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DTC-TranGru: Improving the performance of the next-DTC
Prediction Model with Transformer and GRU

Authors removed for the double-blind review

ABSTRACT
Over the last few years, vehicular predictive maintenance has wit-
nessed a shift from utilizing raw sensor reading directly to using
fault events registered in On-Board Diagnostic systems (OBDs).
Instead of providing raw sensory data, OBDs equip drivers and
technicians with diagnostic information coming from different
Electric Control Units (ECUs) in the vehicles, usually indicated
as Diagnostic Trouble Codes (DTCs). These DTCs are categorical
(non-numeric) or alphanumeric, and relate to different problems
within the vehicle. Having many categories and multiple attributes
has previously restricted researchers to analyzing a few DTCs at
a time, with a limited set of machine learning algorithms. This
has recently changed with the advent of the self-supervised next
DTC approach, which ranges from an LSTM-based multivariate
next-prediction model to an attention mechanism and transformer-
decoder model. These models reframe the problem of predictive
maintenance as the next fault event prediction task and use metrics
like top-3 and top-5 accuracy to evaluate the predictive capabil-
ities of the model. We propose a new architecture for the next
DTC prediction task, DTC-TranGru, which combines the benefits
of transformer and GRU models and shows that it outperforms
them with around 2% increase in the top-5 accuracy benchmark for
a next-DTC prediction task.
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1 INTRODUCTION
Predictive maintenance, which relies on using machine learning
and data analytic methods to forecast the need for maintenance of
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industrial machines, has historically been performed using data re-
covered from sensors placed in these devices [6], [23]. Such sensory
data is represented numerically and fed into anomaly detection
algorithms such as clustering [24] and support vector [7] machines
that extract useful patterns, hence predicting the need for the next
maintenance episode. With the advent of automatic diagnostic sys-
tems, like On-Board Diagnostic Systems (OBDs) in vehicles, there
has been a focus on analyzing and using Diagnostic Trouble Codes
(DTCs) retrieved from them [17],[22], [10].

Notwithstanding their utility and pervasiveness in the auto-
motive sector, the application of standard machine learning tech-
niques for predictive maintenance using DTCs is not straightfor-
ward: DTCs are non-numeric, the cardinality of DTC codes is too
high, and, in some cases, they coexist with other attributes like
fault-byte and Electric Control Units (ECUs), which provide dif-
ferent information about the location and type of the fault. These
restrictions have forced researchers to study a limited number of
DTCs at a time and use simple algorithms such as [17], [22], [5].
The challenge that this paper addresses is the development of deep
learning algorithms that work directly with the inherent complexity
of DTCs.

There is a second caveat that needs to be tackled: Algorithms
applied to DTCs mostly make use of repair and warranty data in
order to cast the problem into a supervised learning approach, for
example, the classification of faulty and non-faulty sequences of
events. In the absence of such data and a lack of clues about when
the vehicle comes to a standstill, it is difficult and often impossible
to apply supervised learning techniques that require large samples
of labeled data.

Recent research [8], [9], [18] proposed a self-supervised learning
approach, to predict the next DTC in a sequence of DTC fault
events, using neural embeddings and sequential models. These
models solve the problem of fault event representation as well
as eliminate the reliance on the repair data, which constrains the
problem formulation to classification tasks only. In order to evaluate
the effectiveness of these models, top-3 or top-5 accuracy of a single
attribute, or multiple attributes per timestep is used as a metric.
For example, the DTCEncoder [9] was able to achieve 79% top-5
accuracy.

In this paper, we combine Transformer [21] and GRU models
[3] to boost the performance of the next DTC prediction task. We
applied the transformer layer to learn the representation of DTC
events before passing it to a single GRU layer and witnessed a 2% in-
crease in the top-5 accuracy benchmark of the next-DTC prediction
task. Our proposed model achieves a top-5 accuracy of 81.4% and a
loss of 4.33, which is better than the standalone transformer and
recurrent neural network models. We believe that the combined
embeddings of all three attributes reflect in complex dependencies,
which benefit from the transformer’s ability to examine the con-
text at a particular timestep against events at different timesteps,
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in multiple ways with the help of multiple heads. Moreover, GRU
reinforces the model’s understanding of the temporal dynamics in
the sequence.

