In the alternative 
method (Method 2), the circumference of the stimulus (approximated with 72 points 
around the stimulus edge) is displaced according to the Drasdo model; this results in dis-
torted stimulus shapes in the parafoveal region (Figure 2.2, right panel). We tested the ac-
curacy of each method by requiring consistency under the Drasdo model. In fact, the model 
calculates the displacement by equating the number of expected RGC-RF and the number 
of RGC bodies at any given eccentricity (in a healthy eye). Therefore, the estimated number 
of RGC-RF within a given stimulus area should match the number of RGC bodies within the 
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displaced stimulus on the structural map, besides some minimal discrepancy due to approx-
imation errors in the numerical calculations. For our calculations, we used a 10-2 grid and 
calculated the number of RGC-RF and cellular bodies for all conventional Goldman sizes, 
from I to V. The RGC-RF density function can change for each meridian. Hence, we gener-
ated a dense map with the same resolution as the structural map and used binary masks to 
calculate the number of RGC-RFs within each stimulus size. The same methodology was ap-
plied to the displaced stimuli on the structural map. The resolution used for our calculations 
was 2.2 μm (0.008 degrees) for the histology map and 0.0391 degrees for the structural 
maps in Dataset 2 (the maximum resolution of the Spectralis SD-OCT). This mainly affected 
the precision of the binary masks, which is important for small stimulus sizes. For the first 
analysis, we aimed for a very precise quantification to test the theoretical validity of the two 
methods. For the second analysis, we used a resolution that is likely to be applied for real 
data as a compromise between precision and speed of calculation.  
 

 
Figure 2.2 Representations of the two candidate methods to apply the displacement to 
perimetric stimuli. Method 1 is the one applied by Yoshioka et al.14. Method 2 is the one 
proposed in this paper. The colour map represents the histology density at AL0 for both 
graphs. The vertical axes are reported both in mm and visual degrees. The black shapes 
represent the areas tested by a 10-2 perimetric test, displaced with the two methods. In 
both images we are displaying the results of the application of the two methods on Gold-
mann IV stimuli, assumed circular and arranged in a regular 10-2 grid. 

2.2.9. Development of the web App 
A web application (App) was developed using the Shiny library31 for R32 (R Foundation for 
Statistical Computing, Vienna, Austria). The App is freely available at https://giovannimon-
tesano.shinyapps.io/Shiny_Drasdo_Montesano_et_al/, with detailed explanations on its 
use. It allows the visualisation of the schematic eye and the calculation for the RGC displace-
ment. It can also import structural maps and provide calculations for different stimulus 
sizes. Finally, it can also be used for batch processing of a whole dataset.  

Method 2

-10 -5 0 5 10
degrees

-3

-2

-1

0

1

2

3

m
m

0 0.5 1 1.5 2 2.5 3
Ganglion cells/mm 2 104

Method 1

-10 -5 0 5 10
degrees

-10

-5

0

5

10

de
gr

ee
s

0 0.5 1 1.5 2 2.5 3
Ganglion cells/mm 2 104

https://giovannimontesano.shinyapps.io/Shiny_Drasdo_Montesano_et_al/
https://giovannimontesano.shinyapps.io/Shiny_Drasdo_Montesano_et_al/


 

 26 

The Matlab codes for the schematic eye and the displacement model were translated in R. 
For faster computational execution, the displacement was pre-calculated for different ALs 
(from 18 to 35 mm, at 0.5 mm intervals). The planar displacement maps were calculated 
out to 7.5 mm from the fovea, at 0.05 mm intervals, then organised in a dense three-dimen-
sional array. The displacement values are then obtained via linear interpolation of the array. 

2.3. Results 
2.3.1. Scaling of eye structures with axial length 
The calculations were performed on the eyes from Dataset 1. Both axes of the ellipses cor-
related negatively with AL before magnification correction (major axis MAE = 0.149 mm, p 
< 0.001; minor axis MAE = 0.111 mm, p < 0.001) and positively after magnification correction 
(major axis MAE = 0.148 mm, p < 0.001; minor axis MAE = 0.112 mm, p < 0.001). A geometric 
scaling model offered a very similar fit (major axis MAE = 0.175 mm; minor axis MAE = 0.131 
mm). The results are presented in Figure 2.3. 

 
Figure 2.3 Scaling of ocular structures with axial lengths.Top panels show two examples 
of the calculation for the descriptive ellipses (in red), as described in the Methods. The black 
points identify the peaks in the GCL profile used for the fitting. Lower panels show the meas-
urements of the major and minor axis of the ellipses before (left) and after (right) correction 
for ocular magnification.  
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2.3.2. Variability of displacement with axial length 
Results of the fitting process for the parameter E2v are reported in Figure 2.4 A. Values are 
very similar to those reported by Drasdo et al.1 for the principal meridians for all considered 
ALs. The systematic change with axial length was small (Figure 2.4 A). The displacement is 
constant for all axial lengths when measured in degrees, as a consequence of the global 
expansion mechanism assumed by the model. Figure 2.4 B shows the displacement in de-
grees and in mm for AL0. The values in mm are very similar to the average displacement 
reported by Drasdo et al.1. 
 

 
Figure 2.4 Fitting results A) Polar plot of the results of the fitting process for the parameter 
E2v. N = Nasal; S = Superior; T = Temporal; I = Inferior. B) Displacement map calculated in 
degrees and mm at AL0.   

2.3.3. Displacement of perimetric stimuli 
Average density values (per solid degree) at different eccentricities are reported in Table 
2.2 (calculated from the counts for the G-IV stimulus size). Method 1 yielded substantial 
underestimation of the RGC body counts in the parafoveal region, where the displacement 
is largest, and a slight overestimation at larger eccentricities (Figure 2.5 and Table 2.2). 
Conversely, Method 2 provided estimates that were very consistent with the expected num-
ber of RGC-RF. The slightly larger variability with a G-I stimulus was due to numerical ap-
proximation and completely disappears for larger stimulus sizes. When converted to dB 
units (Figure 2.5), the calculations with Method 1 yield similar results to those reported by 
Yoshioka et al.14 for healthy subjects. The same method was applied to the healthy macular 
volume SD-OCT scans in Dataset 2 (Figure 2.6 and Table 2.2). The results were very similar 
to those obtained with the RGC histology map.   
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Figure 2.5 Comparison of the results between the two displacement methods for peri-
metric stimuli. Method 1 is the one used by Yoshioka et al.14. Method 2 is the one pro-
posed in this paper. The horizontal axis reports the expected RGC-RF counts, calculated 
from the model proposed by Drasdo et al.1, (equation (2.3)) and do not represent real sub-
ject data.  The vertical axis reports the structural measurements from the RGC map both 
as counts (left axis) and in dB (right axis). The latter is meant for easier comparison with 
the results in Yoshioka et al.14. Only Method 2 yields correct estimates in the parafoveal 
region (higher counts). The dashed line represents the ideal line of equivalence. 
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Figure 2.6 Comparison of the results between the two displacement methods for peri-
metric stimuli for real structural data. Method 1 is the one used by Yoshioka et al.14. 
Method 2 is the one proposed in this paper. The horizontal axis reports the expected RGC-
RF counts, calculated from the model proposed by Drasdo et al.1, (equation (2.3), adjusted 
for AL).  The vertical axis reports the structural measurements from the RGC map both as 
counts (left axis) and in dB (right axis). The latter is meant for easier comparison with the 
results in Yoshioka et al.14. Only Method 2 yields correct estimates in the parafoveal region 
(higher counts). The dashed line represents the ideal line of equivalence. 
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 Eccentricity 
(degrees) 

RGC-RF 
density 

RGC body density  

 Method 1 Method 2 

RGC his-
tology map 

1.41 5969 (157) 2392 (105) 5998 (173) 
3.16 2435 (307) 1868 (165) 2433 (304) 
4.24 1609 (58) 1551 (143) 1596 (62) 
5.1 1288 (210) 1332 (234) 1292 (212) 
5.83 1026 (90) 1097 (120) 1028 (90) 
7.07 783 (116) 861 (154) 785 (116) 
7.62 689 (91) 753 (94) 690 (91) 
8.6 560 (39) 609 (40) 560 (39) 
9.06 540 (102) 589 (114) 542 (102) 

Database 2 

1.41 5975 (145) 2424 (211) 6085 (566) 
3.16 2445 (291) 1894 (243) 2476 (388) 
4.24 1623 (54) 1520 (191) 1576 (180) 
5.1 1295 (199) 1343 (268) 1306 (269) 
5.83 1040 (87) 1105 (159) 1035 (152) 
7.07 790 (112) 859 (188) 782 (168) 
7.62 696 (87) 753 (132) 691 (127) 
8.6 568 (38) 614 (92) 563 (90) 
9.06 541 (97) 591 (146) 545 (133) 

Table 2.2 Density data at different eccentricities of the 10-2 grid, derived from the 
counts reported in Figure 2.5 and Figure 2.6 for a G-IV stimulus size. Values are reported 
as Mean (SD). For the RGC histology map, the SD refers to different locations with the 
same eccentricity. 

2.4. Discussion 
In our work we revisited the RGC displacement model proposed by Drasdo et al.1 and stud-
ied its application to perimetric data to yield consistent structure-function measurements. 
We also developed a web App to make our methodology easily available for other research-
ers, in the hope to standardise this essential aspect of structure-function analyses.  
Our implementation generalised the displacement model to any arbitrary meridian. Com-
pared to other models 19, 20 we imposed weaker constraints on the symmetry of the dis-
placement. The model proposed by Sjöstrand et al.20 used histological measurements to 
derive an even displacement around the fovea. Watson 19 followed an approach similar to 
Drasdo et al.1, but used a different equation for the RGC-RFs and extended his calculations 
to arbitrary meridians by assuming an elliptical symmetry around the fovea. In contrast, our 
approach, as in the original paper, only assumes the maximum displacement to be the same 
for all meridians in the fitting process. However, as shown in Figure 2.4 B, such an assump-
tion does not prevent the displacement from adapting to the measured distributions of RGC 
cells provided by histology. Importantly, the effective RGC displacement region extends to 
smaller eccentricities in the inferior retina. A similar approach for generalisation of the 
Drasdo model has been proposed by Turpin et al.18. Our results were in general agreement; 
they also showed a smaller extent of the displacement inferiorly compared to other regions. 
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However, the displacement for the parafoveal locations was smaller in our calculations and 
in good agreement with the average displacement calculated by Drasdo et al.1. In addition 
to previous work, we implemented a numerical ray tracing model of the schematic eye used 
by Drasdo and Fowler21 to convert between visual degrees and distances on the retinal 
sphere. This allowed us to adapt the model so that the retinal sphere corresponded to the 
one used for the retinal histology map built by Curcio and Allen16, 33. This is crucial to obtain 
consistent calculations, since the Drasdo model is based on that map. The implementation 
of the numerical model also allowed us to customise the conversion and the RGC density 
map based on the axial length. In this study, we assumed a global expansion model, scaling 
the linear structures with the radius of the retinal sphere and the density with the squared 
radius; this has been shown to be a good approximation by psychophysical examinations27-
30. Additionally, we confirmed this by observing how the structure of the inner retina scales 
with axial length using a large dataset of SD-OCT data (Figure 2.3). We found that geometric 
scaling for axial length fitted the observed data adjusted for ocular magnification. Under 
this assumption, the displacement is conveniently equivalent for all axial lengths when cal-
culated in degrees of visual angle. However, competing models have been proposed for eye 
growth in myopia and an elliptical growth model, combining equatorial stretching and global 
expansion, seems to be the most realistic from anatomical studies24-26. One advantage of 
our numerical implementation of the schematic eye is that it can be easily adapted to ac-
commodate for different types of expansion models. One major limitation of our structural 
dataset was the lack of extreme axial lengths. Determining the optimal expansion model 
with a stratified data collection of structural and functional data will be the objective of 
future work. 
Our work was novel because it considered two different methods of applying the displace-
ment to perimetric stimuli in structure function analyses. We showed that simply displacing 
the stimulus centre (Method 1) does not provide estimates of RGC-RF counts within peri-
metric stimuli consistent with the counts expected from the Drasdo model. Instead, each 
point on the edge of the perimetric stimulus needs to be displaced independently (Method 
2), resulting in distorted, ovoidal shapes. We were able to verify the validity of this approach 
by requiring that the RGC counts within a given displaced stimulus from the histology map 
be consistent with the expected RGC-RF counts assumed by the Drasdo model (equation 
(2.3)). Only Method 2 yielded correct estimates (Figure 2.5). We then verified that these 
results hold when the two methods are applied to structural data from young healthy sub-
jects (Figure 2.6). The increase in variability in this latter analysis was due both to intra-
subject differences in the structural data and to the fact that the calculations were limited 
to the resolution of the structural maps, as explained in the Methods. Method 1 is similar 
to what was used by Yoshihoka et al.14. Unfortunately, those authors did not report tabu-
lated RGC counts or estimated density. Nevertheless, the graphs reported in their paper in 
Figure 214 clearly show counts that, in healthy subjects, are compatible with the results of 
Method 1. For example, the largest RGC counts for a G-III stimulus were approximately 25.6 
dB, very similar to our results in Figure 2.5 and Figure 2.6 for Method 1 (25.5 dB). In turn, 
this was crucially less than half than that derived from Method 2 (29.5 dB) and the expected 
RGC-RF count from equation (2.3) (29.4 dB). Moreover, the RGC-RF density derived from 
Method 1 for the smallest eccentricity (1.41 degrees, Table 2.2), when substituted into 
equation (2.3) to derive the corresponding visual acuity (with E2v = 2), yields a value of 16.5 
cycles/degree, unreasonably low for this eccentricity1. In contrast, Method 2 yields 24.5 cy-
cles/degree, much closer to the predicted 24.9 cycles/degree 1 and compatible with the 
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literature34. These discrepancies might also be due to the fact that Yoshioka et al.14 provided 
age corrected structural and functional measurements at 64.5 years of age. However, the 
boxplots in the supplementary material for the same paper show minimal changes between 
age corrected and raw thickness values, too low to justify such a large difference. 
Our findings are of particular importance for the interpretation of previously published re-
sults. To the extent of our knowledge, Method 2 has only been applied twice in the litera-
ture15, 23. Moreover, the actual methodology to implement the Drasdo model has been 
rarely reported. In many cases, the displacement appears to be symmetrical around the 
fovea 8, 14, 22, 35-38. This likely indicates an application of the average displacement profile 
presented in the graph from Figure 2 in the original paper by Drasdo et al.1, using a fixed 
degrees to mm conversion. Although this might be satisfactory for some simple correlation 
analyses, disregarding the asymmetric nature of the displacement limits studies where a 
more detailed structure-function relationship is sought. For instance this is important when 
the development of a neural model of functional response is the main goal of the research14. 
In fact, as shown by our results in Figure 2.6, a high degree of consistency with the calcula-
tions can be achieved, especially considering that, like the Drasdo displacement model, the 
method to estimate the number of RGC cell bodies from structural measurements13 is also 
based on the structural map produced by Curcio and Allen16. 
To encourage translation, we have made our methodology available for researchers in a 
free user-friendly web App (Figure 2.7, https://relayer.online/drasdo). The App allows for a 
straightforward and customisable application of the displacement model for different axial 
lengths, any perimetric grids, varied stimulus sizes and structural maps. Graphical outputs 
are designed to provide the researcher with tools to scrutinise the steps in the process. 
Batch analysis can also be done on large datasets. The App will be updated with future de-
velopment of the methodology; for example, when a more comprehensive expansion 
model is developed. 

https://relayer.online/drasdo
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Figure 2.7 Screenshot of the second screen from the web App It presents the results for 
the schematic eye at AL0, for a G-IV stimulus size and a 10-2 perimetric grid using the histo-
logical dataset by Curcio and Allen as a structural map. The Results table extends beyond 
what is visible on the screen and can be easily downloaded. 

2.5. Appendix 
2.5.1. Appendix 1 
As described in a separate paper33, the data were recorded by Curcio and Allen using spher-
ical coordinates, reporting co-latitude (or retinal eccentricity) and longitude (or retinal me-
ridian) in degrees. Eccentricity is calculated from the fovea, located at (0, 0). One degree of 
retinal eccentricity equals 2πr/360 arc length, where r is the radius of the assumed retinal 
sphere. From the header of the text file containing the tabulated data (https://research-
materials.christineacurcio.com/), the assumed retinal sphere for the map is 11.459 mm. The 
map is built for a left eye, with the ONH at 20° eccentricity on the horizontal meridian (180° 
longitude). After conversion to mm, a continuous histology map was obtained through cubic 
interpolation. Figure 2.8 shows the correspondence between the interpolated values and 
the original average counts (with standard deviations) provided by Curcio and Allen 
(https://research-materials.christineacurcio.com/) for the four principal meridians. The 
map was converted into a right eye by inverting the horizontal coordinates. 
 

https://research-materials.christineacurcio.com/
https://research-materials.christineacurcio.com/
https://research-materials.christineacurcio.com/
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Figure 2.8 Raw averages and cubic interpolation of cell densities. Comparison of the cubic 
interpolation from the whole spherical map and the raw averages (red dots) and standard 
deviations (black vertical bars) reported by Curcio and Allen16. 

2.5.2. Appendix 2 
The data for the schematic eye are reported in Table 2.3. The ray tracing allows precise 
calculations for different ALs, which can be achieved by proportionally changing the radius 
and the centre location of the retinal sphere (Figure 2.1). The anterior part of the schematic 
eye is left unchanged, so that the nodal point remains the same for all ALs. The numerical 
estimate for the nodal point was obtained by averaging of 670 ray-tracings, with an angle 
of incidence between 0.1 and 67 degrees with respect to the optic axis. The nodal point for 
each incident ray was derived numerically by minimising the absolute difference between 
the angle of the incident and the refracted ray (after the posterior face of the lens) with 
respect to the optic axis. The resulting estimate was 6.93 mm, which is very close to the 
value of 6.95 mm reported by Drasdo and Fowler21. The schematic eye was assumed to be 
radially symmetric around the optic axis. The same schematic eye was used to correct for 
ocular magnification in the SD-OCT macular volume scans. In their original paper, Drasdo 
and Fowler did not clarify what point they used as a reference to calculate the visual angle. 
In accordance with the guidelines from the Imaging and Perimetry Society39, we used the 
nodal point of the schematic eye. 
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 Current study Original values21 
Distance from corneal vertex (mm) 
Retina (Axial length) 23.8401 23.0100 
First nodal point 6.930 6.950 
Anterior lens surface  3.600 3.600 
Posterior lens surface  7.375 Missing 
Centre of retinal sphere 12.381 11.950 
Radii of curvature (mm) 
Retina 11.459 11.060 
Anterior lens surface  10.000 10.000 
Posterior lens surface  6.000 6.000 
Apex of cornea 7.800 7.800 
Eccentricity of corneal 
ellipse 0.500 0.500 
Refractive indices 
Cornea, aqueous, vitre-
ous  1.336 1.336 
Lens 1.430 1.430 

Table 2.3 Data for the schematic eye used in this paper along with the origi-
nal values from Drasdo and Fowler21. The differences are highlighted in bold. 
Missing = inferred from Figure 2.1 in the original paper. 

 

2.5.3. Appendix 3 
The value of k in formula 3 also depends on eccentricity according to 
 
 𝑘(𝑒) = 	1 + (1.004 − 0.007209 ∗ 𝑒 + 0.001694 ∗ 𝑒* − 0.00003765 ∗ 𝑒2)3* (2.4) 
 
and accounts for the change in the relative percentage of the ON and OFF midget RGC-RF 
with eccentricity, as reported by Drasdo et al.1. The Dgcrf  is converted into a density per mm2 
with the conversion ratio derived from the schematic eye (Figure 2.1), according to the axial 
length. The eccentricity in visual degrees is also converted into mm on the retina using the 
schematic eye. Then, a RGC-RF density profile from the fovea outward can be calculated 
and converted into cumulative counts for a circular sector centred at the fovea by 
 

𝐶+!,-(𝑟) = P Q2𝜋𝑟 ∗ 𝐷+!,-(𝑟)S
,

'
𝑑𝑟 (2.5) 

 
where r is the eccentricity from the fovea in mm and 2πr is a correction factor for the sector 
area increasing with eccentricity. The actual width of the sector considered acts only as a 
scaling factor and has no bearing on the results of the computation. When computed nu-
merically, the integral is simply a cumulative summation for predefined steps in r. The same 
formula was used to compute the cumulative counts of RGC bodies (Cgcb). In this case, the 
Dgcrf is simply replaced by the density of RGC bodies (per mm2) obtained from the histology 
map (Dgcb) along the same meridian, after correction for the size of the retinal sphere. The 
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displacement is finally computed as the difference between the eccentricities at which Cgcb 
and Cgcrf are equal (Figure 2.9). For each meridian, the displacement is zero beyond the first 
crossing point between the two cumulative curves. Therefore, the actual displacement 
might involve a smaller area than the DZ. 
 

 
Figure 2.9 Example of how the displacement is computed along a specific meridian. A) 
The black line indicates the meridian analysed. The shaded area highlights the radial sector. 
The ticks indicate the distance in mm. The colour map represents the RGC histology density 
map. B) The displacement is calculated as the distance (black solid line) between the two 
eccentricities at which the cumulative counts of RGC-RF (blue solid line) and the RGC bodies 
(red solid line) are equal. The dashed vertical line indicates the eccentricity of the maximum 
displacement zone. The fitting process requires that the two cumulative counts are the 
same at this eccentricity. 
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3. Systematic and random mapping er-
rors in structure – function analysis of 
the macula 
This paper focuses on investigating how perimetric stimuli are projected on the retina of 
healthy observers and patients with glaucoma. One common assumption in structure-func-
tion calculations (and perimetry in general) is that the observer maintains a steady fixation 
on a central target throughout the test. However, eye movements and damage from disease 
can affect the accuracy of this assumption. This is more important when using denser grids, 
such as the 10-2. The objective of this work was to use data from a specialised perimetry 
device equipped with eye-tracking and retinal imaging technology to quantify the amount 
of error in this assumption when performing structure-function mapping with SAP. An im-
portant outcome of this investigation was to show that the practice of rotating the 10-2 grid 
to align its horizontal midline with the segment connecting the fovea and the optic disc on 
the retina, common in previous literature1, 2, did not find support in empirical evidence. 
Finally, we introduced a method to quantify how much fixation can be influenced by seen 
stimuli during perimetry and how this can affect the accuracy of the presentation of the 
following stimuli. This highlights the importance of steady fixation, which can be reduced by 
carefully instructing the tested subject. The results were published in Translational Vision 
Science and Technology (TVST), a journal of the Association for Research in Vision and Oph-
thalmology (ARVO). The paper is freely available at: https://tvst.arvojournals.org/arti-
cle.aspx?articleid=2772280. 
       
Contributions 
- Main contributor: Giovanni Montesano (conceptualisation of research, data and statistical 

analysis, interpretation of the data, drafting of the manuscript). 
- Other contributors: 

- Luca M. Rossetti (data collection, interpretation of the data, manuscript proofing) 
- Davide Allegrini (data collection, interpretation of the data, manuscript proofing) 
- Mario R. Romano (data collection, interpretation of the data, manuscript proofing) 
- David F. Garway-Heath (interpretation of the data, manuscript proofing) 
- David P. Crabb (supervision, interpretation of the data, manuscript proofing) 

3.1. Introduction 
Glaucoma is characterised by structural loss of neural tissue and associated functional dam-
age to the visual field (VF). Therefore, the spatial mapping of the location of visual function 
measurements to image-based measurements of retinal structure is important when eval-
uating the agreement of estimates of functional and structural damage.  
Optical Coherence Tomography (OCT) is widely used to provide a quantitative three-dimen-
sional assessment of thickness of different layers of the retina and optic nerve head (ONH) 
3, 4.  The most affected layers in glaucoma are the Retinal Nerve Fibre Layer (RNFL) and the 
Ganglion Cell Layer (GCL), which typically show localised or diffused thinning when damaged 
3-5. Functional (VF) loss in glaucoma is typically measured using white-on-white perimetry,4, 

https://tvst.arvojournals.org/article.aspx?articleid=2772280
https://tvst.arvojournals.org/article.aspx?articleid=2772280
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6 where the subject is asked to fixate on a central target while stimuli of varying intensities 
are projected at various retinal locations. The subject presses a button every time a light 
stimulus is perceived. This information is then used to compute the retinal sensitivity at 
each tested location 7. 
In recent years, there has been increasing interest around the study of macular damage in 
glaucoma8, 9. Macular involvement can seriously impact the visual function and vision re-
lated quality of life of patients and is now recognised to be a feature of glaucoma even in 
early stages10-13.  
The macula can be assessed with high precision both with functional and structural tests. 
For example, exhaustive thickness measurements of the posterior pole can be obtained 
through high density OCT scans. Likewise, the 10-2 perimetric grid provides a detailed sen-
sitivity map of the macular region, with an examination resolution of 2 degrees 2, 14-16. These 
measurements have been combined to study the structure-function relationship in glau-
coma 1, 2, 15-17. Such analyses require that the spatial correspondence between tested loca-
tions and measured thickness values is established. This is challenging as a consequence of 
the radial displacement of the Retinal Ganglion Cells (RGCs) in the macula18, 19 and by the 
accuracy of spatial mapping of perimetry onto structural maps16. The latter is especially im-
portant in the macula, since inaccurate mapping can potentially nullify any advantage of-
fered by the high spatial resolution of the measurements. We explore this challenge in this 
study. 
Any mapping scheme is based on certain assumptions. Usually, it is assumed that the centre 
of fixation, or Preferred Retinal Locus (PRL), coincides with the anatomical fovea. However, 
patients can exhibit eccentric fixation, especially with advanced macular damage20, 21, even 
in glaucoma16, 22. Moreover, some researchers have proposed that the 10-2 VF grid should 
be rotated to match the anatomical fovea-disc axis 1, 2. Such an assumption is not supported 
by evidence on how stimuli are projected during perimetry. Another major hurdle is fixation 
instability. In fact, subjects might not be able to maintain steady fixation on the central tar-
get throughout the VF test 23-25. This can result in projection of stimuli on the retina away 
from the intended location. In an attempt to solve this issue, fundus perimetry has been 
introduced21, 24, 26-29; this employs tracking of eye movements through continuous retinal 
imaging and actively compensating for eye movements when projecting the stimuli. Origi-
nally designed to test patients with age related macular degeneration21, fundus perimetry 
has been successfully employed in glaucoma to improve test-retest variability and struc-
ture-function relationship17, 26-28. Importantly, fundus perimetry locks the stimulus location 
on a reference image of the subject’s retina, providing precise landmarks to accurately link 
perimetric data to OCT maps 16. Finally, as a useful by-product of the tracking procedure, 
detailed two-dimensional information on fixation behaviour of the subject during the test is 
provided 21-25, 30, 31. 
In this work, we combine structural information from an OCT device and functional data 
collected with a fundus perimeter from healthy subjects and glaucoma patients. The objec-
tive was to use projection and fixation data from fundus perimetry to: 1) establish whether 
grid rotation along the fovea-disc axis as a preferred mapping scheme is supported by evi-
dence, and 2) quantify the spatial error of stimulus projection in perimetry when eye move-
ments are not compensated, as in traditional VF test. 
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3.2. Methods 
3.2.1. Data collection 
This was a retrospective analysis of data collected for a previously published study16. The 
study adhered to the tenets of the Declaration of Helsinki and was approved by the local 
ethical committee16 (Humanitas–Gavazzeni Hospital Ethical Committee, reference number 
161/18gav). After obtaining written consent, we collected data from 17 visually healthy sub-
jects and 31 glaucoma patients. All glaucoma patients and 9 of the healthy subjects had 
previous experience with perimetry, but not with the fundus perimeter used in this study. 
All subjects were instructed to maintain central fixation, as in traditional perimetry. The data 
collection has been described elsewhere32. In brief, Spectral Domain OCT (SD-OCT) high 
density volume scans (121 vertical b-scans) of the macular region were acquired with a fun-
dus tracked device, the Spectralis (Heidelberg Engineering, Heidelberg, Germany). Axial 
length was measured with an IOL-Master V3 A-scan (Zeiss Meditec, Dublin, CA, USA). The 
10-2 VF field test was performed on these 38 subjects with a fundus perimeter (Compass 
[CMP], CenterVue, Padua, Italy). Twenty additional glaucoma patients were also tested with 
a custom small grid for the main experiment and were not included in this analysis32. The 
CMP has a tracking speed of 25 Hz using an infrared fundus camera, with an approximate 
resolution of 32 pixel/degree. The theoretical maximum resolution of the tracking is equiv-
alent to that of the camera (0.03 degrees), but can be reduced by blurred or low quality 
images. The device has a background illumination of 31.5 asb and uses a Bayesian testing 
strategy (Zippy Estimation through Sequential Testing, ZEST 28, 33) to determine retinal sen-
sitivity. The device tracks the eye for 10 seconds at the beginning of the test to determine 
the PRL on the retina23. The testing grid is then centred on this location, which might be 
different from the anatomical fovea. The position of the tested locations is calculated in 
degrees from fixation (PRL) as in conventional perimetry. 

