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Abstract
In applications of predictive modeling, such as insurance pricing, indirect or proxy
discrimination is an issue of major concern. Namely, there exists the possibility that
protected policyholder characteristics are implicitly inferred from non-protected ones
by predictive models and are thus having an undesirable (and possibly illegal) impact
on prices. A technical solution to this problem relies on building a best-estimate model
using all policyholder characteristics (including protected ones) and then averaging
out the protected characteristics for calculating individual prices. However, such an
approach requires full knowledge of policyholders’ protected characteristics, which
may in itself be problematic. Here, we address this issue by using a multi-task neural
network architecture for claim predictions, which can be trained using only partial
information on protected characteristics and produces prices that are free from proxy
discrimination.We demonstrate the proposedmethod on both synthetic data and a real-
world motor claims dataset, in which proxy discrimination can be observed. In both
examples we find that the predictive accuracy of the multi-task network is comparable
to a conventional feed-forward neural network, when the protected information is
available for at least half of the insurance policies. However, the multi-task network
has superior performance in the case when the protected information is known for less
than half of the insurance policyholders.
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1 Introduction

The question of avoiding discrimination in insurance pricing is becoming increasingly
important in many markets and jurisdictions. For example, the European Council
[9] prohibits using gender information as a rating factor for insurance pricing; for
an actuarial overview on discrimination regulation we refer to Frees–Huang [10].
While regulation varies across jurisdictions, it is typically required that both direct
and indirect discrimination be avoided. If D denotes protected information whose use
is regarded as discriminatory, direct discrimination is avoided by merely not including
D in the regressionmodel used for insurance pricing. However, not including protected
information in the regression model is not necessarily sufficient for avoiding discrim-
ination more broadly, because the protected information D may also be (implicitly)
inferred from the non-protected variables, denoted by X. We call the impact of such
inference on prices indirect discrimination. We note that this is a narrow use of the
latter term, equivalent to what is also known as proxy discrimination, and does not con-
sider any aspects of fairness and disparate impact; we also refer to Prince–Schwarcz
[17], Frees–Huang [10], Lindholm et al. [14, 15], Xin–Huang [25] and Grari et al.
[11] for relevant discussions.

In this paper, we address the problem of avoiding indirect discrimination in the
calculation of insurance prices. Lindholm et al. [14] give a mathematical definition of
direct and indirect discrimination. Their approach for avoiding indirect discrimination
amounts to, first, using all available information (X,D) to calculate the so-called best-
estimate price. In a second step, one removes the potential discriminatory dependence
between X and D by marginalizing the best-estimate price w.r.t. a pricing distribution
which does not allow one to infer (or proxy) the protected information D from the
non-protected variables X. This step removes the statistical dependence between the
two sets of information and results in the so-called discrimination-free insurance
price as defined in Lindholm et al. [14]. This removal of statistical dependence can
be motivated (and justified) by concepts of causal statistics, see Lindholm et al. [14]
and Araiza Iturria et al. [2]; for an antecedent of this approach in economics, see
Pope–Sydnor [16].

An attractive feature of the above discrimination-free insurance pricing approach
is that any pricing model can be used to obtain the best-estimate price, which is
subsequently adjusted to remove the potential for D to be proxied by X. Moreover,
the suggested procedure ensures that all potential indirect discrimination is removed,
where it exists, and this is achieved regardless of the ability of the particular class
of regression model used to infer information about D from X. In particular, there is
no need to explicitly quantify the potential impact of indirect discrimination before
applying the method.

Thus, the calculation of discrimination-free insurance prices can be carried out
using any reasonable pricing model, if one has access to the full covariate informa-
tion (X,D). In practice, however, one may assume that the protected characteristics

123



Amulti-task network approach for calculating…

D contain covariates that are considered sensitive, such as, e.g., ethnicity. Then, it
will generally not be feasible to collect this information for all insurance contracts in
the portfolio. As a consequence, it remains unclear how a model for discrimination-
free insurance prices should be fitted, when discriminatory information is incomplete.
The goal of this paper is to address precisely this issue. We present a multi-output
neural network for multi-task learning, i.e., the proposed network architecture per-
forms simultaneously different regression tasks. This proposed network architecture
can be fitted on incomplete protected information, and still provides accurate results.
That is, to fit our network architecture we only need the protected information D on
a part of the portfolio, but we can still receive a good predictive regression model for
discrimination-free insurance pricing. In particular, our proposal allows for a more
robust fitting compared to just ignoring insurance policies with missing protected
information.

Incomplete protected informationD is a missing data problem, and there is a broad
literature on dealing with missing data. Typical methods to deal with missing data
are either imputation methods or surrogate splits in tree based methods; for a survey
we refer to Emmanuel et al. [8]. Popular imputation methods are k-nearest neighbor
(kNN) imputation, see Batista–Monard [3], Chen–Shao [6] and the references therein,
multivariate imputation by chained equations (MICE), see van Buuren–Groothuis-
Oudshoorn [22], or generative adversarial imputation nets (GAIN), see Yoon et al.
[26].

Classical incomplete data problems present different challenges to the ones arising
in our context of discrimination-free insurance pricing. In standard incomplete data set-
tings, one tries to complete the missing information (in our caseD) on those instances
where this information is not available. Typically, this is done as a data pre-processing
step using one of the previously mentioned methods. Based on these pre-processed
data, one then builds a regression model that optimally predicts responses based on
the completed data set (in our case (X,D)). Our problem is fundamentally different in
several aspects, which is why it requires a different methodological approach. First,
we do not aim at imputing the observations missing from the discriminatory covari-
ates D. For the derivation of discrimination-free prices, which are calculated using
only knowledge of X, it is important to know what the best-estimate prices would be
under different values of D—however, the value of D for a specific instance (policy-
holder) must be immaterial. Second, and relatedly, imputation methods explicitly rely
on proxyingD fromX, which is precisely the phenomenon that we need to prevent. In
contrast, we aim to work directly on the original, partly incomplete, data and do not
engage in any pre-processing step. Third, if imputation of D was used to complete the
dataset before estimating regression functions, it would remain unclear whether the
discrimination-free properties of resulting pricing functionals, discussed in Lindholm
et al. [14], could be maintained. This is because the entanglement of estimation with
data completion processes creates an additional level of complexity. Our proposed
multi-task learning approach is designed specifically to address those issues.

We illustrate our proposedmethodology via two detailed case studies, using respec-
tively a synthetic health insurance dataset and a real-world motor claims dataset. In
both cases substantial proxy discrimination is present: in the synthetic data this is
by construction, while in the real-world data the discriminatory effect of unawareness
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pricing is empirically observed. The two cases demonstrate that, first, the multi-output
network architecture provides results of comparable accuracy to a conventional feed-
forward neural network, when complete information on policyholder characteristics
is available. Second, in the more realistic scenario when information on protected
policyholder attributes is missing for more than 50% of the insurance policies, the
multi-task network clearly outperforms a conventional approach, whereby a regres-
sionmodel is only trained on those instances forwhich the full information is available.
This is observed both in the case where protected data are missing at random and not
at random.

Organization of manuscript. In the next section we review the framework of
discrimination-free insurance pricing as introduced in Lindholm et al. [14]. Section3
presents our solution to the problem of having incomplete protected information, by
gradually building up towards the multi-task network architecture. Section4 provides
the synthetic data example, which verifies the good performance of our proposal. In
Sect. 5 we demonstrate applying the proposed method using a real non-life insurance
pricing dataset. Finally, in Sect. 6 we give concluding remarks.

2 Discrimination-free insurance pricing

We first recall the mathematical definitions of the best-estimate, unawareness and
discrimination-free insurance prices, as they were introduced in Lindholm et al. [14].
Throughout, we work on a probability space (�,F ,P) that is assumed to be suffi-
ciently rich to carry all the objects that we would like to study, and P denotes the
physical probability measure. Our goal is to employ a regression model that calculates
the prices of insurance policies that satisfy the property of being discrimination-free
according to Definition 12 of Lindholm et al. [14].

We assume that the vector of covariates (X,D) can be partitioned into non-
discriminatory covariates X and discriminatory covariates (protected characteristics)
D. This split into X and D is given exogenously, e.g., by law or by societal norms and
preferences. The distribution of the covariates (X,D) of a randomly selected policy-
holder is described by P. The (insurance) claim of this policyholder is denoted by Y ,
and we assume that this claim depends on the covariates (X,D). That is, we would
like to study the conditional distribution function

y ∈ R �→ FY |(x,d)(y) = P [Y ≤ y | X = x,D = d] ,

of a selected policyholder having covariates (X,D) = (x,d).
The best-estimate price of the policyholder with covariates (X,D) is defined by the

conditional expectation (subject to existence)

μ(X,D) := E [Y | X,D] . (1)

This price is called best-estimate because, under square integrability, it minimizes the
conditional mean squared error of prediction (MSEP), given full information (X,D).
Thus, the best-estimate price (1) is the most accurate price we can calculate under full
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covariate information (X,D). The general statistical problem is to optimally determine
(estimate) this regression function

(x,d) �→ μ(x,d) = E [Y | X = x,D = d] , (2)

frompast data (andmaybe expert opinion). Below,we are going to use a neural network
regression approach for this task.

Obviously this best-estimate price (1) directly discriminates because it uses the
discriminatory covariatesD as input. This motivates the definition of the unawareness
price, ignoring the knowledge about the discriminatory covariates D,

μ(X) := E [Y | X] . (3)

The unawareness price (3) avoids direct discrimination according to Definition 10 of
Lindholm et al. [14] because we no longer need any information about the discrim-
inatory covariates D to calculate this price. Using the tower property of conditional
expectations, we can rewrite the unawareness price as follows

μ(X) =
∫
d
μ (X,d) dP(d | X), (4)

where P(d | X) describes the conditional distribution of the discriminatory covari-
ates D, given the non-discriminatory information X. It is exactly this link which is
problematic, namely, having broad non-discriminatory information X may (easily)
allow us to infer the discriminatory information D. Such an inference of the protected
characteristics D is therefore implicit in the definition of the unawareness price. This
implicit inference has been coined in insurance as proxy discrimination, see, e.g.,
Frees–Huang [10] and Xin–Huang [25], or indirect discrimination, see Lindolm et al.
[14]. To prevent indirect discrimination, one needs to break the link that allows one
to infer D from X. This can be done purely statistically by just replacing the outer
distribution in (4) by an unconditional one. Alternatively, this replacement can be jus-
tified by arguments from causal statistics if insurance claims follow a certain causal
relationship, see Lindholm et al. [14] and Araiza Iturria et al. [2].