The rest of the paper is structured as follows: in section 2 we
share the background and related work. Section 3 provides details
about the methodology used by DTC-TranGru for the next DTC
prediction task. The experiments and results are presented in sec-
tion 4. We close the paper with a discussion of our approach and
future work.

2 BACKGROUND AND RELATEDWORK
In this section, we first present predictive approaches that use
DTC event data and then provide a brief introduction to the self-
supervised learning approach to predict the next DTC fault event,
particularly in the absence of repair andwarranty data.We conclude
this section by highlighting research using this self-supervised next
DTC prediction approach.

Before the shift towards the usage of OBDs, researchers mainly
focused on using data retrieved from numerous sensors placed in
the vehicle. The availability of the DTC fault event dataset sparked
an interest in using it to perform different tasks relating to predictive
maintenance. For example, Random Forest [2] has been employed to
classify the DTC sequences into faulty and non-faulty classes [17].
[22] also used Random Forest along with AdaBoost [20] to predict
the status of a single component, namely the starter motor, using
DTCs recovered from specific modules only. [5] used Associative
Classification [13] to learn patterns, which can help to flag if DTC
events in the sequence are the actual fault events generated in the
car or are the one that was raised as a result of experimentation by
engineers in the workshop.

Instead of casting the problem into a classification task, or limit-
ing the scope to a particular component, a self-supervised next-DTC
prediction task has been proposed recently [8]. In such approach,
we consider a sequence 𝑆 of all DTC events associated with a vehicle
and take the last 𝑁 DTC events as training examples to predict the
event at the next timestep, i.e., N+1. Each event 𝑒𝑡 at timestep 𝑡 has
multiple attributes, each of which provides different information
about the nature, granularity, and location of the fault. For instance,
ECU provides information about which particular electric control
unit has generated the fault, while base-DTC is the actual diagnostic
trouble code, and fault-byte can be thought of as the most granular
information about the fault, for example, chip-level information.

Figure 1 uses a simplified example of a DTC sequence to show
the next-DTC prediction task, where the first-time step reports an
event coming from the Telemetry ECU module (TM), and Battery
as base-DTC, and 31 as fault byte. Subsequent events are recorded
according to the same 3 attributes up to timestep t. The task is
to predict the attributes for the next event. Since these attributes
are categorical, with a high number of categories (for example 419
categories for base-DTC attribute), it is not efficient to apply con-
ventional approaches, like One-Hot Encodings (OHE) to represent
these events. Recent self-supervised models such as [8], [9], [18]
use neural embedding layers to learn a dense representation that
is substantially lower than the count of distinct classes in each
attribute, hence facilitating the prediction of the next DTC. These

Figure 1: A DTC fault event sequence with 𝑁 DTC events.
Each event from time 𝑡-𝑘 to time 𝑡 has three attributes. The
goal is to predict the next DTC event at time 𝑡 + 1 with all
three attributes.

independent attribute level embedding layers are concatenated and
learned along with the prediction task.

The self-supervised next-DTC prediction approach was first
introduced as the SMFPmodel in [8], which uses neural embeddings
[1] and a LSTM neural network to predict the next fault sequence.
DTCEncoder [9] is another proposal benefitting from this approach:
it uses Loung attention [14] before the GRU layer and then passes
the GRU output through a dense bottleneck layer, which produces a
compact representation that is used to perform approximate-neural-
neighbour search and interpretation. The Transformer-decoder
[18] approach uses a small-GPT-2 [19] architecture along with
embeddings to perform the DTC prediction task.

3 METHODOLOGY
This section provides details of the proposed architecture, which
combines the Transformer and the GRU layer to predict the next
event with all three attributes per timestep.

3.1 DTC-TranGru Model
The overall architecture of the DTC-TranGru model is shown in fig-
ure 2 and the pseudocode is provided in algorithm 1. It is composed
of the following main components.