3.2.2. Analysis of fixation and projection data 
We extracted the complete tracking recordings of fixation during the test for each exam; 
these are composed of retina displacements over time (in milliseconds) in the horizontal 
and vertical direction (in degrees) with respect to a reference image acquired at the begin-
ning of the test16, 23. We also extracted the time, intensity, position relative to the PRL and 
response time (button press) of all the stimulus projections occurring during the test16. The 
two tracks (fixation and projections) were then matched using the time reference to quan-
tify fixation behaviour before and after each stimulus projection. 
First, we used this information to detect eye movements that were likely caused by gaze 
attraction from seen stimuli. We called these movements evoked displacements. The meth-
odology for this analysis has been previously presented (Modarelli A, et al. IOVS 
2018;59:ARVO E-Abstract 5131) and is reported in detail in the Appendix. In brief, a filter 
identifies eye movements, above an individualised noise threshold, directed towards a stim-
ulus projection. These eye movements can either be removed from the fixation track, to 
give a more robust quantification of fixation, or they can be analysed as a separate compo-
nent of spatial projection error (see below). 
To quantify fixation behaviour, we calculated the 95% Bivariate Contour Ellipse Area (95% 
BCEA)23, 25 of fixation positions before and after the removal of the evoked displacements. 
We also calculated the average displacement of fixation from the PRL during the test, as this 



 

 42 

can be easily related to common fixation tracks provided by traditional perimeters34, 35, such 
as the Humphrey Field Analyzer (Zeiss Meditec, Dublin, California).  

3.2.3. Structural mapping 
Fundus images from the CMP and the Spectralis can be used to match VF test locations to 
structural maps 16. For this analysis, we were only interested in detecting the anatomical 
fovea and the position of the ONH. The former was automatically detected using a template 
matching technique on the OCT measurement of the whole retinal thickness 16 and the lat-
ter was manually identified on the wide-field CMP image.  
Once a geometric projective transformation 16 is estimated by matching the fundus images 
from the two devices, the positions of the anatomical landmarks, the tested locations and 
the fixation track can be mapped into the coordinates of either device.  
In this study, we assumed that the retinal rotation during the VF test was the one observed 
in the fundus image from the CMP. Therefore, when stimulus locations were reported on 
the maps from the Spectralis, such a rotation was preserved. It is important to notice that 
the projection of the 10-2 grid in the CMP is analogous to any non-fundus tracked perime-
ter, i.e. stimuli are presented at predefined eccentricities with no rotation, regardless of the 
relative position of the fovea or ONH. However, differently from other devices, the retinal 
image can be used to assess the rotation of the eye relative to the grid during the test. The 
results from this analysis are therefore generalizable to structure-function analyses per-
formed with any perimeter. For objective (1), the effect of artificial grid rotation (to align 
the horizontal axis of the VF grid to the fovea-disc axis) on the mapping error was calculated 
as the Euclidean distance between the locations of the rotated or non-rotated grids, centred 
on the fovea, and the actual locations on the Spectralis maps (Figure 3.1 A). This approach 
preserves the real observed retinal rotation but removes fixation bias (see next section). 
Therefore, all grids were assumed to be centred in the fovea and the effect of rotation was 
isolated. 
 

 
Figure 3.1 Examples of mapping errors A) Spectralis fundus picture showing different map-
ping schemes. All are centred in the fovea. The filled black points represent the non-rotated 
10-2 grid (i.e. assuming the horizonal axis of the VF is horizontal on the retina). The filled 
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red points show the 10-2 grid rotated to match the horizontal axis with fovea-disc axis of 
the subject. Finally, the empty blue circles represent the grid with the real observed rotation 
from the CMP. The (0,0) coordinate represents the location of the anatomical fovea. B) Cal-
culation of the projection error. The different segments show different component of the 
error. The empty black circles represent the intended test locations for the 10-2 grid refer-
enced to the anatomical fovea. The small red dots represent the cloud of fixation positions 
during the exam. The offset of its centre from the anatomical fovea indicates the fixation 
bias. The (0,0) coordinate represents the location of the anatomical fovea. 

3.2.4. Quantification of projection errors 
Our main goal was to quantify projection errors occurring when eye movements are not 
compensated. This happens in conventional perimetry, when performing structure-function 
analysis. We defined projection errors as the spatial distance (in degrees) between the ac-
tual location of the projection on the retina (had there been no fundus tracking) and its 
intended location, in this case the stimulus coordinates of a 10-2 grid centred on the ana-
tomical fovea. One important aspect of fundus perimetry is that it locks the stimuli on fixed 
positions on the retina based on the initial estimation of the PRL. However, this is not what 
happens in conventional perimetry. Therefore, in our calculations for objective (2), we esti-
mated the actual projection location during the test by adding the last fixation offset (rec-
orded immediately before the stimulus projection) to its intended position, in degrees from 
the anatomical fovea. Finally, the small differences in retinal rotation between the fundus 
images from the CMP and the Spectralis (Figure 3.1 B) were also added.  
We considered the total projection error for each test to be composed of two different 
additive elements:  
- Fixation bias: this is a consistent offset of the PRL from the anatomical fovea. In our 

analysis, the fixation bias was calculated as the average offset in the horizontal and ver-
tical directions of the fixation positions after the evoked displacements had been re-
moved. The fixation bias was then removed before calculating the following compo-
nents. 

- Eye movements: these are gaze displacements occurring during the test and can be clas-
sified into two types: 

- Evoked displacements: these are eye movements caused by gaze attraction from per-
ceived stimuli. The exact method for their detection is explained in the Appendix. To 
quantify their effect, the error for each projection was identified as being a consequence 
of an evoked displacement if such a displacement happened during the previous presen-
tation. Therefore, an evoked displacement caused by one stimulus presentation is as-
sumed to influence the error of the following projection. This happens if the subject 
does not return to central fixation after the evoked displacement. 

- Random displacements: these are eye movements caused by random fixation instability. 
They are composed of all the calculated projection errors that are not attributed to 
evoked displacements. 

We finally defined the unbiased error to be the ensemble of evoked and random displace-
ments (i.e. after removing the fixation bias from all projection errors). All calculations for 
the image and track analyses were performed in Matlab (The MathWorks Inc., Natick, Mas-
sachusetts). 
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3.2.5. Statistical analysis 
Changes in the 95% BCEA before and after removal of evoked displacements 23, 25, was mod-
elled using a generalised linear model (GLM) with a Gamma distribution of the statistical 
error and a log link function for the BCEA. Such an approach accounts for the skewed distri-
bution of the BCEA (strictly positive) and models the effect of the predictors as proportional 
(additive in log-scale). This is consistent with previous reports studying the log-transformed 
BCEA. Differently from a log-transformation, GLMs allow a direct estimate of the mean and 
standard error in the original scale of the dependent variable. Random intercepts were 
added to account for the repeated measures from the same eye (BCEA with and without 
evoked displacements). The marginal (population) estimates from mixed model with a non-
linear link function (log in this case) are, however, conditional to specific values of the ran-
dom intercept36. Unconditional marginal estimates were derived numerically using the 
glmmadaptive package37 for R (R Foundation for Statistical Computing, Vienna, Austria). Dif-
ferences in 95% BCEA with and without evoked displacements between the healthy and 
glaucoma cohort were calculated through a single model which included an interaction be-
tween the group (Healthy or Glaucoma) and the type of displacement (Random or Evoked). 
The projection error in our analysis is defined as a distance; the distribution of this variable 
is also expected to be positive and right-skewed. Therefore, GLMs with a proportional effect 
of the predictors can be suitable in this case as well. However, for ease of interpretation, it 
is convenient instead to model the effects on the error as additive. Hence, we used simple 
linear mixed effect models, with a random intercept term to account for correlations among 
observations from the same test, for all the statistics describing the projection errors (lme4 
package for R 38). The effect of evoked displacements was coded for each presentation as a 
binary fixed effect predictor in the GLM. The specific effect of evoked displacements was 
analysed using the unbiased error. The linear model expressed the difference in projection 
error for presentations following likely evoked displacements compared to the other 
presentations. The differences in the frequency of evoked displacements between the 
healthy and glaucoma cohort was studied using a logistic regression with random inter-
cepts. This is also a GLM with a non-linear link function (logit). The population estimates 
were therefore also obtained with the GLMMadaptive package37. Differences between ran-
dom and evoked displacements between the healthy and glaucoma cohort were calculated 
through a single model which included an interaction between the group (Healthy or Glau-
coma) and the type of displacement (Random or Evoked). 
Age (years) was always included as a covariate, except when calculating the error intro-
duced by rotation, since this was not dependent on functional factors. Age adjusted esti-
mates and 95% confidence intervals (CIs) are reported at the average age of the overall 
sample (61 years). The level of statistical significance for the analyses was set to 0.05. The 
Tukey-Kramer method was used to correct for multiple testing when performing pairwise 
comparisons.  All statistical analyses were performed in R. 

3.3. Results 
Demographic characteristics of the final sample are reported in Table 3.1. On average, the 
healthy cohort was younger than the glaucoma cohort. The two cohorts overlapped in the 
range between 34 and 62 years of age, which included 20 (43%) subjects. The fixation track 
could not be extracted for 3 healthy subjects. One glaucoma subject was excluded because, 
despite correct initial alignment and PRL detection, the centre of fixation was several 
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degrees away from the central target throughout the exam. The patient reported seeing a 
ghost image of the central target projected superiorly. 
 

 Healthy (N = 17) Glaucoma (N = 30) 
Age (years) 42 [27, 60] 74 [44, 87] 

Axial length (mm) 24.17 [22.06, 25.84] 24.18 [22.24, 26.33] 

BCVA (decimals) 1.0 [0.80, 1.00] 0.70 [0.22, 1.00] 

HFA 24-2 (dB) - -14.42 [-27.67, -3.12] 

CMP 10-2 MD (dB) -0.28 [-1.89, 0.56] -13.00 [-26.16, -6.40] 

Exam duration (minutes) 6.6 [5.7, 14.5] 9.9 [7.3, 16.5] 
Table 3.1 Demographics of the sample. All values are reported as Median [95% quantiles]. 
24-2 data for glaucoma patients were obtained from clinical charts. CMP = Compass; HFA 
= Humphrey Field Analyzer 

3.3.1. Mapping error introduced by grid rotation 
The effect of aligning the horizontal axis of the 10-2 grid with the fovea-disc axis (rotation) 
is shown in Figure 3.2. The reference was the actual rotation of the grid observed with the 
CMP. The error was 0.80 [0.73, 0.86] degrees (Mean [95% CIs] for the rotated grid and 0.30 
[0.23, 0.36] degrees for the non-rotated grid (p < 0.001). Grid rotation introduced a system-
atic error that was larger for more eccentric locations and increased proportionally with the 
amplitude of the fovea-disc angle (p < 0.001), i.e. with the amount of rotation required (Fig-
ure 3.2). No significant systematic error was introduced with the non-rotated grid. 
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Figure 3.2 Error introduced by grid rotation. The left panel shows the systematic error 
introduced by artificial grid rotation at different eccentricities according to the measured 
fovea-disc angle. The right panel shows the mean error estimated from the model at differ-
ent locations with and without grid rotation to match the fovea-disc axis. 
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3.3.2. Projection errors due to fixation movement 
Projection errors from four different example subjects are reported in Figure 3.3.  

 
Figure 3.3 Examples from four different subjects of projection errors during a 10-2 VF 
test. All images are centred on the anatomical fovea. The small red dots represent the cloud 
of fixation positions during the test. The yellow cross corresponds to the fixation bias. The 
blue empty circles represent the intended position of the tested location. The small green 
circles represent the actual location of each projection on the retina, connected to its in-
tended location by a black line. The top track represents the fixation displacement from the 
initial PRL. The shaded blue vertical bands in the track indicate evoked displacements. A) 
Small fixation bias, stable fixation; B) Larger fixation bias, more unstable fixation. C) Ex-
tremely chaotic fixation; D) Stable fixation with large fixation bias. 

 



 

 48 

Age corrected estimates of the 95% BCEA were lower in glaucoma patients than in healthy 
subjects but the difference did not reach significance (Table 3.2, p = 0.062). The 95% BCEA 
recalculated excluding the evoked displacements was significantly smaller, both in glau-
coma patients and healthy subjects (p < 0.001), but showed no significant differences be-
tween the two groups (p = 0.886). Healthy subjects showed a significantly larger reduction 
in 95% BCEA when evoked displacements were removed compared to glaucoma patients (p 
= 0.034). The age corrected 95% BCEA was also significantly positively correlated with the 
10-2 MD (4.9% increase/dB, p = 0.014) in glaucoma subjects but no significant relationship 
could be found between the MD and the 95% BCEA after the removal of evoked displace-
ments (p = 0.265). The frequency of evoked displacements was significantly higher (p = 
0.047, logistic regression) in healthy subjects (6% [4%, 8%]) than in glaucoma patients (4% 
[3%, 5%]).  

   
Median  

[95% quantiles] 
Age-corrected  
Mean [95% CIs]  

   Healthy Glaucoma Healthy Glaucoma 

Fixation 

95% BCEA (degrees2) 
3.91 

[0.38, 21.45] 
3.76 

[0.64, 20.98] 
8.02  

[4.78, 13.46] 
4.09  

[2.93, 5.7] 

95% BCEA (degrees2) w/o 
Evoked displacements 

0.68 
[0.23, 3.45] 

2.54 
[0.34, 6.31] 

1.98  
[1.05, 3.75] 

1.86  
[1.21, 2.86] 

Fixation bias (degrees) 
0.47  

[0.06, 0.95] 
0.52  

[0.18, 1.55] - - 

Projection errors (degrees) 
Total 0.63 

[0.16, 2.27] 
0.73 

[0.19, 2.45] 
0.99 

[0.75, 1.23] 
0.89 

[0.73, 1.05] 

Unbiased 
Evoked 0.53 

[0.13, 3.13] 
0.49 

[0.12, 2.88] 
1.04 

[0.82, 1.25] 
0.81 

[0.67, 0.96] 

Random 0.43 
[0.11, 1.73] 

0.46 
[0.11, 1.68] 

0.78 
[0.56, 0.97] 

0.55 
[0.41, 0.68] 

Time interval between presentations (seconds) 
 1.43 

[0.89, 2.32] 
1.7 

[1.1, 2.56] 
1.54  

[1.46, 1.63] 
1.76  

[1.68, 1.84] 
Table 3.2 Fixation metrics and projection errors. Fixation metrics (top) and projection 
error (bottom) reported as Median [95% quantiles] (left) and as age corrected estimates 
of the mean [95% confidence intervals]. The mean values are estimated at the overall av-
erage age of the sample (61 years). The estimates for evoked and random errors quantify 
the amount of unbiased error for presentations following likely evoked displacements 
(Evoked) and all the other presentations (Random). 
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Figure 3.4 Fixation bias and mapping errors. The left panel shows the fixation bias of 
each subject. The centre of the polar plots represents the anatomical fovea. The dots rep-
resent the position of the average fixation during the test. The shaded circle encloses the 
95% quantile value of the distance of the centre of fixation from the fovea for each group. 
The panel on the right shows the total error (top) for glaucoma and healthy subjects and 
the unbiased error (bottom) broken down into evoked and random displacements. The 
spacing of the vertical axis is in log10 steps. 

Average fixation bias was greater (Table 3.2 and Figure 3.4, left panel) for glaucoma pa-
tients but this difference did not reach statistical significance (p = 0.15). Age corrected esti-
mates for mean projection error were not significantly different between glaucoma patients 
and healthy subjects (Table 3.2, Figure 3.4 right panel), neither for the total error (p = 0.53) 
nor for the unbiased error (p = 0.13). Removing the fixation bias significantly reduced the 
error in both healthy and glaucoma subjects (p < 0.001), with a significantly larger effect on 
glaucoma patients (p < 0.001). Evoked displacements significantly increased the error both 
in glaucoma patients (p < 0.001) and healthy subjects (p < 0.001) and the effect was not 
different between the two groups (p = 0.839). 
Both the total and the unbiased average errors were very well predicted by the average 
fixation track displacement (R2 = 0.77 for the total error; R2 = 0.60 for the unbiased error; p 
< 0.001) through a simple linear relationship (Figure 3.5). 
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Figure 3.5 Projection error prediction. Linear regression of the average total and unbiased 
error according to the average displacement of the fixation track for each subject. Equations 
of the linear fit are given. 

3.4. Discussion 
3.4.1. Mapping error introduced by grid rotation 
The first objective of our work was to test whether rotating the 10-2 grid to match the fovea-
disc axis was the best mapping scheme for structure-function analysis. We compared the 
error with and without rotation using the actual eye rotation observed with a fundus perim-
eter as a ground truth. With our data, we did not find any evidence to support that grid 
rotation provides a better mapping of the tested locations on the retina. Moreover, we 
found that rotating the 10-2 grid introduced a systematic error proportional to the fovea-
disc angle. This finding has some important consequences for previously published results 
1, 2, where grid rotation was applied. Since most of these results relied on pointwise topo-
graphical analyses, their validity now seems questionable. These studies did not use a fun-
dus perimeter, so the actual location of the stimuli cannot be known. However, our findings 
easily generalise to conventional perimetry since the head positioning of the patient and 
the projection of the stimuli are identical28.  The CMP, in fact, projects the 10-2 grid exactly 
as it would be in a traditional perimeter, with no regard for the relative position of fovea 
and the ONH. Of course, with the aid of imaging and fundus perimetry, the 10-2 grid could 
be forcedly aligned with the fovea disc axis. However, further studies, for example on how 
the anatomy of the RGCs changes with the position of the ONH, are needed to understand 
whether such a change would provide any advantage in structure-function analyses and 
diagnostic ability. 

3.4.2. Projection errors due to fixation movement 
The second objective was to quantify how eye movements contributed to errors in the pro-
jection of perimetric stimuli on the retina. Here we used fixation and projection data from 
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the CMP and structural data from a SD-OCT to model what would happen in conventional 
perimetry. We specifically isolated the effect of gaze attraction from projected stimuli in 
what we called evoked displacements. We found that removing these evoked displace-
ments from fixation data significantly shrunk the 95% BCEA both in healthy subjects and in 
glaucoma patients (p < 0.001). This reduction was significantly more pronounced in healthy 
subjects (p = 0.034), as evoked displacements were significantly more frequent in this group 
(p = 0.047). This could be partially explained by the fact that healthy subjects were less ex-
perienced with perimetry than glaucoma patients. However, rather than an actual change 
in fixation behaviour, we attribute this difference to a higher number of seen presentations 
in healthy subjects, which is a consequence of the way threshold strategies probe VF sensi-
tivity7, 33. This is also corroborated by the finding that the 10-2 MD was positively correlated 
with the 95% BCEA in glaucoma subjects (larger for more initial damage), but such a rela-
tionship was not significant when evoked displacements were removed. Notably, all glau-
coma subjects were experienced test takers. We then found that the projection error of 
stimulus presentations preceded by an evoked displacement was significantly increased 
compared to the rest of the presentations (p < 0.001, Figure 3.4). This is not an obvious 
result, as the time interval between presentations (Table 3.2) could allow subjects to return 
to central fixation. Previous work investigating fixation area in fundus perimetry found a 
significantly increased 95% BCEA in glaucoma patients30, 31. In a previous study23, however, 
we analysed data from the PRL assessment phase in the CMP on a different dataset and 
found no difference between healthy subjects and glaucoma patients, irrespective of their 
level of damage. However, there was a significant difference in other fixation metrics 23. This 
is confirmed by the results of this study, as no difference was found in the 95% BCEA be-
tween glaucoma and healthy subjects. Interestingly, Longhin et al. 30 reported an increase 
in BCEA during the perimetric test, compared to the initial PRL assessment phase, during 
which time no stimuli are projected. They speculated that this spread in fixation area could 
be the effect of projected stimuli attracting fixation, and this is consistent with our findings.  
Another component of the error that we analysed was the fixation bias. We could not find 
a statistically significant difference between healthy subjects and patients with glaucoma (p 
= 0.12). Yet, removing the fixation bias significantly reduced the projection error in both 
groups, with a significantly larger effect in glaucoma patients (p < 0.001). This apparent dis-
crepancy can be explained by the sample size, since in the first analysis it is limited to the 
number of subjects included in the study (N = 47), whereas the second result is based on 
the analysis of each presentation from the VF tests on those subjects (N = 14343 data 
points). This finding has important consequences. Regarding structure-function analyses, it 
obviously challenges the notion that the centre of the perimetric grid should be centred on 
the fovea when mapping perimetric thresholds onto structural data. Similar results have 
been shown for patients with other optic neuropathies with central damage39. This issue 
can be addressed by fundus perimetry, as the position of the stimulus projection is known 
with higher precision and can be used to obtain more accurate mapping 16, 22. Other solu-
tions might include methods based on structural analyses of the macular damage or on ad-
hoc fixation analyses derived from other fundus tracking devices, such as the Spectralis 39. 
Additionally, such a consistent shift in fixation has important consequences for deriving nor-
mative databases in perimetry. At present, the additional variability introduced by a fixation 
bias, which effectively changes the location of the projected stimuli, is not taken into ac-
count. It has to be noted that this latter issue is not solved by fundus tracked perimetry, 
since the centre of the perimetric grid is determined by an initial functional assessment of 
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the PRL. One possible solution would be to integrate fundus perimetry and OCT imaging to 
detect the location of the anatomical fovea and ensure that this is used as the centre of the 
perimetric grid instead.  
We also showed that the error can be reliably predicted from the fixation track (Figure 3.5). 
This could be useful for researchers not using fundus perimetry to determine the amount 
of error in their measurements. In fact, the fixation tracks produced by fundus perimetry 
can be easily related to similar graphs produced by traditional perimeters with pupillary 
fixation monitors. A method for the quantitative analysis of these tracks has been proposed 
by Ishiyama et al. 34, 35, for example. However, studies are needed to establish the exact 
correspondence between the results of fundus and pupillary tracking.  
Finally, it is important to notice that our work did not aim at quantifying the effect of eye 
movements on perimetric sensitivity. We instead estimated the error induced by fixation 
and artificial grid rotation when reporting retinal sensitivities onto structural maps. Previous 
work thoroughly investigated the effect of eye movements on perimetric sensitivity40-42. 
Also, in our previous report on the CMP28, we showed that, despite improving test-retest 
variability for global indices, fundus tracking had only a modest effect on discrimination abil-
ity compared to traditional perimetry. However, our previous study compared two different 
devices, with two different testing strategies, using a 24-2 grid, whose locations are 6 de-
grees apart28. This could have limited the detection of the impact of tracking. In fact, even 
with very chaotic fixation (Figure 3.3 C), errors ≥ 6 degrees are extremely unlikely (0.2% in 
our sample, compared to 3.8% ≥ 2 degrees, see Appendix, Figure 3.6). A more precise 
quantification of the effect of fundus tracking on perimetric sensitivity and test-retest vari-
ability using a 10-2 grid will be the objective of future work. 

3.4.3. Limitations 
One limitation of our work is the relatively small sample size. This might have prevented the 
detection of significant differences in some fixation metrics between healthy subjects and 
glaucoma patients (e.g., the fixation bias caused by central glaucoma damage). However, 
we exploited the large amount of information contained in each VF test by analysing each 
projection, increasing the statistical power as much as possible. Like for many other fundus 
tracking device, CMP fundus tracking speed of only 25 Hz is a technical limitation for our 
study. Therefore, we were only able to analyse fixation up to this resolution and faster eye 
movements are likely to have gone undetected. Faster tracking is available with pupillary 
monitors 43. However, these have the disadvantage of not using retinal images as a refer-
ence, eliminating an essential piece of information for our analyses. Nevertheless, further 
studies using pupillary tracking would be extremely useful to better characterise the effect 
of evoked displacements both on projection accuracy and on fixation metrics, such as the 
BCEA. 
Finally, the structural and functional tests were not performed through the same optical 
system but instead relied on a post-hoc matching of fundus images from two devices. This 
could induce further uncertainty and could only be solved with an integrated OCT - fundus 
perimeter system44. 
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3.5. Appendix 
3.5.1. Identification of evoked displacements 
For each exam, the fixation track was matched with the sequence of the presentations, 
which reported the intensity, the location and the time of the stimulus projections. The 
whole fixation track was subdivided into segments delimited by projections times. For ex-
ample, the fixation segment between the onset of one stimulus (t0) and the following pro-
jection (t1) was assigned to the projection started at t0. Fundus tracking ensured that the 
stimuli were projected at the intended retinal location (relative to the PRL) Therefore, for 
each segment the coordinates of the first position were subtracted from the rest of the 
segment positions. Therefore, all the following positions within a segment were referenced 
to the last tracked position before the presentation of the stimulus, set as zero. For each 
presentation, the displacement was calculated as the maximum distance from zero reached 
within the fixation segment (Figure 3.6 A). To quantify how much each displacement was 
directed toward the stimulus, d the orthogonal projection of the displacement onto a line 
joining the centre of the grid (the initial PRL) with the location of the stimulus was calculated 
(Figure 3.6 A). We named this the concordant displacement (CD). So, a displacement exactly 
reaching the stimulus location would produce the maximum CD, whereas displacements at 
90 degrees with respect to the stimulus direction would produce a null CD. Finally, a dis-
placement pointing in the opposite direction would produce a negative CD. These values 
can then be used to build a graph were the vertical axis reports the CD (in degrees) and the 
horizontal axis reports the intensity of the stimulus projection at each location as a differ-
ence from the final threshold determined for that same location (in dB, Figure 3.6 B). There-
fore, negative values in the horizontal axis indicate stimulus intensities dimmer than thresh-
old while positive values indicate intensities brighter than threshold. 
To detect significantly positive CDs, indicating evoked displacements, we estimated the in-
dividualised noise from the negative part of the graph on the vertical axis, under the as-
sumption that negative CDs were just a consequence of random gaze movements during 
the projection of the stimuli. Hence, we calculated a 5% noise threshold that was then re-
flected on the positive part of the graph. We considered as evoked displacements all the 
segments with a CD value above the noise threshold and evoked by a projection within at 
least 10 dB below threshold (-10 dB on the graph, Figure 3.6 B). It is important to notice 
that this filter does not simply remove large gaze movements based on their magnitude but 
only acts on those that are likely caused by stimulus projections. 
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Figure 3.6 Calculation of concordant displacements A) The red track represents in the 
top image represents the gaze displacement evoked by the projection of the stimulus, in-
dicated by the solid white dot, overlaid to the fundus image. The bottom graph shows the 
same displacement (in blue) in visual field coordinates. The black segment represents the 
PRL – stimulus direction, while the red segment represents the orthogonal projection of 
the maximum displacement on the black segment (the concordant displacement, CDs). B) 
Red dots represent the significant positive CDs (evoked by the stimulus). Dashed lines rep-
resent the 95% noise limits calculated from the negative CDs and reflected on the positive 
upper half of the graph. Different noise levels were calculated for projections below (nega-
tive on the horizontal axis) and above (negative on the horizontal axis) the threshold.  