These arguments motivate the definition of the discrimination-free insurance price

μ∗(X) :=
∫
d
μ(X,d) dP∗(d), (5)

where the pricing distribution P∗(d) has the same support as the marginal distribution
of the discriminatory covariates D ∼ P(d).

Discrimination-free insurance pricing (5) has two ingredients, namely, the regres-
sion function μ(x,d), see (2), and the pricing distribution P

∗(d). The most natural
choice for this pricing distribution is simply the marginal distribution P(d), but there
may be other (justified) choices, e.g., providing unbiasedness of discrimination-free
insurance prices; for a broader discussion on the choice of P∗ we refer to Remark 7
and Section 4 in Lindholm et al. [14].
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In this paper we are more concerned about the first issue, namely, about selecting,
estimating and applying the (best-estimate) regression function (x,d) �→ μ(x,d). In
practice, this requires that we hold both non-discriminatory and discriminatory infor-
mation (x,d) from the insurance policyholders for regression model fitting, and the
discriminatory information is integrated out (adjusted for) only in the subsequent (sec-
ond) step (5). However, in many cases it is problematic to collect this discriminatory
information over the entire insurance portfolio. Therefore, fitting the regression func-
tion (5) might not be practical. In the next section, we provide a technical workaround
which requires discriminatory information only for part of the portfolio, but it will
still equip us with accurate predictive models.

Remark 1 The discrimination-free insurance price (5) is defined within a given model
specification, i.e., for a given distributional model for (Y ,X,D), see Definition 12
of Lindholm et al. [14]. This does not consider model error coming from a poorly
specified stochastic model for (Y ,X,D), which may result in a different form of
discrimination, e.g., arising from a certain sub-population being under-represented in
the data. Naturally, on the corresponding part of the covariate space we have greater
model uncertainty, because we have less data for an accurate model fit. This may result
in forms of demographic discrimination that are outside of our (more narrow) scope
which is always attached to a given stochasticmodel. For a discussion of discrimination
arising from unrepresentative data in a different context, see Buolamwini–Gebru [4].

3 Multi-output network regressionmodel

We present statistical modeling of the regression function μ(x,d) within the frame-
work of feed-forward neural networks (FNNs). We start by introducing a standard
(plain-vanilla) FNN architecture, and in a second step we discuss how this FNN
architecture can be modified to serve our purpose of deriving discrimination-free
insurance prices with partial information of the protected characteristics. The notation
and terminology of neural network regression modeling is taken from Chapter 7 of
Wüthrich–Merz [24].

3.1 Feed-forward neural network regressionmodel

Westartwith a short summary of the FNNarchitecture; amore extended exposition can
be found in Appendix A. Assume that the regression function (x,d) ∈ R

q0 �→ μ(x,d)

can be modeled by a FNN architecture taking the following form

(x,d) ∈ R
q0 �→ g (μ(x,d)) =

〈
β, z(m:1)(x,d)

〉
, (6)

where g : R → R is a strictlymonotone and smooth link function, z(m:1) : Rq0 → R
qm

is a FNN of depth m ∈ N, β = (β0, . . . , βqm )� ∈ R
qm+1 is the readout parameter,

and where 〈·, ·〉 denotes the scalar product; for details we refer to (28) below. This
FNN architecture z(m:1) of depth m ∈ N is a composition of m hidden FNN layers
z( j) : Rq j−1 → R

q j , 1 ≤ j ≤ m, providing mapping
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Fig. 1 Illustration of a FNNarchitecture (6) of depthm = 3with (q1, q2, q3) = (20, 15, 10) hidden neurons
in the three hidden layers. This network computes best-estimate pricesμ(X, D) from the three-dimensional
input (X, D) = (X1, X2, D)

(x,d) ∈ R
q0 �→ z(m:1)(x,d) =

(
z(m) ◦ · · · ◦ z(1)

)
(x,d); (7)

we also refer to (27) below. This mapping (7) transforms the q0-dimensional
vector-valued input (x,d) ∈ R

q0 to a new qm-dimensional learned representation
z(m:1)(x,d) ∈ R

qm of the original non-discriminatory and discriminatory covariates
(x,d). Figure1 visualizes this standard FNN architecture, in an example with depth
m = 3 (number of hidden layers) and numbers of neurons (q1, q2, q3) = (20, 15, 10)
in these hidden layers.

FNN regression modeling requires specification of the network architecture. This
involves the choice of the depth m ∈ N, the numbers of neurons q j ∈ N in each
hidden layer 1 ≤ j ≤ m, the activation function in each of these neurons, as well as
the link function g. Such a network architecture has network weights w (these are all
parameters in the hidden layers) and readout parameter β; see Appendix A for more
details. These network weightsw and the readout parameter β are then fitted (trained)
to the available data, so that we obtain a regression model of good predictive power.
Successful FNN fitting involves (in most cases) an early stopping strategy to prevent
(in-sample) over-fitting of the model to the training data, i.e., targeting for an optimal
out-of-sample predictive performance; for a detailed description of network fitting we
refer to Section 7.2.3 of Wüthrich–Merz [24].

This fitted FNN (6) provides the best-estimate prices

μ(x,d) = E [Y | X = x,D = d] = g−1
〈
β, z(m:1)(x,d)

〉
, (8)
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for the insurance claims Y , being described by the covariates (x,d). From this we can
calculate the discrimination-free insurance prices with formula (5) by specifying a
suitable pricing distributionP∗(d). A standard choice is to use themarginal distribution
of D from the part of the portfolio where the protected information of D is known.

The difficulty in practice with this approach, and similar regression approaches
such as generalized linear models (GLMs), is that it requires full knowledge of the
discriminatory information D = d of the policyholders. Otherwise one cannot fit this
FNN (6) on the available (past) data. A naive solution is to just fit this FNN architecture
on the sub-portfolio where D is available; in the missing data literature this approach
is called deletion; see, e.g., Emmanuel et al. [8]. We call this the (naive) plain-vanilla
FNN approach because it is clearly non-optimal to disregard any insurance policy
where there is no complete information available about the covariates (X,D).

Remark 2 In the introduction we have mentioned that discrimination-free insurance
pricing can be applied to any pricing (regression) model. Here, we restrict to FNN
architectures which seems rather limiting. However, we would like to mention that
large FNN architectures provide the universal approximation property. This implies
thatwithinFNNarchitectureswecanmimick anyother (sufficiently regular) regression
model.

3.2 Multi-output neural network regressionmodel

In constructing (and fitting) the plain-vanilla FNN best-estimate prices (8), we directly
use the discriminatory information D = d of the policyholders as an input variable
to the FNN. Our proposal is to change this FNN architecture such that only the non-
discriminatory information X = x is used as an input variable to the network, but at
the same time we generate a whole family of best-estimate prices that reflects the dif-
ferent specifications (levels) of the discriminatory information. In the present section
we introduce this new network architecture. We call it a multi-output FNN architec-
ture because it has multiple outputs that generate the family of models. In Sect. 3.3,
below, we extend this multi-output FNN architecture to a multi-task FNN architec-
ture which not only generates a whole family of models, but it also simultaneously
fulfills multiple tasks. Namely, it not only calculates best-estimate prices but it also
computes unawareness prices by internally accounting for (missing) discriminatory
information. It will be exactly this multi-task FNN architecture that we promote for
discrimination-free insurance pricing under incomplete discriminatory information,
as it can deal with the issue of missing protected information, but still provides good
predictive models. In this approach, protected information will only be needed on part
of the portfolio for model training.

Assume that the discriminatory information D only takes finitely many values
d ∈ DK := {d1, . . . ,dK }. Typically, we think of discriminatory information being
of categorical type, e.g., gender or ethnicity. If this is not the case, discriminatory
information can be discretized, and one should work with this discretized version. We
modify the above plain-vanilla FNN (6) such that it only considers non-discriminatory
covariates x as an input giving us the learned representation
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Fig. 2 Illustration of a multi-output FNN architecture (9) of depth m = 3 with (q1, q2, q3) = (20, 15, 10)
hidden neurons in the three hidden layers. This network computes best-estimate prices μ(X, d) for alter-
native values of D = d ∈ {d1, d2}, given the bivariate input X = (X1, X2). The key difference to the FNN
architecture of Fig. 1 is that the information on the discriminatory covariate D is used only for model fitting
but not for carrying out (new) predictions

x �→ z(m:1)(x) =
(
z(m) ◦ · · · ◦ z(1)

)
(x),

compare to (7). This learned representation should be sufficiently rich such that it
provides a whole family of suitable regression functions, parameterized by dk ∈ DK .
This typically requires that the number of hidden neurons, in particular qm in the last
hidden layer, is not too small. This learned representation is now used to calculate the
best-estimate prices simultaneously for all discriminatory specifications dk ∈ DK ,
that is, we set for the multi-output FNN architecture

(
μ(x,d1), . . . , μ(x,dK )

)
=

(
g−1

〈
β1, z

(m:1)(x)
〉
, . . . , g−1

〈
βK , z(m:1)(x)

〉)
. (9)

The multi-output network architecture is shown in Fig. 2. It is seen that for every
non-discriminatory input x we generate a whole family of outputs that simultaneously
provide the best-estimate pricesμ(x,dk) for all levelsdk ∈ DK , 1 ≤ k ≤ K , of the dis-
criminatory information. The different specifications dk ∈ DK of the discriminatory
covariates D are encoded in different readout parameters β1, . . . ,βK ∈ R

qm+1.

Remark 3 An alternative to the multi-output FNN architecture (9) is to fit K separate
FNNs, i.e., a separate model for each level dk ∈ DK , 1 ≤ k ≤ K . This approach is
applicable to all types of regression models, and it removes the explicit need of the
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(non-trivial) modeling of the interaction effects between X and D. However, it comes
at the price of a very high-dimensional parameter. In contrast, the multi-output FNN
architecture (9) shares the network weights w across all levels dk ∈ DK , 1 ≤ k ≤ K ,
and only the readout parameters βk may differ. Assume that the non-discriminatory
input x is r -dimensional and that the discriminatory input d = d is 1-dimensional with
K different levels. For the classical FNN architecture (6) we have input dimension
q0 = r + 1 which results in network weights w and readout parameter β of total
dimension

q1(r + 1 + 1) +
m∑
j=2

q j (q j−1 + 1) + (qm + 1), (10)

we also refer to Appendix A. The multi-output FNN architecture (9) has a lower-
dimensional input which gives fewer network weights w, but uses more readout
parameters β1, . . . , βK resulting in total dimension

q1(r + 1) +
m∑
j=2

q j (q j−1 + 1) + K (qm + 1). (11)

Finally, fitting a separate FNN (6) for each level dk of D would result in a parameter
of total dimension

K

⎛
⎝q1(r + 1) +

m∑
j=2

q j (q j−1 + 1) + (qm + 1)

⎞
⎠ .

