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Abstract

The primary objective of this thesis is to offer effective methods for enhancing invest-

ment decision-making under escalating market uncertainty and the deregulation of

numerous industries. Specifically, the first part of the thesis delves into the valuation

and optimal planning of a multi-stage project, while the subsequent part addresses

the strategic interaction between private firms and the Government under uncer-

tainty. Various aspects including risk management, Government support, duopolis-

tic competition, technological learning and subsidy retraction are thoroughly con-

sidered.

In this thesis, we begin by taking the perspective of a private firm interested in

the sequential capacity expansion of a project and develop a framework for assessing

the downside risk of the serial project and optimising the sequence of the stages.

Under general distributional assumptions for the duration of each stage, we con-

sider the trade-off between maximising the expected NPV and minimising the risk

exposure, and obtain the optimal schedule for risk-averse decision-makers. Results

show that both the duration variability of each stage and the decision-maker’s risk

preferences can significantly affect the optimal sequence of the stages and that high

duration variability is not always undesirable, even for risk-averse decision-makers.

Subsequently, we bridge the gap between optimal subsidisation policy-making

and duopolistic competition by constructing a bi-level real options framework for

analysing the non-cooperative game between a Government and two symmetric firms

under uncertainty and subsidy. We derive and compare the optimal investment and

subsidisation strategies for the case of a profit and social welfare-maximising Govern-

ment, and provide policy and managerial insights based on analytical and numerical
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results. Our results indicate that both the market structure and the type of duopolis-

tic competition can have a significant impact on the equilibrium subsidisation and

capacity investment policy. In addition, we show that a profit (welfare)-maximising

Government does not offer (offers) a subsidy in a highly uncertain environment or

when the tax rate is low, while a higher tax rate does not always decelerate invest-

ment.

Meanwhile, although traditional literature indicates that Governments tend to

withdraw subsidies as the cost of alternative energy technologies approaches com-

mercial maturity due to the learning effect, models for analysing the impacts of

technological learning on capacity investment and optimal subsidy retraction re-

main underdeveloped. Therefore, we extend our model to account for the trade-off

that although a higher learning rate enhances cost reduction and incentivises greater

investment, it also triggers earlier subsidy retraction. Indeed, our results confirm

that the appearance of technological learning and subsidy retraction may result in

an ambiguous effect on a firm’s investment capacity.



Chapter 1

Introduction

1.1 Topic of the thesis

Effective decision-making is a fundamental cornerstone of every business operation

and investment strategy, with the overarching goal of maximising returns while

managing risks and uncertainties. The need to incorporate uncertainty into decision-

making processes prior to the 1980s was not particularly pronounced, as most indus-

tries were under state regulation. Nevertheless, the deregulation of various industries

during that period exposed businesses to different forms of uncertainty, thus high-

lighting the significance of expanding conventional capital budgeting methods, such

as the net present value (NPV) rule. More specifically, the NPV rule is a fun-

damental tool for measuring project performance that involves discounting future

cash flows to their present value, and plays an important role in facilitating not

only investment decisions and risk assessment but also decisions about scheduling

of complex projects under uncertainty.

Examples of earlier literature on the deterministic project scheduling problem

(with the NPV maximisation objective) include Russell (1970), Elmaghraby and

Herroelen (1990) and Demeulemeester et al. (1996), where all relevant problem data

is assumed known from the outset. More recently, Herroelen and Leus (2005) and

Wiesemann and Kuhn (2015) highlight that the uncertainty inherent in the duration

and cash flows of a project should be accounted for, explicitly. The former describe

the stochastic project scheduling problem as a multi-stage decision process, in which

the uncertainty in project activities is considered in order to prevent schedule dis-
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ruptions. By introducing uncertainty into the duration of project completion time,

costs, and revenues, Sobel et al. (2009) put forth a comprehensive reformulation of

the stochastic NPV maximisation problem, where they also introduce an algorithm

designed to identify an optimal adaptive strategy for stochastic project schedul-

ing. More recent contributions in this stream of research have expanded upon this

work, developing and refining various scheduling approaches and algorithms within

a stochastic environment (Wiesemann et al., 2010; Leyman and Vanhoucke, 2017;

Zheng et al., 2017).

While NPV-oriented models for stochastic project scheduling primarily empha-

sise the financial aspects of optimisation problems, they often make the assumption

of a risk-neutral decision-maker and neglect risk considerations. However, in situa-

tions with extreme values of duration and cash flow distributions, relying solely on

the expected NPV and disregarding attitudes towards risk may lead to less accu-

rate decision-making (Blau et al., 2000; Browning, 2014; Chao et al., 2014; Rezaei

et al., 2020). Examples of literature on the stochastic project scheduling problem

that account for risk preferences include Ke and Liu (2005), Beraldi et al. (2012)

and Zhao et al. (2016), who control the probability of the occurrence of undesirable

investment outcomes using the chance-constrained method. De Reyck and Leus

(2008) and Creemers et al. (2015) study a stochastic NPV maximisation problem

when project activities carry a risk of failure, such that an activity’s failure leads

to overall project termination. Furthermore, the concept of Value at Risk (VaR)

is devised to provide a more pragmatic assessment of the maximum potential loss

tied to an investment at a specified probability level. Additionally, a coherent risk

measure known as the Conditional Value at Risk (CVaR) is put forth to quantify the

losses that may occur beyond the VaR threshold, as discussed in Rockafellar et al.

(2000). Based on these risk measures, the trade-off between risk minimisation and

profit maximisation is commonly involved in mean-risk approaches. Examples in-

clude Colvin and Maravelias (2011), Alonso-Ayuso et al. (2014), Huang et al. (2016)

and Rezaei et al. (2020).

While the NPV rule and risk measures provide a valuable framework for as-
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sessing investments and planning multi-stage projects, they often fall short when

faced with the price uncertainty and operational flexibility inherent in real-world

investment projects. In contrast, real options theory introduces a solution that

grants decision-makers the necessary flexibility to adapt and modify their strate-

gies based on future events and new information. Real options pertain to strate-

gic opportunities embedded within investment projects, enabling decision-makers

to adjust operations, switch technologies, delay or abandon projects, or capitalise

on favorable market conditions. This adaptable approach empowers firms to seize

value-enhancing opportunities while mitigating risks, ultimately leading to improved

investment outcomes.

The seminal work of McDonald and Siegel (1986), Dixit and Pindyck (1994)

and Trigeorgis (1996) has spawned a substantial literature in the area of invest-

ment under uncertainty. A strand of this literature places special attention on

exploring the implications of various support schemes designed to encourage invest-

ment across multiple industries. Examples of policy-oriented real options models

include Boomsma et al. (2012), Boomsma and Linnerud (2015) and Ritzenhofen

et al. (2016), where the impact of subsidies and tax cuts on a firm’s investment in-

centive are examined. In particular, Bigerna et al. (2019) show that greater subsidy

induces earlier investment with a smaller capacity size, implying that the Govern-

ment can not achieve an environmental goal by simply providing more (less) subsidy

to the firm since this could result in insufficient (delayed) investment. In the same

line of work, Azevedo et al. (2021) confirm that a higher subsidy or a lower tax rate

accelerates investments. Nonetheless, they indicate that the effect of subsidies on

the investment capacity relies on whether the subsidy is fixed or variable: the former

leads to smaller investments, whereas the latter promotes larger investments.

Although this stream of literature offers valuable insights on how Government

support affects private investment, the optimal investment and subsidisation deci-

sions are often determined ex-post. Consequently, these decisions may not accurately

capture the equilibrium resulting from the strategic interaction between a firm’s and

a Government’s optimisation goals. Such strategic interactions are often explored
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through the utilisation of bi-level real options models, which serve the purpose of

comprehending the investment decisions of private firms and the optimal subsidis-

ation strategies employed by Governments under uncertainty (Pennings, 2000; Yu

et al., 2007). For instance, Pennings (2000) considers a zero-expected cost policy,

where the Government can lower the firm’s investment threshold by providing a

lump-sum subsidy, while simultaneously imposing taxes on the firm’s revenue equal

to the amount of the subsidy. More recently, Lukas and Thiergart (2019) investigate

the impact of uncertainty and Government support on the firm’s optimal capacity

investment and indicate a non-monotonic relationship between the equilibrium sub-

sidy and price uncertainty when the Government seeks to maximise its own profit.

Furthermore, maximising the social welfare is also recognised as a common objective

for Governments, as discussed in Pawlina and Kort (2006) and Yang et al. (2018).