3.1.1 Embedding Layer. Due to the high cardinality of DTC event’s
attributes, recent research [8], [9] has used neural embeddings to
learn low-dimensional representations of attributes. In our model,
we start with creating independent embedding layers for each input
attribute to capture the semantic representation of the input tokens.
These embedding layers are then concatenated along the feature
dimension to create a unified embedding representation. In the DTC-
TranGru architecture, before passing the combined embeddings to
the next module, we apply a 1D spatial dropout, with a dropout
rate of 0.1, to these combined embeddings.

3.1.2 Positional Encoding. The transformer layer, which will be
detailed in 3.1.3, does not retain positional information of the se-
quence it works on. It hence needs some mechanism to pass the
information relating to the temporal order of the events in the se-
quence. Researchers have introduced different positional encoding
techniques [4], to be used with the transformer layers, to keep
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Figure 2: Architecture diagram for the DTC-TransGru. The left side of the figure shows pre-transformer operations, where
DTC-TransGru starts by applying separate embedding layers to each attribute, and concatenates the individual embedding
layers before passing them to spatial-1d dropout. In the next step, positional encoding is calculated on the embeddings before
piping them to the two consecutive encoder layers of the transformer. A transformer encoder block, which has two encoder
layers, is shown in the middle of the figure and the right side of the figure depicts post-transformer operations. The transformer
encoder layer is followed by a GRU layer, before being passed to each individual dense softmax output layer.

particulars about the order dynamics. Hence, we pass the output of
the spatial dropout layer to the positional encoding layer.

We use the same positional encoding approach that was used in
the original transformer model [21], which utilizes sine (sin) and
cosine (cos) functions to create position embeddings for each token
in a sequence. For each position 𝑡 , it computes 𝑠𝑖𝑛(𝑡/10000(2𝑑/𝑇 ) )
and 𝑐𝑜𝑠 (𝑡/10000(2𝑑/𝑇 ) ) to generate distinct position embeddings,
where 𝑑 is the embedding dimension and 𝑇 is the sequence length.

3.1.3 Transformer Layer. As opposed to SMFP [8], instead of pass-
ing embeddings directly to the recurrent layer, we set a transformer
layer in front of the recurrent layer. In order to achieve that, we first
pass the concatenated embeddings to the positional encoding layer
followed by the transformer layer, which captures different complex
contextual dependencies in the input sequence. The workings of
the transformer layer are briefly described below.

Apart from the need for positional encoding, the standard trans-
former model employs multiple encoder layers, where each encoder
layer is comprised of multi-head attention, residual-feed-forward
dense layers, and layer-normalization. Depending on the use case,
it may also use multiple decoder layers. The encoder layers pro-
cess the input sequence to generate contextualized representations,
while the decoder layer consumes these representations along with
its previous output, to generate the next output in the sequence.

The attention mechanism used in the encoder and decoder layers
is different, where the encoder uses multi-head self-attention and
the decoder uses masked self-attention.

The self-attentionmechanism in the transformer model works by
taking three inputs, i.e., the querymatrix (𝑄), the keymatrix (𝐾 ), and
the value matrix (𝑉 ). The query matrix (𝑄) represents the current
token for which the model wants to find the relevant information
in the input sequence, whereas the key matrix (𝐾) behaves as a
memory by holding the tokens in the input sequence to look up
relevant information. Finally, the value matrix (𝑉 ) maintains the
associated features (i.e., values) for each token in the input sequence.

If we consider 𝑑𝑘 to be the number of dimensions used to rep-
resent each 𝑘𝑒𝑦 in the key matrix 𝐾 , we can write the attention
mechanism in the transformer formally as:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (1)

By learning a weight matrix for each of these, we can perform
a scaled dot-product attention mechanism, which corresponds to
a single ℎ𝑒𝑎𝑑 in a multi-head attention mechanism. A single head,
say 𝑖𝑡ℎ head in multi-head attention can be written as

head𝑖 = Attention(𝑄𝑊𝑄𝑖 , 𝐾𝑊𝐾𝑖 ,𝑉𝑊𝑉𝑖 ) (2)
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Within the multi-head attention of the encoder layer, the input
sequence is simultaneously analyzed by several attention heads.
This allows the model to grasp various interdependencies among
tokens and also allows computation to be performed in parallel,
hence making it computationally more efficient. Now, we can rep-
resent multi-head attention with the help of the learned matrix𝑊𝑂
as follows