The remaining question is about fitting these parameters in the multi-output FNN
case. We start by describing how the plain-vanilla FNN (6) is fit to i.i.d. data
(Yi ,Xi ,Di )1≤i≤n . For the moment we assume to be in the situation of complete infor-
mation. We choose a loss function L : R × R → R+ to assess the quality of the fit.
This loss function can be the square loss function, a deviance loss function, or any
other sensible choice that fits to the estimation problem to be solved. If θ = (β,w)

collects all parameters to be estimated/fitted, then, typically, an optimal parameter is
found by solving (M-estimation)

θ̂ = argmin
θ

n∑
i=1

L
(
Yi , μθ (Xi ,Di )

)
, (12)

where in the regression function μ(·) = μθ (·) we highlight its dependence on the
parameter θ to be optimized. This is the process to fit the plain-vanilla FNN given in
(8), subject to early stopping to prevent in-sample over-fitting; for a detailed discussion
of FNN fitting we refer to Section 7.2.3 in Wüthrich–Merz [24].

For fitting the multi-output FNN (9) we modify this fitting procedure as follows
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θ̂ = argmin
θ

n∑
i=1

K∑
k=1

L
(
Yi , μθ (Xi ,dk)

)
1{Di=dk } (13)

= argmin
θ

n∑
i=1

K∑
k=1

L
(
Yi , g

−1
〈
βk, z

(m:1)(Xi )
〉)

1{Di=dk },

where θ = (β1, . . . ,βK ,w) collects all readout parameters and the network weights,
see (9). That is,we add an indicator1{Di=dk } referring to the discriminatory information
Di of observation i , which, in turn, trains the corresponding readout parameter βk ∈
R
qm+1 of the multi-output FNN (9). Note that this is the only step where the protected

information Di is used in the multi-output FNN approach.
Having the fitted multi-output FNN (9) we arrive at the discrimination-free

insurance prices

x �→ μ∗(x) =
K∑

k=1

μ(x,dk)P∗(dk) =
K∑

k=1

g−1
〈
βk, z

(m:1)(x)
〉
P

∗(dk), (14)

for each possible choice of the pricing distribution P
∗ on the finite set DK =

{d1, . . . ,dK }.
To conclude, the multi-output FNN (9) generates a whole family of best-estimate

prices (μ(·,dk))1≤k≤K of the discriminatory information in DK , see Fig. 2 for the
binary case K = 2. This discriminatory information only enters the loss function in
the fitting procedure (13), and once this model is fit we no longer need discriminatory
information to calculate the discrimination-free insurance price (14) for any (new)
insurance policy.

3.3 Multi-task learning and incomplete discriminatory information

We extend the multi-output FNN architecture from the previous section to a multi-task
learningmodel. Firstly, this extension simultaneously solves different prediction tasks,
and, secondly, it uses a special loss function for model fitting provided in formula (20),
below. This loss function is going to be discussed in the subsequent Remark 4. The
proposed multi-task learning model will be suitable for our problem of incomplete
discriminatory information, because, besides using maximal available information, it
also models the discriminatory information on the policies where this information is
not available. This acts as a regularizer for model fitting.

We define the categorical probabilities for dk ∈ DK , 1 ≤ k ≤ K ,

pk(x) := P[D = dk | X = x] ∈ [0, 1].

We choose two separate FNNs for representation learning

x �→ z(m:1)
μ (x) ∈ R

qm and x �→ z(m:1)
p (x) ∈ R

qm ; (15)
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these two FNNs are further discussed in the fourth item of Remark 4, below. For
simplicity we assume that these two FNNs have exactly the same network architecture,
but, typically, their network weights (parameters)wμ andwp will differ. The first FNN
is used to model the best-estimate prices

x �→ μ(x,dk) = g−1
〈
βk, z

(m:1)
μ (x)

〉
for 1 ≤ k ≤ K , (16)

with readout parametersβk ∈ R
qm+1. As in themulti-output FNN (9), this architecture

only uses the non-discriminatory covariates x as inputs and it provides a whole family
of regression functions (outputs).

The second FNN is used to model the categorical probabilities (pk(x))1≤k≤K .
Using the softmax output function and for readout parameters α1, . . . ,αK ∈ R

qm+1,
we define the FNN classification model

x �→ pk(x) =
exp

〈
αk, z

(m:1)
p (x)

〉
∑K

j=1 exp
〈
α j , z

(m:1)
p (x)

〉 ∈ (0, 1). (17)

At the current stage these two networks are completely unrelated because they run in
parallel, and they can be fitted independently from each other. We now make them
related by (internally) calculating the unawareness price using the tower property (4),
i.e.,

x �→ μ(x) =
K∑

k=1

μ(x,dk) pk(x). (18)

Combining (16), (17) and (18) we receive the multi-task FNN architecture

x �→
(
μ(x,d1), . . . , μ(x,dK ); p1(x), . . . , pK (x); μ(x)

)
∈ R

2K+1, (19)

with network parameter θ = (β1, . . . ,βK ,α1, . . . ,αK ,wμ,wp). As input this
multi-task FNN only uses the non-discriminatory information x. Remark that the
unawareness price μ(x) in (19) is calculated internally in the network using (18). The
multi-task network architecture is shown in Fig. 3, and we provide further discussion
in Remark 4, below.

The crucial part now is how we train this multi-task FNN architecture (19) on
incomplete data. We assume that the discriminatory information Di is only available
on part of the insurance policies i ∈ I ⊂ {1, . . . , n}. This requires that wemaskDi for
the policies i ∈ Ic = {1, . . . , n}\I where no discriminatory information is available.
As mask we set Di = NA for i ∈ Ic. This will ignore the parts of the following loss
function for which the discriminatory information is not available. We set for the new
optimization problem
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Fig. 3 Illustration of multi-task FNN architecture (19). The upper FNN has the same structure as the multi-
output FNN (9) depicted in Fig. 2. The lower FNN is a classifier, giving the conditional probabilities of D,
given X = x. These FNNs output μ(X, d) and P(D = d|X) for d ∈ {d1, d2}, and they internally compute
and output the unawareness price μ(X)

θ̂ = argmin
θ

n∑
i=1

[ K∑
k=1

Lμ

(
Yi , μ(Xi ,dk)

)
1{Di=dk } (20)

+L p

(
Di , (pk(Xi ))1≤k≤K

)
1{Di 
=NA} + Lμ

(
Yi , μ(Xi )

)]
,

for given loss functions Lμ and L p. This network fitting problem (20) provides the
interaction between the two FNNs, and it only considers the parts of the loss function
where the corresponding information is available; we discuss this in more detail in the
following remarks.

Remark 4 • In comparison to (9), the multi-task FNN architecture (19) adds
extra components to model the discriminatory information D, given the non-
discriminatory X, and it directly computes the unawareness price μ(X), defined
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through (18), see last term of (19). This model can be fitted by solving the opti-
mization problem (20), which has three different sets of terms. The first terms
Lμ(Yi , μ(Xi ,dk)) are identical to the multi-output FNN fitting (13). The second
terms L p(Di , (pk(Xi ))1≤k≤K ) fit a categorical classification problem, and we typ-
ically choose the multinomial cross-entropy loss for L p. If we have complete data,
and if we only considered these first two terms, we would fit two independent
FNN architectures, modeling the best-estimates μ(X,dk) and the classification
probabilities pk(X), 1 ≤ k ≤ K . The third loss Lμ(Yi , μ(Xi )) in (20) connects
best-estimate fitting and categorical probability fitting. This connection should be
understood as regularization, i.e., each of the three loss functions acts as a reg-
ularizer for the other estimation problems. This regularization takes place on all
policies with Di 
= NA, and on the policies with missing discriminatory infor-
mation only the (internally computed) unawareness price μ(X) can be fitted. This
leads to robustified results compared to just dropping policieswhere discriminatory
information is not available.

• Intuitively, one should scale the loss functions Lμ and L p in (20) such that they
live on a comparable scale. In our numerical examples, the results have shown little
sensitivity in such a scaling. Therefore, we will just use the standard form of the
deviance loss Lμ for mean modeling and the cross-entropy loss L p for categorical
probability modeling in our examples below, i.e., without any additional scaling.

• The last component of the objective function in (20) compares the (internally)
calculated unawareness price μ(X) to the response Y . Alternatively, we could
fit another regression model μ̃(X) for the unawareness price. This can be done
because it does not involve any protected information D. A variant of (20) then
replaces the last objective function in (20) as follows

θ̂ = argmin
θ

n∑
i=1

[ K∑
k=1

Lμ

(
Yi , μ(Xi ,dk)

)
1{Di=dk } (21)

+L p

(
Di , (pk(Xi ))1≤k≤K

)
1{Di 
=NA} + Lμ̃

(
μ̃(Xi ), μ(Xi )

)]
,

for given loss functions Lμ, Lμ̃ and L p. This approach can be useful in certain
situations of over-fitting, but it requires a high-quality model for μ̃ in order to
outperform the fitting procedure (20).

• In our multi-task FNN we consider two parallel FNNs, see (15), and the con-
nection is only considered by the joint parameter estimation in (20). We could
also consider other network architectures where, e.g., we learn a common repre-
sentation z(m:1)(x) which serves to jointly construct the readouts of μ(x,dk) and
pk(x), 1 ≤ k ≤ K . In our numerical experiments this latter approach was less
competitive in terms of predictive power compared to the first one, but more work
is required to come to a conclusive answer about the ’best’ network architecture
for this multi-task learning problem.

• The multi-task FNN (19) is solely used to model the discrimination-free insurance
price through (5). There are many different notions and definitions of fairness that
may complement discrimination-free insurance prices; see, e.g., Grari et al. [11]
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and Lindholm et al. [15]. Multi-task learning (19)–(20) can be extended by such
complementary fairness notions. This requires that the notion of the chosen fairness
criterion can be encoded into a sensible score that can be added to the optimization
(20), and depending on the quantities needed in this additional score, we may need
to add corresponding outputs to the multi-task learning (19). As a result the multi-
output network will be regularized by the corresponding scoring part that accounts
for the selected notion of fairness. We emphasize that the selection of a reasonable
fairness criterion needs careful consideration, as it may contradict other modeling
constraints; for a broader discussion we refer to Lindholm et al. [15].

4 Synthetic health insurance example

We design a synthetic health insurance example that is similar to Lindholm et al. [14],
but with a slightly more complicated underlying regression function. Working with a
synthetic example, that is, knowing the true data generating model, has the advantage
of being able to benchmark the estimated models to the ground truth.