 
Figure 3.7 Box-plots of the unbiased error for each subject. The boxes include the inter-
quartile range, the whiskers extend to the 95% quantiles and the horizontal midline repre-
sents the median. The two horizontal black lines represent the spacing between locations 
of a 10-2 grid and of a 24-2 grid as a reference. 
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4. Evidence for structural and functional 
damage of the inner retina in diabetes 
with no diabetic retinopathy 
This paper applied the methodology developed in the previous two chapters and an estab-
lished neural model of perimetric sensitivity to investigate early neuronal damage in dia-
betic patients without diabetic retinopathy. The paper found that, despite significant 
changes in the thickness of the inner retinal layers, diabetic patients did not display a statis-
tically significant perimetric loss. Importantly, the structure-function relationship between 
perimetric sensitivity and structural estimates of RGC counts was compatible with partial 
summation conditions. We hypothesised that this was the reason behind the structure-
function discrepancy: a substantial loss of RGCs from neuronal damage can result in a small 
change in perimetric sensitivity when tested with relatively large stimuli. We then calculated 
that smaller stimuli, for the same amount of estimated RGC loss, might have been able to 
highlight the functional damage from diabetes. This paper highlighted the importance of an 
appropriate choice of perimetric stimuli to improve functional testing and optimise struc-
ture-function concordance in the macula. The results were published in Investigative Oph-
thalmology & Visual Science (IOVS), a journal of the Association for Research in Vision and 
Ophthalmology (ARVO). The paper is freely available at: https://iovs.arvojournals.org/ar-
ticle.aspx?articleid=2772422. 
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4.1. Introduction 
Diabetic retinopathy (DR) is the leading cause of blindness worldwide in working-age 
adults1-3. The role of vascular damage and new vessel proliferation is widely recognised and 
is ultimately responsible for the loss of sight1, 3. However, recent evidence suggests that 
direct retinal neuronal damage in diabetic patients might precede evident changes to the 
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retinal blood vessels4 and be a risk factor for progression to DR5. The damage mainly mani-
fests as Retinal Ganglion Cell (RGC) loss through apoptosis, resembling other neuro-degen-
erative diseases6-8. 
Both functional and structural evidence has been provided to support RGC loss in diabetic 
patients. Several imaging studies, earlier with scanning laser polarimetry9-11 and more re-
cently with Spectral Domain Optical Coherence Tomography (SD-OCT), observed thinning 
of the Ganglion Cell Layer (GCL), Retinal Nerve Fibre Layer (RNFL) and Inner Plexiform Layer 
(IPL) in patients with minimal or no vascular diabetic retinopathy4, 12-17. A wide array of tests 
have also been employed to detect the functional implications of such structural changes. 
Besides visual acuity, reported in almost all studies, functional tests have included Pelli-Rob-
son contrast sensitivity18-20, microperimetry20-24, Rarebit perimetry18, 25, 26, Frequency Dou-
bling Technology perimetry (FDT)18, 19, 27-29, Standard Automated Perimetry (SAP)18, 28-31 and 
quick contrast sensitivity function (qCSF)18. All these functional assessments have been able 
to show, to a different extent, some degree of functional impairment in patients with dia-
betes mellitus (DM) with no or minimal DR when compared to people without DM. Microp-
erimetry is particularly appealing for its high spatial accuracy and has been used for topo-
graphical structure-function mapping of early diabetic damage20, 22. FDT perimetry has also 
shown promising results in this context and is particularly valuable for its sensitivity to inner 
retina damage19, 32. Jackson et al.19, Parravano et al.29, Joltikov et al.18 and Bao et al.27 all 
reported reduced sensitivity to FDT stimuli in patients with early or no DR.  
Many of these effects on visual function are, however, subtle and difficult to identify. Alt-
hough structural analyses on large databases of OCT scans exist16, 17, functional tests have 
been performed on much smaller cohorts, especially when considering diabetic people with 
no vascular damage. The only large scale functional testing results in people with DM and 
no DR come from a screening survey performed in the United States27 with a suprathreshold 
FDT test. The study confirmed the usefulness of FDT as an indicator of early inner retinal 
damage in diabetes. However, the absence of measured sensitivity thresholds and struc-
tural data prevented a comprehensive quantification of the structural and functional dam-
age and their relationship. 
In this work, we use prospectively collected structural (SD-OCT) and functional data from a 
large cohort of healthy people and diabetic patients with no DR to characterise early neu-
ronal damage in diabetes. The data are part of a population-based collection, the Northern 
Ireland Sensory Ageing (NISA) study (https://clinicaltrials.gov/ct2/show/NCT02788695), 
conducted at Queen’s University Belfast (QUB). The functional data include Best Corrected 
Visual Acuity (BCVA), Pelli-Robson log10 Contrast Sensitivity (PR-logCS ), microperimetry and 
FDT threshold perimetry. We use these data to test the hypothesis that structural and func-
tional damage of the inner retina is present in DM prior to clinically evident vascular 
changes. 

4.2. Methods 
4.2.1. Data collection 
The NISA study (https://clinicaltrials.gov/ct2/show/NCT02788695) is a follow-up to the NI-
COLA study (https://www.qub.ac.uk/sites/NICOLA/), a prospective population based study 
of early imaging and functional biomarkers of DR and age-related macular degeneration 
(AMD). The selection steps are illustrated in a flowchart in the Appendix. The NICOLA study 
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involved a computer assisted home interview followed by a health assessment at the North-
ern Ireland Clinical Research Facility (NICRF), including an evaluation of eye health. People 
from the NICOLA cohort with at least one of the following characteristics were invited for 
the NISA follow-up data collection: 1) no retinal diseases; 2) self-reported diagnosis of DM 
either during the home interview or the health assessment; 3) early or intermediate AMD. 
The sample of diabetic people (type I or type II) was then extended with patients recruited 
directly from the Belfast Trust Diabetic Retinopathy Hospital Clinics at QUB. Participants un-
derwent Best Corrected Visual Acuity (BCVA) test with an Early Treatment Diabetic Reti-
nopathy Study (ETDRS) chart, PR-logCS  test with a Pelli-Robson chart, microperimetry and 
FDT perimetry (described in detail in the following paragraphs), an SD-OCT scan (described 
in detail in the next paragraph), fundus colour picture (CX-1 Digital Fundus Camera, Canon 
U.S.A., Inc, Tokyo, Japan), colour Ultra Wide Field Imaging (UWFI) images centred on the 
fovea (Optomap Panoramic 200Tx scanning laser ophthalmoscope, Optos PLC, Dunfermline, 
Scotland, UK) and a measurement of axial length (AL, Lenstar LS 900 Biometer, Haag-Streit 
AG, Switzerland). Lens opacity in phakic eyes was graded with a Pentacam Scheimpflug Sys-
tem (Oculus, Wetzlar, Germany) using the Pentacam Nucleus Staging (PNS) classification33. 
All imaging was performed after pharmacological dilation with tropicamide 1%. For all par-
ticipants, the eye with better BCVA was selected for the study, choosing at random if they 
were both eligible.  
Fundus colour pictures for all participants were classified by two graders (authors RD and 
UC) to identify signs of AMD (Beckmann classification34) and DR. Disc and macula colour 
images and UWFI were assessed for characteristic DR features in the central and peripheral 
retina and then staged using the national screening for DR system for England and Wales 
into four levels: none (R0), background (R1), pre-proliferative (R2) and proliferative (R3). 
Subjects not recruited from the DR clinic were identified as diabetic if they self-reported a 
diagnosis of diabetes mellitus. The duration of the disease was also recorded when pro-
vided. All subjects over 50 years of age and all diabetic patients were also invited to have a 
blood sample taken to measure the concentration of plasma glycated haemoglobin 
(HbA1C). Participants with no record of diabetes were classified as diabetic if the HbA1C 
was ≥ 6.5%. Refusal to have the blood sample taken did not prevent inclusion. 
Only healthy subjects (starting N = 406) or diabetic patients classified as R0 (starting N = 
159) were considered for this analysis. Eyes with intermediate or advanced AMD were ex-
cluded (N = 17). People with signs of early AMD were included in the analysis to avoid over-
selection of participants, especially for the no DM cohort.  Of the remaining 548, we only 
selected people for whom either microperimetry or FDT was available (N = 545). Hence, the 
following selection steps were applied to a starting sample of 395 healthy participants and 
150 diabetic patients. 

4.2.1.1. SD-OCT Scans 
Structural data were collected using a Spectralis SD-OCT (Heidelberg Engineering, Heidel-
berg, Germany). A macular volume scan was acquired for each study eye. The volume was 
composed of 61 horizontal B-Scans (ART 9) covering a rectangular patch 30 x 25 degrees 
tilted by 7 degrees (counter-clockwise for right eyes, clockwise for left eyes) to match the 
average inclination of the fovea-disc axis (Figure 4.1). The scans were tracked on the retina 
using a Scanning Laser Ophthalmoscope (SLO) which continuously captured an infrared fun-
dus picture to compensate for eye movements. A circumpapillary RNFL (cp-RNFL) scan was 
also collected for the study eye. All images were evaluated by two graders (authors RD & 
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UC) to identify poor quality scans and manually correct the segmentations where necessary. 
Poor quality was defined as the inability to accurately identify all retinal layers either be-
cause of low signal strength or because of partially or totally out-of-frame scans. An oph-
thalmologist (GM) visually inspected all scans from eyes that matched the inclusion criteria 
(described above) to identify people with vitreo-retinal alterations (such as vitreo-retinal 
tractions or epiretinal membranes), focal loss of the inner retina on macular scans or of the 
RNFL on the cp-RNFL scans (either from vascular occlusions or possible glaucoma), as well 
as diffused advanced cp-RNFL thinning and/or Optic Nerve Head (ONH) cupping likely at-
tributable to glaucomatous damage. Standard white-on-white perimetry and a measure-
ment of the intraocular pressure were not obtained for this data collection. Hence, a careful 
selection based on structural criteria was necessary. A total of 14 eyes were excluded due 
to poor quality of the scans, 10 due to the presence of vitreo-retinal diseases and 16 due to 
focal inner retinal loss or possible glaucoma. The same criteria were applied to cp-RNFL 
scans for participants whose macular scan was included, leading to the exclusion of 119/505 
scans (14 from diabetic patients), all because of poor quality. The absence of a viable cp-
RNFL did not prevent inclusion in the analysis. Hence, selection was only based on the mac-
ular scans. For the final selection of scans, the Median (Interquartile Range) Quality Index 
was 30.7 [28.9, 32.5] dB for the macular scans and 29.3 [23, 34.7] dB for the cp-RNFL scans. 

4.2.1.2. Microperimetry 
Microperimetric data were collected using a MAcular Integrity Assessment device (MAIA, 
CenterVue, Padua, Italy). The MAIA performs continuous infrared imaging of the retina to 
track and compensate for eye movements occurring during the test35-37. The test was per-
formed in mesopic conditions (1.27 cd/m2 background illumination) with an achromatic 
stimulus (0.43 degrees diameter) using a 4-2 staircase strategy. At the beginning of the test, 
a 10 second fixation trial was used to locate the Preferred Retinal Locus (PRL) of fixation, 
used as the centre of the perimetric grid. Notice that this might not coincide with the ana-
tomical fovea. All tests were preceded by a training phase with the ‘Fast’ protocol to mini-
mise learning effect. The grid was composed of 44 locations distributed on 5 concentric 
rings at 1, 2.3, 4, 6 and 10 degrees of eccentricity from the PRL. No exclusion was performed 
based on fixation metrics or blind spot responses since, given the use of fundus tracking, 
these metrics are unlikely to be related to the reliability of the test. Furthermore, in a pre-
vious analysis, we have shown both these metrics to be poor predictors of test-retest vari-
ability in microperimetry38.  

4.2.1.3. FDT perimetry 
FDT data were collected with a Matrix device (Zeiss Meditec, Dubin, CA, USA). The test was 
performed with the 24-2 threshold program. The stimuli were 5-degree squares with a ver-
tical sine wave grating (0.5 cycles/degree) counterphase flickered at 18 Hz. The threshold 
was measured using a Zippy Estimation through Sequential Testing (ZEST)39 strategy. Only 
one eye per subject was tested (the same as microperimetry when both were performed). 
In contrast to microperimetry and standard SAP, Matrix FDT uses Michaelson’s definition of 
contrast instead of Weber’s40. In the context of sinusoidal grating stimuli they are, however, 
equivalent41. Importantly, the Matrix FDT defines the sensitivity scale so that change of one 
log10 unit of contrast corresponds to 20 dB, instead of 10 dB as in microperimetry and SAP40. 
Two tests were excluded due to high false positive errors (> 33%).  
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4.2.2. Data analysis 

4.2.2.1. Structural metrics 
All OCT data were exported as RAW files (.vol) using the Heidelberg Eye Explorer. The files 
were then read in Matlab (The Mathworks, Natick, USA) using a custom-made code. The 
segmentations were used to generate thickness maps for the whole retina, the RNFL, the 
GCL, the IPL and the outer retina (from the outer limit of the IPL to the Bruch’s membrane). 
The maps were interpolated and smoothed to match the size of the reference infrared fun-
dus image (768 x 768 pixels, 30 x 30 degrees field of view), padding with zeros where the 
OCT data were missing, i.e. outside the scanning pattern. The interpolation was performed 
using a thin plate spline (tpaps function in Matlab) with anisotropic smoothing parameters, 
so that smoothing was stronger across B-scans than within a B-scan. The fovea was auto-
matically identified through template matching. Correct detection was confirmed through 
visual inspection. 
Topographic average thickness values for all layers were measured using a standard ETDRS 
grid, with three concentric rings of 1 mm, 3 mm and 6 mm external diameter. The two 
outermost rings were divided into four sectors (superior, inferior, nasal and temporal). The 
size of the grid was corrected for AL using our implementation of a schematic eye42 pro-
posed by Drasdo and Fowler43. The statistical analysis was performed in R (R Foundation for 
Statistical Computing, Vienna, Austria) using a linear mixed effect model with a random in-
tercept to account for multiple measurements (different sectors) from the same eye. The 
response variable was the measured thickness and the model included a categorical fixed 
effect for the group (either healthy or diabetic), a categorical fixed effect for the sector, the 
interaction between the two fixed effects and age (years) as a continuous predictor.  The p-
values were corrected for multiple comparisons (N = 9 tests) with the Bonferroni-Holm 
method44. Finally, global differences between the two groups across all sectors were tested 
for each layer by setting the sector as a crossed random effect. Global age corrected differ-
ences are reported as Estimate [95% Confidences Intervals (CIs)]. The alpha level was 0.05 
for all analyses. 
Cp-RNFL scans were corrected for ocular magnification using the formula provided by Kang 
et al.45. However, such a compensation, and other similar methods proposed, introduce a 
positive correlation with AL which then needs to be accounted for in the analysis45, 46. There-
fore, when analysing the cp-RNFL scans, we included AL as a covariate, together with age. 

4.2.2.2. Functional metrics 
Microperimetric and FDT data were exported as XML files and read in Matlab. The mean 
sensitivity (MS) for MAIA tests was calculated excluding the foveal location, which was not 
used for the structure-function analysis (see later). The Matrix FDT provides a calculation of 
the global Mean Deviation (MD), Pattern Standard Deviation (PSD) and values for the point-
wise sensitivity, total deviation (TD) and pattern deviation (PD). We additionally calculated 
the global MS as the average of the 52 locations within the 24-2 grid, excluding the two 
blind spot locations. Since our main analysis focussed on the macular region, we only used 
point-wise data for the 12 central locations (within 10 degrees from fixation). Global indices 
for the macula were also calculated as the average of the 12 corresponding central TD val-
ues (central Mean Deviation, cMD) and the central sensitivity values (central Mean Sensi-
tivity, cMS). All statistical comparisons, including for BCVA and PR-logCS, were performed 
with simple multivariate linear models with age as a covariate, except for the MD and the 
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cMD which already account for normal ageing. BCVA was converted from letter counts to 
log10 Minimum Angle of Resolution (logMAR) for analysis. 

4.2.2.3. Structure-function relationship 
For our main structure-function analysis, we focused on the GCL, assumed to be mostly 
composed of the bodies of the RGC neurons. The GCL thickness maps were transformed 
into estimates of local RGC density using the method proposed by Raza and Hood47 and 
based on the histology maps by Curcio and Allen48. The maps were corrected for axial length 
assuming a global expansion model, as previously described42. These density maps can then 
be used to derive customised local or global RGC counts.  

4.2.2.3.1. Global structure-function relationship 
The global structure-function relationship was studied using the MS for the MAIA and the 
cMD and cMS for the FDT. The functional metric was used as the response variable. The 
structural parameter was the total number of RGCs within 12 degrees from the fovea, cov-
ering the area tested by both the 12 central FDT and the MAIA grid after accounting for RGC 
displacements (see next paragraph). The MS for the MAIA and FDT tests was analysed using 
a multivariate model that included age as a covariate. The RGC counts were log10 trans-
formed prior to analysis to match the scale of perimetric data. This is also a widely applied 
method to relate RGC counts to perimetric sensitivities42, 49-51 (see also the Appendix). A 
secondary analysis of the correlation between global FDT MS with the average cp-RNFL (cor-
rected for ocular magnification45) thickness was also performed, with age and AL as covari-
ates. 

4.2.2.3.2. Topographic structure-function relationship 
We used point-wise data to explore the local structure-function relationship at different 
eccentricities. The structural metric was the local RGC count corresponding to each location. 
We accounted for RGC displacement in the macular region using our generalised implemen-
tation42 of the model proposed by Drasdo et al.52. Instead of simply displacing the centre of 
the tested locations, we displaced the whole perimeter of the stimuli, since we have previ-
ously proven this to be the correct method to obtain accurate structurally derived RGC 
counts42 (Figure 4.1).  
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Figure 4.1 Schematic of the stimulus displacement applied for the topographic structure-
function analysis, overlaid to the GCL thickness map from the Spectralis SD-OCT. Areas en-
closed within the black lines were used for calculations. Microperimetric stimuli were 
mapped by aligning the fundus images from the MAIA and the Spectralis. FDT stimuli were 
centred on the fovea. FDT = Frequency Doubling Technology; GCL = Ganglion Cell Layer 

Since the same RGC count could produce a different psychophysical sensation (i.e. sensitiv-
ity) at different eccentricities, especially in the perifoveal region, our structure-function 
models used a categorical fixed effect to account for eccentricity. An interaction term with 
the log10(RGC counts) also allowed for a different slope for each eccentricity. Finally, an in-
teraction term between the eccentricity fixed effect and the group fixed effect (healthy or 
diabetic) allowed for formal testing of statistically significant differences in slopes between 
the two groups, which would indicate different change in sensitivities for the same change 
in RGC count. A more detailed explanation of the model and its interpretation is given in the 
Appendix. For FDT data, the categorical fixed effect identified each one of the 12 central 
locations as a separate level. For the MAIA, locations were instead grouped by their eccen-
tricity from the PRL. Prior to analysis, the fundus image from the MAIA was matched with 
the SLO fundus picture from the Spectralis SD-OCT using an affine or projective transfor-
mation, so that the tested locations could be accurately reported onto the structural maps. 
The alignment was performed in Matlab and visually inspected (GM) to ensure it was cor-
rect. When incorrect, the alignment was repeated by placing manual landmarks on the two 
images. A satisfactory alignment could be obtained for all the included OCT/MAIA pairs. 
Manual intervention was required for 327/486 alignments. 
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4.3. Results 
4.3.1. Sample description 
Descriptive statistics of the selected sample are reported in Table 4.1. Some participants 
were unable to complete the entire imaging and functional testing protocol due to fatigue 
or time constraints. Only people with a viable macular scan and either the FDT or microper-
imetric test available were included. Table 4.1 also reports the number of participants for 
whom each variable/test was available. Eleven participants (10 healthy) had an intraocular 
lens implant. Three healthy subjects and six diabetic patients had a PNS > 1. The AL was 
measured for 495 participants and was derived through linear regression from the spherical 
equivalent for the remaining 10 participants (none of whom were pseudophakic). Despite a 
small difference in the average age composition, the two groups largely overlapped and the 
main age clusters for diabetic patients were well represented in the healthy cohort. Microp-
erimetry and FDT were available together for 412 participants (117 with DM). Thirteen sub-
jects were diagnosed with diabetes during the study because of their HbA1C value. Nine-
teen patients in this cohort had type I diabetes. Twenty-three participants had signs of early 
AMD, all in the no DM cohort. The cp-RNFL scan was available for 386 people (118 with 
diabetes). All of these had performed the FDT test.  

  No DM DM N (No 
DM/DM) 

Age (years) 61 [51, 66] 67 [58, 72] 371/134 
Sex (M:F) 208:163 88:46 371/134 
Duration of diabetes (years) - 0.20 [0.10, 0.43] - /133 
HbA1C (%) 5.57 [5.31, 5.89] 7.21 [6.52, 8.28] 271/118 
Spherical equivalent (D) 0.38 [-0.75, 1.38] 0.38 [-0.62, 1.47] 369/134 
Axial length (mm) 23.65 [22.96, 24.40] 23.49 [22.81, 24.15] 371/134 
BCVA (logMAR) -0.08 [-0.14, 0] -0.02 [-0.08, 0.04] 371/133 
PR-logCS (log) 1.65 [1.65, 1.65] 1.50 [1.50, 1.65] 370/133 
MAIA (MS, dB) 27.23 [26.09, 28.11] 26.56 [25.42, 27.88] 360/126 
FDT (Global MD, dB) -1.53 [-3.45, 0.17] -2.32 [-4.43, -0.05] 306/125 
Age cluster (years) < 30 30-39 40-49 50-59 60-69 70-79 > 80 
Healthy (N) 36 (10%) 23 (6%) 26 (7%) 84 (23%) 155 (42%) 45 (12%) 2 (1%) 
Diabetes (N) 3 (2%) 8 (6%) 3 (2%) 23 (17%) 47 (35%) 45 (34%) 5 (4%) 
Table 4.1 Descriptive statistics of the analysed sample. Continuous variables are re-
ported as Median [Interquartile Range]. DM = Diabetes Mellitus; HbA1C = glycated haemo-
globin plasma concentration; D = Dioptres; BCVA = Best Corrected Visual Acuity; logMAR = 
log10 Minimum Angle of Resolution; PR-logCS = Pelli-Robson log10Contrast Sensitivity; MS = 
Mean Sensitivity; FDT = Frequency Doubling Technology; MD = Mean Deviation 

4.3.2. Structural metrics 
Global average thickness across all sectors was significantly reduced in patients with DM for 
the whole retina (difference estimate [95% CIs]: -3.47 [-6.09, -0.84] µm, p = 0.010), the GCL 
-1.04 [-1.74, -0.35] µm, p = 0.003) and the IPL (-1.89 [-3.09, -0.69] µm, p = 0.002). No signif-
icant difference was found for the RNFL (0.11 [-0.52, 0.74] µm, p = 0.730). The outer retina 
was generally thinner in the DM group, but this difference did not reach statistical signifi-
cance (-1.65 [-3.37, 0.07] µm, p = 0.061). The total macular log10(RGC count) was also 



 

 65 

significantly smaller in diabetic patients (0.011 [0.004, 0.019] log10-unit reduction, p = 
0.036). All comparisons were age-corrected by including age as a covariate, which was sig-
nificantly negative correlated with the thickness of all retinal layers (p < 0.001). Sector dif-
ferences are reported in Figure 4.2. Significant differences (Bonferroni-Holm corrected p < 
0.05) were found for the GCL and IPL in all 3 mm ring sectors and for the 6 mm nasal sector 
for all layers except the RNFL. In the DM cohort, the thickness of none of the layers was 
significantly correlated with either the HbA1C or the duration of diabetes. The average cp-
RNFL, compensated for ocular magnification45 and corrected by age and axial length, was 
also significantly thinner in the DM cohort (-2.27 [-0.22, -4.64] µm, p = 0.032). 

 
Figure 4.2 Box-plots of the average thickness values recorded for each ETDRS sector. 
The boxes enclose the interquartile range, the whiskers extend to the 95% quantiles. P-
values corrected for 9 tests with the Bonferroni-Holm method for an age-corrected com-
parisons. * = p < 0.05; **  = p < 0.01; RNFL = Retinal Nerve Fibre Layer; GCL = Ganglion Cell 
Layer; IPL = Inner Plexiform Layer.  

4.3.3. Functional metrics 
Diabetic people had a significantly lower PR-logCS (age-corrected estimated difference: -
0.09 [-0.11, -0.06], p < 0.001) and the BCVA (0.05 [0.03, 0.07] logMAR, p < 0.001). There was 
no significant difference in microperimetric MS in the age-corrected comparison (-0.21 [-
0.52, 0.1] dB, p = 0.188). There was however a statistically significant difference in FDT cMD 
(-0.94 [-1.65, -0.23] dB, p = 0.010) and FDT MD (-0.83 [-1.53, -0.13], p = 0.021). A significant 
difference was also found for the age-corrected FDT cMS (-1.02 [-1.75, -0.28],  p = 0.007). 
In the DM cohort, none of the functional metrics were significantly correlated with either 
the HbA1C or the duration of diabetes. 

4.3.4. Structure-function relationship 

4.3.4.1. Global structure-function relationship 
A significant correlation with the total macular log10(RGC Count) was found for the microp-
erimetric MS (p = 0.0212) and for both central FDT metrics (cMD, p = 0.002; MS, p < 0.001). 
There was no significant difference in slopes between diabetic and healthy participants for 
either test (p = 0.055 for microperimetry; p = 0.885 for FDT cMD, p = 0.894 for FDT cMS). 
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The slope was steeper for the FDT cMD (13.3 dB/log10(RGC Count)) and FDT cMS (15.5 
dB/log10(RGC Count)) than microperimetry MS (4.3 dB/log10(RGC Count)). However, this re-
sult needs to be interpreted in the context of the different definitions of the dB scale used 
by the two devices (see Discussion) and considering the small loss in RGC count effectively 
observed for diabetic people in this sample (see previous paragraph). A significant differ-
ence in intercepts was found for the FDT cMS (p = 0.030) but not for FDT cMD (p = 0.062) 
and microperimetry MS (p = 0.339). The relationships with age-corrected microperimetric 
MS and FDT cMS are shown in Figure 4.3. There was a significant correlation between the 
average cp-RNFL and the global FDT MS (0.04 dB/µm, p = 0.028). The relationship with the 
global MD, however, did not reach significance, despite being very similar in magnitude 
(0.03 dB/ µm, p = 0.074). All comparisons with MS were corrected for age in the statistical 
model. The average cp-RNFL was also compensated for ocular magnification45 and cor-
rected by AL. 

 
Figure 4.3 Scatter plot and regression lines for the global structure-function relation-
ship. The regression lines have the same slope for both healthy and diabetic people. The 
total RGC count was calculated within the central 12 degrees from the fovea. The MS and 
cMS are projected to the average age of the sample (58 years old). RGC = Retinal Ganglion 
Cell; cMS = central Mean Sensitivity (12 central locations). 

4.3.4.2. Topographic structure-function relationship 
The point-wise structure-function slopes for microperimetry were shallow (Figure 4.4), as 
expected in partial summation condition (see Appendix). The slopes were however all sta-
tistically significant (p < 0.05) except at 1 degree of eccentricity (p = 0. 068). The only signif-
icant difference in intercepts between healthy and diabetic patients was found at 1 degree 
(p = 0. 0.036). As expected, there was no significant difference in slopes between healthy 
and diabetic patients (p = 0.178). 
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Figure 4.4 Scatter plot and regression lines for the topographic structure-function rela-
tionship for microperimetry The regression lines have the same slope for both healthy and 
diabetic patients. Local counts account for RGC displacement. The microperimetric sensitiv-
ity is projected to the average age of the sample (58 years old). RGC = Retinal Ganglion Cell. 

The point-wise structure-function slopes for FDT sensitivity values (Figure 4.5) were also 
shallow. The significance for slopes and differences in intercepts between the two groups is 
reported in Figure 4.5 for each location. A significant difference in intercepts was found for 
5 locations. A significant structure-function slope was found for 9 locations. As expected, 
there was no significant difference in slopes between healthy and diabetic patients (p = 
0.270). 
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Figure 4.5 Scatter plot and regression lines for the topographic structure-function rela-
tionship for FDT. The regression lines have the same slope for both healthy and diabetic 
patients. Local counts account for RGC displacement. * = p < 0.05; ** = p < 0.01; RGC = 
Retinal Ganglion Cell; difference = difference in intercepts between healthy and diabetic 
patients. 

4.4. Discussion 
We analysed structural and functional data in a large number of patients with DM (n = 134) 
with no signs of DR and 371 healthy controls. Our results support the hypothesis of inner 
retinal loss prior to clinically evident vascular alterations in diabetes. Critically, we could test 
this hypothesis by excluding patients with DR allowing us to isolate the effect of early neu-
ronal loss. Another strength of our study is that the diagnosis of DM for many of the diabetic 
patients was fairly recent (Table 4.1). This constitutes an optimal condition to study neu-
ronal loss in its earliest phase, suggesting that it might happen soon after or even before 
the clinical diagnosis of DM. Another novel important aspect of our analysis is that the re-
sults are framed in the context of an accepted neural model for perimetric stimuli, which 
allowed us to provide a mechanistic interpretation of the observed structure-function 
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relationship rather than simply reporting statistical associations between structural and 
functional metrics. Such a model constitutes an accepted paradigm for glaucoma but has 
not been previously tested for early neuronal loss in diabetes. 