Nevertheless, the aforementioned bi-level real options models examining the op-

timal capacity investment and subsidisation policies under uncertainty often overlook

the strategic interactions at the firm level, leaving important research questions un-

addressed. While these models primarily focus on the strategic interactions between

a Government and a private firm, recent (static) game-theoretic models, argue that

market structure can play a significant role in shaping subsidy design and private

firms’ investment incentives (Nie et al., 2016; Wang and Zhou, 2020; Yang et al.,

2021). Indeed, it is crucial for the Government to take firm-level strategic interac-

tions into account, since competition tends to reduce the value of a subsidy, and,

therefore, alter a firm’s investment policy. In addition, the Government’s decision

regarding which firm to subsidise and the positioning of the subsidised firms can

also yield different implications on firms’ investment strategies (Yang and Nie, 2015;

Nie et al., 2016).

Additional gaps in the optimal investment and subsidisation decision-making

encompass considerations related to the learning effect and the possibility of grad-

ually phasing out or retracting the subsidy. This is particularly relevant in the

energy sector, where technological learning reduces the costs of alternative energy

technology (AET) towards commercial maturity, at which point market forces take
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over and no further subsidy is required. Therefore, technological learning is among

the key determinants of the intensity of Government support. However, existing

real options models for analysing the correlation between technological learning and

subsidy retraction, as well as their joint impacts on the decision-making of the firm

and Government remain underdeveloped.

Hence, within this thesis, we aim to enhance the decision-making not only for

investors but also for the Government. Firstly, we introduce a continuous-time

framework that enables the derivation of probability distribution and risk measures

of the NPV of a serial project under economic and technological uncertainty. The

optimal sequence of stages for investors with different risk appetites is obtained.

Subsequently, we develop a bi-level real options framework for analysing the non-

cooperative game between a Government and two symmetric firms under uncer-

tainty. We obtain the equilibrium investment threshold, capacity and subsidy level

by taking into consideration the objectives of both firms and the Government. Lastly,

our study extends to the joint impact of subsidy retraction and technological learn-

ing on the firm’s capacity investment, from which we derive the optimal subsidy

retraction decision of the Government.

1.2 Outline and contributions of the thesis

Having covered the core concepts of this thesis and the pertinent literature in the

previous section, the following is an outline of the thesis chapters, along with a

summary of the main contributions.

Chapter 2 presents a model for risk assessment and optimal scheduling of serial

projects for risk-averse decision-makers. Due to rising market uncertainty and the

deregulation of many industries, the valuation and planning of complex projects has

become increasingly challenging, and has also raised the necessity for efficient risk

management. While the traditional literature on project scheduling focuses on max-

imising the NPV or minimising the makespan of a project under risk-neutrality, the

implications of attitudes towards risk remain an important open research direction.

Therefore, we take the perspective of a private firm interested in the sequential
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capacity expansion of a project and develop a framework for measuring the down-

side risk of the serial project and optimising the sequence of the stages. Under

general distributional assumptions for the duration of each stage, we present an ac-

curate representation of the project’s NPV based on a Pearson curve fit, leading to

closed-form expressions for the associated risk measures. We then assess the impact

of duration variability on the VaR and demonstrate its role in stochastic project

scheduling. We also account for the trade-off between maximising the expected

NPV and minimising the risk exposure, and obtain the optimal schedule for risk-

averse decision-makers. We demonstrate that both the duration variability of each

stage and the decision-makers’ risk preferences can significantly affect the optimal

sequence of the stages and that high duration variability is not always undesirable,

even for risk-averse decision-makers.

Chapter 3 constructs a strategic game between two firms and a Government, and

investigates the optimal subsidy design and capacity investment under competition

and uncertainty within a real options framework. Specifically, we develop a bi-level

real options framework for deriving the equilibrium Government subsidisation and

firm-level capacity investment policy in a duopoly market structure. This is moti-

vated by pressing sustainability concerns that emphasise the need to meet timely

ambitious targets that require green investment at unprecedented levels. In this

context, Governments must support private firms to achieve the necessary invest-

ment intensity, while relying on them to tackle financial limitations and technology

transfer. The interaction of firm and Government policy-making is often analysed

in the real options literature, yet existing models do not extend beyond the case of

monopoly or perfect competition to allow for strategic interactions at the firm level.

We find that strategic interactions with the Government may impact a firm’s

capacity investment decision significantly and that the equilibrium subsidisation

policy depends crucially on both the market structure and the type of duopolistic

competition. Interestingly, we also find that provision of a greater subsidy to the

leader raises the follower’s incentive to invest earlier and in a bigger project. The

loss in value of the leader, due to the follower’s entry, relative to the monopolist
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increases with economic uncertainty and, although a subsidy can mitigate this loss,

its effect becomes less pronounced as economic uncertainty increases. The results

also suggest that a profit(welfare)-maximising Government does not offer (offers)

a subsidy in a highly uncertain environment or when the tax rate is low, while a

higher tax rate does not always decelerate investment. Finally, we find that while

competition is always desirable for a social planner, a profit-maximising Government

may benefit more under pre-emptive competition.

In the light of Chapter 3, Chapter 4 investigates the impacts of technological

learning and subsidy retraction on the equilibrium investment strategy of a firm. In-

deed, while Governments worldwide have deployed a wide range of support schemes

to incentivise investment in alternative energy technologies, the increasing cumu-

lative energy production accelerates technological learning and drives down their

costs towards commercial maturity. The maturity threshold, also referred to as grid

parity, for a AET is reached when the technology achieves cost competitiveness, at

which point market forces naturally take over, and there is no longer a necessity for

ongoing Government support. Despite the significance of grid parity as a determi-

nant of the duration of Government support, models for analysing its relationship

with the technology learning rate remain underdeveloped. To bridge this gap, we

develop a bi-level real options framework in order to derive a private firm’s optimal

investment strategy as well as a Government’s optimal subsidy retraction policy.

We find that a greater subsidy may accelerate investment but its impact on

project scale is ambiguous. More specifically, a bigger project accelerates the cost-

reduction process, thereby incentivising a firm to install a greater capacity, however,

it also speeds up the retraction of subsidy, as the operational cost will reach grid

parity sooner. Results also indicate that although the duration of the subsidy is

shorter when the learning rate is high, the firm is still willing to invest earlier.

Interestingly, we also show that a higher tax rate does not necessarily delay the

investment and induce a smaller project size under learning effect.

Chapter 5 provides a review of the overall contribution of this thesis and direc-

tions for future work.



Chapter 2

Risk assessment and optimal

scheduling of serial projects

The valuation and planning of complex projects become increasingly challenging

with rising market uncertainty and the deregulation of many industries, which have

also raised the necessity for efficient risk management. In this chapter, we take

the perspective of a private firm interested in the sequential capacity expansion of

a project and develop a framework for measuring the downside risk of the serial

project and optimising the sequence of the stages. Under general distributional

assumptions for the duration of each stage, we present an accurate representation of

the project’s net present value (NPV) based on a Pearson curve fit, leading to closed-

form expressions for the associated risk measures. We then assess the impact of

duration variability on the value at risk and demonstrate its role in stochastic project

scheduling. We also account for the trade-off between maximising the expected NPV

and minimising the risk exposure, and obtain the optimal schedule for risk-averse

decision-makers. It becomes obvious that both the duration variability of each stage

and the decision-makers’ risk preferences can significantly affect the optimal sequence

of the stages and that high duration variability is not always undesirable, even for

risk-averse decision-makers.
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2.1 Introduction

The deregulation of many industries poses a formidable challenge to private firms

that manage multi-stage projects, since the associated uncertainties over both future

revenue streams and completion time of different stages (technological uncertainty)

complicate the assessment of risk, and, in turn, critical managerial decisions, such as

project scheduling. Examples of such projects include the Elizabeth line, London’s

new railway, which was originally designed to deliver a series of stages between 2017

and 2019, yet was not fully operational until May 2023 with an additional cost of £3

billion over the original budget (Tucker, 2017; Keay, 2022). In addition, the High

Speed 2 and the Heathrow expansion can be treated as serial projects, where each

stage has an uncertain duration, cost and benefit (Edgington, 2020; Thijssen, 2021).