4.1 Data generation

Let the discriminatory information D ∈ {female,male} be the gender of the policy-
holder. The non-discriminatory information X = (X1, X2)

� is assumed to have two
components, with X1 ∈ {15, 16, . . . , 80} denoting the age of the policyholder and
X2 ∈ {non-smoker, smoker} the smoking status of the policyholder. There are differ-
ent claim types: claims that mainly affect females between ages 20 and 40 and males
after age 60 (type 1), claims with a higher frequency for smokers and also for females
(type 2), and general claims due to other disabilities (type 3). The logged expected
frequencies of these claim types are given by

log λ1(X,D) = α0 + α11{X1∈[20,40],D=female} + α21{X1≥60,D=male},
log λ2(X,D) = γ0 + γ1X1 + γ21{X2=smoker} + γ31{D=female},
log λ3(X,D) = δ0 + δ1X1,

with the following parameters: (α0, α1, α2) = (−40, 38.5, 38.5), (γ0, γ1, γ2, γ3) =
(−2, 0.004, 0.1, 0.2), and (δ0, δ1) = (−2, 0.01). We set for the (true) total expected
claim frequency

λ(X,D) = λ1(X,D) + λ2(X,D) + λ3(X,D).

If we assume that the number of claims Y of an insurance policyholder with covariates
(X,D) = (x,d) is Poisson distributed with expected value λ(x,d), then we obtain the
(true) best-estimate price

λ(x,d) = E [Y | X = x,D = d] , (22)
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Table 1 Table of considered models fitting approaches

Label Regression model

(a) True model with regression function λ(x, d) given by (22)

(b) Plain-vanilla FNN regression function μ(x, d) given by (8)

(c) Multi-output FNN regression function μ(x, dk ) given by (9)

(d) Multi-task FNN (Y ) regression function given by (19) and (20)

(e) Multi-task FNN (μ̂) regression function given by (19) and (21)

(f) Regression tree boosting (best-estimate benchmark)

where, for simplicity, here we only focus on claim counts. Since in practice this true
best-estimate price λ(x,d) is not known, we estimate it from the available data using
a regression function denoted by μ(x,d). We therefore first use a plain-vanilla FNN
to model μ(x,d) based on the full input (X,D) = (x,d), see (8). In the next steps
we study the multi-output FNN (9) and the multi-task FNN (19), which only use
the non-discriminatory information X = x as a network input, while the available
discriminatory information D is only used in the loss functions for model fitting; see
(13), (20) and (21), respectively. Table 1 illustrates all models that we are going to
consider, the labeling (a)–(f) will be kept throughout this example.

To fit these FNNs we first need to generate i.i.d. data (Yi ,Xi ,Di )1≤i≤n . We select
a portfolio of sample size n = 100,000 as follows. The age variable X1 is assumed
to be independent of the smoking habits X2 and the gender D, and we choose the
age distribution as given in Figure 4 of Lindholm et al. [14]. Moreover, we choose
P[D = female] = 0.45, P[X2 = smoker] = 0.3 and P[D = female | X2 =
smoker] = 0.8. This fully specifies the distribution of the covariates (X,D), mak-
ing smoking more common among females compared to males in this population.
We simulate n = 100,000 independent insurance policies from this covariate dis-
tribution. This provides us with an empirical proportion of females in the simulated
data of 0.4505, fairly close to the true ratio of 0.45. Later, we use this proportion
for obtaining the pricing distribution, i.e., we set P∗[D = female] = 0.4505; as
explained in Lindholm et al. [14], this is the canonical choice for P∗. Finally, we
simulate independent observations Yi |{Xi ,Di } ∼ Poi(λ(Xi ,Di )), 1 ≤ i ≤ n, giving
the (pseudo-)sample (Yi ,Xi ,Di )1≤i≤n , representing the portfolio of policies. In the
next section we assume the availability of full covariate information for the protected
characteristics Di , whereas in Sect. 4.3 we will assume only partial access to such
information.

4.2 Full availability of discriminatory information

4.2.1 Plain-vanilla feed-forward neural network

We start with the plain-vanilla FNN (8), which takes as input the covariates (X,D) ∈
R
q0 withq0 = 3;we use dummycoding for both the gender variableD and the smoking

habits X2. We choose a network of depth m = 3 with (q1, q2, q3) = (20, 15, 10)
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Fig. 4 Best-estimate price μ(x, d) of the fitted plain-vanilla FNN (8) (red) compared to the true best-
estimate price λ(x, d) (blue) as a function of the age variable x1 and averaged over smoking habits x2 and
gender d; these results are based on the complete knowledge of discriminatory information. The empirical
estimates of the observations are represented by the black dots (color figure online)

hidden neurons in the three hidden layers, the ReLU activation function, and the log-
link g(·) = log(·), which is the canonical link of the Poisson regression model. This
network is illustrated in Fig. 1, and has a parameter θ = (β,w) of dimension 566,
see (10). To implement this FNN we use the library keras [7] within the statistical
computing software R [18].

We fit this FNN to the simulated data (Yi ,Xi ,Di )1≤i≤n ; assuming for now access
to the full policyholder information, including D. We use the Poisson deviance loss
function for L in (12), the nadam version of stochastic gradient descent, a batch size
of 50 policies, and we explore early stopping based on a 80/20 training-validation
split. This is similar to Section 7.3.2 in Wüthrich–Merz [24]; for more details we refer
to that source. Since network fitting involves several elements of randomness, see
Remark 7.7 in Wüthrich–Merz [24], we average over 10 different FNN calibrations,
resulting in the nagging predictor of Richman–Wüthrich [19].

The results are given in Fig. 4. The blue line shows the true best-estimate price
λ(x,d) as a function of the age variable 15 ≤ x1 ≤ 80, averaged over the smok-
ing habits x2 and the gender variable d w.r.t. the empirical population density. The
black dots show the empirical estimates from the observations Yi and the red line
the plain-vanilla FNN fitted best-estimate price μ(x,d) using the full inputs (Xi ,Di ).
Overall, Fig. 4 suggests a rather accurate fit; only at the age boundaries there are some
differences which are caused by the noise in the observations Yi .

Since we know the true regression function λ(x,d), we can explicitly quantify the
accuracy of the estimated FNN regression function μ(x,d). That is, we do not need
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Table 2 Model accuracy of the fitted FNNs and a regression tree boosting model serving as a benchmark;
the KL divergences are stated in 10−3

KL divergence (24) to λ(x, d)

(b) Plain-vanilla FNN: full data 0.2204

(c) Multi-output FNN: full data 0.2567

(d) Multi-task FNN (Y ): full data 0.2823

(e) Multi-task FNN (μ̂): full data 0.3070

(f) Regression tree boosting: full data 0.5170

to validate the estimated model on a test data sample, but we can directly compare
it to the true model. We use the Kullback–Leibler (KL) divergence to compare the
estimated model to the true one. In the case of the Poisson model the KL divergence
for given covariate values (x,d) is given by

DKL
(
λ(x,d)

∣∣∣∣μ(x,d)
) =

∑
y∈N0

e−λ(x,d) λ(x,d)y

y! log

⎛
⎝ e−λ(x,d) λ(x,d)y

y!
e−μ(x,d) μ(x,d)y

y!

⎞
⎠

= μ(x,d) − λ(x,d) − λ(x,d) log

(
μ(x,d)

λ(x,d)

)
. (23)

We average the KL divergence of a single instance (x,d) over the empirical population
distribution, which gives us the KL divergence from the estimated model to the true
model on our portfolio

DKL (λ||μ) := 1

n

n∑
i=1

DKL
(
λ(xi ,di )

∣∣∣∣μ(xi ,di )
)
. (24)

This gives us a measure of model accuracy for the different estimated models; the KL
divergence is zero if and only if the estimated model is identical to the true model on
the selected portfolio; see Section 2.3 in Wüthrich–Merz [24].

Row (b) of Table 2 shows the KL divergence (24) of the fitted plain-vanilla FNN
best-estimate price μ(x,d) to the true best-estimate price λ(x,d). The resulting KL
divergence is 0.2204 × 10−3, which is much smaller than a comparable regression
tree boosting model that results in a KL divergence of 0.5170 × 10−3, shown in row
(f) of Table 2.

This fitted FNN can now be used for discrimination-free insurance pricing accord-
ing to formula (5) for the given selected measure P∗. However, we cannot calculate the
unawareness price μ(x) from (3) because this requires the knowledge of the proba-
bilities (pk(x))1≤k≤K , see (4). Alternatively, we could directly fit a plain-vanilla FNN
for estimating the unawareness price or we could fit a conditional expectation network
as proposed in Richman–Wüthrich [20], routes we do not pursue here. We come back
to this topic when discussing the multi-task FNN.
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Fig. 5 Best-estimate prices (μ(x, dk ))1≤k≤K of the fitted multi-output FNN (9) (lhs) and the fitted multi-
task FNN (19) with loss (20) (rhs) (orange); compared to the estimated prices of the plain-vanilla FNN
(red) the true best-estimates (blue) and the empirical means (black). The estimates are based on complete
knowledge of discriminatory information (color figure online)

4.2.2 Multi-output feed-forward neural network

Next, we fit the multi-output FNN (9) to the same data, only using the non-
discriminatory covariates x as input to the network. This reduces the input dimension
to q0 = 2, but on the other hand we have two outputs μ(x,d = female) and
μ(x,d = male) in the multi-output FNN. The former reduces the dimension of the
network parameter and the latter increases the dimension of the network parameter,
resulting in a network parameter θ = (βfemale,βmale,w) of dimension 557, see (11);
this network is illustrated in Fig. 2. We fit this multi-output FNN using exactly the
same fitting strategy as above. The results are presented in orange color in Fig. 5 (lhs),
and they are compared to the plain-vanilla FNN best-estimates in red color, the true
best-estimates in blue color and the empirical observations in black color.We conclude
that the two networks (orange and red) provide rather similar results.

Table 2 shows a slightly higher accuracy of the plain-vanilla FNN (row (b)) com-
pared to the multi-output FNN (row (c)), with respective KL divergence values of
0.2204 × 10−3 vs. 0.2567 × 10−3. In general, these numbers are quite small and the
models are rather accurate, which is in support of both FNN models.

4.2.3 Multi-task feed-forward neural network

We now fit the multi-task FNN (19) to the data, still assuming full knowledge of the
discriminatory information Di . The multi-task FNN additionally models the discrim-
inatory covariates Di which are then (internally) used to calculate the unawareness
price μ(x), see (18)–(19). That is, in contrast to the plain-vanilla FNN and the multi-
output FNN, this is the only one of the three approaches that allows us to directly
calculate the unawareness prices within the same model as the best-estimate prices.
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Fig. 6 True model: best-estimate prices λ(x, d), unawareness prices λ(x) and discrimination-free insurance
prices λ∗(x) with (lhs) smokers, and (rhs) non-smokers

We start with objective function (20) considering the response Y for assessing the
unawareness price μ(x).