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, head2, . . . , head𝑛)𝑊𝑂 (3)

In neural networks having a large number of layers, gradients
often become extremely small as they are propagated backward
through layers, resulting in a problem called vanishing gradient.
Residual connections make training deep models easier by ensuring
that gradients can flow smoothly, preventing issues like vanishing
gradients, and allowing deep networks to learn effectively. Simi-
larly, a layer-normalization technique makes sure that the values
passed between layers aren’t too extreme, enabling smoother gradi-
ents, faster training, and better generalization accuracy. As shown
in figure 3, which depicts the detailed view of an encoder layer
of the DTC-TranGru’s transformer layer, the output from multi-
head attention undergoes layer-normalization operation along with
residual connection.

Subsequently, the output proceeds through a Feed-Forward Neu-
ral Network (FFN), which employs two sequential linear transforma-
tions separated by a ReLU activation, before going through another
residual connection and layer-normalization operation. The FFN in
the transformer model can be represented as:

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (4)
The first layer in FFN takes the first layer-normalization’s output

and projects it up to 256 dimensions. In order to go through the
second residual connection, which requires the addition of the first
layer normalization layer and the second FF1 dense layer, the second
layer reduces the dimension down to 38 (concatenated embedding
size).

This comprehensive process executed within the encoder layer
effectively captures local and global relationships between tokens,
facilitating the learning of meaningful representations.

In DTC-TranGru, we used two such encoder layers and 4 atten-
tion heads to learn the representation of the DTC sequence.

3.1.4 GRU Layer. As shown in figure 4, the transformer layer pro-
duces an output that has 𝑁 timesteps, where each timestep has
a dimensionality equal to EMB-SIZE. To make the output of the
transformer compatible with the dense output layer, researchers
typically remove the time dimension by either summing, averag-
ing, or applying 1-D Global average pooling to the output of the
transformers.

As shown in figure 4, unlike the conventional approaches, which
work by getting rid of the time dimension, we pass the output of
the transformer layers to a Gated Recurrent Unit (GRU) network.

A GRU layer is a type of recurrent neural network (RNN) that is
designed to counteract the vanishing gradient issue. It incorporates
two gates, the reset gate, and the update gate, which play a pivotal
role in regulating the internal information flow of the unit. The
reset gate in the GRU helps to decide what information from the

Figure 3: Detailed view of the encoder layer of the DTC-
TranGRU’s transformer block. Each layer shows its output
dimension next to its name. It can be seen that there are
two residual connections, two dense layers in FFN, and two
layer-normalization layers. The dimension of the output is
scaled up to 256 in the first dense layer, FF1, and, to perform
the second residual addition, it is scaled down to the size of
the combined embeddings (38) in FF2.

recent time steps to forget, whereas the update gate controls the
threshold of the new information to add. Through this mechanism
of gate control, GRUs effectively capture distant dependencies in
sequences, all while maintaining computational efficiency.

The way GRU works, it incorporates all temporal dynamics of
the sequence and summarizes the information of all preceding
timesteps into the current hidden state. In the DTC-TranGRU, this
last state of the GRU layer is extracted and passed to separate output
softmax layers for each attribute, enabling the prediction of the
next event. Applying the GRU layer not only allows us to pass
the output of the transform to the output layers but also learns
contextual dependencies associated with the events.
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Figure 4: The transformer layer returns 𝑁 timestep outputs
(each containing EMB-SIZE latent dimensions), which typ-
ically are averaged, summed, or go through the GlobalAv-
eragePooling1D layer to make it compatible with the dense
output layer. Instead of doing this, we applied a GRU layer
on top of the transformer, where each 𝑁𝑖 dimension in the
𝑁 dimensional transformer is passed to the 𝑖𝑡ℎ timestep of
the GRU. Since the last hidden state of the GRU incorporates
all the latent information about the previous timesteps, it is
passed to the individual dense output layers of each attribute.

4 EXPERIMENTS AND RESULTS
This section starts with providing details about the DTC event
dataset used for training DTC-TranGru and of the experimental
setup. It concludes by reflecting on the results of all experiments
performed.