More specifically, the former has a full network of 330 miles and will be executed

in two phases. While its first phase (140 miles) is under construction and due for

completion between 2029 and 2033, the second phase is split into three sub-phases

with a target completion date between 2040 and 2045. Similarly, the Heathrow

expansion, which aims to increase capacity from about 80 to 142 million passengers

per annum, will be delivered in four stages with Stage 1 to be completed by 2026 and

all expansions by 2050 (Heathrow, 2019). Other examples include the development

and capacity expansion of renewable energy projects, such as the Walney Extension

and the Hornsea offshore wind farm (Vaughan, 2019) which is planned to have a

total capacity of up to 6 gigawatts and whose construction has been split into four

phases executed consecutively due to limited budget and workforce (Orsted, 2023).

While the traditional literature on project scheduling assumes discrete cash

flows (Brucker et al., 1999; Herroelen and Leus, 2005; Demeulemeester and Her-

roelen, 2006), this is not suitable in the case of large infrastructure projects where

revenues accrue continuously (Pogue, 2004; Almond and Remer, 1979; Tanchoco

et al., 1981; Remer and Nieto, 1995). Additionally, as this literature focuses on

maximising the net present value (NPV) or minimising the makespan of a project

under risk neutrality, the implications of attitudes towards risk remain an important

open research direction. To address these disconnects, we develop a continuous-time
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framework in which we derive the probability distribution and risk measures of the

NPV of a serial project as well as the optimal sequence of stages under economic and

technological uncertainty. The former is modelled via a continuous-time stochastic

process, while the latter by a generic probability distribution. We contribute in

three ways. First, we derive an accurate approximation for the probability distri-

bution of the NPV of a multi-stage capacity expansion using a Pearson curve fit1,

from which we can obtain the closed-form expression for the value at risk (VaR) and

the conditional VaR (CVaR) of the project. Second, we investigate the trade-off

between expected NPV maximisation and risk minimisation, thereby deriving the

solution to the optimal scheduling problem for risk-averse decision-makers. Third,

we present the implications of economic and technological uncertainty on project

scheduling and present managerial insights.

Our findings suggest that both the duration variability and the decision-makers’

risk preferences can affect the optimal sequence of stages of a serial project signifi-

cantly, and that their effect depends also on the expansion cost. More specifically,

using a benchmark example (i.e., each stage with equal capacity size, cost and ex-

pected duration), we demonstrate that duration variability is undesirable if capacity

expansions are costly, in which case stages with lower duration variability must be

executed first. However, contrary to the intuition that an increase in uncertainty

entails greater downside risk, we find that a project with higher duration variability

is not always associated with higher risk exposure, especially when the cost of each

stage is relatively low.

We proceed by first discussing some related work in Section 2.2. In Section 2.3,

we introduce our model, the benchmark case of a single-stage capacity expansion,

and the extension to a multi-stage project. In Section 2.4.1, we analyse the impact

of duration variability on the project’s expected NPV and risk exposure using a

benchmark example, while Section 2.4.2 provides a general model for obtaining the

optimal sequence of stages under risk aversion. Section 2.5 presents numerical results

1The Pearson distribution is a versatile family of probability distributions known for its ability
to fit to different probability distributions, including the normal (Gaussian), exponential, gamma,
and chi-squared distributions, making it a valuable tool in statistical analysis and modeling.
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and managerial insights into the stochastic project scheduling problem and Section

2.6 concludes this chapter offering directions for further research.

2.2 Related work

Until the 1980s, the need to allow for uncertainty in decision-making was not par-

ticularly pronounced, as many industries were subject to state regulation. However,

the deregulation of many industries in the 1980s exposed firms to various types

of uncertainty, which, in turn, raised the importance of extending traditional cap-

ital budgeting techniques, such as the NPV rule, to account for uncertainty and

risk assessment (Wiesemann and Kuhn, 2015). In the real options literature, this

application potential has been exploited in decision-making under uncertainty by

analysing the interaction between uncertainty in cash flows and managerial flexi-

bility (McDonald and Siegel, 1986; Dixit and Pindyck, 1994; Trigeorgis, 1996). A

strand of this literature focuses on the sequential nature of investment decisions

and the value creation of modularity (Gollier et al., 2005; Gamba and Fusari, 2009;

Baldwin et al., 2000; Kort et al., 2010; Chronopoulos et al., 2017). However, the un-

derlying methodology, which is based on dynamic programming, is not particularly

suitable to address critical aspects of serial projects, e.g., scheduling, that require

robust optimisation techniques.

The stochastic project scheduling problem is addressed in (Herroelen and Leus,

2005), where it is described as a multi-stage decision process, in which the uncer-

tainty in project activities is considered in order to prevent schedule disruptions.

By allowing for uncertainty in projects’ makespans, costs and revenues, a generic

reformulation of the stochastic NPV maximisation problem is proposed by (Sobel

et al., 2009) and an algorithm is presented for identifying an optimal adaptive policy

for project scheduling. More recent examples in the same line of work, where various

scheduling policies and algorithms are developed and tested in a stochastic environ-

ment, include (Wiesemann et al., 2010; Liang et al., 2019; Leyman and Vanhoucke,

2017; Zheng et al., 2017; Ding and Zhu, 2015). Although NPV-oriented models for

stochastic project scheduling focus on the financial aspect of optimisation problems
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and provide significant flexibility in sequential decision processes, they tend to as-

sume a risk-neutral decision-maker (Wiesemann and Kuhn, 2015; Gutjahr, 2015).

However, for extreme values of duration and cash flow distributions, decision-making

that is based only on the expected NPV and ignores attitudes towards risk may not

be particularly accurate (Blau et al., 2000; Browning, 2014; Chao et al., 2014; Rezaei

et al., 2020).

The variance of a project’s revenues was often used to evaluate the risk of it

(Markowitz, 1968; Van Horne, 1966), until the VaR was introduced as a more prac-

tical risk measure of the worst-case loss of an investment associated with a given

probability. Nevertheless, despite its popularity, the VaR does not capture the shape

of the tail of a loss distribution. To overcome the drawbacks of VaR while main-

taining its advantages, (Rockafellar et al., 2000) introduced a coherent risk measure,

known as the CVaR, aiming at quantifying the expected losses occurring beyond the

VaR. Examples of literature on the stochastic project selection and scheduling prob-

lem that account for decision-makers’ risk preferences include (Ke and Liu, 2005;

Beraldi et al., 2012; Huang and Zhao, 2014; Wang and Ning, 2018), who control

the probability of occurrence of undesirable investment outcomes (e.g., a negative

expected NPV or positive VaR) using a chance-constrained method. Moreover, the

trade-off between risk minimisation and profit maximisation is commonly considered

in mean-risk models (Colvin and Maravelias, 2011; Chen et al., 2012; Bozorgi-Amiri

et al., 2013; Alonso-Ayuso et al., 2014; Dupačová and Kozmı́k, 2015; Huang et al.,

2016; Zhao et al., 2018, 2019). For example, (Alonso-Ayuso et al., 2014) consider a

stochastic copper extraction planning problem under both risk neutrality and risk

aversion, and their results clearly indicate the advantage of involving risk measures,

such as the VaR and CVaR, of a project in the decision-making process.

The unknown distribution and variability (variance) of a project’s makespan fur-

ther emphasise the need for risk measures that facilitate efficient risk management.

While different probability distributions for modelling project duration are examined

within the stochastic resource-constrained project scheduling problem (RCPSP), the

high- and low-variability settings of the duration distribution are often distinguished
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(Ashtiani et al., 2011; Ballestin and Leus, 2009; Fang et al., 2015). The reason is

that the optimal scheduling rule that minimises the expected makespan of a project

often changes with respect to the variance of the duration variables. For example,

(Chen et al., 2018) evaluate the efficiency of 17 priority rules and show that the

optimal one for the deterministic RCPSP does not perform best for the stochastic

RCPSP. Their results confirm that the performance of the priority rules depends on

project characteristics, e.g., the resource demand and duration variability of each ac-

tivity. Therefore, different scheduling rules could be chosen according to the amount

of information on duration distributions that a decision-maker has. Similarly, we

investigate the impact of duration variability on the NPV distribution and, more

importantly, show how the optimal schedule of a serial project can be obtained for

decision-makers with different risk preferences.