4.4.1. Structural metrics  
The largest significant reduction in retinal thickness was recorded for the GCL and IPL, with 
some mild, non-significant changes to the outer-retina. This is in agreement with previous 
findings, showing thinning of the inner retina in patients with no or mild DR4, 12-17. Despite 
some local variations, the neural loss appeared mostly diffuse. However, most of the signif-
icant differences were found in sectors where the layer of interest is normally thicker, indi-
cating a likely effect of a larger signal-to-noise ratio in areas where measurements are more 
robust and have more room for variation. Such a result is in agreement with Van Dijk et al.12, 
13, 26, who reported significant changes only in peri-foveal region. This can also explain the 
lack of observable differences in the RNFL, notoriously thin and difficult to measure in the 
macular region. Indeed, when the normally thicker cp-RNFL was analysed, a significant, al-
beit small, loss was identified in patients with DM. It is important to note that retinal thin-
ning is not the only structural change observed in patients with DM and minimal DR. A com-
prehensive analysis by Gerendas et al.53 showed GCL-IPL thickening and attributed it to ini-
tial diffuse swelling prior to the development of evident macular oedema. However, these 
findings pertained to patients with type-1 diabetes, including people with mild DR. Instead, 
in our study, we carefully focused our analysis on patients with no signs of DR to specifically 
examine evidence of neural degeneration. Our DM cohort only contained 19 patients with 
type-1 diabetes, too few to be analysed separately. However, despite not being significant, 
this group showed an average thinning of the GCL compared to the healthy subjects both 
in the raw (-0.47 µm) and age corrected (-1.28 µm) estimates, in agreement with the general 
trend for the DM cohort. Nevertheless, this is an important aspect to consider when inter-
preting the structure-function relationship (discussed later).  

4.4.2. Functional metrics  
In agreement with previous results18-20, PR-logCS was significantly reduced in diabetic pa-
tients (19% average age-corrected reduction in CS). A significant reduction was also ob-
served in the BCVA, although the effect was smaller (12% average age-corrected increase 
in MAR). Such a small difference might explain why this parameter failed to show significant 
differences in previous reports18, 20. 
Importantly, we found a significant reduction in sensitivity with FDT perimetry in diabetic 
patients, confirming and expanding previous findings. Previous studies were mainly limited 
by the small sample size and the lack of a specific analysis of the macular region18, 19, 27-29. In 
our analysis, we showed that the differences between healthy and diabetic patients are 
larger for the central locations (cMD) than the whole field (MD). This strengthens the evi-
dence for neural damage, since tests of the central visual field are usually more reliable54. 
We did not find any significant differences between healthy and diabetic patients in the age-
corrected MS with microperimetry, despite a significant correlation with the RGC count. 
This can be explained by a more careful analysis of the structure-function relationship (see 
next paragraph). Of note, the MAIA, differently from the Matrix FDT perimeter, does not 
provide deviation values, hence the need for statistical correction for age. However, the 
same age-corrected model used for the central FDT MS still showed a strongly significant 
difference between the two groups, ruling out a lack of power in the statistical approach. 
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Of course, one limitation of our dataset is the lack of either the FDT or the microperimetry 
data for some of the participants. This could have been avoided by only analysing complete 
data (76% of the overall sample, 88% of the diabetic cohort). However, we decided to in-
clude all participants that had performed at least one of the two perimetric tests to mini-
mise the risk of bias and to maximise the power of our statistical analyses, conditioning our 
selection only on the presence of the macular OCT scan. 

4.4.3. Structure-function relationship 
One core aspect of our analysis was the detailed study of the structure-function relation-
ship, especially in the macular region. This is important in order to interpret our findings in 
the context of accepted neural models for perimetric responses. Unlike previous reports18, 
20, 26, we transformed the measured GCL thickness into an estimate of RGC counts and this 
was a novel step. Such an approach allows a more direct interpretation of the functional 
findings in light of the observed structural changes. Both FDT and MAIA measurements 
showed a significant correlation with structural parameters in the global and topographical 
analyses. For the global parameters, the slopes were steeper (greater effect) for measure-
ments from the FDT when compared to those from MAIA. However, it is important to keep 
in mind that the Matrix FDT equates one log10 step to 20 dB instead of 10 dB. To transform 
the FDT values to the same scale as microperimetry, it is sufficient to divide sensitivity and 
slopes by 2. This calculation brings the structure-function slope observed for the FDT cMS 
with the total central RGC count to 7.75 dB/log10(RGC count), much closer to the value ob-
served for microperimetry (4.3 dB/ log10(RGC count)), but still steeper.  
Despite both tests showing a significant correlation with structural parameters, with global 
and local measurements, only the FDT was able to show a significant difference between 
diabetic and healthy participants. The lack of significant differences for microperimety can 
be explained by considering point-wise sensitivities and the effect of spatial summation on 
perimetric stimuli and this is worthy of some discussion here and in the Appendix. Indeed, 
the relationship between the number of RGCs and perimetric sensitivity becomes very shal-
low if the number of stimulated RGCs is larger than a critical amount (conventionally > 101.5 
for SAP stimuli49), reducing the ability of the test to discriminate early functional damage. 
This happens in the macular region for G-III stimuli (used in microperimetry) because of the 
high density of RGCs49, 50. Total summation conditions could be obtained for the macula by 
changing the size or the duration of the stimuli49, 55. This would be particularly valuable for 
detecting the effect of early neural degeneration in diabetes. In fact, under-sampling due 
to RGC loss is expected to have a greater effect on sensitivity for small test targets compared 
to large test targets (see appendix). However, FDT was able to discriminate between the 
two groups regardless of this limitation.  Although such simple reasoning is more difficult to 
apply to FDT stimuli, the even larger stimulus size is likely to produce partial summation (see 
Appendix). One explanation for this difference is that FDT might be able to detect early cell 
dysfunction occurring in diabetic patients, in addition to the changes explained by pure 
structural loss. This is concordant with the finding that a significant difference in the inter-
cepts was detected in the structure-function relationship for FDT metrics (with no signifi-
cant differences in slope), effectively highlighting a residual functional defect in diabetic pa-
tients unexplained by structural changes. This residual defect could be the consequence of 
concomitant changes in the functionality of the outer retina. However, given the lack of 
significant thinning of the outer layers, this seems unlikely for our dataset. Of course, such 
a difference in intercepts could also be explained by the limitations of the structural OCT 
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measurements. One key assumption in our structure-function analyses is that changes in 
the measured thickness values accurately represent the loss of neural tissue. This is known 
not to be the case and is one of the reasons for the floor effect in structural measurements, 
especially with more advanced damage47, 56. For example, our quantification of RGCs as-
sumes that cellular density within a given volume of tissue remains constant and the change 
in RGCs is accurately reflected by the change in volume. Moreover, as previously men-
tioned, inner retinal tissue thickening has also been described53 in diabetic patients, likely 
due to subtle swelling of the neural tissue. This would make our assumption of constant 
density unreliable. However, it is unlikely for these factors to have played a major role in 
our analyses, given the absence of eyes with DR and the relatively early loss of inner retinal 
tissue, far from the floor effect. Indeed, such inaccuracies should have caused a significant 
difference in intercepts between the two groups also for microperimetry, which was not 
seen. This opens up potential applications of complex stimuli to more accurately investigate 
inner retinal damage in diabetes. However, in other reports, traditional SAP was also shown 
to be effective in detecting retinal dysfunction in diabetes18, 28-31 and performed similarly to 
FDT when compared directly18. The recent introduction of wide-field photopic white-on-
white perimeters equipped with fundus tracking technology57 might combine the accuracy 
of microperimetry with the benefit of traditional SAP. The obvious advantage of circular 
stimuli is that, not having to accommodate for patterns, they can be designed to be arbi-
trarily localised (small), potentially increasing spatial precision. However, as mentioned ear-
lier, the characteristics of the stimulus (duration/size) should ideally be optimised to detect 
fine changes in the macular region (this point is further expanded the Appendix). 

4.4.4. Effect of disease duration and HbA1C 
We could not find any significant correlations of the structural or functional parameters 
with either the duration of the disease or the percentage HbA1C in diabetic patients. The 
measured impact of these factors on neuronal damage has been variable across different 
reports13, 21, 53, 58. In our study population, the average duration of the disease was short. 
This was expected from our selection criteria, since patients with type-2 diabetes and no DR 
are likely to have only been recently diagnosed. This also means that the recorded duration 
is unlikely to accurately reflect the actual time course of the disease. Longer durations were 
recorded for patients with type-1 diabetes, a small fraction of our sample. 
A similar consideration can be made for the HbA1C, since the value measured in our cohort 
is representative of the metabolic control under treatment, with little connection to the 
metabolic imbalance that would have determined the initial neural damage. One limitation 
of this analysis was the fact that the HbA1C was not available for all participants (88% of 
diabetic patients and 73% of healthy participants). This constitutes a limitation also for the 
exclusion of type II DM in the healthy cohort. However, only 37 of the healthy participants 
(10% of the overall healthy cohort) for whom HbA1C was not measured were older than 40 
years of age and therefore at reasonable risk of having undetected type II DM. Thus, such a 
misclassification might have reduced the observed differences between the two cohorts in 
our dataset, but is unlikely to have produced a large effect. 

4.4.5. Conclusions 
Our data provide structural and functional evidence to support the hypothesis of neuronal 
damage in DM, prior to clinically evident vascular changes, in a large cohort of diabetic pa-
tients and healthy controls. However, most of these modifications are subtle and difficult to 
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detect. The macular region has the potential to be the optimal ‘ground’ to integrate struc-
tural and functional information for early detection of neural degeneration. Although these 
changes are too small to directly impact on patients’ vision, their detection is clinically 
meaningful, as it could help predict the insurgence of clinically evident vascular alterations5. 
However, functional tests should be optimised to better probe the central visual field, taking 
the effect of neural summation into account, for example. Future investigations with better 
designed functional tests are needed to assess the clinical effectiveness of structure-func-
tion integration to detect early neural damage in diabetes. Our data also confirm that a 
simple measurement of BCVA might be insufficient to fully characterise the changes in visual 
function observed in diabetes and that perimetric tests should be considered by researchers 
investigating diabetic neuronal damage. It is also important to highlight that clinical studies 
such as this cannot entirely rule out the presence of pre-existing micro-alterations of the 
retinal vasculature as a primary source of neuronal damage, since only clinically evident 
vascular alterations can be excluded in patients. Further structure-function analyses includ-
ing parameters from OCT-angiography scans might help shed light into this aspect and will 
be the subject of future work. 

4.5. Appendix 
4.5.1. Flowchart of the selection steps 
The flowchart in Figure 4.A1 reports the selection steps applied to the initial samples. The 
criteria for patients to be invited for the NISA study were based on the information collected 
at the time of the NICOLA study. For example, people with early AMD during the NICOLA 
study might have converted to intermediate/advanced AMD and therefore later excluded 
from this analysis. No such prior information was available for the diabetic cohort from the 
Belfast Trust Diabetic Retinopathy Hospital Clinics at QUB. 
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Figure 4.6 Flowchart of the selection steps detailed in the methods. DM = Diabetes Melli-
tus; DR = Diabetic Retinopathy; AMD = Age Related Macular Degeneration; QUB = Queen’s 
University Belfast. 

4.5.2. Spatial summation of perimetric stimuli 
Spatial summation describes how sensory systems combine input from multiple channels 
to produce the final psychophysical sensation (in this case, perimetric sensitivity). For simple 
circular perimetric stimuli, such as in the case of the MAIA, the number of channels is often 
equated to the number of RGCs being stimulated49, 59. This number can change because of 
the size of the stimulus or the local density of RGCs49, 55, 59. In SAP, the relationship between 
the log10(RGC count) and sensitivity in dB has a slope of 10 up to a certain RGC count (total 
or complete summation) after which the slope becomes much shallower, usually 2.5 (partial 
summation). In traditional SAP with photopic background illumination (10 cd/m2) and 200 
ms round stimuli, the break point is conventionally located at 101.5 RGCs49. Although using 
a mesopic background (1.27 cd/m2), such as in the MAIA, could change the location of the 
breakpoint60, 61, large differences are not expected for changes of less than 1 log10 unit in 
background illumination, as in this case. In fact, the theoretical framework is confirmed by 
our experimental data. Figure 4.7, left panel, shows the relationship between the log10(RGC 
count) and microperimetric sensitivity. The empirical slope fitted using the overall dataset 
yielded a value of 2.29 [95% CIs: 2.22, 2.37] dB/log10(RGC Count), remarkably close to the 
theoretical prediction. Indeed, even for the most peripheral locations, the number of stim-
ulated ganglion cells was mostly beyond the critical 101.5. Of note, the empirical slope was 
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fitted using a linear mixed model with random intercepts to account for correlated 
measures from the same eye and with age as a covariate to account for ageing effect be-
yond the normal loss of RGCs. In this framework, significant differences in intercepts be-
tween the diabetic patients and healthy controls would indicate a sensitivity loss unex-
plained by the structural loss, for example in the case of dysfunction. This was not observed 
for microperimetric stimuli. 
Such a theoretical framework can be applied for FDT stimuli, although harder to interpret 
due to their complex features41. Nevertheless, the much larger stimulus size is likely to pro-
duce partial summation conditions. Indeed, the observed slope was 2.29 [95% CIs: 1.97, 
2.62] dB/log10(RGC Count). This is however much shallower than microperimetry, consider-
ing that for the Matrix FDT one log10 step corresponds to 20 dB instead of 10 dB, leading to 
slope estimates that are doubled in value. In this case, as for the main analysis, there was a 
significant difference in the intercept between the two groups (p = 0.0105) and this is rep-
resented in Figure 4.7, right panel. 

 
Figure 4.7 Observed structure-function relationship compared to the theoretical frame-
work of spatial summation. The observed relationship for the FDT is plotted as two sepa-
rate lines to reflect the significant difference in intercepts between the diabetic and healthy 
participants. Sensitivity is projected to the average age of the sample (58 years old). RGC = 
Retinal Ganglion Cell 

Figure 4.8 shows how different results could be obtained by performing the microperimet-
ric test in total summation conditions, for example by reducing the stimulus size. For this 
calculation, we scaled the log10(RGC count) estimated for Goldmann III stimuli to other stim-
ulus sizes. We then calculated the expected sensitivity for the corresponding number of 
stimulated RGCs according to the model and added the residuals calculated from the real 
data. The estimated average difference between the two groups (and its standard error) 
were then calculated combining the values at different locations using a linear mixed model. 
As expected, the difference became larger for smaller stimulus sizes (Figure 4.8 B) and 
reached significance with a Goldmann I. This calculation does not account for possible 
changes in the variability of the perimetric response that could be introduced when testing 
with smaller stimulus sizes. However, this is not an intrinsic limitation of the test, since strat-
egies can be devised to maintain constant variability at different sensitivities62. Moreover, 
the breakpoint location might change based on adaptation conditions and background lu-
minance60, 61, but a Goldmann I stimulus is expected to be within the range of total summa-
tion in the macula even for mesopic testing conditions63. 
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Figure 4.8 Example of how the microperimetric test could be modified to improve de-
tection of neural damage. Panel A shows how the differences between perimetric re-
sponses from a healthy and degraded RGC mosaic are amplified by smaller stimuli that op-
erate in total summation conditions. The grey lines connect the number of RGCs stimulated 
in each condition with the predicted sensitivity. Their difference can be read on the vertical 
axis. Panel B shows how this principle might have provided different results for microperim-
etry in this study; the black line represents the estimated average difference in sensitivity 
with different stimulus sizes, according to the model; the blue shaded area encloses the 
95% Confidence Intervals for the difference, estimated from a linear mixed model. The ver-
tical lines indicate the size of typical Goldmann stimuli. The estimated difference was signif-
icant with a Goldmann I stimulus (p-values reported at the top). 
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5. Spatiotemporal summation of peri-
metric stimuli in healthy observers 
The motivation for this paper was to develop a computational model of perimetric sensitiv-
ity based on a mosaic of RGCs and photoreceptors and that included the effect of cortical 
processing. In particular, the model needed to capture some important features observed 
in experimental data collected in healthy observers and patients with eye disease, mainly 
glaucoma. The first aspect was the interaction between spatial and temporal summation. 
The second was the effect of cones and RGC density at various eccentricity on spatiotem-
poral summation. The third was the change in the critical area and critical duration observed 
in glaucoma. We collected perimetric and imaging data from healthy observers with various 
combinations of stimulus sizes and durations to develop and test the model. The study pro-
duced a relatively simple computational model that accounted for all the features previ-
ously outlined. Importantly, the model could replicate the effect observed in glaucoma from 
RGC loss or damage and could therefore be used to test the mechanism of damage in this 
particular disease. Moreover, the results of this work showed how similar changes in peri-
metric sensitivity can be obtained by combinations of stimulus sizes and duration and how 
these can be linked to an underlying biological substrate, opening the possibility for novel 
paradigms of perimetric testing. Key to the development of the computational model was 
the accurate quantification of the RGC displacement in the macula, which allowed person-
alised estimates of RGC densities through imaging of the subject’ retinas. The results were 
published in the Journal of Vision (JOV), a journal of the Association for Research in Vision 
and Ophthalmology (ARVO). The paper is freely available at: https://jov.arvojour-
nals.org/article.aspx?articleid=2785499. 
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5.1. Introduction 
Measuring how contrast sensitivity varies according to different stimulus sizes and dura-
tions has proven invaluable for investigating the psychophysical and physiological basis of 
transient stimulus detection 1-5 and how the underlying physiology is altered by disease6-10. 
In fact, change in sensitivity with increasing stimulus size (spatial summation) and duration 
(temporal summation) has been shown to be altered following retinal ganglion cell (RGC) 
loss from glaucoma6-9, 11. Both spatial and temporal summation are characterised by a 
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biphasic response, with a steeper reciprocal relationship between stimulus area/duration 
and contrast at threshold for smaller/shorter stimuli (total summation) and a shallower 
change for larger/longer stimuli (partial summation). The response is often characterised in 
terms of the point of transition between these two phases (critical size/duration)12. The 
physiological basis of spatial and temporal summation has been extensively studied. Alt-
hough models solely based on RGCs exist13, spatial summation has been linked to cortical 
magnification and to the convergence of RGCs onto cells of the visual cortex10. This phe-
nomenon is often referred to as cortical pooling and it is the favoured model for explaining 
spatial summation1, 10. Cortical pooling can be modelled through a linear combination of 
filter elements tuned to different spatial frequencies1. 
One aspect that has been explored to a lesser extent is the interaction between stimulus 
size and duration and its effect on sensitivity (spatiotemporal summation). Models exist to 
describe temporal summation in isolation14-16. Many of these authors acknowledge the ef-
fect of stimulus configuration14, 15 and adaptation state17 on critical duration. Direct experi-
mental evidence of the interaction between size and duration for simple circular stimuli11, 
18, 19 suggests a combined integration of the total input by the visual system. Some attempts 
have been made to describe such an interaction, mainly in the field of motion detection20, 
21, but this phenomenon has been little explored for perimetry19. Another aspect that has 
been overlooked is the effect of retinal convergence. One common assumption is that spa-
tial summation at different eccentricities can be exclusively explained by the change in den-
sity of RGCs10. However, similarly to cortical convergence, individual RGCs’ might carry a 
different weight in terms of retinal input at different eccentricities because they receive 
input from a different number of photoreceptors (larger in the periphery), with significant 
changes in the composition and density of their mosaic. 
Understanding these aspects is essential for many clinical applications of psychophysics. 
White-on-white perimetry is one of the most performed tests in clinical practice to diagnose 
and monitor the progression of a variety of diseases. In its most common implementation, 
the test is a ‘yes/no’ task in which an observer is asked to press a button every time a stim-
ulus is perceived. The response needs to be provided within a set time window following 
stimulus onset, with no response indicating that the stimulus was not seen. The stimulus is 
projected on a bowl with a uniform white background and usually consists of a circular tar-
get with sharp edges and 0.43 degrees in diameter (size III according to Goldmann22) and a 
duration between 100 and 200 ms. The intensity of the target is varied to estimate the 50% 
seen contrast threshold, using a variety of strategies. The target is presented at various lo-
cations around the fixation target, according to a set of pre-determined testing grids, so 
that the 50% threshold can be estimated at each of these locations. This produces a sensi-
tivity map that can be used to identify and monitor visual field defects. The objective of our 
work was to collect experimental data to build and validate a spatiotemporal summation 
model, able to capture the combined effect of retinal convergence, stimulus size and stim-
ulus duration for perimetric stimuli. 

5.2. Methods 
5.2.1. Participants 
Ten visually healthy participants between 18 and 40 years of age were recruited on a vol-
untary basis at City, University of London, London, United Kingdom. All participants gave 
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their written informed consent. The study was approved by the local Ethics board (Optom-
etry Proportionate Review Committee, approval number ETH2021-1728) and adhered to 
the tenets of the declaration of Helsinki. All participants underwent an ophthalmic assess-
ment by an ophthalmologist (GM), which included objective refraction and measurement 
of the intraocular pressure (IOP) with a non-contact tonometer and auto-refractor (TRK-1P, 
Topcon, Tokyo, Japan), best corrected visual acuity (BCVA) with Snellen charts, slit lamp as-
sessment of the anterior segment and indirect fundoscopy. Reasons for exclusion were any 
abnormality of the retina or of the optic nerve head (ONH), IOP > 21 mmHg and a BCVA < 
6/6 in the test eye. If both eyes were eligible, the one with the smallest refractive error was 
selected.  

5.2.2. Psychophysical experimental procedure 

5.2.2.1. Testing apparatus 
All experiments were carried out on an Octopus 900 bowl perimeter (Haag Streit AG, Koeniz, 
Switzerland) controlled through the Open Perimetry Interface23. The bowl is 30 cm in radius. 
The perimeter is equipped with a chinrest and an infrared camera to monitor eye position 
and pupil size. Chinrest position was adjusted by the operator as required, to maintain good 
centration of the pupil. A central target (four small dots in a diamond arrangement) encour-
aged fixation and avoided interference with centrally presented stimuli. A near-vision lens 
addition of approximately +2.50 D was used to reduce strain from accommodation, refined 
with subjective assessment of optimal visibility by the subject. Lenses were placed on an 
adjustable lens holder in-built to the instrument. The background illumination was 10 
cd/m2. Calibration was performed in a dark room before every experiment through an au-
tomated procedure implemented by the manufacturer. As is convention in perimetry, the 
intensity of the stimulus in dB is expressed as attenuation of the maximum possible stimulus 
intensity (3185 cd/m2), so that higher contrast equates to lower dB values. This quantity can 
be converted to Weber contrast (𝑊!) using the equation  

However, for simplicity in our calculations, we report the values as Differential Light Sensi-
tivity (DLS), which is simply the sensitivity value in dB/10. 

5.2.2.2. Spatiotemporal summation 
In the first experiment, we estimated contrast sensitivity at twelve locations in the central 
visual field (VF) with different stimulus sizes and durations for one test eye of all ten partic-
ipants. The locations’ coordinates ({X; Y}) in visual degrees from fixation were: {±7; ±7}; {±4, 
±4}; {±1, ±1}. Stimuli were round achromatic targets with five different diameters (Gold-
mann sizes, G): 0.10 (G-I); 0.21 (G-II); 0.43 (G-III); 0.86 (G-IV); 1.72 deg. (G-V). All locations 
were tested with all stimulus sizes. The locations at {±7; ±7} were additionally tested with 
five different stimulus durations (for all stimulus sizes): 15 ms; 30 ms; 55 ms; 105 ms; 200 
ms. Four combinations (G-I/15 ms; G-I/200 ms; G-V/15 ms; G-V/200 ms) were tested twice 
so that more robust estimates of their threshold were available for the measurement of the 
frequency of seeing (FoS) curves (see next section).  
The threshold was determined with a yes/no task. The observer was asked to press a button 
every time a stimulus was perceived. We assumed that no response within a predetermined 
time widow (1500 ms) corresponded to “not seen”. The threshold was estimated through a 

 𝑊! =
3185 10(45⁄

10	
. (5.1) 
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Bayesian strategy, the Zippy Estimation through Sequential Testing (ZEST)24, as imple-
mented on the OPI. For our test, the strategy was set to have a uniform prior distribution 
between 0 and 50 dB (the range of the instrument). The likelihood function was a Gaussian 
cumulative distribution function (CDF) with a standard deviation (SD) of 1 dB and a 
guess/lapse rate of 3%. The prior distribution was updated at each response to generate a 
posterior distribution. The posterior distribution was used as the prior distribution for next 
step in the strategy. The stimulus was chosen as the mean of the prior distribution at each 
step, rounded to the closest integer dB value. This has been shown to provide unbiased 
estimates of the 50% detection threshold for a yes/no task24. The determination of each 
threshold terminated when the posterior distribution reached a standard deviation < 1.5 dB 
(dynamic termination criterion).  
Each combination of stimulus size and duration at each location was treated as a separate 
independent “thread” by the strategy (140 in total). The threads were randomly subdivided 
into four blocks, to allow for breaks within the test. Each block of testing lasted for approx-
imately 15 minutes (~350 presentations). Individual presentations within each block were 
fully randomised. A block was completed when all the 35 threads assigned to it reached the 
termination criterion. A pause between individual presentations was also introduced, cal-
culated as (1000 ms – response time, minimum 200 ms) plus an additional pause, randomly 
sampled from a uniform distribution between 0 and 100 ms. All responses occurring within 
the pause or less than 180 ms after stimulus onset stimulus 25 were considered as false 
responses and discarded.  

5.2.2.3. Frequency of seeing curves 
For a subset of five participants, FoS curves were determined for four stimulus combinations 
(G-I/15 ms; G-I/200 ms; G-V/15 ms; G-V/200 ms) at coordinates {±7; ±7} degrees (four loca-
tions) using a Method of Constant Stimuli (MOCS) procedure. Following others8, we used a 
two-stage approach. First, we obtained a coarse estimate of the FOS curve through a mul-
tidimensional Bayesian strategy, QUEST+26. Such a strategy is similar in principle to ZEST but 
uses entropy to determine the next presentation and allows for multiple parameters to be 
estimated. In our procedure, the FOS curve was parametrised as the CDF of a Gaussian dis-
tribution, with a fixed guess/lapse rate of 3%. The mean and SD (which model the 50% 
threshold and the slope of the FOS curve respectively) were simultaneously fitted as free 
parameters. The test was terminated when the entropy of the combined posterior distribu-
tion was ≤ 4.5. For the purpose of this preliminary step, the four spatial locations were con-
sidered as interchangeable. Therefore, only four FOS curves were determined, one for each 
stimulus combination. The prior distribution for the mean was itself a Gaussian distribution 
with a SD of 4 dB, centred on the average of the sensitivity estimates obtained from the 
ZEST procedure for the tested locations (8 estimates for each stimulus combination, i.e. 4 
locations each tested twice) and limited over a domain of ±5 dB around its mean. The prior 
distribution for the SD of the FOS curve was a uniform between 1 and 10 dB, with steps of 
0.5 dB.  
The estimated SD for the Gaussian FOS curves were used to determine the contrast levels 
to be tested for each stimulus combinations in the actual MOCS. We tested seven steps for 
each location and each condition. The steps were placed at the following quantiles of the 
Gaussian FOS (neglecting lapse/guess rate): {0.0001, 0.1, 0.3, 0.5, 0.7, 0.9, 0.9999}. We how-
ever ensured that all the steps were at least 1 dB apart (the minimum interval allowed by 
the device) and that the two most extreme contrast levels were at least 10 dB above and 
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below the estimated 50% threshold. The 50% threshold was calculated as the average of 
the two test results obtained from the ZEST strategy for each location. Each contrast level 
was presented 25 times and each spatial location was tested fully and independently, for a 
total of 2800 presentations. A break of at least 10 minutes was introduced every 350 
presentations and the whole test was split into two sessions performed on two separate 
days. The individual presentations were fully randomised across test locations, stimulus 
area/duration combinations and contrast levels. Pauses between presentations and false 
responses were determined as described above for the main experiment. 
MOCS data were fitted using a Bayesian hierarchical model, similarly to Prins27. The results 
of the test performed on each subject were fitted independently. The psychometric func-
tion was modelled with the CDF of a Gaussian function (Φ), where the mean (µ), SD (s), 
lapse rate (λ) and guess rate (γ) were free parameters, with the formula 

Mean (µ) and s were hierarchical parameters that varied for each of the four tested loca-
tions. Information was however propagated across different locations to improve the ro-
bustness of the fit of the parameters for each testing condition. Lapses and guesses were 
instead modelled as global parameters for the whole test. Details of the implementation of 
the Bayesian model are reported in the Appendix. 
 

5.2.3. Imaging 
Retinal imaging was performed using a Spectralis Spectral Domain Optical Coherence To-
mography (SD-OCT, Heidelberg Engineering, Heidelberg, Germany) scanner. Dense macular 
volume scans spanning the central 25 x 30 visual degrees (121 vertical B-scans, 9 averaged 
scans) were segmented and exported as RAW files using the Heidelberg Eye Explorer 
(HEYEX, Heidelberg Engineering, Heidelberg, Germany). Retinal ganglion cell layer (RGCL) 
thickness maps were built from segmentation data and converted to customised estimates 
of local RGC counts by combining thickness data with histology data provided by Curcio and 
Allen28, using previously published methodology29, 30. Local customised RGC density was cal-
culated for each location tested in the psychophysical procedure by accounting for RGC dis-
placement30, 31, using methodology detailed elsewhere30.  