4.1 Dataset and Data Preprocessing
This research used vehicular DTC sequence data provided by Name
removed for the blink-review. The dataset comprises of a total 250,000
sequences, where each sequence belongs to a unique vehicle and
has three attributes at each timestep.

For each DTC sequence, the events were first ordered by the
time of occurrence. Individual attributes for each sequence are

Algorithm 1 DTC-TranGru
Require: 𝑠𝑒𝑞1 . . . 𝑠𝑒𝑞𝑁
Ensure: DTC event (𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,𝑎𝑡𝑡𝑟3) for 𝑠𝑒𝑞1 . . . 𝑠𝑒𝑞𝑁

for 𝑒𝑝𝑜𝑐ℎ ← 1 to 𝑁 do
𝑎1
𝐸𝑀𝐵

← 𝐸𝑀𝐵(𝑎1
𝑂𝐻𝐸
)

𝑎2
𝐸𝑀𝐵

← 𝐸𝑀𝐵(𝑎2
𝑂𝐻𝐸
)

𝑎3
𝐸𝑀𝐵

← 𝐸𝑀𝐵(𝑎3
𝑂𝐻𝐸
)

𝑎𝐸𝑀𝐵 ← 𝐶𝑂𝑁𝐶𝐴𝑇 (𝑎𝑡𝑡𝑟1
𝐸𝑀𝐵

, 𝑎𝑡𝑡𝑟2
𝐸𝑀𝐵

, 𝑎𝑡𝑡𝑟3
𝐸𝑀𝐵
)

𝑔𝑟𝑢_𝑠𝑡𝑎𝑡𝑒 ← 1𝐷𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑎𝐸𝑀𝐵)
𝑝𝑜𝑠_𝑒𝑛𝑐 ← 𝑃𝑂𝑆𝐼𝑇 𝐼𝑂𝑁𝐴𝐿_𝐸𝑁𝐶𝑂𝐷𝐼𝑁𝐺 (𝑎𝐸𝑀𝐵)
𝑒𝑛𝑐 ← 𝑝𝑜𝑠_𝑒𝑛𝑐
for 𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑙𝑎𝑦𝑒𝑟 ← 1 to 𝑁 do
𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 ←𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝑛 (𝑒𝑛𝑐)
𝑙_𝑛𝑜𝑟𝑚_1← 𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑝𝑜𝑠_𝑒𝑛𝑐 +𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑)
𝑓 𝑓 𝑛_𝑙1← 𝐷𝑒𝑛𝑠𝑒 (𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑)
𝑓 𝑓 𝑛_𝑙2← 𝐷𝑒𝑛𝑠𝑒 (𝑓 𝑓 𝑛_𝑙1)
𝑓 𝑓 𝑛_𝑙2← 𝐷𝑒𝑛𝑠𝑒 (𝑓 𝑓 𝑛_𝑙2)
𝑙_𝑛𝑜𝑟𝑚_2← 𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑓 𝑓 𝑛𝑙2 + 𝑙_𝑛𝑜𝑟𝑚_1)
𝑒𝑛𝑐 ← 𝑙_𝑛𝑜𝑟𝑚_2

end for
𝐺𝑅𝑈 _𝑂𝑈𝑇𝑃𝑈𝑇 ← 𝐺𝑅𝑈 (𝑒𝑛𝑐)
𝑎𝑡𝑡𝑟1

𝑝𝑟𝑒𝑑
← 𝐷𝑒𝑛𝑠𝑒 (𝐺𝑅𝑈 _𝑂𝑈𝑇𝑃𝑈𝑇 )

𝑎𝑡𝑡𝑟2
𝑝𝑟𝑒𝑑
← 𝐷𝑒𝑛𝑠𝑒 (𝐺𝑅𝑈 _𝑂𝑈𝑇𝑃𝑈𝑇 )

𝑎𝑡𝑡𝑟3
𝑝𝑟𝑒𝑑
← 𝐷𝑒𝑛𝑠𝑒 (𝐺𝑅𝑈 _𝑂𝑈𝑇𝑃𝑈𝑇 )

Calculate loss
Optimize parameters of all layers

end for

vectorized and tokenized separately. This preprocessing step is
shown in figure 5, which manifests 2 DTC sequences before and
after the pre-processing step. There are 83 unique classes in the
first attribute (ECU), 419 in the second attribute (base-dtc), and 64
in the third attribute (fault-byte).