More pertinent to our work is Creemers (2018), who analyses the NPV of a

multi-stage project assuming a discrete and deterministic cash flow stream as well

as a generic probability distribution for the duration of each stage. Closed-form

expressions for the moments of the NPV are derived and it is demonstrated how the

optimal sequence of stages that maximises the project’s NPV can be obtained by

solving a least-cost fault detection problem. However, a discrete and deterministic

cash flow incurred at the start of each stage is not particularly relevant in the case of

large infrastructure projects where revenues usually accrue continuously2, which are

also influenced by future price uncertainty (Pogue, 2004; Almond and Remer, 1979;

Tanchoco et al., 1981; Remer and Nieto, 1995). For example, the annual average

electricity price rise between 2004 and 2021 in the UK is approximately 8% per

year, from 4.16 pence per kilowatt hour (p/kWh) in 2004 to 15.08 p/kWh in 2019

(BEIS, 2023). This was followed by a dramatic increase to 20.86 p/kWh in 2022

due to high market volatility, which clearly demonstrates that the revenue stream of

a project fluctuates with time and that price uncertainty should also be taken into

account. In addition, (Cui et al., 2020) study the unbiased estimation by Monte

2The numerous discrete cash flows associated with infrastructure projects, such as electricity
usage and train ticket purchases occurring every minute, can be effectively modelled using a con-
tinuous model as it is mathematically more tractable.



2.3. Risk assessment of serial project 27

Carlo simulation of the expected present value of a cumulative cash flow over an

infinite horizon, dependent on an underlying stochastic process such as a geometric

Brownian motion or a Cox–Ingersoll–Ross process.

Therefore, in this chapter, we expand on Creemers (2018) by develop a

continuous-time framework for sequential capacity expansion under economic and

technological uncertainty and derive the project’s VaR and CVaR. Furthermore, we

consider the trade-off between NPV maximisation and downside risk minimisation

of a project due to alternative scheduling options3. Our results indicate that both

the duration variability and the risk preferences can have a significant effect on the

optimal sequencing of a multi-stage project, and that this depends on the expansion

cost of each stage. Interestingly, we also find that higher duration variability does

not necessarily imply higher risk exposure; differently from conventional intuition,

it can be beneficial even for risk-averse decision-makers.

2.3 Risk assessment of serial project

2.3.1 The model

We take the perspective of a private firm that considers the capacity expansion of a

project sequentially in discrete stages. While the construction process takes a ran-

dom but finite amount of time, the project has an infinite lifetime4, accrues stochastic

revenues and is subject to technological uncertainty, reflected in the random dura-

tion of each stage. Given a probability space (Ω,F ,P), the σ-algebra Ft ⊂ F reflects

the information available at time t ≥ 0. Without being a real restriction, we assume,

in light of (Dixit and Pindyck, 1994; Cui et al., 2020), that the price (per unit flow

3Note that while the value of waiting due to economic uncertainty is not the focus of this paper,
we provide a real options framework in Appendix A.2 to investigate its impact on the risk assessment
and optimal scheduling of a two-stage project. A thorough study of the implications of discretion
over timing is left for future work.

4The assumptions of infinite lifetime and perpetual revenue stream are commonly made in the
real options literature because they not only support analytical tractability, but are also key features
of different projects (Dixit and Pindyck, 1994). For example, in the electricity sector, power gen-
eration facilities have an effective operation life of 30–50 years, while transmission facilities remain
in service even longer. Hence, although the construction of a gas power plant or the installation of
the wind farm has a finite duration, its lifetime is significantly longer.
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of output) process for the project follows a geometric Brownian motion

dPt = αPtdt+ βPtdWt, P0 ≡ P, (2.1)

where P is the initial price, α > 0 the growth rate, β > 0 the volatility, and

W is a standard Brownian motion. Here, we assume that the firm operates as a

price taker in a perfectly competitive market, and, therefore, lacks the ability to

influence the market price. Also, we denote by r > α the subjective discount rate

defined exogenously5. Model (2.1) can be adapted to the users’ preferences and the

requirements of their respective application, as our build-up is general in terms of

underlying model assumptions. Also, the particular choice, as said in Cui et al.

(2020), is a viable candidate in project management.

The project comprises n ∈ N stages that are executed sequentially. For

j ∈ {1, 2, . . . , n}, we denote by Dj > 0 the deterministic scale of each capacity

expansion. Thus, PtDj is the instantaneous revenue of the project in stage j. Fol-

lowing (Huisman and Kort, 2015), we assume a linear investment cost function,

where a deterministic cost, Cj = cDj , is incurred at the beginning of each capacity

expansion and c ≥ 0 represents the expansion cost per unit output. After the com-

pletion of stage j, the accumulated capacity is D′
j =

∑j
k=0Dk, where D0 ≥ 0 is the

initial capacity.

The duration of each stage is denoted by τj and has a general, continuous proba-

bility distribution with cumulative distribution function (cdf) Fτj (t) and probability

density function (pdf) fτj (t). Assuming that {τj}nj=1 are independent (Steyn, 2001;

Chen et al., 2015), the completion time of stage j is given by Tj =
∑j

k=1 τk. Finally,

we denote by V (·) the resulting NPV of a project with associated cdf GV (v) and

pdf gV (v).

5Risk neutrality is commonly assumed in corporate finance, however it also relies on market
completeness. Hence, it may not be particularly relevant in our context of construction or capacity
expansion in the absence of hedging instruments. For this, we use, instead, an exogenously defined
(subjective) discount rate.
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2.3.2 Single-stage capacity expansion

We begin with the basic case of a project that is subject to a single capacity ex-

pansion. As shown in Figure 2.1, the expansion begins at time t = 0, where a

deterministic cost of cD1 is incurred. Subsequently, the firm receives an instanta-

neous revenue of PtD0 from time t = 0 until T1, at which point the capacity of the

project is expanded to D′
1 = D0 + D1 and the firm earns a perpetual stream of

stochastic revenues PtD
′
1.

∫ T1

0
e−rtPtD0dt

∫ ∞

T1

e−rtPtD
′
1dt · · ·

0

−cD1

T1 t

existing project’s cash flow cash flow after expansion 1

Fig. 2.1. Cash flow of single-stage capacity expansion taking place between time 0 and T1.

We derive the NPV of the project by discounting the continuous cash flow over

its lifetime. The discounted to time t = 0 expected NPV, V (P, T1), of this single-

stage expansion conditional on the makespan of the project can be formulated as6

V (P, T1) = E
[∫ T1

0
e−rtPtD0dt+

∫ ∞

T1

e−rtPtD
′
1dt− C1

∣∣∣∣P, T1] (2.2)

=
PD0

r − α
+
PD1

r − α
e−(r−α)T1 − cD1.

The mean, variance, skewness and kurtosis of V (P, T1) are given, respectively,

by

µ = E [V (P, T1)] =
PD0

r − α
+
PD1

r − α
MT1(α− r)− cD1, (2.3)

σ2 = m2, ψ =
m3

m
3/2
2

, ϵ =
m4

m2
2

, (2.4)

6In what follows, we abbreviate the random variable “conditional expected NPV” in (2.2) to
simply “NPV”, whereas the “expected NPV” is constant and is given by (2.3).
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where

mk = E
[
(V (P, T1)− µ)k

]
=

(
PD1

r − α

)k
E
[(
e−(r−α)T1 −MT1(α− r)

)k]

and MT1(δ) = E
[
eδT1

]
, δ ∈ R.

Proposition 2.3.1. The cdf and pdf of the NPV of a single-stage project are given

by

GV (v) = 1− FT1

(
− 1

r − α
ln

(r − α)(v + cD1)− PD0

PD1

)
, (2.5)

gV (v) =
1

(r − α)(v + cD1)− PD0
fT1

(
− 1

r − α
ln

(r − α)(v + cD1)− PD0

PD1

)
, (2.6)

for v ≥ PD0/(r − α)− cD1.

From Proposition 2.3.1, for a given probability distribution for τ1 = T1, we

derive the distribution of V (P, T1). In turn, this facilitates the evaluation of the risk

associated with the project by looking at the left tail of its NPV distribution. For

example, consider VaRp(X) = −q+p (X), where q+p (X) = inf{v ∈ R : P(X ≤ v) > p}

is the p-quantile of a random variable X, for p ∈ (0, 1), while CVaRp(X) denotes

the expectation of X given that it is larger than VaRp(X). Given a closed-form

expression for GV , we can also obtain the VaR and CVaR of the project NPV.

Proposition 2.3.2. For the NPV of the project at level p, we have that

VaRp(V ) = − PD0

r − α
− PD1

r − α
e−(r−α)F−1

T1
(1−p) + cD1 and CVaRp(V ) =

1

p

∫ p

0

VaRq(V )dq.