5.2.4. Modelling of perimetric sensitivity 
One of the objectives of this study was to provide a model that was simple, but sufficient to 
describe the change in sensitivity observed with different combinations of sizes and dura-
tions for perimetric stimuli. Our working hypothesis, derived from previous work11, 18, 19, 32, 
was that the combined effect of these two parameters, at any given location, could be de-
scribed by taking the product of stimulus area and stimulus duration. We called this product 
the spatiotemporal input. We integrated the spatiotemporal input into a computational 
model of the response of RGC mosaics, partially based on the work by Pan et al.1 and Bradley 
et al.33. The key novel aspect of our modelling was that the linear response from the RGC 
mosaic was pooled and integrated over time so that changes in duration and size of the 
stimulus would both simultaneously affect the temporal and spatial response of the system. 
We further modelled the retina as a two-stage mosaic, where the response from individual 
photoreceptors active in photopic adaptation conditions (cones) was integrated by the RGC 
mosaic, to explore the effect of retinal convergence in the central visual field. The density 
of the two mosaics was varied to reproduce the effect of eccentricity. We refer to the 

 𝑝6778 = 1 − Kγ + (1 − 𝛾 − 𝜆) 	∗ 	Φ(µ,  σ)L. (5.2) 
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combined effect of the spatiotemporal input and changes in retinal structure (i.e. density of 
the photoreceptor and RGC mosaics) as total retinal input. The model was implemented in 
Matlab (The MathWorks, Natick, USA) and is described in detail below. 

5.2.4.1. Hexagonal mosaics 
Following Swanson et al.7, we modelled multiple detectors organised in a regular hexagonal 
lattice. This organisation is reflective of many naturally occurring cell mosaics as it repre-
sents the most efficient packing scheme for objects with circular/spherical geometries34. 
For our purposes, we simplified the retina as being composed of two stacked mosaics, the 
photoreceptor mosaic and the RGC mosaic. Being interested in the results of experiments 
performed in photopic conditions (background illumination = 10 cd/m2), we only modelled 
the cone mosaic. In this retinal model, individual RGCs pool the response from the photo-
receptors according to their Receptive Fields (RFs). To improve the efficiency of computa-
tion, each hexagonal lattice was rearranged in a regular lattice with anisotropic spacing (See 
Figure 5.A1). This simplifies the pooling operation, which can be computed via simple con-
volution of the regularised lattice with the RGC-RF filter (see next section), also rearranged 
according on the same regular lattice. The response of the photoreceptor mosaic was simply 
computed by multiplying the mosaic by the stimulus. In its simplest form, this is equivalent 
to assigning a value of 1 to all the photoreceptors that fall within the stimulus area, leaving 
the others to 0. However, in its final implementation, this was modified to include the effect 
of optical blur (see later). Only the Parasol OFF RGC mosaic was used for the calculations (P-
OFF-RGC), assuming that the ON and OFF mosaic operate on parallel redundant channels 
for the detection of simple round stimuli. Parasol cells were chosen because there is exper-
imental evidence that these cells preferentially mediate sensitivity to briefly flashed stimuli, 
such as those used in perimetry. The calculations were repeated with the midget OFF RGC 
mosaic (mOFF-RGC) and reported as supplementary material for comparison with some 
previous literature10. 

5.2.4.2. RGC receptive field 
The spatial filters for the RGC-RF were modelled with a Difference of Gaussian (DoG, Figure 
5.1 A), using the median parameters estimated by Croner and Kaplan35 from electrophysi-
ology on macaque’s retina. In their work, they showed that, although the scaling factors for 
the relative width and height of the inhibitory and excitatory Gaussian components of the 
filter changed with eccentricity, their ratios remained approximately constant. In this model, 
the surround inhibitory component has peak sensitivity Ks = 0.01*Kc, where Kc is the peak 
sensitivity of the excitatory centre. The standard deviation (SD) of the surround was 6.7 
times larger than the SD for the centre (average reported by Croner and Kaplan35). The SD 
for the centre was scaled so that the radius of the centre component was equal to the inter-
cell spacing of the mosaic (defined by its density). The radius was defined by Croner and 
Kaplan as the distance from the centre at which the excitatory Gaussian component has 
value Kc/e. The corresponding SD was approximated as SD = Cell spacing/1.414. Note that, 
while the centre-surround proportions are based on Croner and Kaplan35, the actual extent 
of the RGC-RFs in our model depends only on the inter-cell spacing of the RGC mosaic. 

5.2.4.3. Cone-RGC convergence 
The number of cones that converge onto a RGC is known to increase with eccentricity28, 31, 
36. In our model, this corresponds to an increasing number of photoreceptors pooled by the 
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RGC-RF per unit area. This can be achieved by increasing the density of the cone photore-
ceptor mosaic, also provided by Curcio and Allen37. The convergence rate can be calculated 
by taking the ratio of the density of cones over the density of P-OFF-RGCs (Figure 5.1 B). 
Because of how the hexagonal matrix has been re-arranged for calculations (fig.1), the in-
tercell spacing for the RGC mosaic needs to be an exact multiple of that of the cone mosaic. 
This limits the possible Cones:RGCs ratios that can be calculated. However, changing the 
convergence ratio is equivalent to simply multiplying the response of the RGC obtained with 
a 1:1 convergence ratio by a scaling factor. This is easily demonstrated by the graph in Fig-
ure 5.1 B. This method was therefore chosen to account for the change in convergence 
across the VF in a smooth fashion. 

 
Figure 5.1 Retinal Ganglion Cell (RGC) receptive field (RF) modelling. A) Schematic exam-
ple of how a RGC samples the input from the photoreceptor mosaic, according to its Differ-
ence-of-Gaussian RF. The strength of inhibitory surround has been exaggerated here for 
clarity. B) Estimated density for Cones (top left) and RGC-RF (top right) and a map of 
Cones:RGCs convergence (bottom left). The bottom-right panel shows a comparison be-
tween the predicted (unscaled) sensitivity for the numerical calculations from the mosaic 
with discrete changes in convergence (dots) and continuous factor scaling (line). 

5.2.4.4. Modelling of optical factors 
The effect of natural optics was modelled using the formula for the average Modulation 
Transfer Function (MTF) of the human eye proposed by Watson38. In this formula, the 
square-root of the diffraction limited (DL) MTF, which depends only on the pupil size, is 
multiplied by a Lorentzian function whose parameters are fitted so that the product would 
approximate the average human MTF. A multiplicative correction factor, that depends on 
age and eye pigmentation, is then additionally applied to the MTF to account for light scat-
tering. Figure 5.2 reports examples of the effect of optical blur on different stimulus sizes 
for different pupil apertures using the MTF (without accounting for scattering)38. The calcu-
lations are performed by multiplying the two-dimensional Fourier transform of the stimulus 
by the MTF and then back-transforming in the spatial domain. The blurred stimulus can then 
be sampled with the photoreceptor mosaic. For each subject, we used the average pupil 
size recorded by the Octopus perimeter during the test to model the results of our experi-
ments. 
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Figure 5.2. Effect of optical blur for different pupil sizes. The images represent the pro-
jection of the blurred stimulus on the photoreceptor mosaic. 

5.2.4.5. Proposed spatiotemporal model 
One desired property of our proposed model was that the size and duration of the stimulus 
interacted so that longer stimuli would decrease Ricco’s area (upper limit of complete spa-
tial summation) and larger stimuli would shorten the critical duration (upper limit of com-
plete temporal summation). One solution to achieve this is to use a pooling operation that 
integrates the spatial input over time. The integration, however, must not solely take into 
account the duration of the stimulus, but also the amount of RGCs stimulated (i.e., the 
amount of spatial input). In other words, the temporal integration is to be performed by a 
cortical pooler on the total spatial input rather than by individual detectors prior to pooling. 
The simplest model, with the smallest number of parameters, is a capacitor (equation 5.5), 
which is convolved with the temporal profile of the stimulus and then integrated over time 
according to equation (5.6) to obtain the response (in the equations, the symbol “*” indi-
cates convolution): 

 ℎ(𝑡, 𝜏, 𝑆) = 𝑒93
:
;/5< (5.5) 
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where 𝜏 is the integration constant, 𝑘 is the summation exponent (4 in this study)1, 7, 39-42 
and S is the total spatial input defined as 

 𝑆 = 	c𝑅?
?

 (5.7) 

where  𝑅"  is the response of an individual ganglion cell to the stimulus. Note the contribu-
tion of individual RGCs (𝑅") can change both because of the location of the RGC with respect 
to the stimulus (edge as opposed to centre) and the effect of retinal convergence (RGCs in 
the periphery will have a bigger contribution when fully stimulated because of their larger 
pooling from the photoreceptors). The temporal profile of the stimulus is represented by 
𝑓(𝑡), which is a step function with value 1 when the stimulus is on and 0 otherwise. As 
previously mentioned, the combined effect of stimulus size, stimulus duration, RGC density 
and retinal convergence defines the total retinal input. Much like other temporal filters, this 
operation can also be implemented through temporal convolution. Note that such an ap-
proach to spatiotemporal summation is very similar to what was described in Frederiksen 
et al.21 and Anderson and Burr20 for motion detection. Since only the P-OFF-RGC mosaic was 
considered for our calculations, the RGCs that were assigned a negative input were consid-
ered as inhibited by the stimulus. Their negative contribution to the sum can be interpreted 
as an inhibition of their background activity. Obviously, such a simple approach would not 
account for other filter choices with a strong biphasic response, where a simple summation 
would always result in a zero net sum. From the examples in Figure 5.3, we can see that 
this pooler has the desired properties when the response is computed for different stimulus 
sizes and durations, i.e. a shorter duration determines a larger critical area and vice-versa. 
One additional convenient property of this pooler is that the critical size and duration de-
pend on the integration constant τ. The integration constant τ is therefore the scaling factor 
of the pooler and can be used to test the hypothesis of constant input integration across 
the VF. If the hypothesis of constant integration response for the same amount of total 
retinal input is correct, we do not expect important changes in the integration constant 
across different testing conditions and eccentricities. An alternative approach would be to 
model individual RGCs (or higher order visual detectors) as separate spatiotemporal inte-
grators and to pool their response by vector summation1, 39. Such an approach has the ad-
vantage of allowing the modelling of the response from specific classes of RGCs and pro-
duces sensible spatial and temporal summation responses. However, it fails to reproduce 
the interaction between spatial and temporal input that would be expected. For example, 
Ricco’s areas in spatial summation curves would be unaffected by changes in stimulus du-
ration. This is in contrast with evidence from the literature11, 18, 19, 32. It is worth noting that 
the current model could be extended to include the temporal response of individual classes 
of RGCs prior to pooling. However, this would increase the number of tuneable parameters 
and would be beyond the objectives of the current study and what could be determined 
with our experiments. 
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Figure 5.3 Example of the interaction of stimulus size and duration in the proposed 
model. Changing the stimulus duration translates the spatial summation curve along the 
horizontal axis (left panel). The same is true for the temporal summation curve when chang-
ing the stimulus area (right panel). 

5.2.4.6. Fitting procedure 
The model described by equation (5.6) was fitted to the data using an iterative algorithm 
(Nelder-Mead Simplex Method, fminsearch function in Matlab43) to minimise the Root 
Mean Squared Error (RMSE). The summation exponent was set to k = 41, 7, 39-42 and the RGC 
mosaic density was varied according to the eccentricity following the model by Drasdo et 
al.30, 31. These estimates were corrected with individual imaging data obtained from the OCT 
scans, as previously reported29, 30. The model was fitted by tuning the parameter t, which 
represents the integration constant of the spatiotemporal input. An additional parameter 
(additive in log-scale) allowed translation along the vertical axis (log-DLS, Offset term). 

5.2.4.7. Calculation of critical size 
The transition from total to partial summation is smooth for the curves generated by our 
model. The response curve is fully characterised by the integration constant 𝜏  and the 
amount of retinal input. The calculation of the critical (Ricco’s) area is therefore dependent 
on an arbitrary threshold and is only performed for comparison with previous literature. For 
our calculations, the transition point was the retinal input at which the slope of the summa-
tion curve is 0.5 (Piper’s law). Note that the retinal input scales perfectly with stimulus size 
for our chosen implementation of the model, but non linearities are introduced if taking the 
sum of the module in equation (5.7). For consistency with our supplementary analyses (see 
later), the conversion between stimulus area and retinal input for each mosaic was calcu-
lated numerically and locally approximated with a linear function in log10 – log10 scale. The 
parameters for the curves were fitted accounting for the optical blur (based on each partic-
ipant’s average pupil size and iris pigmentation). Densely sampled curves were numerically 
calculated using these parameters to estimate Ricco’s area. These curves were calculated 
without the effect of optical blur. This simulates removing the estimated effect of optics on 
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the size of Ricco’s area. Note that accounting for convergence in the fitting process will not 
change Ricco’s area, as parameters are optimised to fit the same data. 

5.2.4.8. Statistical analysis 
Statistical comparisons were performed using linear mixed models to account for correla-
tions between observations from the same subject. When data from multiple locations 
were used, individual locations were used as a nested random factor within the subject. 
When multiple comparisons were compared, the p-values were corrected using a Bonfer-
roni-Holm correction. All calculations were performed in R (R Foundation for Statistical 
Computing, Vienna, Austria) using the lme4 package44. All comparisons were performed on 
log10-transformed values of Ricco’s area, integration constant and number of P-OFF-RGCs, 
unless otherwise specified. Eccentricity was treated as a discrete factor. 

5.3. Results 
5.3.1. Average response 
In this section, we show plots of the average DLS for different experimental conditions to 
give an intuitive representation of the phenomena under investigation. Characteristics of 
each eye in the sample are reported in Table 5.1. Figure 5.4A reports the average DLS for 
the spatial summation experiment at different eccentricities. As expected, the summation 
curves are separated by a horizontal shift, owing to the effect of the changes in the retinal 
mosaic. Interestingly, simply transforming the stimulus area into the corresponding esti-
mated number of RGC-RFs underlying the stimulus did not fully account for the effect of 
eccentricity. Most of the effect was instead removed by considering the product of stimulus 
area, RGC-RF density and Cones:RGC convergence ratio. We evaluated this by comparing 
the results of a simple 2nd degree polynomial fit of the DLS using either the log10(stimulus 
area), the raw log10(number of RGCs) or the convergence weighted log10(number of RGCs) 
as predictors in a mixed effect model. The unexplained residual variance (including random 
effects) was 1.93 dB2 for the log10(stimulus area), 1.79 dB2 for the unweighted log10(number 
of RGCs) (7.2% reduction) and 1.77 dB2 for the convergence weighted log10(number of 
RGCs) (8.1% reduction). 

Subject 
ID 

Age 
(years) 

Study 
eye 

Sphere 
(D) 

Cylinder 
(D) 

Axis 
(deg) 

BCVA  
(logMAR) 

IOP 
(mmHg) 

Average 
Macular 
thickness 
(μm) 

Average 
GCL 

thickness 
(μm) 

Average 
RNFL 
thickness 
(μm) 

S 1 33 Left -3.00 -1.00 154 0.02 16 306.4 37.9 110.9 
S 2 25 Right +0.25 -0.75 31 -0.10 14 308.1 39.7 92.2 
S 3 33 Left -3.25 -0.25 111 0.01 18 339.5 42.5 106.2 
S 4 27 Left -0.25 -0.50 171 -0.10 14 330.0 42.2 98.9 
S 5 25 Left +0.75 -0.75 8 0.00 15 311.3 37.4 111.9 
S 6 26 Right -0.25   0.01 11 311.3 40.9 104.6 
S 7 36 Left +0.25 -1.00 173 0.00 19 314.7 42.7 104.6 
S 8 28 Right -2.25 -0.50 43 0.00 15 298.6 33.7 81.5 
S 9 26 Right -0.75 -0.25 7 0.02 16 311.1 38.0 105.6 
S 10 32 Right -2.00   0.00 15 295.4 40.8 90.3 
Table 5.1 Characteristic of each eye in the sample. All subjects had their sensitivity 
tested with the ZEST strategy for all the duration and size combinations for all tested loca-
tions. Psychometric functions were estimated for subjects from 1 to 5 using the method of 
constant stimuli. D = Diopter; BCVA = Best Corrected Visual Acuity; logMAR = log-Minimum 



 

 90 

Angle of Resolution; IOP = Intraocular Pressure; GCL = macular Ganglion Cell Layer; RNFL = 
peripapillary Retinal Nerve Fibre Layer. Average macular and GLC thickness were meas-
ured for the area corresponding to the central 10 degrees. 

 
Figure 5.4 Spatial summation curves. Average (dots) and standard deviation (error bars) 
for Differential Light Sensitivity (DLS) for the three tested eccentricities at different stimulus 
sizes (A), the corresponding P-OFF-RGC-RF count underlying the stimuli (B) and the corre-
sponding P-OFF-RGC-RF count underlying the stimuli weighted by convergence (C). RGC = 
Retinal Ganglion Cell (average across subjects at each stimulus size in these graphs). 

Taken together, these results and plots support the hypothesis that the main determinant 
of DLS is the total retinal input to higher visual centres, influenced by both the number of 
stimulated RGCs, retinal convergence and duration of the stimulus. 

5.3.2. Results from the spatiotemporal model 

5.3.2.1. Spatial summation – effect of eccentricity 
The parameters of the model were fitted independently for each location using the data 
collected with different stimulus sizes and 200 ms stimulus duration (the only duration 
tested at all eccentricities). Figure 5.5 reports the estimated critical size (Ricco’s area) at 
different eccentricities. The average RMSE of the model fits was 0.85 ± 0.39 dB (Mean ± 
SD). As expected, the estimated Ricco’s area increased towards the periphery (Figure 5.5 C 
and Table 5.2), with no significant differences between the areas calculated with and with-
out accounting for convergence. However, such a change did not correspond to a constant 
number of P-OFF-RGCs being stimulated. Instead, the estimated number of P-OFF-RGCs at 
Ricco’s area was consistently larger towards the fovea (Figure 5.5 D). This was mirrored by 
a change in the integration constant τ with eccentricity. However, this trend in τ was com-
pletely eliminated by accounting for the change in Cones:RGCs convergence (Figure 5.5 A 
and Table 5.2). This effect of convergence was larger when modelling the mOFF-RGC mo-
saic (supplementary material). This result can alternatively be visualised by multiplying the 
number of P-OFF-RGCs at Ricco’s area by the corresponding convergence factor (Figure 5.5 
D and Table 5.2). Note that this is a post-hoc calculation and not an output from the model 
(accounting for convergence is expected to have an effect on the model’s parameters but 
not on Ricco’s area and the shape of the fitted response profile). There was a small signifi-
cant increase in the vertical Offset with eccentricity, which was reduced by accounting for 
convergence (Figure 5.5 B and Table 5.2).  
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  Eccentricity (degrees) Comparisons 
  1.414 (A) 5.657 (B) 9.899 (C) A vs B A vs C B vs C 

U
nc
or
re
ct
ed
 τ (x 102) 12.11 

[6.83, 20.08] 
9.36 

[6.54, 14.33] 
6.32 

[4.85, 9.45] 0.2208 0.0061 0.1125 

Offset (dB/10) 2.52 
[2.46, 2.61] 

2.64 
[2.57, 2.73] 

2.63 
[2.54, 2.7] < 0.0001 0.0001 0.3271 

Ricco’s area (deg2) 0.039 
[0.023, 0.067] 

0.111 
[0.067, 0.152] 

0.143 
[0.104, 0.199] < 0.0001 < 0.0001 0.0158 

# P-OFF-RGCs* 17.54 
[9.96, 29.18] 

13.48 
[9.42, 20.72] 

9.11 
[6.96, 13.62] 0.2210 0.0059 0.1099 

C
on
ve
rg
en
ce
 

w
ei
gh
te
d 

τ (x 102) 86.25 
[46.48, 137.29] 

71.28 
[49.2, 105.41] 

57.89 
[43.7, 88.97] 0.8884 0.4579 0.8884 

Offset (dB/10) 2.31 
[2.25, 2.41] 

2.42 
[2.36, 2.51] 

2.4 
[2.3, 2.46] < 0.0001 0.0243 0.0311 

Ricco’s area (deg2) 0.039 
[0.023, 0.067] 

0.11 
[0.068, 0.152] 

0.142 
[0.103, 0.197] < 0.0001 < 0.0001 0.0175 

# P-OFF-RGCs� 125.05 
[67.88, 199.52] 

102.51 
[70.89, 153.1] 

83.42 
[63.2, 128.13] 0.8765 0.4502 0.8765 

Table 5.2 Model fit results for spatial summation data. Median [Interquartile Range] of 
the different outputs from the model fits. Comparisons were performed on log-trans-
formed values but reported in linear scale (except for the Offset, which was tested and re-
ported in log-scale and represents the shift in the relationship along the vertical axis). P-
OFF-RGC = Parasol OFF retinal ganglion cells. *Obtained by taking the product of Ricco’s 
area and local P-OFF-RGC density; � Obtained by taking the product of Ricco’s area and 
local P-OFF-RGC density scaled by retinal convergence.  

 
Figure 5.5 Model fit results for spatial summation data. Boxplots of the different param-
eters and estimates derived from the model for spatial summation data. Note that the 
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convergence weighted values in (D) are obtained by simply multiplying the uncorrected 
number of P-OFF-RGCs at Ricco’s area by the convergence rate. The box encloses the inter-
quartile range, the horizontal midline indicates the median and the error bars extend from 
the 5% to the 95% quantiles. The vertical axis is log10-spaced. RGC = Retinal Ganglion Cell 

5.3.2.2. Spatiotemporal summation 
The same spatiotemporal model was used to analyse data from locations {±7; ±7} with all 
different combinations of stimulus sizes and durations. The data were collated to obtain a 
single estimate of the integration constant and accounting for retinal convergence. The 
global average RMSE for this fit was 1.67 ± 0.52 dB (Mean ± SD) and 1.40 ± 0.41 dB for the 
200 ms stimuli. This can be compared to the 0.96 ± 0.35 dB average RMSE obtained from 
fitting the 200 ms data alone at the same eccentricity. For context, the root mean squared 
difference in sensitivity between the two repetitions of the retested combinations was 2.44 
dB and the root mean squared deviation from the average of the two repetitions was 1.22 
dB. An example of the calculation for one location in one subject is also shown (Figure 5.6 
A and B). There was a strong correlation between the parameter estimates obtained by 
fitting data from all stimulus durations and 200 ms alone (previous section), at the same 
eccentricity (correlation coefficient: 0.83 for log10(τ) and 0.89 for the sensitivity offset, Fig-
ure 5.6 C and D). However, the two estimates appeared to have a consistent significant 
difference (p < 0.0001), approximately constant in log10-scale. The Median [Interquartile 
Range] was 34.65 [25.31, 56.04] x 102 for the τ constant and 2.36 [2.31, 2.42] dB/10 for the 
offset. These values were both significantly smaller than those reported in Table 5.2 for the 
same eccentricity (p < 0.0001 and p = 0.00298 respectively). Significant differences were 
also present for all the other parameters, including Ricco’s area and the number of P-OFF-
RGCs at Ricco’s area (all p < 0.0001). Numeric values of Ricco’s area and corresponding P-
OFF-RGC counts are reported in Table 5.3 for all durations. Differences in Ricco’s areas be-
tween different durations were not tested as such differences are assumed by the model.  

  Ricco's area (deg2) 
# P-OFF-RGCs*  
(Uncorrected) 

# P-OFF-RGCs�  
(Convergence weighted) 

D
ur
at
io
ns
 15 ms 1.088 [0.773, 1.913] 71.63 [55.75, 116.9] 655.48 [510.59, 1082.06] 

30 ms 0.545 [0.388, 0.961] 35.91 [27.87, 58.76] 328.64 [255.54, 543.92] 
55 ms 0.298 [0.212, 0.525] 19.59 [15.2, 32.12] 179.27 [139.13, 297.32] 
105 ms 0.156 [0.111, 0.275] 10.28 [7.96, 16.8] 94.05 [73.01, 155.51] 
200 ms 0.082 [0.059, 0.144] 5.42 [4.18, 8.84] 49.56 [38.21, 81.87] 

Table 5.3 Model fit results for spatiotemporal summation data. Median [Interquartile 
Range] of the different outputs from the model fits with the different stimulus durations. 
P-OFF-RGC = Parasol OFF retinal ganglion cells. *Obtained by taking the product of Ricco’s 
area and local P-OFF-RGC density; � Obtained by taking the product of Ricco’s area and 
local P-OFF-RGC density scaled by retinal convergence.  
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Figure 5.6 Model fit results for spatiotemporal summation data. The two top panels 
show an example fit from one location in one subject, with the horizontal axis reporting 
the stimulus area (A) and the product of area and duration (B). Correlation between the 
parameter estimates obtained by combining all durations and by only using data obtained 
with the 200 ms stimulus for the integration constant (C) and the offset (D). The diagonal 
line indicates equivalence.  

5.3.3. Frequency of seeing curves 
We estimated the FoS curves for the four most extreme combinations of stimulus size and 
duration at locations {±7; ±7} using the MOCS data for five subjects. The results of the Bayes-
ian fitting are shown in Figure 5.7. The FoS was modelled using the CDF of a Gaussian dis-
tribution. The average of the estimates for µ, s, λ and γ are reported as Supplementary 
material.  
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Figure 5.7 Psychometric functions. The curves were obtained from the Method of Con-
stant Stimuli (MOCS) experiment at the four tested locations in five subjects with four dif-
ferent combinations of stimulus size and duration. Parameters are provided as Supplemen-
tary material. 

In general, there was a tendency for slopes (s) to be shallower for conditions where sensi-
tivity was lower (µ). This agrees with previous literature45, 46. Figure 5.8 shows this relation-
ship. Estimates from Henson et al.45 are also reported for comparison.  