All sequences were restricted to the last N DTC events, and those
having less than N DTC events were padded with a special token
(‘0‘). We then split the data into validation, test, and training sets.
Out of 250,000 sequences, we kept 12500 sequences separate for
testing, 4750 for validation, and used 232,750 event sequences for
training the DTC-TranGru.

4.2 Experimental setup and hyperparameter
tuning

The hyperparameters and parameter choices, which are shown in
table 1, are selected by running the Hyperband [12] hyperparameter
tuning method available in the python keras-tuner [16] library.

The major parameter to consider for the transformer layer was
the number of heads used in the multi-head attention layer, for
which we obtained the best performance with 4 heads, while in the
GRU layer, 128 GRU units showed the best result. Placing dropouts,
including recurrent-dropout, did not make much of a difference
in the GRU layer in our experiments. However, introducing a 1D
spatial dropout after embedding layers provided slightly better
results. A learning rate of 0.0052 provided the best result using the
Adam optimizer [11].
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Figure 5: An example of twoDTC fault sequenceswith 3DTCs
each, undergoing the preprocessing step. Each attribute is
vectorized and separated so that it can then be passed to its
independent embedding layer. The choice of the number of
events is just for the sake of illustration, otherwise, all of
the DTC sequences used in this experiment consist of 5 DTC
events at least.

For the first dense layer of the FFN in the encoder layer, we tried
dimension sizes between 96 and 256 with hyperparameter tuning
and found that 256 neurons have the best results. Since the second
residual connection in the encoder layer adds the output of the
second FFN dense layer to the output of the first normalization
layer, it constraints the dimension of the second dense layer, which
requires it to be equal to the size of the combined encoding. Hence,
there is no need to experiment with the size of the second dense
layer.

We used RELU [15] as an activation function in the GRU layer.
For the dense output layers, the softmax activation function was
used to provide a probability of occurrence of each DTC event’s
attribute.

To calculate the loss and performance of the model, we used
cross-categorical loss for the output layer of each attribute and
summed the individual loss of all three attributes as follows

𝐿(𝑦,𝑦) =
𝐴∑︁
𝑎𝑖

(−
𝐾
𝑎𝑖∑︁
𝑘

𝑦 (𝑘 ) log( ˆ𝑦 (𝑘 ) )), (5)

where 𝐾𝑎𝑖 is the number of unique classes in a given attribute 𝑎𝑖 , 𝐴
represents the number of total attributes, 𝑦 represent the predicted
class, and 𝑦 denotes the actual class.

Table 1: Parameters and hyper-parameter choices along with
the selected values. The main parameters to consider for
DTC-TranGru were the total number of heads in the multi-
head attention mechanism and the number of encoder layers
to use in the transformer. The main hyperparameter choice
corresponded to the selection of the appropriate learning
rate.

Choice min max final
Learning rate 1e-4 0.1 0.005

Number of heads 1 6 4
Number of encoder layers 1 5 2

FFN Dimension 128 256 256
Attribute-1 (module) embedding 4 24 6
Attribute-2 (base-dtc) embedding 12 56 24
Attribute-2 (fault-byte) embedding 4 32 8
Spatial dropout after embeddings 0.0 0.5 0.1

GRU layer units 96 256 128

4.3 Results
Table 2 shows the results of the ablation study and the comparison
of the DTC-TranGru model with other next-DTC prediction models.
We can see that the DTC-TranGru achieved better results than
all other models including the DTCEncoder [9], which uses the
attention mechanism along with the GRU layer to predict the next
DTC in the sequence.

DTC-TranGru was also compared with the standalone trans-
former model, and the LSTM-based SMFP model [8] as a part of
the ablation study. Table 2 shows that the DTC-TranGru performs
better than these standalone models. We argue that the standalone
transformer model works well with generative approaches, where
there is an abundance of training data and variety in the output is
considered beneficial. In the problem at hand, however, we do not
have a large amount of data available and it is required to strictly
follow the sequential order for the prediction of the next DTC event.
The recurrent nature of GRU’s hidden states incorporates precise
contextual dependencies.