(2.7)

2.3.3 Multi-stage project

In this section, we generalise to a multi-stage project and formulate its NPV, before

moving on to scheduling these stages in Section 2.4. The stochastic cash flow stream

of the multi-stage project is shown in Figure 2.2.

The NPV of a serial project with n ≥ 1 stages is given by the sum of the NPVs of
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∫ T1

0

e−rtPtD0dt · · ·
∫ ∞

Tn

e−rtPtD
′
ndt

∫ T2

T1

e−rtPtD
′
1dt · · ·

0

−cD1

T1

−cD2

T2

−cD3

Tn t

existing project’s cash flow cash flow after expansion 1 cash flow after expansion n

Fig. 2.2. Cash flow of multi-stage project.

the various capacity expansions, i.e.

V (P, T1, . . . , Tn) =

n∑
j=1

E

[∫ Tj

Tj−1

e−rtPtD
′
j−1dt− Cje

−rTj−1

∣∣∣∣∣P, Tj−1, Tj

]

+E
[∫ ∞

Tn

e−rtPtD
′
ndt

∣∣∣∣P, Tn]
=

n∑
j=0

E

[∫ ∞

Tj

e−rtPtDjdt

∣∣∣∣∣P, Tj
]
−

n∑
j=1

cDje
−rTj−1

=
PD0

r − α
+

n∑
j=1

Vj(P, Tj−1, Tj), (2.8)

where

Vj(P, Tj−1, Tj) ≡ Vj =
PDj

r − α
e−(r−α)Tj − cDje

−rTj−1 (2.9)

corresponds to the increment of the NPV of the project’s cash flows due to the jth

capacity expansion, for j ∈ {1, 2, . . . , n}; also, T0 ≡ 0.

Expressions for the true NPV density and distribution functions are not avail-

able in closed form in the multi-stage case, however we can obtain very accurate

analytical approximations that can be used subsequently for computing the risk

measures of the sequential capacity expansion. To this end, we fit a Pearson curve

type based on the first four moments of the true, but otherwise unknown, distri-

bution of V (P, T1, . . . , Tn). More specifically, the Pearson family of solutions gV (x)

satisfies the differential equation

d ln gV (x)

dx
= − a+ x

c0 + c1x+ c2x2
(2.10)

resulting in well-defined density functions. Solving equation (2.10) yields the general
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form of Pearson’s density function

gV (x) = C
(
c0 + c1x+ c2x

2
)− 1

2c2 exp


(c1 − 2ac2) arctan

(
c1+2c2x√
4c0c2−c21

)
c2
√

4c0c2 − c21

 , (2.11)

where C is the normalising constant and the parameters {a, c0, c1, c2} control the

shape of the distribution. We estimate these based on the first four integer moments

{µ1, µ2, µ3, µ4} as

a = c1 =

√
υγ (θ + 3)

10θ − 12γ − 18
, c0 =

(4θ − 3γ) υ

10θ − 12γ − 18
, c2 =

2θ − 3γ − 6

10θ − 12γ − 18
, (2.12)

where

υ = µ2 − µ2
1, γ =

(
µ3 − 3µ1µ2 + 2µ3

1

)2
υ3

, θ =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

υ2
(2.13)

are the variance, squared skewness and kurtosis, respectively. We can classify the

Pearson distribution family types as in (Johnson et al., 1994) which is standard in

the literature. First, we select a family according to the η-criterion proposed by

(Elderton and Johnson, 1969): given
√
γ and θ, we compute

η =
γ (θ + 3)2

4 (4θ − 3γ) (2θ − 3γ − 6)
. (2.14)

We distinguish between the main types corresponding to η < 0 (I), 0 < η < 1 (IV)

and η > 1 (VI); and the transition types η = 0, θ = 3 (normal), η = 0, θ < 3 (II),

η = ±∞ (III), η = 1 (V) and η = 0, θ > 3 (VII). Then, we can approximate the NPV

distribution accordingly. Important advantages of the Pearson fitting approach, as

we will demonstrate next, are its excellent results for different skewness-kurtosis

(γ1/2, θ) levels (see also (Brignone et al., 2021)), for varying number of stages and

general assumptions for the distribution of τj . More details about the proximity of

distributions with shared moments is beyond the scope of this research; interested

reader may refer, instead, to (Akhiezer, 1965, Corollary 2.5.4), (Lindsay and Basak,

2000, Theorems 1, 2) and Kyriakou et al. (2023). Given the Pearson fitted cdf of

the project’s NPV, GV (v), the VaR and CVaR follow:

VaRp(V ) = −G−1
V (p) and CVaRp(V ) =

1

p

∫ p

0
VaRq(V )dq. (2.15)
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To illustrate the Pearson curve fit, we set P = 1, r = 0.1, α = 0.08, β = 0.1,

c = 30, D0 ≡ 0 and Dj = 10 for all j ∈ {1, 2, . . . , n}, and study the Pearson

curve approximation for τj ∼ LogN (m, s) and τj ∼ Weibull (λ, κ)7. For the sake of

comparison, we assume that they share the same mean and variance, e.g., em+ 1
2
s2 =

λΓ(1 + 1/κ) = 10 and e2m+s2
(
es

2 − 1
)

= λ2
[
Γ(1 + 2/κ)− (Γ(1 + 1/κ))2

]
= 28,

from which we obtain parameters m = 2.18, s = 0.50, λ = 11.28 and κ = 1.96. We

compare the density approximations with the true simulation estimates in Figure

2.3. The top and bottom panels of Table 2.1 also report the true mean, variance,

skewness, kurtosis, VaR0.05 and CVaR0.05 of V (P, T1, . . . , Tn), along with the values

corresponding to the Pearson curve fit and the associated absolute percentage errors.

Two comments are in order. It is obvious from Figure 2.3 and Table 2.1 that

the approximation of the NPV distribution by a Pearson curve fit is very accurate,

regardless of the distribution of τj and the number of stages. While one can rely

on Monte Carlo simulation estimates, using a Pearson approximation leads to an

analytical expression that considerably reduces the computational effort and avoids

unwanted simulation error. In particular, for the accuracies reported in Table 2.1

based on 107 simulation trials for the Monte Carlo estimates, we achieve a reduction

in the computing time by a factor of 100 the least.

In addition, we recall that we have chosen the lognormal and Weibull parameter

values for τj so that their mean and variance are matched. Nevertheless, the result-

ing variance, skewness and kurtosis of V (P, T1, . . . , Tn) vary significantly between

the two distributions. This implies that the assumptions about the distribution

and the higher moments of the duration variables can affect substantially the risk

characteristics of the NPV and, therefore, the valuation and planning of a project.

7Both the lognormal (Chen et al., 2018; Trietsch et al., 2012) and exponential distributions (Sobel
et al., 2009) are commonly used to model activity duration in the project management literature.
Here, we use a Weibull distribution which generalises the exponential distribution with an extra
parameter that offers added flexibility. Gamma, normal and uniform distributions have also been
examined.
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Fig. 2.3. Simulated and fitted Pearson pdf of NPV of n-stage capacity expansion for
τj ∼ LogN(m, s) (left panel) and τj ∼ Weibull(λ, κ) (right panel) sharing same
mean, 10, and variance, 28, with m = 2.18, s = 0.50, λ = 11.28 and κ = 1.96.

2.4 Optimal scheduling of serial project

2.4.1 Impact of duration variability on expected NPV and VaR

In this section, we investigate the optimal order in which the stages of a serial project

should be executed, as well as the factors affecting the NPV distribution and the

downside risk of the project. Specifically, we study the impact of duration variability
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Table 2.1: Simulation estimates and fitted-Pearson mean, variance, skewness, kurto-
sis, VaR0.05 and CVaR0.05 of NPV of n-stage capacity expansion for τj ∼
LogN(m, s) (upper panel) and τj ∼ Weibull(λ, κ) (lower panel) sharing same
mean, 10, and variance, 28, with m = 2.18, s = 0.50, λ = 11.28 and κ = 1.96.