We use exactly the same fitting strategy as in the previous twomodeling approaches.
Figure5 (rhs) shows the resulting best-estimate prices (in orange color) compared to
the ones of the plain-vanilla FNN (in red color). Row (d) of Table 2 provides a resulting
KL divergence to the true model of 0.2823× 10−3. This is slightly higher than in the
other two approaches, but still gives a very competitive result. The full advantage of
the multi-task FNN approach will become clear once we start to work with incomplete
discriminatory information in Sect. 4.3 below.

Finally, we present the fitting results of the multi-task FNN (19) when using objec-
tive function (21). For this we first fit a plain-vanilla FNN μ̃(x) to the unawareness
price (only considering x). This is done completely analogously to Sect. 4.2.1 except
that we drop the discriminatory information from the input. We then use this fitted
FNN μ̃(x) in objective function (21), and we use the KL divergence (23) for L μ̃ to
measure the divergence from μ(x) to μ̃(x). The results are presented on row (e) of
Table 2. We observe that this is the least accurate of all FNN models, the main issue
probably being that the regression function μ̃(x) is not sufficiently accurate, and we
should rather directly compare the unawareness price μ(x) to the observations Y as
done in (20). For this reason, we will not further pursue this approach below.

4.2.4 Discrimination-free insurance pricing

Having fitted the three FNNs,we can calculate the discrimination-free insurance prices
μ∗(x) by (14), using the empirical gender distribution P

∗[D = female] = 0.4505 as
the pricing distribution. We start by considering the true model λ(x,d). We calculate
the discrimination-free insurance prices λ∗(x) and the unawareness prices λ(x) in the
true model. This can be done because all necessary information is available. The cor-
responding graphs are shown in Fig. 6, and they will serve as a benchmark for the
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Table 3 Model accuracy of the
unawareness prices μ(x) and the
discrimination-free insurance
prices μ∗(x); the KL
divergences to the best-estimate
λ(x, d) are stated in 10−3

KL divergence
(24) to λ(x, d)

(a0) True unawareness price λ(x) 6.3174

(d0) Multi-task FNN (Y ) unawareness
price μ(x)

6.4932

(a1) True discrimination-free price λ∗(x) 7.8857

(b1) Plain-vanilla FNN
discrimination-free price μ∗(x)

8.3222

(c1) Multi-output FNN
discrimination-free price μ∗(x)

8.2669

(d1) Multi-task FNN (Y )
discrimination-free price μ∗(x)

8.2915

The figures are based on the full knowledge of discriminatory
information

estimated FNNs. It is seen that the unawareness prices λ(x) closely follow the best-
estimate pricesλ(x,d)of females for smokers, and the best-estimate prices ofmales for
non-smokers. This reflects the fact that, in our example, smoking habits are rather infor-
mative for predicting gender. The discrimination-free insurance prices λ∗(x) exactly
correct for this inference potential: as seen from Fig. 6, while smokers of either gen-
der have higher predicted claims frequencies than non-smokers, discrimination-free
insurance prices lie between the best-estimate prices for males and females, following
the same pattern regardless of smoking status.

Table 3 presents the corresponding numerical results. The unawareness priceλ(x) of
the truemodel has aKL divergence to the best-estimate price λ(x,d) of 6.3174×10−3,
see row (a0). That is, we sacrifice quite some predictive accuracy by ignoring the
protected information Di in the unawareness price λ(x). This approach still internally
infers the gender from the non-discriminatory information, see (4). Breaking this
link further deteriorates the predictive accuracy, resulting in a KL divergence from
the discrimination-free insurance price λ∗(x) to the best-estimate price λ(x,d) of
7.8857 × 10−3, see Table 3, row (a1).

Furthermore, Table 3 provides all KL divergences to the true best-estimate price
λ(x,d) that can be calculated from the three fitted FNNs: row (b1) considers the
discrimination-free insurance price μ∗(x) in the plain-vanilla FNN (6), row (c1) the
discrimination-free insurance price μ∗(x) in the multi-output FNN (9) and rows (d0)
and (d1) the unawareness priceμ(x) and the discrimination-free insurance priceμ∗(x)
in the multi-task FNN (19) using objective function (20). The last FNN is the only
one that directly provides the unawareness price μ(x). The accuracy of the resulting
discrimination-free insurance pricesμ∗(x) is rather similar between the three network
approaches (KL divergences on rows (b1)–(d1) of Table 3). Clearly we sacrifice quite
some predictive power by not being allowed to use the protected informationDi , such
that the KL divergences increase from 0.25× 10−3 in Table 2 to roughly 8× 10−3 in
Table 3.
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Table 4 Model accuracy of the
discrimination-free insurance
prices μ∗(x) relative to the true
discrimination-free insurance
price λ∗(x); the KL divergences
are stated in 10−3 and these
figures are based on the full
knowledge of discriminatory
information

KL divergence
(24) to λ∗(x)

(b2) Plain-vanilla
FNN
discrimination-free
price μ∗(x)

0.1748

(c2) Multi-output
FNN
discrimination-free
price μ∗(x)

0.1885

(d2) Multi-task FNN
discrimination-free
price μ∗(x)

0.2323
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Fig. 7 Multi-task FNN: best-estimate prices μ(x, d), unawareness prices μ(x) and discrimination-free
insurance prices μ∗(x) with (lhs) smokers, and (rhs) non-smokers

Table 4 compares in KL divergence the discrimination-free insurance prices μ∗(x)
of the threefittedFNNs to the true discrimination-free insurance priceλ∗(x). The plain-
vanilla FNN provides slightly more accurate results compared to the multi-output and
the multi-task FNNs. Note that the different rankings in Tables 3 and 4 may be caused
by the randomness in the data and by potentially different over- or under-fitting to the
data. A verification of the explicit reasons for these different rankings is difficult, and
different samples may also change this order.

Finally, Fig. 7 illustrates the resulting prices from the multi-task FNN. They should
be compared to the true ones in Fig. 6. The interpretation is the same in the two figures.
Comparing the two plots we can also clearly see the impact of model uncertainty in
Fig. 7, which can only be mitigated by having larger sample sizes.
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Table 5 Losses of model accuracy using the unawareness price and the discrimination-free insurance price
instead of the best-estimate price; the KL divergences are stated in 10−3

KL divergences to the best-estimates:

Unawareness Discrimination-free

(a) True model 6.3174 7.8857

100% 125%

(d) Multi-task FNN 6.7980 8.5339

100% 126%

4.2.5 Quantification of direct and indirect discrimination

The results of Tables 2, 3 and 4 give motivation to quantify the potential for direct
and indirect discrimination. In contrast to these former results, we now compare the
unawareness price μ(x) and the discrimination-free insurance price μ∗(x) to the best-
estimate price μ(x,d) within a given model. The step from the best-estimate price
μ(x,d) to the unawareness price μ(x) accounts for direct discrimination by quantify-
ing the effect of simply being blind w.r.t. the protected informationD. Going from the
unawareness price μ(x) to the discrimination-free insurance price μ∗(x) accounts for
indirect discrimination. However, these steps aremore subtle for several reasons. First,
the KL divergence does not satisfy the triangle inequality and, hence, divergences can-
not simply be decomposed along a certain path. Second, in some models we cannot
simultaneously calculate the best-estimate, the unawareness and the discrimination-
free insurance prices, but need to use different models to estimate these quantities.
This applies, e.g., to the multi-output FNN where we do not receive the unawareness
price within that network model, but we have to explore another (separate) model
to estimate this unawareness price. This critical point does not apply to the multi-
task FNN, where we consistently calculate all terms within the same model. Third,
interpreting the potential for indirect discrimination more broadly, there are two ingre-
dients, namely, the inference part P[D = d|X] and the best-estimate prices μ(x,d).
Only if both of them are sufficiently imbalanced, indirect discrimination becomes
relevant (and visible). If we think of different insurance companies selling the same
product (with the same underwriting standards and the same claim costs), these com-
panies should use the same best-estimate prices μ(x,d). Indirect discrimination will
typically differ between these companies, because they will generally have different
portfolio distributions P(X,D), resulting in different inference potentials. Thus, the
statistical dependence (association) between X and D is company-specific, and so is
the amount of indirect discrimination.

Table 5 reflects the loss of model accuracy if we deviate from the best-estimate
price. These losses can be interpreted as the quantification of direct and indirect dis-
crimination. If we normalize the KL divergence of the unawareness price to 100%,
then the discrimination-free insurance price adds another 25% to the loss of model
accuracy compared to the unawareness price. Thus, direct discrimination is clearly the
dominant term, here. Nonetheless, we note that the numbers in Table 5 reflect portfolio
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Table 6 Empirical female ratio P(d) and multi-task FNN estimated female ratio P̂(d) under the chosen
drop-out rates

Drop-out rate 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Available Di 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Empirical P(d) 44.8% 44.5% 44.3% 44.5% 44.6% 45.5% 45.4% 45.2% 45.1% 45.1%

Multi-task P̂(d) 45.8% 44.8% 44.3% 44.5% 44.7% 45.5% 45.4% 45.2% 45.0% 45.1%

considerations, and the impact of indirect discrimination on particular sub-populations
or individual policies may be bigger.

4.3 Partial availability of discriminatory information

4.3.1 Missing completely at random

So far, all numerical results have been based on the full knowledge of the data
(Yi ,Xi ,Di )1≤i≤n . Next, we turn our attention to the problem of having incomplete
discriminatory information, and we analyze how well we can fit our FNNs under
this partial information setting. We therefore randomly remove Di from the informa-
tion set. This is done by independently (across the entire portfolio) setting Di = NA
with increasing (drop-out) rates of 10%, 20%, . . . , 90%. That is, in the last case only
roughly 10% of the discriminatory labelsDi are available, and in the first case roughly
90% of all discriminatory labels are available. Working with these drop-outs also
changes the empirical female ratio (that can only be calculated on the policies with
full information). We state these in Table 6 (row ‘empirical P(d)’) as we use them for
the pricing measure P∗(d).

We use these datasets with drop-outs (incomplete protected information) to per-
form two different model fittings. Firstly, in the more naive approach, we just fit a
plain-vanilla FNN (6) only using those observations for which the discriminatory
information is available and we discard all insurance policies with incomplete infor-
mation (case deletion). Thus, if, e.g., the drop-out probability is 80% we only use the
remaining 20% of the data for model fitting, for which the discriminatory information
Di is available. Secondly, this naive approach is challenged by a multi-task FNN (19)
fitted with the loss function (20), which accounts for partial availability of discrim-
inatory information, but uses the entire portfolio for model fitting. Note that at this
stage we do not perform any hyperparameter tuning and we use the identical network
architectures across all chosen drop-out rates.