To test if having a GRU layer alone after the transformer can
keep positional information intact, we experimented with removing
the positional encoding layer from the transformer. However, the
accuracy of the model decreased with the removal of the positional
encoding layer. It indicates that although a GRU layer reinforces se-
quential information, it is still relevant to have positional encoding
in the transformer layer.

We also compared the result of DTC-TranGru with and without
the 1D-spatial dropout layer, which was applied after the concate-
nated embeddings layer. As shown in table 2, we witness a slight
increase in the performance of the model with the usage of 1D-
spatial dropout. We assume that employing this dropout layer after
combined embeddings forces the model to learn generalizable repre-
sentations for event attributes and reduces over-reliance on specific
combinations of attributes.

Given the size of the dataset and the nature of the task, it was
obvious that the Transformer-Decoder model [18], which is based
on a smaller version of the GPT-2 model [19] (often referred to as
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Table 2: Comparison of the results achieved by DTC-TranGru compared with SMFP [8], DTCEncoder [9], [18] and standalone
models. Results for DTC-TranGRU without the 1D-spatial dropout layer after concatenated embeddings and without positional
encodings are also compared. The best results, achieved by DTC-TranGru, are highlighted in bold.

Architecture Validation Loss Top-5 Test Accuracy
SMFP 4.50 76.15%

DTCEncoder 4.36 79.21%
Transformer Only 4.47 78.3%

Transformer-Decoder (small-GPT2) 7.6 40%
DTC-TranGru (w/o positional-encoding) 4.49 78.5%
DTC-TranGru (w/o 1D-spatial dropout) 4.35 79.5%

DTC-TranGru 4.33 81.4%

small-GPT-2), would overfit. But for the sake of completeness and ac-
curate comparison, we modified the model used in the Transformer-
Decoder [18] by reducing the number of encoder layers from 12
to 6 and of FFN dense layer neurons from 1024 to 512. This mod-
ification was done due to computation constraints and to reduce
the overall parameters in the original model. As seen in table 2, the
resulting model overfits very early and hence underperforms the
DTC-TranGru model by quite a large margin. It achieves a top-5
accuracy of 40% only, with a validation loss of 7.6. As discussed
previously, this might be due to model overfitting and being overly
complex for the task and size of the dataset.

5 DISCUSSION AND CONCLUSION
In this paper, we present a transformer and GRU-based architecture
to improve the performance of the next DTC prediction task. In
the proposed architecture, which we call DTC-TranGru, instead
of using standalone recurrent or transformer models, we combine
these individual models by passing the encoding learned by the
transformer to the GRU layer. We show that our model provides
better results as compared to the standalone models and improves
the top-5 prediction accuracy benchmark by 2%, as it achieves a
top-5 accuracy of 81.4% and reduces validation loss to 4.33, where
the prediction of the next DTC includes predicting three different
attributes for the next DTC prediction.

We believe that the self-attention mechanism and the encoder
layer in the transformer help DTC-TranGru learn to represent the
DTC sequence in a way that incorporates multiple hidden patterns
among the DTC faults, with the help of multiple heads. Furthermore,
the GRU layer takes the representation learned by the transformer
to strengthen the contextual and order semantics of the DTC se-
quence. Combined, both these models provide DTC-TranGru with
the ability to understand the context better for each DTC via en-
coding learned by the transformer and simultaneously taking into
account the sequential dependencies in the form of hidden states
of GRU.

The DTC-TranGru and related recent approaches have opened
the door to decode the complex dependencies and patterns in the
sequence of events, both in terms of representation and modeling.
The DTC-Encoder specifically shows that with smaller and domain-
specific datasets, a small transformer network with few encoder
layers can learn robust representations in contrast to a huge model.

Furthermore, these presentations learned by the transformer’s en-
coder layer might further be used by different networks suitable
to the problem. We believe that with the availability of more data,
and the ability to incorporate metadata about vehicles and their
conditions, there will be a chance for researchers to better predict
the next possible faults expected in the vehicles and predict the
need for maintenance ahead of time.
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