Lognormal

Stages n = 2 n = 4 n = 8

Estimate Pearson Abs. error Estimate Pearson Abs. error Estimate Pearson Abs. error

Mean 327.03 327.04 0.0% 763.92 763.92 0.0% 1327.57 1327.57 0.0%
Var 1985.85 1981.25 0.2% 8275.57 8274.28 0.0% 41551.24 41551.02 0.0%
Skew -1.3734 -1.3720 0.1% -1.1607 -1.1588 0.1% -0.4751 -0.4750 0.0%
Kurt 6.5072 6.5007 0.1% 5.2344 5.2290 0.1% 3.3347 3.3342 0.0%
VaR0.05 -243.52 -243.12 0.2% -592.25 -592.25 0.0% -967.28 -967.04 0.0%
CVaR0.05 -205.33 -205.32 0.0% -521.53 -522.27 0.1% -854.34 -854.16 0.0%

Weibull

Stages n = 2 n = 4 n = 8

Estimate Pearson Abs. error Estimate Pearson Abs. error Estimate Pearson Abs. error

Mean 325.31 325.31 0.0% 759.93 759.93 0.0% 1323.30 1323.30 0.0%
Var 1846.15 1846.15 0.0% 7444.58 7444.58 0.0% 41237.06 41237.06 0.0%
Skew -0.4563 -0.4563 0.0% -0.5591 -0.5590 0.0% -0.0694 -0.0694 0.0%
Kurt 3.1260 3.1260 0.0% 3.2644 3.2642 0.0% 2.7969 2.7969 0.0%
VaR0.05 -249.98 -249.87 0.0% -603.79 -604.31 0.1% -984.84 -984.21 0.1%
CVaR0.05 -227.13 -226.61 0.2% -556.77 -556.95 0.0% -903.11 -903.10 0.0%

on the optimal sequence of a serial project and investigate the importance of risk

considerations in stochastic project scheduling.

We start by showing how the expected NPV, µ, and VaR of a project with single

capacity expansion depend on the variance of its makespan, τ1, with the real-world

example of the Hornsea offshore wind farm. More specifically, the construction (i.e.,

Stage 1) of the 1.2-gigawatt (GW) wind farm takes about three years with a cost

around £4.2 billion (Orsted, 2023). Hence, we set D0 ≡ 0 GW, D1 = 1.2 GW,

P = £0.2 billion per GW, r = 10% per year, α = 8% per year and β = 10%

per year. Assuming that τ1 ∼ LogN(m, s), then for E[τ1] = em+ 1
2
s2 = τ we get

that m = ln τ − s2/2. Thus, Var[τ1] =
(
es

2 − 1
)
e2m+s2 = τ2

(
es

2 − 1
)
, which

is increasing with s for given τ. For τ = 3 years, we present in Figure 2.4 µ as an

increasing function of s for c = £2 billion and £4 billion per GW capacity installed8.

This implies that, for a fixed makespan expectation, a capacity expansion with higher

duration variability is expected to be more profitable.

8In this chapter, we focus on situations where each stage generates a positive profit, and do not
consider the case when the investment cost exceeds the revenue, leading to a negative profit flow.
Such situations become more pertinent within a real options framework, where the firm has the
option to either abandon or forego the execution of subsequent stages.
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Of particular interest is the U-shaped 5%-quantile curve, from which we observe

that the risk exposure of the expansion, VaR0.05(V ) = −q+0.05(V ), is surprisingly low

when the duration variance is large. This counter-intuitive result can be attributed

to the VaRp of the project’s NPV, which is determined by the quantile of τ1 (see

Proposition 2.3.2); for lognormal τ1, the quantile as a function of s increases initially

and then starts to decrease. For E[τ1] = τ held fixed, the skewness of τ1 given by(
es

2
+ 2
)√

es2 − 1 increases in s, so that a higher duration variability implies a

shorter makespan with increasing concentration around small values. This implies

that high duration variability can benefit both risk-neutral and risk-averse decision-

makers and, therefore, variance reduction is not always necessary, especially when

the duration variability is moderate to high.

Fig. 2.4. Expected NPV and 5%-quantile of single capacity expansion as function of
duration variability s when τ1 ∼ LogN

(
ln 3− s2/2, s

)
, for c = 2 and 4.

Next, we add one more stage and consider two capacity expansions of equal size

and cost to demonstrate the implications of risk aversion for optimal scheduling.

We assume that each stage of the project has the same expected duration τ but

different duration variability s. Therefore, the question now arises: how should the

firm determine the order of execution for each stage to achieve a higher (lower)

project value (risk exposure)?

Assuming that τ1 ∼ LogN(ln τ − 1/2, 1), τ2 ∼ LogN(ln τ − s2/2, s) and D1 =

D2 = 1.2 GW, Figure 2.5 illustrates how µ and the 5%-quantile of the project

depend on s, for each of the two possible ways of scheduling. Consistent with Figure

2.4, we find that executing the stage with high duration variability first, that is, τ2
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for s > 1 (blue solid line) can result in larger expected NPV but only when c is

small (e.g., c ≤ 2). As c increases, this strategy is no longer appropriate. Indeed, µ

eventually decreases with s as shown in the bottom-right panel of Figure 2.5. This

happens because the discount factor of the project’s cost, E[e−rτ2 ], increases faster

than that of the revenue, E[e−(r−α)τ2 ], as s rises. Consequently, duration variability

is desirable for risk-neutral decision-makers when the cost is relatively low, as their

preferences are independent of the risk associated with the schedule; but, it can be

harmful to the project’s value if capacity expansions are costly.

On the other hand, executing first the stage with lower duration variabil-

ity, that is, τ1 ∼ LogN (ln 3− 1/2, 1), when the other stage has duration τ2 ∼

LogN
(
ln 3− s2/2, s

)
with s > 1 (purple dashed line), does not guarantee lower

risk exposure, particularly when the cost of each expansion is low compared to its

revenues. Whereas this scheduling strategy can be quite safer if s is low-to-moderate,

it performs poorly in terms of both the project’s value and risk exposure if s is large

(magenta line appears above the purple line, despite the smaller variance of τ1 and

stage 1 being implemented first). Again, this follows from the positively skewed

distribution of τ2 with increasing concentration around smaller values as s increases.

In particular, the 95%-quantile linked to τ2 becomes smaller if s > 1.67, thus in-

dicating that the firm should execute stage 2 first despite its increasing duration

variability. However, if the capacity expansions are costly (e.g., c ≥ 4), then high

duration variability becomes undesirable as it always leads to lower expected NPV

and higher risk. Therefore, the decision-maker should always execute stages with

lower duration variability first (see the bottom-right panel of Figure 2.5).

Consequently, our results indicate that duration variability can significantly

affect the optimal sequence of stages for both risk-neutral and risk-averse decision-

makers; moreover, its impact depends on the level of expansion cost. Indeed, for all

stages with the same expected duration and capacity, risk-neutral decision-makers

should always execute the stages with higher duration variability earlier if the cost

is relatively low. However, under risk aversion, the optimal sequence of stages is

less obvious as it depends on the trade-off between maximising the expected NPV
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Fig. 2.5. Expected NPV and 5%-quantile of two-stage project as function of duration
variability s when τ1 ∼ LogN (ln 3− 1/2, 1) and τ2 ∼ LogN

(
ln 3− s2/2, s

)
, and

stage 2 is executed before stage 1 (solid lines) or vice versa (dashed lines).

and minimising the downside risk of a project. For example, a risk-averse decision-

maker may be willing to bear a slightly higher risk in exchange for a larger expected

NPV, and vice versa. Moreover, this trade-off can be even more complicated due

to the fact that high duration variability is not always harmful. Due to the tech-

nological uncertainty reflected in the makespan of a project, it is implied that risk

considerations have to be incorporated in stochastic project scheduling.

2.4.2 Risk management and optimal scheduling

To address the trade-off between the expected NPV and risk exposure of a serial

project due to the different ways of scheduling, we incorporate risk measures, such

as the VaR and CVaR, into the stochastic project scheduling problem. To this

end, we define the symmetric group Sn on the set N = {1, 2, . . . , n} and π ∈ Sn a

permutation of N (i.e., a bijection from N toN itself). In our context, a permutation

π = (π(1), ..., π(n)) encompasses the sequence of stages of a serial project; for any

j, k ∈ N , π(j) = k means that stage k is the jth term of the sequence. It is worth
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noting that our model is also capable of managing the optimal sequence of stages

when there are precedence constraints between these stages. As the optimal schedule

of a serial project is obtained through an enumeration of all possible permutations,

any precedence constraints simply serve to eliminate certain permutations that are

no longer feasible. Also, we introduce ω ∈ [0, 1] which reflects the risk appetite of

a decision-maker, with large (small) ω corresponding to high (low) risk aversion.