The results are presented in Fig. 8. This figure shows the KL divergences to the
fitted best-estimate prices μ(x,d) to the true best-estimate price λ(x,d); the dotted
horizontal lines illustrate the results of Table 2 reflecting the case of full discriminatory
information. We observe that if sufficient discriminatory information Di is available,
then we have a similar performance between the plain-vanilla FNN and the multi-task
FNN. However, below a critical amount of discriminatory information (the vertical
dotted line in Fig. 8 is at 50%) we give a clear preference to the multi-task FNN. In
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Fig. 8 Comparison of the (naive) plain-vanilla FNN and the multi-task FNN under missing discriminatory
information: KL divergences from the fitted best-estimate prices μ(x, d) to the true best-estimates λ(x, d);
scale on y-axis is in 10−3

fact, if only 10% or 20% of the protected information is available, the KL divergence
from the true model is much smaller for the multi-task FNN compared to the naive
plain-vanilla FNN. On the other hand, for drop-outs of less than 40% of the protected
information we would probably prefer the simpler (naive) FNN architecture because it
is comparably good to themore sophisticatedmulti-task FNN. These conclusions con-
cern the case of best-estimate estimation, and not performing special hyperparameter
tuning.

This preference for the multi-task FNN carries over to the discrimination-free
insurance prices. In Fig. 9 we illustrate the KL divergences from the estimated
discrimination-free insurance prices μ∗(x) to the true discrimination-free insurance
price λ∗(x); the case of full discriminatory information is denoted by the horizontal
dotted lines and corresponds to rows (b2) and (d2) of Table 4. We observe smaller KL
divergences of the multi-task FNN approach if we have discriminatory information
on less than 50% of the policies (vertical black dotted line). Furthermore, we notice
that in the multi-task FNN case, the KL divergence deteriorates only mildly, when the
availability of discriminatory information decreases beyond the 50% point.

The discrimination-free insurance prices of Fig. 9 have simply used the empirical
estimates for P(d) from the insurance policies where full information is available, see
row ‘empirical P(d)’ of Table 6. Having the fitted multi-task FNN we can also use
the estimated categorical probabilities pk(Xi ), 1 ≤ k ≤ K , from (19) to estimate the
distribution of the protected covariates. Namely, we get an estimate
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Fig. 9 Comparison of the (naive) plain-vanilla FNN and the multi-task FNN under missing discrimina-
tory information: KL divergences from the fitted discrimination-free insurance prices μ∗(x) to the true
discrimination-free insurance prices λ∗(x); scale on y-axis is in 10−3

P̂(dk) = 1

n

n∑
i=1

pk(Xi ) for 1 ≤ k ≤ K . (25)

These estimates (in the binary gender case K = 2) are presented on the last row of
Table 6. We observe that they match the empirical estimates, and only for high drop-
out rates there are some differences to the empirical estimates. The specific choice
only has a marginal influence on the prices.

One may argue that the above comparison between the multi-task FNN and the
naive plain-vanilla FNN in case ofmissing information is not completely fair. Since the
naive plain-vanilla FNN uses less data, we should also fit a smaller FNN architecture
in this latter case, i.e., we should decrease the depth m of the FNN architecture and/or
the numbers of neurons q j in the hidden layers. This would indeed be the classical
view from statistics. However, for complex machine learning models it is not so clear
that the above reasoning holds. Networks are fitted with stochastic gradient descent
using early stopping to prevent over-fitting. Typically, the effective dimension of such
fitted networks is much smaller than the number of parameters involved; the effective
dimension is a way of quantifying the number of active parameters in a predictive
model, seeAbbas et al. [1]. Therefore, one could also argue thatmaking the architecture
a priori smaller for the plain-vanilla FNN, disadvantages this approach because it
decreases the space of finding an optimal model.

For computational reasons, we have restricted our analysis to a drop-out rate of
80%, i.e., we assume availability of discriminatory information Di on only 20% of
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Fig. 10 Comparison of the (naive) plain-vanilla FNN and the multi-task FNN under 80% of missing
discriminatory information: best-estimate prices for different FNN architectures, the x-axis shows the total
number of chosen hidden neurons q1 + · · · + qm and the depth m ∈ {2, 3} is given in brackets; the dotted
lines show the results under full information, scale on y-axis is in 10−3

the portfolio. We have fitted smaller networks than the one considered in Fig. 8 to
this incomplete data. First, we have kept the depth m = 3 of the networks fixed,
and we have decreased the numbers of neurons (q1, q2, q3) in these three hidden
layers. We have fitted these reduced architectures both to the naive plain-vanilla FNN
case, see Fig. 1, and also to the multi-task FNN case, see Fig. 3. Second, we have
decreased the depth to m = 2 and starting from (q1, q2) = (20, 15) hidden neurons,
we have chosen this and smaller architectures in the hidden neurons. The results are
shown in Fig. 10. The first result with q1 + q2 + q3 = 45 and m = 3 corresponds to
Fig. 8 (with drop-out rate 80%). We observe robustness of the results across different
(smaller) network architectures. From this we conclude that the comparison in Fig. 8
cannot be considered unfair, and the magnitude of outperformance of the multi-task
FNN against the plain-vanilla FNN under high drop-out rates is rather stable across
different architectures.

4.3.2 Not missing completely at random

In the last example, illustrated by Figs. 8 and 9, discriminatory information Di was
removed completely at random, i.e., Di was set to NA by an i.i.d. Bernoulli random
variable with a fixed drop-out rate. However, it might be that the missingness of
protected information is not completely independent from the remaining covariates
Xi . Of course, there are many different ways in which this could happen, and we just
provide here one particular example. We take as a baseline the i.i.d. Bernoulli case
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Table 7 Not completely missing at random: resulting overall drop-out rates, and empirical female ratios
P(d) and multi-task FNN estimated female ratio P̂(d)

Missing at random Not missing at random

Drop-out rate onM 70% 80% 90%

Overall drop-out rate 70% 78% 86%

Empirical P(d) 44.3% 42.4% 40.3%

Multi-task P̂(d) 44.3% 45.0% 44.9%

Table 8 Model accuracyof the discrimination-free insurancepricesμ∗(x) relative to the true discrimination-
free insurance price λ∗(x) where the drop-out rate of the gender information is not missing completely at
random; the KL divergences are stated in 10−3; the resulting overall drop-out rates are given in Table 7

KL divergence (24) to λ∗(x)

Missing at random Not missing at random

Drop-out rate onM 70% 80% 90%

(b3)
Plain-vanilla
FNN
discrimination-
free

0.5532 0.8153 0.9306

(d3)
Multi-task
FNN
discrimination-
free

0.3042 0.3698 0.3750

Di = NA with a drop-out probability of 70%. We then modify this case by choosing a
higher drop-out rate for the gender information on the policiesM = {X1 ≤ 45, X2 =
smoker}. Besides the base case of 70%, we choose the drop-out rates of 80% and 90%
on M. Note that M collects the smokers with ages below 45, and by the choice of
our population distribution, 79.9% on this sub-portfolio are female.

Table 7 shows the resulting overall drop-out rates. These drop-out rates are no
longer missing completely at random, because we have higher drop-out rates on M.
In our case, this results in a biased empirical gender estimate. This can be seen from
the row ‘empirical P(d)’ which simply calculates the empirical female ratio on the
policies where full information is available. Having the fitted multi-task FNN, we can
also estimate the female ratio using the categorical probability estimates of pk(Xi ), see
(25). This provides us with the results on the last row of Table 7. We observe that these
estimates are close to unbiased, the true value being 45%. We can use this multi-task
FNN to estimate P̂(d) as pricing measure for the discrimination-free insurance price
in the case of data not missing completely at random.

Table 8 and Fig. 11 present the results. The base case is the i.i.d. Bernoulli drop-out
case with a drop-out rate of 70%, taken from Fig. 9. This base case is modified to a
higher drop-out rate of 80% and 90%, respectively, on sub-portfolio M; see Table 7
for the resulting overall drop-out rates. For the pricing measure P

∗(d) we choose
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Fig. 11 Comparison of the (naive) plain-vanilla FNN and the multi-task FNN where the drop-out rate is
not missing completely at random: KL divergences from the fitted discrimination-free insurance prices
μ∗(x) to the true discrimination-free insurance prices λ∗(x); scale on y-axis is in 10−3; the x-axis gives the
available discriminatory information Di onM and the resulting overall drop-out rates are given in Table 7

the empirical probability P(d) in the plain-vanilla FNN case and the multi-task FNN
estimate P̂(d) in the multi-task FNN case, see Table 7. At first sight, this does not seem
to be an entirely fair comparison because the former estimates are biased. However,
there is no simple way in the plain-vanilla FNN case to receive better gender estimates,
whereas in the multi-task FNN case we obtain these better estimates as an integral
part of the prediction model. In this not missing completely at random example we
arrive at the the same conclusion, namely, that the multi-task FNN shows superior
performance. In fact, in our example, the performance of the multi-task FNN in the
situation of not missing completely at random is comparable to the situation ofmissing
completely at random. We remark that even if we would use the same biased gender
estimates also in the multi-task FNN to calculate the discrimination-free insurance
prices we would come to the same conclusion.

Remark 5 In Remark 1 we have discussed that discrimination may also result from
the fact that a certain sub-population is under-represented in the data and, hence,
we may have a poorly fitted model on this part of the covariate space. This form
of discrimination is directly related to incomplete data not missing completely at
random, which is relevant when fitting the best-estimate price μ(x,d). The present
section has shown that the multi-task FNN can help to improve model accuracy if
under-representation is caused by missing discriminatory information. However, if
the sub-population is under-represented per se, e.g., there are only few elderly female
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smokers in the portfolio, then this multi-task FNN cannot resolve the fundamental
class imbalance problem.

5 Non-life insurance pricing example

In this section, we apply the multi-task approach to a real-world non-life motor insur-
ance dataset. It consists of policyholder, vehicle and claims information for a large
portfolio observed over a single year of exposure. These historical data, relating to a
period close to the turn of the century, were contributed by a largemulti-national insur-
ance company. In this case, the true underlying data generating process is unknown.
Thus,we follow a slightly different approach to Sect. 4, by comparing the best-estimate
μ(x,d), unawareness μ(x) and discrimination-free μ∗(x) insurance prices derived
using the plain-vanilla and multi-task FNN approaches to the actual observed claim
frequencies Yi .