 
Figure 5.8. Change in psychometric slope. Relationship between the slope (s) of the psy-
chometric function and the 50% threshold (µ). The regression line is also reported. The re-
lationship was statistically significant (p < 0.0001).  
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5.4. Discussion 
Constant integration of visual input has been regarded as a fundamental principle governing 
the perception of visual stimuli18, 19. However, the interaction of stimulus duration and size 
has been rarely and incompletely explored in perimetry11. Our data support constant input 
integration as a fundamental principle in perimetric response in healthy observers. Such a 
principle has translational value as it provides a simple framework for the interpretation and 
prediction of perimetric responses in healthy subjects and allows speculations on the ex-
pected changes from disease.  
The first important result is the change in Ricco’s area with different stimulus durations. The 
size of Ricco’s area has often been interpreted considering cortical magnification10, linking 
the number of RGCs within Ricco’s area to the number of RGCs contacting V1 cells in the 
visual cortex. Such a line of reasoning seems however questionable if Ricco’s area can vary 
with stimulus duration, because duration would have no effect on the spatial extent of RGC-
V1 connections. Rather, temporal and spatial summation appear to operate in concert to 
maintain a consistent behaviour in response to the same amount of visual input, be it from 
changes in stimulus size or duration. Fredericksen et al.21 also proposed a similar integration 
model in the context of motion detection, suggesting that spatiotemporal summation likely 
arise from diffuse cortical integration rather than specific temporal or spatial processes. Our 
model captures such a spatiotemporal interaction by only requiring the fitting of one pa-
rameter (the integration constant τ), while providing good predictions of the experimental 
results. Other models, while not specifically investigating the interaction between stimulus 
size and duration, also showed that the spatial scale of the visual system could be modelled 
independently of the underlying RGC density and their RFs using cortical filters with differ-
ent spatial scales1, 7. Our model also decouples spatial summation from the extent of the 
retinal spatial filters (in this case, the extent of the DoG filter used to model RGCs’ re-
sponses). This has important implications for modelling the effect of disease that will be 
discussed later. It should be noted that other authors have proposed that these effects 
could be explained by a dynamic change in the “functional” receptive field size as a function 
of stimulus duration and background luminance13. More realistically, this could correspond 
to a selection of cortical filters of different sizes for different stimulus characteristics or to 
the response envelope of multiple filters combined by probability summation whose sensi-
tivity can be selectively changed by different stimulation conditions1. Further research is 
needed to understand how this would apply in the case of disease, such as RGC loss (see 
later). Such a mechanism is further explored in a dedicated paragraph in the Appendix.  
The model described by equations (5.5) and (5.6) can be modified to incorporate different 
impulse response functions. In this study, it was a simple capacitor equation, as this was 
deemed sufficient to model our data by fitting only two parameters. This is likely to be sim-
plistic for many other applications. For example, our model does not include any response 
delay. Our results can be largely replicated with the monophasic response filter used by 
Gorea and Tyler15 and first described by Watson47. Such an impulse response can also be 
tuned to produce different critical durations by changing an integration constant, while 
keeping all the other parameters fixed. Using this impulse response only produced minimal 
differences (one example is provided as Supplementary Material). A drop in sensitivity has 
been shown for very long stimulus durations48-50 and modelled with a biphasic impulse re-
sponse integrated over a limited time window15. Our stimuli would not be long enough for 
this to be evident. Our temporal integral in Equation (5.6) extends to infinity, similarly to 
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Watson14. Gorea and Tyler15 highlighted the implausibility in this assumption, because an 
observer that integrates over an infinite time window will never make a decision to respond. 
A practical choice for our experiments would be to use the maximum time interval allowed 
for a response (1500 ms) as an integration window. However, this is so much longer than 
the longest stimulus (200 ms) that it would be practically equivalent to infinity. 
It should be mentioned that both temporal and spatial summation, and contrast sensitivity 
in general, can be largely affected by background adaptation. For the background illumina-
tion used in this study (10 cd/m2) threshold behaviour should be close to Weber’s law at 
least for a G-III stimulus51, 52. Retinal illuminance can be reduced by media opacity (such as 
cataract) but this is likely to be negligible in a young healthy cohort. Pupil size can also affect 
retinal illuminance, especially if below 3 mm51, but the average pupil size in our cohort was 
5.9 ± 0.8 mm. 
The model can be used to investigate the effect of eccentricity on spatial summation. Our 
results show that Ricco’s area significantly increased with eccentricity, as expected2-4. How-
ever, this did not correspond to a constant number of P-OFF-RGCs being stimulated, this 
number being comparably larger at smaller eccentricity. This is mirrored by the identical 
trend for the integration constant τ, indicating that more P-OFF-RGCs need to be stimulated 
to achieve the same change in sensitivity closer to the fovea. This trend is even bigger when 
modelling the response from the mOFF-RGC mosaic (supplementary material). Our results 
agree with Kwon and Liu10, who also observed a notable departure from a constant number 
of mOFF-RGCs at Ricco’s area and a trend with eccentricity. However, they concluded that 
this was likely a result of inaccuracies in the estimates of RGC density. We propose a differ-
ent explanation: the trend in the number of RGCs, and in the integration constant, appeared 
to be completely eliminated by weighting the contribution of each RGC by the Cones:OFF-
RGC convergence ratio. This observation suggests that, much like the effect of change in 
stimulus duration, convergence can change the “contribution” provided by each RGC in 
terms of retinal input. Our model is able to account for this, because the contribution of 
each RGC can be weighted by its convergence rate prior to summation in equation (5.6). 
Our experiments would not allow us to uncover a specific mechanism for this phenomenon. 
However, a reasonable hypothesis is that increased convergence could change the contrast 
gain determining the spiking rate of the RGC for a given level of contrast. For our main anal-
ysis we considered one possible class of RGCs, P-OFF-RGCs. This is important for our as-
sumption of hexagonal tiling, because different classes of RGCs form independent and over-
lapping mosaics53, 54. mOFF-RGCs where also modelled (supplementary material) for com-
parison with Kwon and Liu10.Their choice was justified by the fact that these are the most 
prevalent type of RGCs in humans31, 54. However, previous literature showed that briefly 
flashed stimuli, such as those used in perimetry, might preferentially stimulate parasol 
RGCs55, and this was the reason for our choice to model P-OFF-RGCs instead It should be 
noted that the effect of eccentricity, and the importance of Cones:RGC convergence, was 
much more pronounced for mOFF-RGCs. However, accounting for convergence eliminated 
significant differences in the number of stimulated RGC at Ricco’s area and in the integration 
constant between the smallest and the largest eccentricity for both modelling choices. In-
terestingly, when weighted by convergence, the results were effectively identical to those 
obtained with the P-OFF-RGC mosaic, because the higher convergence ratio for the mOFF 
mosaic effectively produced the same scaled input. It should be noted that there is no clear 
anatomical evidence of increased Cones:P-OFF-RGC convergence with eccentricity. How-
ever, this seems a reasonable assumption because the Cones: RGC ratio calculated from 
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histology data37, 56 increases with eccentricity in a similar fashion for both the midget and 
parasol cells. The similarity between our results and those reported by Kwon and Liu10 
should be interpreted with caution, because it can be explained by the fact that both our 
estimates and theirs were derived from those provided by Drasdo et al.30, 31, which are in 
turn based on a small histology dataset by Curcio and Allen28. Despite our attempt to im-
prove precision by customising Drasdo’s estimates using individualised structural OCT 
data30, the results are unlikely to be greatly altered. Therefore, Kwon and Liu’s10 results can-
not be considered a fully independent confirmation of our findings. Finally, it should be 
noted that the compensation of the effect of eccentricity with the convergence ratio might 
be coincidental and could be explained by other factors, such as optical aberrations. The 
effect of natural ocular optics on spatial summation in the parafoveal retina is debated57-59. 
In our model, we included the effect of optical aberrations and glare using the average MTF 
for the human eye proposed by Watson38: the data were fitted accounting for optical fac-
tors, but the summation curves were generated without the effect of optics. This was an 
attempt at estimating the pure neural contribution to spatial summation. However, the ef-
fect on the results largely depends on other assumptions within the model, particularly the 
choice of whether the summation in equation (5.7) is taken over the signed or absolute 
value or the RGC response. Our choice of summing the signed contribution was based on 
some desirable properties of the model, particularly the perfect linear scaling of the re-
sponse with the change in RGC density and filter size. This produced a very small effect from 
ocular optics, because the total power of the stimulus was simply spread over a larger area. 
Taking the summation over the absolute value instead produced a much greater effect (re-
sults reported in Supplementary material) because negative contributions from “inhibited” 
RGCs were transformed into positive contributions, greatly amplifying the effect of optical 
blur. Our choice of modelling produced an average change in Ricco’s area due to optical 
factors of 0.056 log10 units, which is very similar to the change measured by Tuten et al.57 
with adaptive optics (AO). Taking the summation over the absolute value instead produced 
an average change of 0.37 log10 units, which is closer to what was reported by Dalimier and 
Dainity58 for similar experiments . Ultimately, a definitive answer to these questions could 
only be obtained by performing these same experiments with coupled AO corrected stimuli 
and imaging, so that accurate estimates of individual RGCs can be obtained and the effect 
of optical aberrations eliminated60. 
Another important result is the effect of different stimulus durations and sizes on the shape 
of the psychometric function. In general, and in agreement with previous reports45, 46, we 
have found that the change in the slope of the psychometric function was largely explained 
by a change in sensitivity and was reasonably described by a log-linear relationship (Figure 
5.9). This effect is indicative of the presence of multiplicative noise in the response40. How-
ever, it is difficult to identify the exact origin of such noise (quantal fluctuations; eye move-
ments; noise from the instrument). This has however important implications, because it 
confirms that the increase in variability of perimetric responses with sensitivity is not 
uniquely linked to disease but can be replicated in healthy observers. The MOCS experi-
ments were designed to replicate the simple detection task involved in perimetry, where 
observers are asked to continuously monitor the presence of a signal in sequential intervals. 
This can be modelled as a task with a variable observer-defined “criterion” (i.e. rate of false 
alarm or response bias)61. In our FoS curves, this bias is accounted for by estimating the 
guess rate as a lower asymptote (the γ term in equation (5.2)). This framework is rooted in 
high-threshold theory and widely adopted in the field of perimetry62. It should be kept in 
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mind that, under the alternative signal detection theory, the bias correction would be per-
formed after z-score transformation and would require numerous catch trials to determine 
the individual response bias61. In our data, the response bias and lapse rate were estimated 
from the response to stimuli that were likely to be much above or below the 50% threshold 
(as determined using a pilot using QUEST+ to estimate threshold and psychometric function 
slope) and all participants were encouraged to maintain a low false-alarm rate during the 
experiments. Both the guess and lapse rates were very close to 0 and are therefore unlikely 
to have greatly affected the estimates of the psychometric function. 
Our choice of placing our testing locations along the diagonals limits our ability to appreciate 
the previously reported dissociation in between ganglion cell number and perimetric sensi-
tivity in nasal visual field63. We however found a significantly smaller number of P-OFF-RGCs 
within Ricco’s area for the nasal locations, indicating a smaller spatial scale compared to 
temporal locations (p  = 0.005). This comparison was performed for the log10-RGC number 
with a linear mixed model using the hemifield as a fixed effect and the eccentricity as a 
random effect, nested within the subject, to perform a paired same-eccentricity compari-
son. 
It is interesting to consider the implications of our results and modelling approach for the 
interpretation of changes observed in disease. Redmond et al.9 have demonstrated an in-
crease in Ricco’s area in patients with glaucoma, which could be accounted for by a shift of 
the summation curves along the horizontal axis (stimulus size). According to some models7, 
10, such a change could only occur by scaling the spatial filters to increase spatial conver-
gence (equivalent to changing the cortical magnification factor), which would imply some 
sort of “restructuring” of either the pooling mechanism (for example the spatial extent of 
RGC-V1 connections) or an enlargement of RGCs’ RFs. The latter seems implausible, be-
cause most histologic studies have shown dendritic pruning and shrinkage64, which would 
imply smaller RGCs’ RFs. The first hypothesis also lacks solid support from experiments: 
Wang et al.65 observed changes in the cortical magnification factor in patients with glau-
coma tested with functional magnetic resonance imaging; such changes, however, are in-
dicative of increased retina-V1 divergence, and therefore do not clearly support the hypoth-
esis of an increased magnification factor. Our model makes no such assumptions. Instead, 
the change in Ricco’s area is a consequence of the reduction in retinal input owing to a loss 
of RGCs in glaucoma. In Figure 5.9 A, data from healthy participants in Redmond et al.9 were 
fitted with our model, assuming a mosaic of P-OFF-RGCs with density estimated from 
Drasdo et al.30, 31. The mosaic was then randomly degraded to achieve 73% RGC loss, equiv-
alent to the reported proportional average change in Ricco’s area. The figure plots the av-
erage response of 100 randomly degraded mosaics. The model correctly predicted a hori-
zontal shift of the curve, in agreement with the data. A horizontal shift in the response could 
also be explained by RGC loss preferentially affecting higher frequency cortical filters, whose 
loss in sensitivity might determine a horizontal shift of their probability summation enve-
lope1. Our model also predicts that temporal summation curves can be equated between 
healthy and glaucoma by appropriately scaling stimulus size. This is shown in Figure 5.9 B, 
for the same mosaics simulated in Figure 5.9 A. Mulholland et al.11 provided experimental 
evidence that using Ricco-scaled stimuli could reduce the difference in temporal summation 
observed between glaucoma patients and healthy controls with G-III stimuli, although some 
residual differences were still present. This is further proof of the interaction between stim-
ulus size and duration. However, more research is needed to fully characterise such an in-
teraction in glaucoma. Finally, our model also predicts changes in spatial and temporal 
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summation with photoreceptor loss, such as from diseases of the external retina. However, 
studies investigating this with perimetric stimuli are still lacking and will need further re-
search. 

 
Figure 5.9. Application to glaucoma. A) Change in Ricco’s area in patients with glaucoma 
compared to age-matched controls, adapted from Redmond et al.9. B) Temporal summa-
tion curves can be equated when RGC loss is compensated by an increase in the stimulus 
size. RGC = retinal ganglion cells. 

Other questions remain, particularly pertaining to the systematic difference between the 
estimates of the model parameters obtained with 200 ms stimuli only or with all stimulus 
durations combined. Small inaccuracies in the delivery of the stimulus might produce vari-
ations in the intended durations, skewing the results of the combined analysis. Another con-
sideration is that our model, despite describing most of the variability in the data, might not 
be capturing all aspects of the effect of stimulus duration on sensitivity. In fact, the model 
was not meant to be a complete description of the psychophysical response to all the fea-
tures of the stimulus, but rather aimed at providing a coherent framework to explain im-
portant experimental observations from the data that are often neglected by other model-
ling attempts. 

5.5. Conclusions 
We show that the amount of total retinal input can account for most of the characteristic 
of spatiotemporal summation with perimetric stimuli in healthy observers, including the ef-
fect of eccentricity. This could have important implications for the interpretation and design 
of perimetric examinations in diseased eyes as well as providing a framework for analysing 
spatiotemporal integration in heathy observers. 

5.6. Appendix 
5.6.1. MOCS fitting 
MOCS data were fitted using a Bayesian hierarchical model. Each subject was fitted inde-
pendently. The four combinations of stimulus size and duration were modelled as fixed 
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effect factors on the parameters µ and s of the psychometric function, as defined in equa-
tion (5.2). The parameters for each stimulus combination are denoted as µc and sc. The four 
locations were modelled as hierarchical random effects on µc and sc, with no correlations 
between the two parameters. The lapse rate (λ) and guess rate (γ) were modelled as global 
parameters for the whole test. The response (yes/no) was modelled as binomial process 
with 25 trials. Following Prins et al.27, the prior distribution for the mean of the parameter 
µc and sc for each stimulus combination was a non-informative normal distribution with a 
standard deviation of 30 dB. The prior distribution for the variance of the parameters µc and 
sc for each stimulus combination was a non-informative uniform distribution between 0 
and 1000 dB. The random effects for each location were modelled as a normal distribution 
with mean µc and standard deviation sc. The prior distribution was linked to the parameter 
sc via a logarithmic function. The parameters γ and λ were non-hierarchical and had a Beta 
prior distribution with shape parameters 2 and 50. 
The model was fitted by running two parallel MCMCs in Just Another Gibbs Sampler 
(JAGS)66. We used 5,000 burn-in iterations. After that, the model was run for 10,000 itera-
tions. All parameters achieved a Gelman-Rubin diagnostic < 1.267. 

5.6.2. Mosaic arrangement for computation 

 
Figure 5.10. Implementation of the mosaic. Example of how a cellular mosaic (RGCs in this 
case, left panel) is rearranged into a regular matrix with anisotropic spacing (right panel). 

5.6.3. A multiscale filter hypothesis for spatiotemporal in-
tegration 

Many possible mechanisms could replicate the interaction between spatial and temporal 
summation reported in the literature and observed in our experiments. Our modelling ap-
proach is able to capture this aspect of the response. Nevertheless, it is useful to hypothe-
size how such an interaction could be implemented in the visual system. Glezer et al.13 pro-
posed that this be achieved by a dynamic change in the “functional” RGC-RFs in the retina 
in response to changes in stimulation conditions, such as background illumination. How-
ever, there is no clear evidence of such a change occurring in the retina. Furthermore, 
Glezer et al.13 proposed such changes to occur through alterations in the weighting of the 
centre and surround of centre-surround receptive fields. Despite this, Ricco’s area was 
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observed to alter in response to glaucomatous RGC loss in glaucoma patients9 and back-
ground luminance in healthy subjects68 in the s-cone pathway, in which a centre-surround 
receptive field organisation is absent69. A more reasonable hypothesis, that fits more closely 
with experimental observations, is that a set of spatial cortical filters exist and can be opti-
mally selected based on the amount of retinal input. Figure 5.11 shows a hypothetical re-
sponse of an array of cortical neurons employing a biphasic first gaussian derivative filter 
(D1) with a gaussian envelope. This filter was chosen because it produces a smooth mono-
tonic spatial summation curve, as shown by Pan and Swanson1. Note that the locations of 
the cortical neurons in the schematic indicate their projection into the visual space, rather 
than their anatomical arrangement in the visual cortex. In the schematic, selecting a larger 
filter corresponds to selecting a sparser mosaic of cortical neurons, since the extent of the 
filter is scaled with the inter-cellular spacing. This is equivalent to proportionally scaling the 
same mosaic. As expected, the summation curves with larger filters are shifted along the 
horizontal axis towards larger stimulus sizes. These mosaics can be obtained by selecting 
subsets of neurons from the same array (as in this example) or be constituted of separate 
sets of neurons. It should be mentioned that the summation curves produced by a more 
realistic implementation of this model (with cortical neurons sampling the response of RGCs 
with static RF sizes) would largely reproduce this behaviour but would not be an exact hor-
izontal translation of the same response (see later). 

 
Figure 5.11. Example of how a change in scale results in a horizontal translation of the 
spatial summation curve.The cortical response is obtained by convolution of the spatial 
filter (left column) with the stimulus (top row). The summation curves (right column) are 
calculated as in Pan and Swanson1 with an exponent of 2. For this specific spatial filter, this 
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corresponds to a partial summation slope of 0.25 in the log10 – log10 plot, the same as in 
our model. The spatial summation curve with the smallest filter is shown in grey for refer-
ence. 

The change in spatial scale with different stimulus durations can therefore be replicated by 
a horizontal shift (in log10 – log10 coordinates) of the same template response by an amount 
equivalent to the log10 change in duration. Note that the selection of the filter scale does 
not need to depend solely on the stimulus duration, but more generically on the retinal 
input, to include the effect of Cones:RGC convergence, duration, background illumination 
or, for example, RGC loss in disease. For the sake of simplicity, everything except duration 
was held constant for these calculations. The combined effect is best represented by a sum-
mation surface, shown in Figure 5.12. In the figure, three summation curves are isolated by 
cutting through the surface at different stimulus durations and correspond to using a differ-
ent filter scale. Importantly, temporal summation responses can be obtained by cutting 
through the surface along the orthogonal (duration) axis. Because the surface is obtained 
by proportionally translating the same spatial summation curve, temporal summation re-
sponses also follow the same template curve, proportionally shifted with different stimulus 
sizes. This would produce the same results obtained with our more generic input summa-
tion model. With this interpretation, although a strict retina-V1 convergence cannot be de-
fined, testing in partial summation condition (i.e. long stimulus durations and high back-
ground illumination) would allow the calculation of the smallest possible spatial scale for a 
given retinal location. 

 
Figure 5.12. Spatiotemporal response surface. The surface was obtained by shifting the 
spatial summation curve by an amount equivalent to changes in duration, in log10 scale. 
Spatial and temporal summation curves are shifted versions of the same curve and can be 
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obtained by cutting through the surface along different axes. The small insets show the 
change in the spatial filter for three different stimulus durations, producing the spatial sum-
mation curves identified by the black profiles. 

Another possibility, proposed by Pan and Swanson1, is that different stimulus features, such 
as adaptation state and stimulus duration, might alter the relative sensitivity of individual 
filters and change the combined response “envelope” obtained through probability sum-
mation. For simplicity, we demonstrate this concept in Figure 5.13 by selectively combining 
the response of filters with progressively smaller spatial scales. The resulting response en-
velope is a simple translation of the same curve. 

 
Figure 5.13. Response envelope modelling. The blue lines in the left panels represent the 
envelope of the combine responses of the cortical filters whose responses are shown as 
black likes (inactive filters are in light grey). The right panel reports the same response en-
velopes, color-coded according to the number of hypothetical filters combined to generate 
the response. 

We finally implemented a more realistic two-stage version70 of the cortical pooling model 
presented in Figure 5.11, where an array of cortical cells would sample the response of an 
array of RGCs like the one used in our main model. The cortical cell array was the same as 
the RGC array but used a D1 filter as their receptive field. Figure 5.14 shows the responses 
produced by both the multiscale filters and the combination envelope. These largely repli-
cate our experimental results (horizontal translation of the same response), with some small 
changes at different scales introduced by the fact that the size of the RGCs did not scale 
with the chosen cortical filter. Like in Swanson et al.70, this modelling exercise shows that 
Ricco’s area can be entirely determined by cortical filters without changing the RGC density 
or the size of the RGC-RF. 
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Figure 5.14 Replication of the model in cortical filter model using a two-stage model. 
The individual filter responses at different scales are reported in grey. The blue line repre-
sents the response envelope obtained by combining, through probability summation, the 
responses of filters with progressively smaller spatial scales. For example, in the top-right 
panel, the envelope is obtained by combining the responses of the filters with the three 
largest scales, while excluding the remaining 3 with a smaller spatial scale. 
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5.7. Supplementary material 
5.7.1. Spatial summation with midget OFF retinal ganglion 

cells 
  Eccentricity (degrees) Comparisons 
  1.414 (A) 5.657 (B) 9.899 (C) A vs B A vs C B vs C 

U
nc
or
re
ct
ed
 τ (x 102) 

66.53  
[39.12, 110.42] 

30.46  
[21.03, 46.24] 

15.18  
[11.14, 22.68] < 0.0001 < 0.0001 0.0002 

Offset (dB/10) 
2.34  

[2.28, 2.43] 
2.51  

[2.45, 2.6] 
2.54  

[2.44, 2.61] < 0.0001 < 0.0001 0.4201 

Ricco's area (deg2) 
0.039  

[0.024, 0.068] 
0.109  

[0.068, 0.149] 
0.144  

[0.104, 0.197] < 0.0001 < 0.0001 0.0171 

# mOFF-RGCs* 
95.72  

[55.66, 159.1] 
44.04  

[30.39, 67.08] 
22.02  

[16.06, 32.7] < 0.0001 < 0.0001 0.0002 

C
on
ve
rg
en
ce
 

w
ei
gh
te
d 

τ (x 102) 
84.28  

[51.02, 137.96] 
71.01 [48.86, 
105.18] 

57.62  
[43.78, 92.11] 0.9442 0.4883 0.9442 

Offset (dB/10) 
2.31  

[2.25, 2.41] 
2.42  

[2.35, 2.5] 
2.4  

[2.3, 2.46] < 0.0001 0.0175 0.0403 

Ricco's area (deg2) 
0.039  

[0.024, 0.068] 
0.11  

[0.067, 0.148] 
0.143  

[0.103, 0.198] < 0.0001 < 0.0001 0.0153 

# mOFF-RGCs� 
121.39  

[72.82, 198.81] 
102.5  

[70.58, 152.3] 
83.61  

[63.67, 132.72] 0.9326 0.4854 0.9326 
Table 5.4. Model fit results with midget RGCs. Median [Interquartile Range] of the differ-
ent outputs from the model fits. Comparisons were performed on log-transformed values 
but reported in linear scale (except for the Offset, which was tested and reported in log-
scale). mOFF-RGC = midget OFF retinal ganglion cells. *Obtained by taking the product of 
Ricco’s area and local mOFF-RGC density; � Obtained by taking the product of Ricco’s area 
and local mOFF-RGC density scaled by retinal convergence.  
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Figure 5.15. Model fit results with midget RGCs. Box-plots of the different parameters 
and estimates derived from the model for spatial summation data. Note that the conver-
gence weighted values in (D) are obtained by simply multiplying the uncorrected number 
of midget OFF-RGCs at Ricco’s area by the convergence rate. The box encloses the inter-
quartile range, the horizontal midline indicates the median and the error bars extend from 
the 5% to the 95% quantiles. The vertical axis is log10-spaced. RGC = Retinal Ganglion Cell 

5.7.2. Effect of optical factor compensation 
  Eccentricity (degrees) Comparisons 
  1.414 (A) 5.657 (B) 9.899 (C) A vs B A vs C B vs C 

U
nc
or
re
ct
ed
 τ (x 102) 

72.54  
[42.4, 119.38] 

53.5  
[36.78, 86.51] 

32.35  
[22.6, 53.44] 0.1386 0.0006 0.0413 

Offset (dB/10) 
2.33  

[2.28, 2.43] 
2.49  

[2.43, 2.59] 
2.5  

[2.41, 2.58] < 0.0001 < 0.0001 0.8806 

Ricco's area (deg2) 
0.019  

[0.011, 0.037] 
0.101  

[0.059, 0.139] 
0.143  

[0.091, 0.219] < 0.0001 < 0.0001 0.0017 

# P-OFF-RGCs* 
9.46  

[5.17, 16.99] 
11.5  

[7.59, 20.01] 
9.02  

[6.05, 15.54] 0.5253 0.8895 0.8895 

C
on
ve
rg
en
ce
 

w
ei
gh
te
d 

τ (x 102) 
90.12  

[54.7, 148.87] 
124.47  

[85.97, 201.38] 
126.58  

[83.64, 210] 0.0324 0.0071 0.5050 

Offset (dB/10) 
2.31  

[2.25, 2.41] 
2.4  

[2.34, 2.5] 
2.36  

[2.27, 2.43] 0.0006 0.2574 0.0163 

Ricco's area (deg2) 
0.019  

[0.011, 0.037] 
0.101  

[0.058, 0.14] 
0.143  

[0.094, 0.207] < 0.0001 < 0.0001 0.0020 

# P-OFF-RGCs� 
64.77  

[36.86, 116.88] 
85.95 

 [57.42, 150.81] 
84.08  

[53.29, 145.9] 0.1166 0.0701 0.7000 
Table 5.5. Effect of optical factors on model fit results. Median [Interquartile Range] of 
the different outputs from the model fits by taking the summation over the module (abso-
lute value) of the RGC. Comparisons were performed on log-transformed values but re-
ported in linear scale (except for the Offset, which was tested and reported in log-scale). 
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P-OFF-RGC = parasol OFF retinal ganglion cells. *Obtained by taking the product of Ricco’s 
area and local, P-OFF-RGC density; � Obtained by taking the product of Ricco’s area and 
local P-OFF-RGC density scaled by retinal convergence.  

 
Figure 5.16. Effect of optical factors on model fit results. Box-plots of the different pa-
rameters and estimates derived from the model for spatial summation data. The shading 
indicates whether the summation in equation (5.6) in the text was taken over the absolute 
value (module) or the signed (linear) RGC input. The box encloses the interquartile range, 
the horizontal midline indicates the median and the error bars extend from the 5% to the 
95% quantiles. The vertical axis is log10-spaced. RGC = Retinal Ganglion Cell; OF = Optical 
factors (average modulation transfer function of the eye) 
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5.7.3. Average parameters for the psychometric functions 
Stimulus Location {X, Y} 

µ, s (dB) 
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

G-I, 15 ms 

{-7, -7} 13.99, 1.86 17.52, 1.79 15.43, 2.06 12.68, 2.90 12.79, 2.97 
{-7, 7} 13.22, 1.66 13.59, 5.15 14.41, 1.92 12.17, 4.89 10.46, 3.41 
{7, -7} 15.55, 2.54 16.88, 3.45 15.48, 1.58 12.60, 2.00 9.16, 3.94 
{7, 7} 15.72, 2.58 14.95, 4.12 15.52, 1.72 12.35, 1.75 13.08, 3.09 

G-I, 200 ms 

{-7, -7} 21.90, 1.86 24.35, 1.4 22.67, 2.10 22.46, 1.53 20.97, 3.73 
{-7, 7} 20.63, 1.82 23.24, 2.03 22.56, 2.18 22.80, 2.36 20.03, 3.99 
{7, -7} 24.54, 1.59 24.70, 1.67 23.32, 1.76 22.90, 2.29 20.03, 3.13 
{7, 7} 25.96, 1.73 23.92, 1.63 23.68, 2.02 22.69, 2.20 22.28, 2.12 

G-V, 15 ms 

{-7, -7} 31.69, 1.75 34.09, 1.24 32.87, 1.44 32.49, 1.88 32.86, 1.33 
{-7, 7} 31.34, 1.04 33.06, 1.32 31.91, 2.20 32.30, 1.77 31.56, 1.18 
{7, -7} 33.47, 1.17 33.86, 1.61 32.56, 1.35 32.12, 2.11 32.90, 1.68 
{7, 7} 33.37, 1.43 34.12, 0.99 32.57, 1.44 32.00, 2.03 32.67, 1.28 

G-V, 200 ms 

{-7, -7} 36.81, 0.94 38.31, 0.85 37.61, 1.70 38.21, 1.00 37.49, 1.13 
{-7, 7} 36.96, 1.21 37.33, 0.96 37.20, 1.45 38.15, 1.84 37.11, 0.90 
{7, -7} 38.23, 0.77 38.57, 1.27 37.80, 1.96 37.75, 1.74 37.05, 0.92 
{7, 7} 38.13, 1.05 38.41, 0.61 37.80, 1.44 38.14, 0.87 37.17, 0.99 

γ 0.018 0.024 0.009 0.055 0.063 

λ 0.017 0.008 0.016 0.039 0.008 
Table 5.6. Parameters for the psychometric functions. Fitted parameters for the psycho-
metric function obtained from the Method of Constant Stimuli (MOCS) experiment at the 
four tested locations in five subjects with four different combinations of stimulus size and 
duration. Lapses (λ) and guesses (γ) were modelled as global parameters for the whole 
MOCS experiment in each eye. 