Thus, the optimal sequence of stages π∗
ω, which maximises a combination of the

expected NPV and the risk measure of a serial project, can be formulated as

π∗
ω = argmax

π∈Sn

V (π), (2.16)

where

V (π) = (1− ω)E

 n∑
j=1

PDπ(j)

r − α
e−(r−α)

∑j
k=1 τπ(k) −

n∑
j=1

cDπ(j)e
−r

∑j−1
k=0 τπ(k)


− ωR

 n∑
j=1

PDπ(j)

r − α
e−(r−α)

∑j
k=1 τπ(k) −

n∑
j=1

cDπ(j)e
−r

∑j−1
k=0 τπ(k)

 , (2.17)

π(0) = τ0 = 0 and R(·) is a risk measure such that a larger value of it implies higher

risk. In particular, we consider R ∈ {VaRp,CVaRp} to account for the left tail of the

NPV distribution of a project, which we evaluate based on (2.15). Given a p level of

confidence, ω controls the weights of the expected NPV and the risk exposure in this

mean-risk model. A decision-maker is assumed to be risk-neutral if ω = 0, in which

case the second part of (2.17) vanishes and (2.16) reduces to the expected NPV

maximisation model. In the next section, we obtain the optimal schedule of a serial

project under various combinations of duration variability and decision-maker’s risk

appetite, and show how the results based on either the mean-VaR or mean-CVaR

model differ.

2.5 Project scheduling: numerical illustration

We revisit, first, the example in Figure 2.5, where a firm considers scheduling the

two phases of an offshore wind farm, each with capacity of 1.2 GW. The upper
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panel of Table 2.2 reports the expected NPV and VaR0.05 of the two-stage project

for c = {2, 3} and s ∈ {0.5, 1.5, 2.2, 3}. The optimal sequences of stages for decision-

makers with different attitudes towards risk are also obtained based on the mean-risk

model (2.16)–(2.17) with R ≡ VaR0.05. Consistent with the bottom-right panel of

Figure 2.5, we have π∗ω = (2, 1) if s < 1 and π∗ω = (1, 2) if s > 1, for any ω ∈ [0, 1].

Therefore, our results indicate that decision-makers should always execute the stage

with lower duration variability first when the cost of each stage is high.

Next, we examine whether the aforementioned scheduling strategy is still op-

timal if the expansion cost is lower, e.g., c = 2. The lower panel of Table 2.2 con-

firms that both the duration variability of each capacity expansion and the decision-

makers’ risk preferences can affect significantly the optimal schedule of a project in

this case. Taking ω = 0.5 as an example, we obtain π∗
0.5 = (2, 1) if s < 1 or s > 2.14,

whereas π∗
0.5 = (1, 2) if 1 < s < 2.14. This implies that a risk-averse decision-maker

with ω = 0.5 may choose to reduce the risk exposure of the project by a significant

amount without foregoing too much revenue when s > 2.14.

Table 2.2: Optimal schedule of two-stage project with duration variability s for decision-
makers with risk appetite ω obtained from mean-risk model (2.16), for R ≡
VaR0.05 and c = 3 (upper panel) or 2 (lower panel). π = (1, 2): execute stage
1 followed by stage 2; π = (2, 1): execute stage 2 followed by stage 1.

c = 3

Expected NPV µ VaR0.05 Optimal Sequence π∗
ω

π = (1, 2) π = (2, 1) π = (1, 2) π = (2, 1) ω = 0 ω = 0.25 ω = 0.5 ω = 0.75 ω = 1

s = 0.5 15.6090 15.6858 -14.1864 -14.2613 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)
s = 1.5 15.6938 15.6031 -13.1931 -13.1262 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 2.2 15.8407 15.6771 -13.2537 -13.2625 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 3.0 16.0228 15.8501 -13.9066 -13.9731 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)

c = 2

Expected NPV µ VaR0.05 Optimal Sequence π∗
ω

π = (1, 2) π = (2, 1) π = (1, 2) π = (2, 1) ω = 0 ω = 0.25 ω = 0.5 ω = 0.75 ω = 1

s = 0.5 17.7423 17.7852 -15.8959 -16.2493 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)
s = 1.5 17.8268 17.7876 -15.0290 -14.8855 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 2.2 17.9748 17.9397 -15.0560 -15.1548 (1, 2) (1, 2) (2, 1) (2, 1) (2, 1)
s = 3.0 18.1547 18.1763 -15.6240 -16.1191 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)

Aiming to shed more light on the results, we present in Figure 2.6 the scenarios

in which a schedule π optimises a mean-risk model. The left panel illustrates the

difference between the mean-VaR model (2.17) with π = (2, 1) and π = (1, 2),
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i.e., ∆V = V ((2, 1)) − V ((1, 2)), for different combinations of duration variability

s and risk preference ω: positive differences mean π∗
ω = (2, 1); negative differences

correspond to π∗
ω = (1, 2); intersections between the surface and the xy-plane refer

to transitioning optimal results. Indeed, for c = 2, it can be observed that decision-

makers prefer to execute stage 2 first if s > 2.76.

By analogy, the right panel shows the results corresponding to R ≡ CVaR0.05 in

(2.17). Here, we observe that a risk-averse decision-maker is more likely to execute

stage 1 first, when the duration variability of stage 2 is of a moderate level, i.e.,

1 < s < 3.72., still larger than that of stage 1. This can be attributed to CVaR

being a more conservative risk measure than VaR, rendering a same expected NPV

less attractive to decision-makers. Similar (unreported) results are obtained for

p < 0.05.

Fig. 2.6. Left panel: difference between mean-VaR model with schedule π = (2, 1) and
π = (1, 2) for varying duration variability s and risk preference ω when c = 2.
Right panel: same as left based, instead, on mean-CVaR model.

Next, the upper and lower panels of Table 2.3 show examples of the optimal

schedule of three-stage and four-stage capacity expansions, respectively. As the

number of stages increases, the optimal sequence of stages becomes more ambiguous.

However, we can still observe that risk-averse decision-makers prefer to execute

stages with lower duration variability first if the capacity expansions are very costly

(e.g. c = 6 or 8). On the other hand, if the cost of each stage is relatively low (e.g.

c = 2), it can be optimal for decision-makers to execute the stage with the highest

duration variability first (shaded grid), which is also consistent with our previous
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results. Furthermore, we take a closer look at the two schedules that appear most

frequently in Table 2.3 for each panel (i.e., π = (3, 1, 2) and π = (1, 2, 3) for n = 3,

and π = (4, 1, 2, 3) and π = (1, 2, 3, 4) for n = 4), and present in the upper and

lower panels of Figure 2.7 the expected NPV and 5%-quantile of the three-stage

and four-stage project, respectively. Results suggest that, for projects with more

stages, duration variability is still undesirable when the cost is high, while it can be

beneficial if the cost is low due to higher expected NPV and lower risk exposure.

Fig. 2.7. Expected NPV and 5%-quantile of three-stage project (upper panel) as function
of duration variability s for schedule π = (3, 1, 2) (solid lines) and π = (1, 2, 3)
(dashed lines); and of four-stage project (lower panel) as function of duration
variability s for schedule π = (4, 1, 2, 3) (solid lines) and π = (1, 2, 3, 4) (dashed
lines).

In summary, the managerial insights of our results are threefold. First, for

stages with equal size and expected duration, duration variability is unwanted when

capacity expansions are costly, as this leads to lower expected NPV and higher risk

of the project. Therefore, in this case, it is optimal for decision-makers (with any

risk preference) to execute the stages with lower duration variability first. Second,

we find that a project with higher duration variability can have larger expected
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NPV and is not always associated with worse downside risk if the expansion cost is

relatively low. This suggests that, although variance reduction may be beneficial for

scheduling a (resource-constrained) project with the aim of minimising its makespan,

it can be harmful to the project financially. Finally, we demonstrate that the optimal

schedule under risk aversion depends not only on decision-makers’ risk preferences,

but also on the level of duration variability and the cost of each stage.

2.6 Concluding discussion

In this chapter, we develop a risk assessment and optimal scheduling framework for

sequential capacity expansion under output price and technological uncertainty. We

derive the distribution, VaR and CVaR of the project’s NPV. The novelty of our

work lies in demonstrating the potentially positive impact of duration variability on

the stochastic project scheduling problem, whereby we highlight the importance of

risk considerations. We study the trade-off between maximising the expected NPV

and minimising the downside risk of a serial project using a mean-risk model, and

obtain the optimal investment strategies for risk-averse decision-makers.