5.1 Data description

The historical non-life data contain 165,511 years of exposure of comprehensivemotor
insurance policies, with 41,608 claims arising in the same period of exposure. The
claims can be assumed to be fully run-off, i.e., no incurred but not reported adjustments
need to bemade, and they relate to property (motor-hull), liability (third-party property
and/or bodily injury) and other associated coverages. The protected information D ∈
D5 = {1, 2, 3, 4, 5} refers to the ethnicity code of the policyholder,whichwas recorded
by the insurer at the time of underwriting the policy in one of the five different ethnicity
categories (as defined in the jurisdiction in which the policies were written). This
information is not used by the insurer for pricing, but it is collected to enablemonitoring
of insurance penetration.

We make some remarks regarding protecting confidentiality and not disclosing
commercially sensitive information. To preserve confidentiality, we do not provide
the ethnicity categories that relate to the levels of D, but only provide an integer code
which has been assigned to each category.Moreover, the jurisdiction in which this data
was observed is not disclosed. The exact coverages and excesses (which influence the
frequency) in this portfolio have also not been disclosed, thus, the information shown
is not commercially useful. Furthermore, we show only the predictions for a single
component in X, the policyholder age X1 (although we fit the models using all the
components ofX), whereas for commercial pricing, knowledge of all the variables inX
is needed to predictmeaningfully the frequency in a different portfolio. Finally, the year
in which the experience was observed is not disclosed; since frequency changes quite
rapidly over time based on the portfolio composition and, moreover, the jurisdiction in
which the policies are written, the experience shown is not representative of a portfolio
with similar policies at the current time or another jurisdiction, thus, the experience is
not useful for commercial pricing.

Table 9 shows a summary of the claims, exposures and frequencies for each ethnicity
code D ∈ D5 in the data.
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Table 9 Summary of real-world non-life insurance claims, exposures and frequencies of claims according
to the ethnicity codes D ∈ D5

Ethnicity code Number of claims Exposure Frequency

1 5223 14,317 36.48%

2 965 3925 24.59%

3 3354 14,363 23.35%

4 5249 20,240 25.93%

5 26,817 112,667 23.80%

The largest group of policyholders consists of those with D = 5, whereas the other
groups range from very small (D = 2) to just under a fifth of the size of the largest
group (D = 4). The observed claims frequencies are similar for most of the groups,
with the exception being those policyholderswithD = 1,who have a noticeably higher
frequency. The non-discriminatory information X = (X1, X2, . . . , Xq)

� consists of
typical variables used for non-life insurance pricing, such as policyholder age and
gender, driver age, and usage and location of the vehicle. Similar to the previous
section, we will use policyholder age when illustrating the results, which we assign
to the variable X1, with X1 ∈ {18, 19, . . . , 90}. The policies may not be active for the
entire calendar year of observation and the exposure vi measures the time the policy
was active during that year; thus, for each policy 1 ≤ i ≤ n the claims, policy and
exposure data (Yi ,Xi ,Di , vi ) are available.

5.2 Estimating best-estimate, unawareness and discrimination-free insurance
prices

The real-world non-life insurance data are substantially more complex than the
synthetic health insurance example, thus, a more complex neural network is used,
compared to the previous section. Among the variables X, there are three numerical
and 16 categorical covariates; we convert the three numerical variables to categorical
variables by binning them into 20 groups defined by the 5% quantiles (so that we
can use network embeddings for these, which are most easily applied to categorical
data, as described in what follows). To obtain the best-estimate, unawareness and
discrimination-free insurance prices we use a plain-vanilla FNN (8) with embedding
layers that map each level of the categorical variables to a 5-dimensional vector; see
Section 7.4 in Wüthrich–Merz [24] for more details. The FNN thus takes as an input
the covariates (X,D) mapped into R

19×5. For the rest of the network, we choose a
depth m = 2 with (q1, q2) = (128, 128) hidden neurons in the two hidden layers,
the hyperbolic tangent activation function, and the logit-link g(·) = logit(·) (since we
want claims frequencies not to exceed one, which would be highly unusual for this
insurance portfolio). The final layer of the network multiplies the predicted claims fre-
quency with the exposure vi to produce the best-estimate pricesμ(x,d). To regularize
the network, which is required due to the large number of variables in X and D, both
the batch normalization technique of Ioffe–Szegedy [12] and the drop-out technique
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Fig. 12 Best-estimate frequency μ(x, d) of the fitted plain-vanilla FNN (8) (blue line) compared to the
observed (empirical) frequency (black dots) as a function of the age variable X1 (note the FNN was fit on
all components of X although we only show X1) and averaged over ethnicity d; these results are based on
the complete knowledge of discriminatory information (color figure online)

of Srivastava et al. [21] are applied between each fully connected FNN layer. This
network has a parameter θ = (β,w) of dimension 34,676. To implement this FNN
we again use the library keras [7].

The FNN is fit to the full policyholder data (Yi ,Xi ,Di , vi )1≤i≤n , i.e., including the
protected information D. We split the policy data into a training set consisting of 80%
of the data and a test set consisting of the remaining 20%; a further 5% sample of the
training set is then used as a validation set for exploring early stopping. As above, we
use the Poisson deviance loss function for L in (12), and we apply stochastic gradient
descent on a batch size of 128 policies. This is similar to what was done above.
We average over 20 different FNN calibrations and derive the nagging predictor of
Richman–Wüthrich [19] from these, using more calibrations than before due to the
greater complexity of the dataset.

The results are given in Fig. 12, for both the training and test sets. The blue line
shows the estimates from the plain-vanilla FNNfitted best-estimate priceμ(x,d) using
all covariates (Xi ,Di ) as a function of the age variable 18 ≤ X1 ≤ 90, averaged over
the rest of the covariates in X as well as the ethnicity variable D w.r.t. the empirical
population density. The black dots show the corresponding observed frequency. The
figure shows an accurate fit to the training set and a reasonable fit to the test set,
with the largest errors in both sets made at the extreme ages where there is only little
exposure available.

The discrimination-free insurance priceμ∗(x), calculated w.r.t. the empirical prob-
ability P̂(d), and the unawareness price μ(x) are shown in Fig. 13 relative to the
best-estimate price μ(x,d). Both the discrimination-free insurance price and the
unawareness price lie within a narrow range of about 1.5% around the best-estimate
price. The discrimination-free insurance price at the younger ages X1 is the most dif-
ferent one from the best-estimate price, whereas the unawareness price follows the
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Fig. 13 Discrimination-free insurance price μ∗(x) (red) and unawareness price μ(x) (blue) relative to the
best-estimate frequency μ(x, d) of the fitted plain-vanilla FNN (8) (black) as a function of the age variable
X1 and averaged over ethnicity d (color figure online)
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Fig. 14 Discrimination-free insurance price μ∗(x) (red) and unawareness price μ(x) (blue) relative to the
best-estimate price μ(x, d) of the fitted plain-vanilla FNN (8) (black) as a function of the age variable X1
for the ethnicity codes D ∈ D5, test set only (color figure online)

best-estimate price more closely than the discrimination-free insurance price, with
some variation in how close the approximation is depending on age. Such deviation
implies that ethnicity D is used by the FNN to determine the best-estimate price and,
also, that it is possible to infer implicitly D from X. In other words, the unawareness
price indirectly discriminates by ethnicity in this portfolio.

The differences between the discrimination-free, unawareness and best-estimate
prices are emphasized in Fig. 14, which shows the first two of these relative to the
best-estimate price for each ethnicity code D ∈ D5 for the test set only. For ethnicity
codeD = 5 with the biggest total exposure (see Table 9, where it can also be seen that
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Fig. 15 Discrimination-free insurance price μ∗(x) from the plain-vanilla FNN compared to the best-
estimate price μ(x, d) for the ethnicity codes D ∈ D5
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Fig. 16 Discrimination-free insurance priceμ∗(x) from the plain-vanilla FNNcompared to the unawareness
price μ(x) for the ethnicity codes D ∈ D5

this code has the lowest observed frequency), there is not much difference between the
discrimination-free insurance price and the unawareness price, which are relatively
close to the best-estimate price, but higher due to the frequencies for this subset of
the portfolio being low compared to the rest of the portfolio. The most noticeable
divergences between the best-estimate and the unawareness prices are for younger
drivers with ethnicity code D = 1, where price differences of more than 5% between
these prices occur. In Figs. 15 and 16 we plot the discrimination-free insurance prices
against each of the best-estimate and unawareness prices, respectively. We draw a
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Fig. 17 Relative differences between the unawareness prices μ(x) and the discrimination-free insurance
prices μ∗(x) of the fitted plain-vanilla FNN (8) for the ethnicity codes D ∈ {1, . . . , 4}, test set only

Table 10 Model accuracy measured using Poisson deviance losses of the best-estimate, unawareness and
discrimination-free insurance prices against the observed claims Yi in the training and test sets; these figures
are based on the full knowledge of protected information

Training set Test set

Plain-vanilla FNN best-estimate price μ(x, d) 0.40056 0.40590

Plain-vanilla FNN unawareness price μ(x) 0.40110 0.40605

Plain-vanilla FNN discrimination-free price μ∗(x) 0.40125 0.40608

similar conclusion, which is that the most significant differences between the three
prices occur for drivers with ethnicity code D = 1.

The distributions of the differences between the discrimination-free and unaware-
ness prices are shown in Fig. 17 for the ethnicity codes with less exposure. It can be
seen that, while the differences are less than 5% for most policies, there is nonetheless
a substantial number of policies for which this is not the case.

We compute the Poisson deviance losses of these three prices w.r.t. the observed
claims Yi in the training and test sets in Table 10. On the training set, a lower Poisson
deviance loss is produced by the best-estimate price compared to the other two prices.
However, the differences between the prices are significantly smaller on the test set
and, in both cases, there is only a negligible loss of predictive accuracy when using
the discrimination-free insurance price compared to the other two prices.

5.3 Applying themulti-task network

In the previous section, we have estimated the best-estimate, unawareness and
discrimination-free insurance prices using FNNs estimated with full knowledge of
the discriminatory information D. We now apply the multi-task FNN approach (19)
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Fig. 18 Comparison of the (naive) plain-vanilla FNN and the multi-task FNN with drop-outs missing com-
pletely at random: Poisson deviance losses of the fitted best-estimate pricesμ(x, d) and discrimination-free
insurance pricesμ∗(x) for the observed claims Yi ; the x-axis gives the available discriminatory information
Di

to the non-life insurance data to analyse the performance of this approach in the
case of records missing in the discriminatory covariates D. We focus on the case of
discriminatory information missing completely at random.