 

 109 

5.7.4. Results with an alternative temporal impulse re-
sponse 

 
Figure 5.17. Effect of different impulse response functions. Example of the fitted re-
sponse of the model with the impulse response used in the main calculations (Filter 1) and 
with the monophasic impulse response used by Gorea and Tyler15 and described by Wat-
son47 (Filter 2). 
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6. Spatial summation in the glaucoma-
tous macula: a link with retinal ganglion 
cell damage 
This paper tested the computational model developed in the previous chapter in patients 
with glaucoma. In particular, we showed that the spatial summation profile generated by 
the computational model in response to RGC loss or damage could be replicated by a simple 
horizontal translation of the same curve (a template). This would effectively lead to a 
change in the critical area in glaucoma. This property was used to fit the template to data 
from glaucoma patients and healthy age-matched controls. The results demonstrated a 
good agreement with the predictions from the computational model for different levels of  
glaucoma damage. Importantly, this was the first investigation of its kind in the macula of 
patients with glaucoma, including patients with advanced damage. The results were also in 
good agreement with previous literature in animal models. The key element of novelty was 
the use of a computational model to link the changes observed in glaucoma patients to a 
biological substrate. The paper also investigated the empirical structure-function relation-
ship using imaging data. Importantly, we confirmed that local measurements of structural 
damage suffer from a significantly restricted dynamic range that prevents accurate quanti-
fication of advanced damage. This has important implications for both clinical applications 
of imaging technology and for the interpretation of experimental results. Additional insight 
could be gathered by using, in the future, more advanced imaging techniques able to re-
solve individual RGCs1. The manuscript is currently under revision at Investigative Ophthal-
mology & Visual Science (IOVS), a journal of the Association for Research in Vision and Oph-
thalmology (ARVO). 
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6.1. Introduction 
Glaucoma is characterized by progressive loss of the visual field (VF) as a consequence of 
damage to, and death of, Retinal Ganglion Cells (RGCs).2, 3 VF damage is usually detected 
and monitored with Standard Automated Perimetry (SAP), in which circular stimuli of con-
stant area and duration are modulated in luminance on a uniform background at different 
VF locations. The test aims to estimate, for each location, the stimulus luminance that rep-
resents the just noticeable difference from the background luminance. This is expressed as 
VF sensitivity, where decibel units measure the attenuation of the brightest stimulus (higher 
dB indicating dimmer stimuli). Despite a long-established understanding that perimetric 
sensitivity is associated with RGC density,4-7 in that they co-vary in disease such as glaucoma, 
their exact relationship has proven difficult to elucidate. 
Useful insights into the pathophysiology of visual loss in glaucoma can be gathered by stud-
ying how perimetric sensitivity changes with stimulus area. For a given duration and back-
ground luminance, sensitivity is known to increase with the area of the stimulus (spatial 
summation).8 The change in sensitivity is steeper and directly proportional to the area of 
the stimulus (complete spatial summation) up to a certain critical area (Ricco’s area, or the 
area of complete spatial summation). After this point, sensitivity still increases with stimulus 
area but by a smaller amount (partial summation). Ricco’s area is known to enlarge with 
eccentricity and different stimulating conditions and it has been hypothesized that a critical 
number of RGCs underlies Ricco’s area across different eccentricities9-15, this varying with 
adaptation level16. Similar scaling of Ricco’s area with RGC density has been hypothesized 
to hold true with RGC loss in glaucoma17. Redmond et al. demonstrated that Ricco’s area is 
enlarged in glaucoma, which can account for the difference in sensitivity between patients 
and healthy controls for conventional Goldmann III stimuli17. Antwi-Boasiako et al. showed 
similar results in non-human primates18.  
The use of computational models has been pivotal to the understanding of these phenom-
ena. Swanson et al.19 showed that spatial summation can be reproduced by a two-stage 
hierarchical process involving RGC density as well as the spatial tuning of cortical filters, 
which can be independent of the underlying density of RGCs. Further research by Pan & 
Swanson suggested that probability summation across RGCs cannot explain spatial summa-
tion of perimetric stimuli, whereas it may be explained instead by cortical pooling by multi-
ple spatial mechanisms20. We have recently proposed a computational model able to repro-
duce the interaction between stimulus area and duration in the response of a synthetic RGC 
mosaic in healthy observers21. In that work, we also hypothesised, in partial agreement with 
Swanson et al.22, that the retinal input would determine the selection of different cortical 
filters, altering spatial summation. We hypothesised that this retinal input could also be al-
tered by a change in the density of RGCs. Under this assumption, we showed that our model 
would be able to reproduce the results presented by Redmond et al.17 in glaucoma.  
Glaucoma damage in the macula has been documented extensively in the literature23, 24, 
but has gained increasing attention in recent years after reports that it can be affected in 
early disease,25-27 albeit often going undetected clinically until later in the condition,28, 29 
and that it affects quality of life of patients at all stages of disease30. In the healthy eye, 
sensitivity measured with the Goldmann III stimulus adopted in SAP (0.43 deg in diameter) 
in photopic conditions are determined by complete spatial summation only outside the cen-
tral 15 degrees9-11, 22. This means that early macular damage from glaucoma would produce 
only small changes in SAP sensitivity until a very large proportion of RGCs is lost17, 19, 31, 32. 
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Despite its relevance, only two studies have investigated spatial summation in glaucoma-
tous macula, one in non-human primates18 and one in glaucoma patients18, 33. However, 
they limited their analysis to early damage. Moreover, the investigation in glaucoma pa-
tients33 only correlated sensitivity with coarse RGC count estimates from Optical Coherence 
Tomography (OCT) imaging, rather than attempting to model the underlying latent process 
of damage.  
In the current study, we wished to test the hypothesis that changes in sensitivity in the 
macula of patients with glaucoma could be explained by a change in the spatial scale used 
by the visual system that relates to RGC loss or damage. Here, we perform five separate SAP 
examinations, each with a different fixed-area luminance-modulated stimulus on a 10-2 
grid, in eyes with glaucoma with different levels of damage and age-similar healthy control 
eyes, as well as in young healthy eyes. We then compare our functional RGC density esti-
mates derived from the spatial summation model with structural estimates from high-den-
sity OCT scans, to determine the extent to which VF damage can be predicted from clinical 
measures of tissue loss in the macula. 

6.2. Methods 
6.2.1. Study population 
Data were collected in the eye clinic at Santi Paolo e Carlo Hospital – University of Milan, 
Milan, Italy and in the glaucoma clinic at IRCCS Fondazione G.B. Bietti, Rome, Italy.  
Thirty young healthy participants were recruited among staff and students on a voluntary 
basis. Inclusion criteria for this cohort were: 1) age between 18 and 40 years; 2) best cor-
rected visual acuity (BCVA) of 0 logMAR or better; 3) Intraocular pressure (IOP) < 21 mmHg; 
4) no evidence of ocular disease on preliminary ophthalmoscopic examination; 5) no history 
or evidence of systemic disease that might affect the VF or compromise the execution of 
the test. Individuals were excluded if the macular or optic nerve head (ONH) OCT scans col-
lected for the study showed any signs of ocular disease (details of the imaging and macular 
testing protocols are reported later). A 24-2 Swedish Interactive Thresholding Algorithm 
(SITA) VF test was performed for descriptive purposes for the study but was not used to 
assess inclusion. 
Glaucoma patients and the age-similar healthy participants were recruited on a voluntary 
basis. Glaucoma patients’ charts were screened by clinicians in order to identify potentially 
eligible candidates. To meet eligibility criteria, patients were required to have a confirmed 
clinical diagnosis of open angle glaucoma (which could include pseudoexfoliative and pig-
ment dispersion glaucoma), regardless of the integrity of their VF. Glaucoma patients were 
stratified by level of damage according to the Mean Deviation (MD) value from their most 
recent reliable (FP < 15%) 24-2 SITA test and classified as early (MD better than -6 dB), mod-
erate (MD between -6 dB and -12 dB) or advanced (MD worse than -12 dB), with the aim of 
recruiting 10 participants for each class. Other inclusion criteria were: 1) age greater than 
18 years; 2) BCVA of 0.2 logMAR or better; 3) no history or evidence of other ocular or 
systemic diseases, other than glaucoma, that might affect the VF or compromise the execu-
tion of the test. Age-matched controls were recruited among members of staff and patients’ 
spouses, partners and relatives. Inclusion criteria were the same as for the healthy young 
cohort, but with no upward age limit and the requirement for VA to be better than or equal 
to 0.2 logMAR. 
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Written informed consent was obtained from all participants. The study adhered to the ten-
ets of the Declaration of Helsinki and was approved by local ethics committees (Comitato 
Etico Milano Area 1 -code OCU_SSSF; Comitato Etico Centrale IRCCS Lazio N. 90/19/FB). 

6.2.2. Study protocol 
All healthy participants underwent an ophthalmoscopic examination and measurement of 
their BCVA and IOP (Goldmann Applanation Tonometry) in order to confirm eligibility. Their 
BCVA was not tested beyond 0 logMAR. BCVA and IOP were not recorded for the study and 
only used to assess the exclusion criteria. Axial length and corneal curvature were measured 
with an IOLMaster (Carl Zeiss Meditec, Dublin, USA) and recorded for the study.  
Only one eye per participant was included in the study. Where both eyes of healthy controls 
were eligible, one was chosen arbitrarily by the researcher for testing. In the glaucoma co-
hort, if the two eyes were classified as having a different stage of glaucoma, one was chosen 
to populate the severity group, as needed. Otherwise, one was chosen arbitrarily by the 
researcher. 

6.2.2.1. Standard Automated Perimetry 
All VF tests were performed with a Humphrey Field Analyzer (HFA, Carl Zeiss Meditec, Dub-
lin, USA). Participants’ near correction was used where required. For young healthy partici-
pants, near correction was used according to their preference. All healthy participants un-
derwent a 24-2 SITA Standard test to obtain MD and Pattern Standard Deviation (PSD) val-
ues for descriptive purposes and for the purposes of disease severity classification.  
Separate macular perimetric tests were performed with a 10-2 grid, Full-threshold strategy, 
each with a different Goldmann stimulus diameter (in degrees): G-I (0.10); G-II (0.21); G-III 
(0.43); G-IV (0.86); G-V (1.72). The order of these tests was randomized following a com-
puter generated sequence of tests, one for each subject. For the young healthy cohort, the 
G-I test was repeated twice, because results with this stimulus were expected to be more 
variable21. For glaucoma patients and age matched controls, the G-III test was performed 
twice instead, to produce a more reliable estimate of the age-corrected sensitivity loss, be-
cause normative databases in the HFA are only available for the G-III stimulus. All partici-
pants performed a total of six 10-2 SAP tests. Based on previous literature for full-threshold 
tests,34 reliability of the tests was only assessed with the percentage of FP errors (< 33%). 
For the healthy participants, a limit of 33% on false negative errors was also set. The oper-
ator was instructed to carefully monitor the participants and ensure good fixation through-
out the test. If unreliable, the test, but not the participant, was excluded from analysis. Fix-
ation losses were not used to determine good fixation because of their poor reliability as a 
fixation metric34. 

6.2.2.2. OCT imaging 
Spectral Domain OCT (SD-OCT) imaging was performed with a Spectralis SD-OCT (Heidel-
berg Engineering, Heidelberg, Germany). A circumpapillary Retinal Nerve Fibre Layer (cp-
RNFL) scan and a high-density macular cube (121 vertical B-scans, 30 x 25 degrees) were 
acquired. These scans were inspected by an ophthalmologist (the author, GM) to confirm 
the absence of any abnormality in the healthy cohorts and of any ocular disease other than 
glaucoma in the glaucoma cohort. Scans were judged of sufficient quality if all the layers 
could be clearly identified in the central 15 degrees around the fovea. No scans were re-
moved because of poor quality. 
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Macular volumes were then exported in RAW binary format (.vol) using the Heidelberg Eye 
Explorer platform and read into R (R Foundation for Statistical Computing, Vienna, Austria). 
This file contained raw image files and segmentations of retinal layers, including the Inner 
limiting membrane (ILM), Bruch’s membrane (BM), the RNFL, and Ganglion Cell Layer (GCL). 
These segmentations were checked for errors by an ophthalmologist (the author, GM) and 
corrected where needed. Retinal thickness and GCL thickness maps were generated and 
processed as previously described to obtain localised estimates of the number of RGCs un-
derlying each stimulus area at all locations in the 10-2 grid21, 31, 35. Briefly, the fovea was 
automatically located via template matching on the retinal thickness map. The GCL thick-
ness map was transformed into a RGC density map with histology data from Curcio and 
Allen36 using a method proposed by Raza and Hood.37 This method accounts for eccentricity 
because the histology-derived volumetric density varies at different positions on the retina. 
The area covered by the stimuli was displaced and distorted to account for RGC displace-
ment according to a revised version of the model proposed by Drasdo et al.31, 35, 38 (Figure 
6.1). Note that our method for displacement is different from the one used by a similar 
previous study in the field,33 and produces different RGC counts especially in the parafoveal 
region. However, our method was confirmed to be accurate.35, 39 All calculations were per-
formed in visual degrees because we have previously shown that, under a spherical expan-
sion model of the eye, calculations of RGC density in visual degrees are unaffected by axial 
length35. There is anatomical35 and psychophysical40 evidence to support a spherical expan-
sion model, at least for moderate refractive errors.  

 
Figure 6.1. Displacement of perimetric stimuli. Test locations of the 10-2 grid distorted 
and displaced to cover the corresponding area on the ganglion cell layer thickness map in a 
healthy eye (A) and an eye with glaucoma (B). This example is for a G-V stimulus, for ease 
of visualization. 
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6.2.3. Spatial summation model 
A previously described summation model21 was used to generate a template to fit the sen-
sitivity vs stimulus area data. The summation model is described in more detail in the Ap-
pendix. In brief, the model integrates the total retina input, which is the product of stimulus 
area, stimulus duration, RGC density and Cone-to-RGC convergence ratio at a specific loca-
tion. For this application, the stimulus duration was fixed at 200ms. The model predicts a 
biphasic relationship between retinal input and sensitivity, with a gradual transition from 
total to partial summation (Figure 6.2). The model accounts for the Cone-to-RGC conver-
gence ratio because we found, in previous experiments and calculations,41 that the spatial 
summation response profile (and Ricco’s area) did not scale perfectly with the number of 
RGCs at different eccentricities, but that the number of RGCs needed to be weighted by the 
number of cones converging onto each RGC. Because different classes of RGCs tile the retina 
with independent and partially overlapping mosaics, we only consider Parasol (or magno-
cellular) OFF RGCs (P-OFF-RGCs) for our calculations 42, 43 because P-RGCs have been shown 
to be preferentially stimulated by briefly flashed stimuli.44, 45 However, for a given location, 
the effect of stimulus area can be explained by a change in the number of RGCs being stim-
ulated. This indicates a scaling of recruited cortical filters with the amount of total retinal 
input, at least in healthy observers. Note that we do not attribute any specific role to OFF-
RGCs, although a preferential involvement of this sub-class of RGCs has been suggested in 
glaucoma46. This sub-class was simply chosen to model a hexagonal mosaic of non-overlap-
ping RGCs38, 43 and because OFF-RGCs are the most abundant in the human retina46. Mod-
elling ON-RGCs would have no material effect on our results other than proportionally scal-
ing the underlying RGC density in the model.  
In the current study, we wanted to test the hypothesis that such a cortical filter scaling 
would also occur with RGC damage in glaucoma. This can be done by testing whether the 
change in sensitivity from RGC damage in glaucoma could be explained by a simple horizon-
tal shift of a summation template predicted by the model, similarly to what was reported 
by Redmond et al.17 This corresponds to a change in Ricco’s area (Figure 6.2). To test this 
hypothesis, we made two assumptions: 

1) RGC death and dysfunction would be indistinguishable, meaning that the model 
would not be able to distinguish whether the reduced input is provided by a smaller 
number of fully functional cells or a larger amount of dysfunctional cells47. 

2) The change in sensitivity would be predominantly a consequence of RGC loss and 
not of photoreceptor damage, media opacity or other conditions. 

An alternative hypothesis was to assume no change in spatial scaling. This corresponds to 
modelling the change in sensitivity in glaucoma as a vertical shift in the summation tem-
plate, i.e. change in sensitivity without any change in Ricco’s area. Note that the actual value 
of Ricco’s area is not reported as part of the results because it is not relevant for testing our 
hypothesis and because it is not univocally defined for a summation curve with a smooth 
transition from total to partial summation.  
The model template was calibrated with data from the young healthy cohort and tested on 
glaucoma patients and age matched controls. 

6.2.3.1. Model calibration 
The model has three parameters (see Formula in the Appendix): α determines the vertical 
offset of the template (in log10 scale); τ determines the transition from total to partial sum-
mation; κ determines the slope of the partial summation portion of the curve (slope = 1/κ). 
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The model was calibrated with RGC count estimates and perimetric sensitivity values from 
the healthy young cohort. The RGC count estimates are more likely to be accurate in this 
group because of the low likelihood of retinal damage and the close similarity in age with 
the retinae in the original histology dataset by Curcio and Allen36.  
The parameters were estimated via numerical optimization (fminsearch function in Matlab 
R2018b, The Mathworks, Natick, USA) and 95%-Confidence Intervals (CIs) for the parame-
ters were computed via bootstrap, resampling individual eyes rather than observations to 
preserve the correlation structure of the data. The calibrated model was used to generate 
a template to fit the rest of the data and test our hypothesis, as explained in the next sec-
tion. 

6.2.3.2. Template fitting to glaucoma patients and controls 
Both the main and alternative hypothesis (spatial scaling vs no spatial scaling in glaucoma) 
can be tested by fitting the summation template to the perimetric data with different as-
sumptions. Fitting the template presents significant challenges, especially because of the 
involvement of eyes with advanced damage. The main technical issues are the presence of 
censored data, because the HFA is not capable of presenting stimuli with luminance greater 
than 3,185 cd/m2 (0 dB), and a consequent lack of sensitivity values for more damaged lo-
cations. This can, on the one hand, bias the estimates. On the other hand, it makes it difficult 
to obtain stable estimates for these locations when only few sensitivity values are available 
at this level of damage. Bayesian computation and hierarchical models can offer a solution 
because data censoring can be easily incorporated in complex models, avoiding the bias 
from censored data (i.e. sensitivities < 0 dB), and estimates at individual locations can be 
made more robust by efficiently distributing information across different levels of the hier-
archy.  
Details about the implementation of the Bayesian hierarchical model for this study are re-
ported in the Appendix. In brief, for the main hypothesis (spatial scaling), the model esti-
mated the density of RGCs at each location, in log10-scale, by optimising the horizontal shift 
of the template to fit the observed sensitivity values for each stimulus area (Figure 6.2). The 
first level of the hierarchy was the population level, modelling the average RGC count. This 
was then propagated at the eye level and then at each location. The eye and location levels 
can be considered nested Gaussian random effects. Because of the hierarchical structure, 
all the data were fitted concomitantly and the estimate at each location was also informed 
by the data at other locations within the same eye and by the general behaviour of the 
population. The template was used as a link function to model the expected sensitivity at 
each stimulus area given the modelled RGC density estimate. The response variable was the 
sensitivity, which was censored at 0 dB. Note that using a link function for the expected 
sensitivity is different from modelling an inverse transformation of the data. The fitting pro-
cess also modelled a vertical shift of the template at the population level, to optimise the 
average centration of the template. The alternative hypothesis (no change in spatial scaling) 
was implemented with a similar model. In this case, the hierarchical parameter was the 
vertical shift of the template and the horizontal shift (Ricco’s area) was only modelled at the 
population level. This fitting process assumes no change in spatial scaling across subjects, 
while the change in sensitivity is only modelled through the vertical shift of the template. 
Note that it is not possible to model a vertical and a horizontal shift of the template simul-
taneously, because the solution would be undefined in locations for which the tested stim-
ulus area sizes do not encompass Ricco’s area. For example, a location for which all tested 
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stimulus sizes are smaller than Ricco’s area can be fitted by arbitrary combinations of verti-
cal and horizontal shifts of the template. Therefore, we used the alternative hypothesis of 
no spatial scaling as a comparator to assess the significance of our results under the main 
hypothesis (see next section). Normally, statistical significance can be assessed by quantify-
ing the uncertainty around parameters’ estimates. However, because each version of the 
model is forced to fit the data with either a horizontal or a vertical shift of the template, the 
parameter estimate associated with the modelled shift is likely to be significantly different 
from zero (no shift) in both cases and cannot be used to accept or reject the tested hypoth-
esis. 
 

 
Figure 6.2. Schematic illustrating the hierarchical fitting process for the template. The 
template shown on the left is shifted horizontally to match the data. The example on the 
right shows the result of the fit. The top horizontal axis reports the stimulus size. The bottom 
horizontal axis refers to the histograms, which represent the estimated Retinal Ganglion Cell 
(RGC) density (in dB) for each location. The histograms show all the iterations of the Bayes-
ian fitting procedure. The red dots are the measured sensitivity, the black lines are the 
shifted templates (the original “healthy” template is reported in light grey).  

6.2.3.3. Data analysis 
All data, including those from the young healthy cohort, were used in the fitting, but only 
data from the glaucoma patients and age-similar healthy controls were used to calculate 
goodness of fit statistics. The R2 was calculated for the sensitivity predicted with the tem-
plate fitted at each location and expressed as the percentage of variance explained. Confi-
dence intervals for the R2 were calculated via bootstrap (1000 samples) using the subject as 
the resampling unit. The Root Mean Squared Error (RMSE) was also calculated, for compar-
ison with the structural predictions (see below). 
The structure-function analysis was performed in a similar fashion, using the point-wise 
structural RGC density, calculated as described above, with estimates of GCL thickness from 
the SD-OCT scans (calculated as the average density from the five different stimulus sizes). 
However, because there was no fitting involved in the structure-function predictions, only 
the RMSE was calculated. Both RGC density estimates were expressed in dB (10*log10(Den-
sity)). We also calculated the dynamic range for the structural and functional density 
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estimates as the width of the 2.5% - 97.5% interval, to report the structural floor effect. All 
the analyses were performed in R. 
When referring to estimates of the total retinal input, we will use the term functional retinal 
input to refer to the total retinal input calculated with local RGC density values estimated 
by fitting the functional data. The structural retinal input was instead calculated using struc-
turally derived local RGC density values. 

6.3. Results 
6.3.1. Study population 
Descriptive statistics for the sample are reported in Table 6.1. One individual in the healthy 
cohort was excluded because they completed only two of the six tests. None of the tests 
was unreliable. 

  

Healthy  
< 40 years old 
(N = 29) 

Age matched 
controls  
(N = 20) 

Glaucoma 
Early  
(N = 10) 

Moderate  
(N = 10) 

Advanced  
(N = 10) 

Age (age) 28 (3) 62 (11) 66 (9) 59 (10) 62 (11) 
AL (mm) 24.40 (1.05) 24.00 (0.94) 23.56 (0.65) 24.75 (1.35) 23.71 (1.18) 

24-2 MD (dB) -0.67 (0.91) 0.16 (1.36) -2.26 (1.56) -8.21 (2.13) -18.51 (5.78) 
24-2 PSD (dB) 1.45 (0.37) 1.91 (0.58) 3.24 (1.60) 11.10 (2.35) 11.61 (1.99) 
cpRNFL (µm) 96.8 (9.2) 93.8 (9.5) 72.0 (10.4) 61.3 (15.4) 47.1 (6.9) 
WRT (µm) 311.1 (13.8) 303.1 (13.9) 290.5 (17.7) 280.8 (16.2) 275.5 (8.7) 
GCL (µm) 39.6 (3.10) 37.1 (3.2) 31.8 (4.9) 26.8 (5.4) 23.2 (3.8) 
RGCs (dB) 5.58 (0.03) 5.54 (0.04) 5.47 (0.08) 5.39 (0.10) 5.32 (0.08) 

Table 6.1. Descriptive statistics of the sample. The values are reported as Mean (Stand-
ard deviation). AL = Axial Length; MD = Mean Deviation; PSD = Pattern Standard Deviation; 
cpRNFL = circumpapillary Retinal Nerve Fibre Layer; WRT = Whole Retinal Thickness; GCL = 
Ganglion Cell Layer; RGCs = Retinal Ganglion Cell count (in 10*log10 scale). The structural 
metrics are total or average values calculated within the central 10 degrees from the fo-
vea. 

6.3.2. Model calibration 
The parameter estimates for the model fitted in the young healthy cohort were (Mean [95% 
- CIs]): alpha = 1.42 [1.29, 1.57]; log10(tau) = 3.58 [3.44, 3.70]; k = 2.59 [2.45, 2.78] (corre-
sponding to a partial summation slope of 0.39 [0.36, 0.40]). The slope was notably different 
from the commonly chosen 0.25 (p < 0.001)20, 22 but not dissimilar to the 0.369 reported by 
Antwi-Boasiako et al. (p = 0.146)18. The result of the fitting is shown in Figure 6.3.  
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Figure 6.3. Template calibration. Results of the calibration procedure of the template on 
the data from the young healthy cohort. The Dashed lines represent the 2.5%-97.5% confi-
dence bands for the template estimated via bootstrap. The data are clustered due the dif-
ferent stimulus diameters used. 

6.3.3. Template fitting 
The horizontal shift of the template (which assumes a change in Ricco’s area from RGC dam-
age) explained 95.2% [95%-CIs: 94%, 96.2%] of the overall variance in the data, a significant 
improvement over assuming no change in Ricco’s area (p < 0.001). Table 6.2 reports the R2 
and RMSE values for the healthy subjects and the glaucoma patients at different stages of 
damage. Figure 6.4 shows the fitting results. Supplementary Figure 6.8 shows the same 
results for each location (horizontal shift). The average error per subject for the horizontal 
shift of the template was not significantly affected by age (linear regression, p = 0.819), 
indicating that modelling a change in Ricco’s area was able to account for most of the effect 
of ageing. The differences in accuracy between the two alternative models were more evi-
dent in the glaucoma cohort with intermediate damage, where a transition from partial to 
complete summation would be more evident if RGC damage was indeed causing a change 
in Ricco’s area. Supplementary Figure 6.9 shows the fitting error, stratified by sensitivity, 
of the two alternative models compared to the test-retest noise. Fitting the template with 
a horizontal shift produced the closest error to the test-retest noise, consistently below that 
obtained with a vertical shift. 
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  Estimate [95%-CIs] 
Group Altered Ricco’s area Unchanged Ricco’s area Improvement (%) 
 R2 (%) RMSE (dB) R2 (%) RMSE (dB) R2 RMSE 
All 95.2 [93.9-96.1] 2.09 [1.92-2.26] 93.2 [91.5-94.5] 2.49 [2.24-2.72] 2.1 [1.6-2.7] 15.9 [12.6-18.3] 

Healthy 91.3 [90.4-92.1] 1.56 [1.44-1.71] 89.8 [88.8-90.8] 1.69 [1.58-1.83] 1.7 [0.8-2.5] 7.7 [4.0-11.5] 

Glau-
coma 

Early 91.6 [89.5-93.1] 2.21 [1.74-2.64] 88.4 [86.6-90.0] 2.59 [1.99-3.10] 3.4 [2.4-4.2] 14.5 [9.70-18.7] 
Moderate 93.2 [90.9-95.3] 2.96 [2.50-3.39] 89.6 [85.4-93.1] 3.66 [2.98-4.29] 3.9 [2.1-6.2] 19.2 [14.3-22.5] 
Advanced 95.3 [93.7-96.3] 2.99 [2.70-3.29] 92.3 [89.1-94.3] 3.83 [3.33-4.32] 3.1 [1.9-5.0] 21.8 [17.1-25.2] 

Table 6.2. Template fitting error. R2 and Root Mean Squared Error (RMSE) statistics for 
the hierarchical fitting of the template. The 95%-Confidence Intervals were estimated via 
bootstrap. These statistics exclude the data from the young healthy cohort used for cali-
bration. Improvement was calculated as percent increase in R2 and percent reduction in 
RMSE fitting a horizontal shift of the template over fitting a vertical shift. All improvements 
were significant (p < 0.001). 

 
Figure 6.4. Template fitting results. A) Results of the template fitting via horizontal shift 
on the overall sample. For this graph, the observations from each location were shifted hor-
izontally according to their estimated parasol OFF Retinal Ganglion Cell (RGC) density. B) 
Example (one eye with glaucoma) comparing the fit obtained via horizontal (altered Ricco’s 
area) and vertical (unchanged Ricco’s area) shift of the template. 

When broken down into different stimulus sizes, some locations appeared to have their 
sensitivity underestimated by the model for the largest stimuli. We identified these loca-
tions as those that were greater than 97.5% of the prediction error (4.9 dB) above the pre-
diction with the G-V stimulus (Figure 6.5). The sensitivity for these locations also appeared 
to increase more steeply than predicted by complete summation for smaller stimulus 
sizes48, 49. We hypothesized that this could be a consequence of testing at the edge of sco-
tomas. When plotted in the 10-2 grid, these locations were in fact mostly located in regions 
of sharp change in the modelled RGC density estimates (Figure 6.5). We further tested this 
hypothesis by simulating the response from an RGC mosaic with a sharp change in cell den-
sity and we were able to reproduce the same behaviour (Supplementary).  
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Figure 6.5. Effect of stimulus size. Fitting results split by stimulus size (left panels). The 
observations circled in black are those that exceeded the 97.5% limit of the prediction error 
for the G-V stimulus. The same locations are reported on the map on the right, representing 
the modelled RGC density. 

6.3.4. Structure-function relationship 
The structural and functional estimates of RGC density are plotted in Figure 6.6. The overall 
agreement was poor (Table 6.3), mostly due to the limited dynamic range of the structural 
estimates, which was, on average, only 11% (±2%) of the functional estimates.  
Using the template to predict the sensitivity from the structural RGC estimates generally 
provided poor prediction accuracy (Table 6.3). These predictions are reported in Figure 6.7. 
The predictions were improved, as expected, by only analysing locations where sensitivity 
with a G-I stimulus was greater than 10 dB. This latter sub-analysis was performed for com-
parison with the work of Antwi-Boasiako et al.18 

  Structural RMSE (dB) [95%-CIs] 

Group 
Sensitivity,  
all locations 

Sensitivity,  
locations ≥ 10 dB 

Functional RGC  
Density  

All 10.6 [8.4-12.5] 3.5 [2.9-3.7] 14.3 [11-17.6] 
Healthy 3.0 [2.1-3.9] 3.0 [2.2-3.7] 4.0 [2.5-5.3] 

Glaucoma 
Early 5.9 [3.7-7.5] 3.1 [2.4-3.8] 7.2 [4.5-9.3] 

Moderate 11.8 [9.2-14.1] 4.2 [3.3-4.6] 15.2 [11.6-18.5] 
Advanced 18.8 [15.7-21.8] 4.8 [3.3-4.9] 26.5 [20.7-31.8] 

Table 6.3. Structure-function model fitting error. Root Mean Squared Error (RMSE) for 
structure-function predictions. For sensitivity, structural predictions were generated using 
the spatial summation template with structural estimates of the parasol OFF Retinal Gan-
glion Cell (RGC) number as an input. For the RGC density estimates, we report the RMSE of 
structural estimates of local parasol OFF RGC density predicting the corresponding func-
tional estimates from the fitting of the template. 
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Figure 6.6. Structure-function relationship. Structural and functional estimates of the Par-
asol OFF Retinal Ganglion Cell (RGC) density at each location. The solid line indicates the 
identity. The dashed line represents the dynamic range (DR) of the structural and functional 
estimates. 
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Figure 6.7. Structure-function model fitting results. Structure-function predictions based 
on the template for the whole sample (A) and for locations where sensitivity was > 10 dB 
with a G-I (B). The structural retinal input was calculated identically to the functional reti-
nal input, but using structural estimates of local parasol OFF retinal ganglion cell density 
instead of the functional ones, derived from fitting the template (as in Figure 6.4 and 5). 
This is identical to the retinal input calculated for the young healthy cohort for calibration 
(Figure 6.3), which was also derived from structure.  

6.4. Discussion 
We evaluated the hypothesis that changes in perimetric sensitivity from modelled RGC dam-
age or loss in the glaucomatous macula could be explained by a change in the spatial scaling 
of the response of visual system. We tested this by fitting experimental perimetric data in 
human observers (patients with glaucoma and healthy controls) with a template that mod-
els a change in Ricco’s area, and showed that a horizontal shift of the template, modelling 
an enlargement of Ricco’s area, could explain 95% of the overall variance in the data. This 
explained the data significantly better than a vertical shift of the template, which would 
model a change in sensitivity without a change in Ricco’s area. We then showed that the 
local functional loss was not entirely captured by structural measurements from SD-OCT. 
Our findings support the hypothesis that RGC damage from glaucoma produces a perimetric 
functional loss that can be explained by an enlargement of Ricco’s area17. This was specu-
lated to be a consequence of the loss of RGCs, leading to the hypothesis that Ricco’s area 
would scale with RGC density, to include a constant number of RGCs. In general, this hy-
pothesis has been shown to hold true in healthy eyes when tested at different eccentrici-
ties9-15 and in glaucoma patients when assessed with computational models similar to the 
one used in this work22. However, Swanson et al.22 showed that the extent of Ricco’s area 
depends on the spatial scale of the cortical filters, regardless of the underlying density of 
RGCs. In fact, previous work has shown that the extent of Ricco’s area (and thus the number 
of RGCs underlying a Ricco’s area scaled stimulus16) at any given location can be altered, in 
healthy observers, by stimulation conditions, such as background luminance50-52, duration 
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of the stimulus21, 51, 53, 54 or by high frequency background noise20. This makes it clear that 
VF sensitivity cannot be explained solely by RGC density and likely also involves further pro-
cessing at a cortical level.  
Redmond et al.17 provided experimental evidence of such a change in the spatial scaling 
occurring in patients with glaucoma.  However, the same phenomenon has not been exten-
sively investigated in advanced glaucomatous damage and in the macular region. While 
there is no specific reason to expect spatial summation to behave differently in the macula, 
its impact would be the greatest in this region for standard perimetry with a G-III stimulus9-
11, 22, 31. This is because the high initial RGC density in the healthy macula would determine 
a transition between partial and total summation, as RGCs are lost in glaucoma. Moreover, 
the macula allows direct individualised point-wise structural OCT measurements, which are 
not usually available for the more peripheral retina. One study by Yoshioka et al.33 investi-
gated the effect of spatial summation on the association between perimetric sensitivity and 
retinal structure in the macula of eyes with early glaucomatous damage and showed that it 
is improved with smaller stimulus-sizes. This is compatible with our findings, since smaller 
stimulus sizes would operate under complete spatial summation in both healthy and glau-
comatous eyes, making the slope of the relationship between the number of RGCs and sen-
sitivity steeper. One important difference was the method used to displace the stimuli to 
account for RGC displacement, which, in the case of Yoshioka et al.33, was later shown to 
yield inaccurate results, especially in the parafoveal region35. This was then also confirmed 
by the same group in later work55. More recently, a detailed analysis has been presented by 
Antwi-Boasiako et al.18, who studied the relationship between macular RGC counts and per-
imetric sensitivity in non-human primates with experimental glaucoma. Antwi-Boasiako et 
al.18 also analysed their data within the framework of spatial summation. Some of their re-
sults were confirmed in our study. Importantly, the partial summation slope estimated by 
our data (0.39, corresponding to an exponent k of 2.59) was very close to their estimate 
(0.369). This is noteworthy, because there is still uncertainty about the most accurate choice 
of slope to describe partial summation for perimetric stimuli in studies of this kind. In com-
putational models of sensitivity, this mainly depends on the choice of the spatial filter and 
of the Minkowski summation exponent k20. Common choices for the exponent are between 
2 and 4. For most symmetric filter choices (except some Gaussian derivatives used to model 
cortical responses), these values correspond to a partial summation slope of 0.5 (Piper’s 
law) and 0.25. An exponent of 4 was used in a previous implementation of our model21 and 
by others20, 22. However, an intermediate value for the exponent seems more reasonable 
given the experimental results from this work and Antwi-Boasiako et al.18.  
Differently from Antwi-Boasiako et al.18, we found that structural measurements were not 
able to fully characterize functional damage, owing to their reduced dynamic range (Figure 
6.6). One factor that could explain this discrepancy is that Antwi-Boasiako et al.18 had access 
to histology-derived RGC counts in both healthy and glaucomatous eyes to calibrate their 
structural models, which would naturally improve accuracy. In contrast, we only relied on a 
limited histology data in healthy human subjects provided by Curcio and Allen36. Addition-
ally, it is unclear from their paper whether Antwi-Boasiako et al.18 accounted for RGC dis-
placement by simply moving the centre of the 10-2 stimuli, as in Yoshioka et al.33, or 
whether they applied the displacement to the edge of the stimulus (Figure 6.1). This is rel-
evant because, despite yielding correct RGC counts in healthy eyes and in early damage, our 
method of displacement, by its nature, amplifies the floor-effect, since non-functional re-
sidual tissue is summed over a larger area, especially in the parafovea. Finally, the level of 
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damage in Antwi-Boasiako et al. was in general less advanced than in our dataset, with the 
lowest sensitivity values being approximately 10 dB. Indeed, restricting our analysis to loca-
tions with a sensitivity > 10 dB with a G-I stimulus resulted in a great improvement in the 
RMSE for structure-function estimates (Table 6.3 and Figure 6.7). Nevertheless, our results 
find ample confirmation in previous literature37, 56, 57 documenting a structural floor-effect 
at around 10 dB of sensitivity loss in the macula and confirming that structurally derived 
estimates offer only a partial description of RGC loss and damage occurring in glaucoma. All 
these aspects, including the increased level of perimetric noise at more advanced damage, 
contributed to the poor RMSE in the structure-function predictions reported in Table 6.3. 
Our findings have important implications for the interpretation of macular perimetric dam-
age in glaucoma. The first important aspect is that it confirms a change in the spatial scale 
of the response following RGC loss or damage, which corresponds to an enlargement of 
Ricco’s area. As previously stated, the exact value of Ricco’s area is irrelevant for testing our 
hypothesis and is not univocally defined for curves with a smooth transition from total to 
partial summation. However, Ricco’s area is a useful concept to describe changes in spatial 
scaling, and here it is used as synonymous of spatial scale. One thing that should be noted 
is that previous work mostly focussed on the relationship between the number of RGC re-
ceptive fields covered by the stimulus and perimetric response. According to this view, the 
response of the visual system would scale to include a constant number of RGCs at Ricco’s 
area17, 18. Our interpretation differs slightly, because the total retinal input in our summation 
model would not differentiate between reduced input from RGC loss or dysfunction. Differ-
entiating between these two contributions would require additional investigations. Adap-
tive optics OCT imaging has shown promising results allowing direct visualization of RGCs in 
healthy subjects1 and glaucoma patients58 and could be used to more precisely quantify the 
density of RGCs. Functional tests, such as high contrast grating stimuli, could be used for 
the same scope47, 59-62.  
The varying relationship between RGC damage and functional loss is especially important in 
the macular region because sensitivity to the widely used G-III, 200 ms stimulus would ini-
tially be determined by partial summation, making the relationship with retinal structure 
shallow. As RGCs are lost or damaged, the response would gradually transition into com-
plete summation, where the relationship between sensitivity and retinal structure becomes 
steeper. This implies that, for the same percentage of RGC loss, changes in sensitivity would 
be much smaller early in the disease compared to more advanced damage. This might make 
the detection of early damage, and similarly early progression, more challenging7, 63. Other 
strategies employing smaller targets or shorter durations for macular stimuli might make 
perimetric tests more efficient by testing always under complete summation conditions, 
although this might limit the dynamic range of the test. Some of these strategies have al-
ready been adopted in some home monitoring devices64. Another approach would be to 
modulate the area or duration of the target instead of the luminance. This approach would 
take full advantage of the horizontal translation of the response profile observed in our data 
and in previous publications17, 63, effectively testing the response at a fixed point of the sum-
mation curve. Such an approach has been shown to maximise signal-to-noise ratio in glau-
coma and to reduce response variability compared to luminance modulation63.  
It should be noted that, while fitting a template and testing the spatial-scaling hypothesis 
did not require a link to RGC density, modelling the retinal input and the effect of RGC loss 
provides a linkage to an underlying biological substrate, offering a generalisable framework 
for interpreting the results. For example, using a computational model of an RGC mosaic 
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allowed us to provide a possible explanation for the edge effect for larger perimetric stimuli 
observed in the data (see supplementary material). Moreover, modelling changes in retinal 
input rather than simple translations of ‘healthy’ summation functions for each tested loca-
tion highlighted how changes in spatial summation both across the healthy visual field and 
as a consequence of damage can arise in the context of different modifications to the same 
underlying biological substrate. It should be finally highlighted that, because of how the 
spatial summation template was calculated (i.e. using sensitivity values and estimated RGC 
counts in healthy subjects), the intrinsic linkage to the underlying retinal input is present in 
our calculations, regardless of whether it is made explicit or not in our interpretation of the 
results. 
A better characterization of the relationship between RGC damage and perimetric sensitiv-
ity is also useful to improve the correspondence between perimetric changes and structural 
damage observed with imaging. As shown in this and previous work33, 37, both measure-
ments can be reported in a log-scale of RGC number. This could facilitate structure-function 
analyses for progression or enable seamless integration of structurally derived metrics into 
perimetric strategies65. One limitation, however, is that structural metrics do not seem to 
have enough dynamic range, at least locally, to capture the full extent of functional damage 
measured by perimetry. Although such a discrepancy has been reduced by nonlinear esti-
mates, such as with help of artificial intelligence66-68, structural tests are unlikely to replace 
perimetry. An efficient integration of the two sources of information seems, therefore, the 
most effective way of diagnosing and monitoring glaucoma.  
A limitation of this work is that it was not possible to derive sensitivity estimates for all stim-
ulus areas at all tested locations, especially among patients with intermediate or advanced 
glaucoma. This was expected given the technical limitations of the device (limited stimulus 
areas and fixed duration), and addressed with the use of a hierarchical model, which al-
lowed for more robust estimates of RGC damage for locations where only limited data could 
be collected, and the use of censoring at 0 dB. However, the estimates for these locations 
are necessarily less precise and mostly reliant on the behaviour of the other locations within 
the same eye and on the general trend of the overall population. For the same reason, it 
was not possible for us to model the horizontal and vertical shift at the same time, because 
the fitting results would only be fully constrained for locations that span both partial and 
complete summation with the available stimulus diameters. For example, for locations ex-
hibiting complete summation exclusively, the same fitting result can be achieved by either 
a vertical or a horizontal translation of the template. However, this would not affect the 
ability to compare our two alternative hypotheses. It is also important to note that previous 
work, especially by Gardiner et al.69, 70, has shown poor correlation between accurate sen-
sitivity estimates derived from frequency of seeing curves and clinical perimetry, especially 
for values < 20 dB. In our analysis, however, we assumed that low sensitivities would still 
provide useful information to test population-level hypotheses, especially in eyes with ad-
vanced glaucoma. We provide, as supplementary, additional analyses supporting this as-
sumption. Importantly, we show that including sensitivity values < 15 dB reduced the pre-
diction error for the fitted model for sensitivity > 15 dB. This indicates that, in our data, 
locations with advanced damage improved the precision of the model.  
In our study, we could not control for the effect of optics on macular sensitivity. This could 
have been influenced by age-related changes to refractive media. We controlled for this 
limitation by comparing glaucoma with age similar controls. The effect of optics71, 72 and 
ageing73 on spatial summation is still unclear. Redmond et al.73 did not find any change in 
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the critical area with age. However, from our data, there does not seem to be any significant 
residual effect of ageing on explaining the change in sensitivity once the change in spatial 
summation is accounted for. However, our data does not allow us to test this hypothesis 
specifically and further, more targeted investigations, are needed. 

6.5. Appendix 
6.5.1. Computational model 
The model, as previously explained21, predicts sensitivity as a function of the total retinal 
input, which is the product of the number of RGC receptive fields that underlie the stimulus, 
the duration of the stimulus presentation, and the cone-to-RGC convergence ratio at differ-
ent eccentricities. This was derived by combining Curcio and Allen’s data36, 74 and the RGC 
receptive field (RGC-RF) density obtained from the equations provided by Drasdo et al.35, 38. 
In our previous analysis of spatial summation data in healthy subjects21, we showed that 
this weighted RGC-RF number, rather than the raw count of RGC-RFs covered by the stimu-
lus, were able to equate the spatial summation curves at different eccentricities. The model 
uses a capacitor equation and continuous integration over the input. A Minkowski exponent 
is used in the integration, similar to the vector summation equation used by Pan and Swan-
son20. The model has three parameters that can be fitted: α determines the vertical offset 
of the template (in log10 scale); τ determines the transition from total to partial summation; 
κ determines the slope of the partial summation portion of the curve (slope = 1/κ). The 
formula from Montesano et al.21, with small modifications, is 

𝑅 = 10@ GP M= ∗ 𝑑(𝑠𝑡)
A

'
J
&/=

. (6.1) 

Where R is the sensitivity in linear units (10dB/10), M is the total retinal input filtered (con-
volved) with a capacitor equation in the form 

𝑅𝑀 = exp	(−𝑠𝑡/𝜏) × 𝑆. (6.2) 

Where S is a step function of the retinal input and is equal to 1 over a segment of st (an 
arbitrary unit of spatiotemporal input) that indicates the extent of the total retinal input of 
the stimulus, i.e. it becomes longer when more RGCs are stimulated or the same RGCs are 
stimulated for a longer period of time.  The symbol × indicates the convolution operation. 

6.5.2. Bayesian fitting 
The fitting sought to find the optimal value of RGC density for each location that would give 
the best fit for the template. Changing RGC density corresponds to a horizontal shift of the 
template. RGC density at each location was modelled as a hierarchical random effect, 
nested within another random effect grouping locations from the same eye. A single global 
parameter also allowed a vertical offset of the template to achieve the optimal fit in the 
overall sample. This offset was however very small (-0.23 dB). The same procedure was 
adopted to fit vertical shifts of the template at each location (i.e. no change in Ricco’s area), 
while a global parameter optimized the location of Ricco’s area in the whole sample (this 
offset was also small, -0.05 log10-units). Note that the template was not allowed to move 
both horizontally and vertically at each eye/location because this would make the fitting 
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undetermined for all locations where sensitivity values showed no change in slope in the 
data, because the same fit could be obtained by infinite combinations of vertical and hori-
zontal shifts.   
VF sensitivity was assumed to have a Normal distribution of the residuals, censored at 0 dB. 
Fitting of the Bayesian model was achieved using JAGS (Just Another Gibbs Sampler75) to 
run Markov Chain Monte Carlo (MCMC) simulations, within the R environment (R Founda-
tion for Statistical Computing). Two parallel MCMCs were run for at least 5,000 iterations 
after 1,000 adaptation steps and 5,000 burn-in iterations. The MCMCs were stopped if the 
Gelman-Rubin diagnostic was < 1.2 for all the monitored parameters, indicating conver-
gence76. Prior distributions on the fixed effects were non-informative Normal distributions 
with a precision of 0.01 (Variance = 100). 

6.6. Supplementary material 

 
Figure 6.8. Template fit for each location of the 10-2 grid. The dashed lines indicate total 
summation. The horizontal axis reports the RGC equivalent count, i.e. the effective RGC 
contribution to the response as a combination of a RGC loss and dysfunction. This represen-
tation is possible because each location is plotted separately and the effect of Cone:RGC 
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convergence can be accounted for in each plot, leaving the RGC density as the only varying 
factor in each subplot. RGC = Retinal Ganglion Cells. 

 
Figure 6.9. Prediction error and test-retest variability. A) Prediction against error plots for 
the two fitting procedures, i.e. horizontal shift (altered Ricco’s area) and vertical shift (un-
changed Ricco’s area), compared to the test-retest variability. For test retest, the G-I stim-
ulus was used for the healthy young cohort and the G-III stimulus was used for the glaucoma 
cohort and the age matched controls. The “prediction” for test-retest was calculated as the 
average between the two test repeats. The error was the difference of each repeat from 
their average. The solid lines represent the 95% limits of the error, calculated separately for 
three sensitivity levels. B) Absolute error stratified by measured sensitivity for the tests-
retest and the prediction from the template. The best estimate of sensitivity used to calcu-
late the error and to stratify the plot is the average of two tests repeats and the prediction 
from the template, respectively. 
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Figure 6.10. Simulation of sharp-edged defects. Example of how a sharp edge can produce 
the deviation from the model observed in the data. These responses are calculated from a 
full computation model simulating an RGC mosaic. The healthy mosaic is reported at the 
top (and the corresponding response is in black, solid line). The degraded mosaic with a 
sharp edge is reported at the bottom (and the corresponding response is in red). The dashed 
line represents the best fit of the template to the data generated from the degraded mosaic. 
Note how a sharp edge introduces deviations from the template, which assumes a homo-
geneous RGC density in the tested area. RGC = Retinal Ganglion Cell. 

6.6.1. Influence of low perimetric accuracy for advanced 
damage 

Gardiner et al.69, 70 showed that estimates of sensitivity obtained with SITA algorithms cor-
related poorly, for low sensitivity, with accurate estimates of the 50% threshold measured 
with frequency-of-seen curves, demonstrating a “floor effect”. The level of this floor is usu-
ally placed between 15 dB and 20 dB (note that the 10 dB floor for our analysis was chosen 
for comparison with Antwi-Boasiako et al.18). While this issue certainly affects estimates at 
the level of individual locations or eyes, we hypothesised that low sensitivity values would 
still provide useful information for population level estimates. We have performed two ad-
ditional analyses, reported below, to confirm that this is the case. 
We first tried to replicate, via simulations, the results that would be obtained from the full-
threshold (FT) strategy implemented on the Humphrey Field Analyzer (HFA). While the spe-
cific details are not known, the Open Perimetry Interface (OPI)77 offers an implementation 
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of the FT strategy based on the best available knowledge78. We also tried to replicate the 
HFA ‘growth-pattern’ approach for a 10-2 grid based on what is known about the 24-2 
grid78. Briefly, the seed points were the locations at coordinates {±3; ±3}. Each quadrant 
was treated independently. The testing sequence progressively extended to the periphery 
in three concentric clusters around the seed points. The FT 4-2 staircase started at the ex-
pected normative value for a G-III stimulus at the seed points and, for the other locations, 
at the average sensitivity of their nearest neighbours for which sensitivity had already been 
determined. 
The ground-truth for the simulations were the thresholds predicted by the spatial summa-
tion functions fitted under H1 (changing Ricco’s area) on the original data. The objective 
was to see whether it was possible to retrieve the original ‘ground-truth’ RGC density by 
fitting the model under H1 to the simulated data. If the testing strategy introduced a floor 
effect, we would observe a proportional bias in our estimates. The responses were simu-
lated using the formula provided by Henson et al.79 for response variability, capping the 
standard deviation of the Gaussian psychometric function at 10 dB80. The estimated and 
ground-truth RGC density values are reported in Figure 6.11. While there was a consistent 
offset, there was no proportional bias, indicating no floor effect from the testing strategy 
used for our study. Interestingly, the consistent offset was due to an underestimation of 
higher sensitivities (see Figure 6.11). However, these results can vary based on the starting 
values of the FT strategy. These were set to the normative G-III sensitivity for the four initial 
seeding points in our simulations, but we cannot be sure of what starting points are being 
used in the HFA for other stimulus sizes. 
 

 
Figure 6.11. Template fitting on simulated full-threshold data. The left panels show a 
comparison of the summation model with the results of the simulations. The sensitivity val-
ues in the box-plots were grouped by ground-truth (top) or fitted (bottom) retinal input 
values, in rounded decibel units. Note how the results of the simulated full-threshold strat-
egy for high sensitivity values are slightly lower than the ground-truth sensitivity, indicated 
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by the black line. The fitting procedure accounted for that by estimating a retinal ganglion 
cell density higher than the ground truth. This is shown in the right panel, where the diago-
nal indicates identity. This produced a better fit to the data (left bottom panel). Note that 
this is similar to shifting the model template (black line) down and to the left in the top left 
plot. 

In our second analysis, we fitted the data under H1 censoring the sensitivity values at 15 dB 
instead of 0 dB (as in the original analysis). Note that the model would still retain the infor-
mation that these values are smaller than 15 dB. We compared the Root Mean Squared 
Error (RMSE) and R2 for the predictions obtained with the parameters fitted with the two 
levels of censoring (RMSE0 and RMSE15 respectively). Importantly, both the predictions and 
the data for this comparison were floored at 15 dB, regardless of the censoring level used 
for fitting. This ensured a fair comparison. Confidence intervals were calculated via boot-
strap, as in the main analysis. 
This analysis could have had three possible outcomes: 
1. RMSE15 was not different from RMSE0: this result would indicate that sensitivity values 

below 15 dB provided no additional information to increase the prediction accuracy 
for sensitivities above 15 dB. 

2. RMSE15 was better (smaller) than RMSE0: this would indicate the presence of spurious 
information in sensitivities 15 dB with a detrimental effect on the accuracy of the esti-
mates. This would be the strongest indication of a floor effect biasing the estimates. 

3. RMSE15 was worse (larger) than RMSE0: this would indicate that sensitivity values be-
low 15 dB provided useful information to increase the accuracy of the estimates 
above 15 dB. 

The results are reported in the Table 6.4 below. RMSE0 was significantly better than RMSE15, 
a clear indication that locations with advanced damage can provide useful information for 
the accuracy of the estimates. Interestingly, the differences in RMSE were even more prom-
inent in advanced cases.  

  Estimate [95%-CIs] 
Group Censored at 15 dB Censored at 0 dB Improvement (%) 
 R2 (%) RMSE (dB) R2 (%) RMSE (dB) R2 RMSE 
All 91.0 [89.7-92.0] 2.04 [1.87-2.22] 93.5 [92.5-94.3] 1.74 [1.64-1.85] 2.7 [2.0-3.3] 14.9 [11.8-17.6] 

Healthy 90.8 [89.5-91.8] 1.59 [1.45-1.76] 91.4 [90.4-92.3] 1.53 [1.42-1.67] 0.7 [0.4-1.1] 3.6 [2.2-4.9] 

Glau-
coma 

Early 88.0 [85.6-89.7] 2.15 [1.84-2.49] 91.6 [89.8-93.0] 1.80 [1.57-2.06] 3.9 [2.7-5.2] 16.2 [11.6-20.6] 
Moderate 86.2 [80.7-90.6] 2.80 [2.30-3.20] 91.8 [89.5-93.9] 2.15 [1.88-2.39] 6.1 [3.1-10.1] 23.0 [16.3-28.8] 
Advanced 86.7 [81.5-90.0] 2.85 [2.52-3.21] 92.6 [90.0-94.3] 2.13 [1.89-2.37] 6.4 [4.5-9.6] 25.4 [23.0-27.5] 

Table 6.4. Effect of censoring on fitting error. Prediction error from the same model 
(horizontal translation) fitted by censoring data at 0 dB (original) or at 15 dB. The predic-
tion error for both was evaluated by capping the sensitivity values at 15 dB (i.e. all values 
smaller than this threshold were set to 15 dB both for the data and predictions). The 95%-
Confidence Intervals were estimated via bootstrap. These statistics exclude the data from 
the young healthy cohort used for calibration. Improvement was calculated as percent in-
crease in R2 and percent reduction in RMSE. All improvements were significant (p < 
0.001). RMSE = Root Mean Squared Error. 
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7. Conclusions and future directions 
The work presented in this thesis advances the understanding of structure-function rela-
tionship in the macula. One important aspect was the refinement and improvement of pre-
vious widely used methodology to report perimetric stimuli onto anatomical maps gener-
ated with imaging. This offered the chance to correct and revisit previously published re-
sults, especially in the field of macular damage from glaucoma1, 2. 

Differently from many previous investigations focussing on empirical structure-function re-
lationship, our modelling approach sought to relate results from functional tests, mostly 
clinical perimetry, to an underlying biological substrate through computational models of 
the retina and cortical integration. The model improved upon previous similar attempts3 by 
reproducing the interaction between stimulus size and duration. The model also predicted 
a change in spatial and temporal summation from changes in the number of photoreceptors 
converging onto the ganglion cells. This has potential for applications in outer retinal dis-
eases, but the predictions from the model will need further confirmation, for example by 
studying spatial summation in patients with disease of the outer retina. 

Other aspects will require further investigation, such as the contribution of optical factors. 
Different implementation of our computational model predicted two very different effect 
magnitudes, from negligible to very strong. Both are compatible with previous literature4, 5. 
Future work could employ adaptive optics to deliver stimuli unaffected by optical aberra-
tion, isolating the neural contribution to spatial summation. Adaptive optics could also be 
used to improve estimates of RGC densities at the tested locations by imaging individual 
ganglion cells6, 7, overcoming the need for indirect estimates from retinal thickness values.  

Finally, the prediction from our computational model proved to be an effective description 
of the changes observed in glaucoma from damage to the RGC mosaic. While these results 
did not make a large improvement to the empirical structure-function relationship, mostly 
because of the floor effect in the structural measurements, they can be used to improve 
functional testing. For example, this model could be used to develop perimetric testing 
strategies that exploit the established relationship between perimetric sensitivity and stim-
ulus characteristics by modulating contrast, size and duration. Such an approach could im-
prove the reliability8 and speed of perimetric tests. Interestingly, we proved that a similar 
paradigm could be used to evaluate neural loss from diabetes. This is an indication of the 
potential generalisability of our findings beyond the applications to glaucoma. 

Further investigations would also need to assess whether reactive changes occur in the vis-
ual cortex. Our model does not require any specific alterations to cortical processes in re-
sponse to retinal damage. For example, our results in glaucoma suggest a consistent re-
sponse of the visual system for healthy and diseased eyes, since the effect of RGCs loss from 
disease appeared identical to the effect of testing a healthy eye with smaller stimulus sizes. 
These results will need to be confirmed with more detailed investigations, for example with 
the use of functional magnetic resonance imaging, in patients with retinal and optic nerve 
diseases, such as glaucoma9-11. 
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