Weproceed analogously toSect. 4.3 by independently settingDi = NAwith increas-
ing (drop-out) rates of 10%, 50% and 90%; since the computational burden of fitting
the models (19) is quite high, we focus only on these three cases. These datasets with
drop-outs (incomplete protected information) are then used to perform two different
model fittings: the more naive approach, in which we just fit a plain-vanilla FNN (6),
using only those observations for which the discriminatory information is available
and we drop all insurance policies with incomplete information, and the multi-task
FNN (19) fitted with the loss function (20), which accounts for partial availability of
discriminatory information, but uses the entire portfolio for model fitting. For both the
naive and multi-task approaches, we fit the networks 20 times and average over the
20 different calibrations to derive the best-estimate and discrimination-free insurance
prices. These can be compared both to the actual claims Yi , as well as the correspond-
ing estimates of the best-estimate and discrimination-free insurance prices derived
using data with full discriminatory information, as shown in the previous section.

A comparison of the best-estimate and discrimination-free insurance prices esti-
mated using each of the naive and multi-task FNN approaches to the observed
frequencies Yi , for each of the training and test sets, is shown in Fig. 18. On the
training set, the multi-task approach performs worse than the naive approach for all
three of the drop-out rates used. However, on the test set, the situation is reversed, with
the multi-task network performing as well or better than the naive approach for all
drop-out rates, with the most noticeable outperformance occurring when the available
discriminatory information is only 10% of the total portfolio. This holds for both the
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Fig. 19 Comparison of the (naive) plain-vanilla FNN and the multi-task FNN with drop-outs missing
completely at random: KL divergences from the fitted best-estimate prices μ(x, d) and discrimination-
free insurance prices μ∗(x) to the same prices estimated using all the discriminatory information without
drop-out; the x-axis gives the available discriminatory information Di ; scale on y-axis is in 10−2

best-estimate and discrimination-free insurance prices. Since there is a large differ-
ence between the performance of the naive method between the training and test sets,
particularly at the higher drop-out rates, whereas there is a smaller difference for the
multi-task method, it appears that the naive method is over-fitting to the training set
due to the smaller amount of data available once a significant number of observations
has been dropped-out (has been disregarded). On the other hand, the multi-task FNN
over-fits to a smaller extent and provides better models out-of-sample; note that we
apply early stopping in both cases.

More pronounced differences emerge when comparing the best-estimate and
discrimination-free insurance prices estimated using each of the naive and multi-task
FNN approaches to the best-estimate and discrimination-free insurance prices esti-
matedwith full knowledge ofD (using the samemodel described inSect. 5.2), as shown
in Fig. 19.1 Here, the naive approach is superior when 90% of the protected informa-
tion is available for both best-estimate and discrimination-free insurance prices, and,
when 50% of the information is available, the performance of the multi-task approach
is marginally better than the naive approach. However, when only 10% of the pro-
tected information is available, the multi-task approach is clearly superior to the naive
method. This indicates that the naive approach over-fits in case of small portfolios
(with only few insurance policies with full information), even when carefully fine-
tuning the stopping rule for gradient descent. In fact, a common experience is that
neural networks are difficult to fit on small data having many categorical covariates
with many levels, which is the case here, because in this situation gradient descent

1 Note that Fig. 19 is comparable to Figs. 8 and 9; these figures show the KL divergence between the prices
estimated using the naive andmulti-task approaches to the same prices estimated using all the discriminatory
information without drop-outs. On the other hand, Fig. 18 shows the Poisson deviance loss of the prices
estimated using the naive and multi-task approaches w.r.t. the observed claims.
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is rather sensitive on these categorical labels. For these reasons, we give preference
to the multi-task approach here where we try to use all information (in a suitable
way). Despite the worse performance of the multi-task approach in approximating
the the best-estimate and discrimination-free insurance prices, compared to the naive
approach when 90% of the data is available, nonetheless, the test set performance of
the multi-task approach in predicting the claims experience is as good as the naive
approach, as shown in Fig. 18, reinforcing that the naive approach seemingly over-fits
even when only 10% of the protected data is missing.

Our case studies have shown that the more complex multi-task approach has clearly
outperformed the naive FFN approach in situations of low availability of discrimina-
tory information. As a result, we suggest that if the discriminatory information is
available for most instances, it is sufficient to use a simple (plain-vanilla) FNN for
calculating discrimination-free insurance prices. If the discriminatory information is
available on fewer than 50% of insurance policies, then preference should be given to
the multi-task approach, which uses all available data and presents superior predictive
performance. Furthermore, our empirical results indicate that the multi-task approach
is robust to the situation of data on D not missing completely at random.

6 Concluding remarks

Addressing the problem of indirect or proxy discrimination involves an apparent para-
dox: in order to compensate for the potentially discriminatory effect of implicitly
inferring policyholders’ protected characteristics, information on these very charac-
teristics must be available for regression modeling. Resolving this tension poses clear
legal, regulatory and technical challenges. Here, focusing on the latter, we provided
a multi-task neural network learning framework, which can generate insurance prices
that are free from indirect discrimination. We demonstrated that this multi-task archi-
tecture is competitive to conventional approaches when full information is available,
while clearly outperforming them in the case of less than 50% of discriminatory infor-
mation. This was shown both in the case of synthetic data, as well as for a complex
real-world non-life insurance dataset. Moreover, we have obtained comparable results
for the two cases of protected informationmissing completely at random and not miss-
ing completely at random. When using the real-world insurance dataset, we observed
that some minority classes in this particular portfolio may experience relatively sig-
nificant indirect discrimination if unawareness prices are used. This demonstrates the
need for practically applicable discrimination-free pricing methods, which we aimed
to address in this paper.

Nonetheless, there is an aspect of the technical challenge that we have not yet fully
addressed. Practically, we still need discriminatory information D for a part of the
portfolio in order to fit our model. Hence, a scheme needs to be in place that allows
insurers to access such protected information for a subset of policies. Such a scheme
may be constructed commercially, e.g., by offering special discounts to customers who
are willing to disclose information on protected characteristics. Even if only a smaller
proportion of customers would be willing to disclose this information, nonetheless,
the multi-task method presented here shows promising performance even in this case.
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Besides addressing privacy concerns, a difficulty with such an approach is to ensure (or
mitigate) the potential selection bias that such a commercial promotion will generally
have. While our case study illustrated good performance of our model when data are
not missing at random, further work on this topic is required.

A related issue is that, to go from best-estimate prices to discrimination-free insur-
ance prices, we need to choose the pricing measure P∗(d). A natural candidate is to
use the empirical version of P(d), but since this choice will be based on a subset of the
portfolio, the question again arises as to whether this subset is representative of the
entire portfolio. In the multi-task network approach we receive an estimate for P(d) as
an integral part of the prediction model by the averaging in (25) of the estimated cate-
gorical probabilities pk(Xi ). Alternatively, techniques from survey sampling could be
used in order to obtain an estimate of P(d), using so-called indirect questioning. These
techniques were constructed in order to obtain unbiased estimates of population pro-
portions of a single sensitive dichotomous characteristic, such as drug use and sexual
preference, based on open answer questionnaires, see the seminal paper by Warner
[23]. For more general categorical sensitive characteristics, alternative techniques can
be used; see Lagerås–Lindholm [13] and the survey of Chaudhuri–Christofides [5].
Regardless of the specific technique employed, by obtaining a suitable total population
estimate for P(d) it is possible to assess whether the sub-portfolio has been sampled
with data missing completely at random or not.

Data Availability R code generating synthetic data and performing the analysis of Section 4 is available at
https://github.com/RonRichman/multi_task_dfip. The data used in Section 5 are confidential and cannot be
shared.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Feed-forward neural network architecture

To define a FNN architecturewe start by choosing the depthm ∈ N of this architecture,
meaning that we are going to considerm hidden FNN layers z( j), 1 ≤ j ≤ m. For each
of these hidden layers z( j), we need to specify the number of hidden neurons q j ∈ N.
We initialize the dimension of the input to the network by q0 being the dimension of the
covariates (x,d) ∈ R

q0 . Furthermore, we choose an activation function φ : R → R.
A hidden FNN layer is then given by the mapping

z( j) : Rq j−1 → R
q j , a �→ z( j)(a) =

(
z( j)1 (a), . . . , z( j)q j (a)

)�
,
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where we define the neurons a �→ z( j)k (a), 1 ≤ k ≤ q j , in the j-th hidden layer by

z( j)k (a) = φ

(
w

( j)
0,k +

q j−1∑
l=1

w
( j)
l,k a j

)
= φ

〈
w( j)
k , a

〉
, (26)

with network weights w( j)
k = (w

( j)
0,k, . . . , w

( j)
q j−1,k

)� ∈ R
q j−1+1 in the k-th neuron of

the j-th hidden FNN layer, and where 〈·, ·〉 denotes the scalar product between w( j)
k

and a, the latter (by a slight abuse of notation) being extended by a 0-th component
being equal to 1. This implies that the j-th hidden layer z( j) has a network weight
w( j) = (w( j)

1 , . . . ,w( j)
q j ) of dimension q j (q j−1 + 1), this is the size of the parameter

in j-th hidden layer.
The FNN architecture of depth m is received by composing the hidden FNN layers

z( j), 1 ≤ j ≤ m. This yields the mapping

z(m:1) : Rq0 → R
qm , (x,d) �→ z(m:1)(x,d) =

(
z(m) ◦ · · · ◦ z(1)

)
(x,d). (27)

This mapping has network weights (parameter) w = (w(1), . . . ,wm)) of dimension∑m
j=1 q j (q j−1 + 1). This mapping (27) transforms the q0-dimensional vector-valued

input (x,d) ∈ R
q0 to a new qm-dimensional representation z(m:1)(x,d) ∈ R

qm of the
original covariates (x,d).

The final step of the FNN architecture is the readout of the qm-dimensional repre-
sentation z(m:1)(x,d) ∈ R

qm . For this we choose a strictly monotone and smooth link
function g : R → R and a readout parameter β = (β0, . . . , βqm )� ∈ R

qm+1. This
allows us to define the following FNN regression function, see (6),

(x,d) �→ g (μ(x,d)) = β0 +
qm∑
j=1

β j z
(m:1)
j (x,d) =

〈
β, z(m:1)(x,d)

〉
, (28)

where the last term expresses the middle term as a scalar product, similar to (26).
Fig. 1 illustrates a FNN architecture of depth m = 3, with input dimension q0 = 3

and numbers of neurons in the hidden layers (q1, q2, q3) = (20, 15, 10). The depth
m ∈ N, the numbers of hidden neurons q j ∈ N, 1 ≤ j ≤ m, the activation function φ

and the link function g are hyperparameters that need to be chosen by themodeler. The
network weights w of dimension

∑m
j=1 q j (q j−1 + 1) and the readout parameter β ∈

R
qm+1 are the parameters that are fitted to the data for the given network architecture.
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