We show that both the duration variability and the decision-makers’ risk pref-

erences can significantly affect the optimal sequence of stages of a serial project and

that this also depends on the capacity expansion cost. More specifically, if the ex-

pansion cost of each stage is high, the duration variability is harmful to a project’s

NPV and risk exposure and, therefore, decision-makers should always execute stages

with lower duration variability first. However, if the cost is relatively low, it can

be optimal for risk-neutral decision-makers to execute the stages with higher dura-

tion variability first due to larger expected NPV. This coheres with Creemers et al.

(2015), who show that operational variability may not lead to lower project values

and, therefore, variance reduction strategies may not serve risk-neutral decision-

makers. Taking also into account the decision-makers’ attitudes towards risk, we

find that executing stages with lower duration variability earlier does not guarantee

lower risk exposure. Contrary to the intuition that increasing uncertainty entails

greater risk exposure, our results indicate that higher duration variability may not
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lead to higher downside risk; instead, it may be beneficial not only for risk-neutral

but also for risk-averse decision-makers.

This counter-intuitive result of non-monotonic relationship between the VaR of

a project’s NPV and its duration variability arises when the skewness of the duration

increases with respect to its variance. Indeed, in such a case, high duration variability

implies shorter makespan with increasing concentration around small values and that

the project is expected to have larger profit and lower risk exposure (if expansion cost

is low). Consequently, investing in variance reduction is only recommended when

the duration variability of each stage is low. However, if the skewness of the duration

distribution decreases with increasing variance, or the project is rather costly, then

high duration variability can cause an opposite effect, which is unfavourable to both

risk-neutral and risk-averse decision-makers.

Hence, this chapter conveys crucial implications for investment under techno-

logical uncertainty when the true distribution of a project’s makespan is unknown,

as ignoring or underestimating the uncertainty associated with the project may lead

to inappropriate project scheduling and, therefore, lower NPV or greater downside

risk. Directions for future research may include studying the potential effects of

the price dynamics on the risk measures of the project, or the development of a

real options framework to allow for discretion over investment timing (Heydari and

Siddiqui, 2009; Jeon, 2021)9. The objective would be to investigate how managerial

flexibility influences the distribution of the NPV and the risk measures of a serial

project. Moreover, within a real options framework, the firm has the flexibility to

choose not to proceed to the next stage, especially when investment costs are high

or when operating costs are involved that may result in a negative profit flow.

In Chapter 3, we deviate from the stochastic scheduling problem and develop a

real options framework in order to analyse how price uncertainty impacts investment

and subsidisation policies in the light of strategic interactions between two firms and

a Government. Unlike Chapter 2, the objective now is to facilitate the integration

9We do provide a real options framework in Appendix A.2 for risk assessment and optimal
scheduling of a two-stage project, granting the firm the flexibility to postpone the investment before
each stage.
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of the necessary flexibility to adapt and modify strategies based on future events

and new information.



Chapter 3

Optimal subsidy design and capacity

investment under duopolistic

competition and uncertainty

In this chapter, we develop a bi-level real options framework for deriving the equi-

librium Government subsidisation and firm-level capacity investment policy in a

duopoly market structure. We find that strategic interactions with the Government

may impact a firm’s capacity investment decision significantly and that the equi-

librium subsidisation policy depends on both the market structure and the type

of duopolistic competition. Interestingly, the provision of greater subsidy to the

leader raises the follower’s incentive to invest earlier and in a bigger project. The

loss in value of the leader, due to the follower’s entry, relative to the monopolist

increases with economic uncertainty and, although a subsidy can mitigate this loss,

its effect becomes less pronounced as economic uncertainty increases. We also find

that a profit (welfare)-maximising Government does not offer (offers) a subsidy in

a highly uncertain environment or upon low tax rate, while higher tax rate does

not always decelerate investment. Finally, we find that while competition is always

desirable for a social planner, a profit-maximising Government may benefit more

under pre-emptive competition.
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3.1 Introduction

Firms devising strategies for capacity investment in deregulated industries face the

formidable challenge of managing not only the uncertainty in future revenue streams,

but also the likely presence of a rival. It further complicates capacity investment

decisions is the fact that they are often made in light of support schemes designed

to incentivise investment in infrastructure projects, promote research and develop-

ment (R&D) or accelerate the structural transformation of many industries due to

pressing climate change concerns1. The design of support schemes may be subject

to balancing conflicting objectives, as private firms pursue profit-maximisation ob-

jectives while a Government may maximise either profits associated with corporate

tax (Lukas and Thiergart, 2019) or social welfare (Azevedo et al., 2021). The lit-

erature on methods for identifying ex-ante the level of Government support that

aligns firm and Government-level optimisation objectives has grown considerably.

However, existing bi-level models for optimal subsidy design are developed under

the assumption of monopoly or perfect competition (Sarkar, 2012; Lukas and Thier-

gart, 2019) and, consequently, the implications of strategic interactions at the firm

level for optimal subsidy design remain an important open research question. Ad-

ditionally, it remains unclear how the optimal subsidisation strategy would differ if

a Government pursued a social welfare rather than a profit-maximisation objective.

Analysing the joint implications of firm-level strategic interactions and the non-

cooperating game between a private firm and the Government for optimal subsidy

design is a challenging task, whereby the following trade-offs must be balanced.

First, capacity investment decisions are particularly risky since a large capacity

raises the downside risk during recession, whereas a low capacity may result in

forgone revenues upon a sudden upturn in the economy. Second, the level of subsidy

should be designed so that investment intensity targets are met in a timely manner.

However, a high (low) subsidy may induce a firm to invest earlier (later) in a smaller

1For example, to encourage sustainable innovation, part of the American Recovery and Reinvest-
ment Act of 2009 allocated $400 million to Advanced Research Projects Agency-Energy and $2.5
billion to renewable energy and energy efficiency R&D (CRS, 2009). Besides, Innovate UK, which
supports business-led innovation in all sectors around UK, declares an increase in R&D funding
from £700 million in 2021-22 to £1.1 billion in 2024-25 (Cookson, 2021).
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(bigger) project. Third, upon a firm’s investment, the Government receives a tax

from the cash flows of the operating project and, therefore, it must balance the

subsidy level so as to maximise its net tax income (i.e., profit) or social welfare.

Finally, the Government needs to account for firm-level strategic interactions, since

competition is likely to reduce the value of the subsidy, and, in turn, alter a firm’s

investment policy substantially.

In this chapter, we embed these trade-offs in a real options framework to ad-

dress open research questions such as: How is a Government’s subsidisation policy

affected by firm-level strategic interactions? Does the subsidy offset a firm’s loss

in value due to competition? How does the equilibrium subsidisation and capacity

investment strategy vary when a Government pursues social welfare instead of a

profit maximisation objective? To address these questions, we consider a duopoly

consisting of two identical (in terms of cost) firms that have the option to invest in a

project. To incentivise investment, the Government will grant a subsidy to the first

firm that enters the market (leader). Indeed, since the firms have the same level of

investment cost per unit, subsidising the follower is not a plausible option as this

will reduce the incentive to invest first. This is consistent with Nie et al. (2016), who

show that the efficiency of subsidies depends on the position of the subsidised firm.

In particular, the Government’s subsidisation incentive reaches the lowest (highest)

level if the subsidised firm is a follower (leader). The subsidy takes the form of a

lump-sum cash grant.

By addressing these questions, our work bridges two strands of literature: bi-

level real options and duopolistic competition. Regarding the latter, we consider the

case of pre-emptive competition, where both firms have the incentive to invest first

to gain a leader advantage, and non-pre-emptive competition with the role of the

leader being assigned exogenously. While only the leader benefits from the subsidy,

the follower’s entry reduces the leader’s expected revenues, thus implicitly affecting

the subsidisation policy, as the alignment of the Government’s and leader’s objectives

should account for the latter’s loss in market share. Thus, the contribution of our

work is threefold. First, we develop a bi-level real options framework to analyse the
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non-cooperative game between a Government and two symmetric firms. Second, we

obtain the equilibrium investment threshold, project scale and subsidisation policy,

and demonstrate how each depends on strategic interactions. Finally, we derive

and compare the optimal investment and subsidisation strategies for the case of a

profit and social welfare-maximising Government, and provide policy and managerial

insights based on analytical and numerical results.

We proceed by discussing some related work in Section 3.2 and present as-

sumptions and notation in Section 3.3.1. In Section 3.3.2, we present the analytical

framework under monopoly and derive the equilibrium capacity investment policy

of the firm as well as the equilibrium subsidisation policy of an income-maximising

Government. We then expand Section 3.3.2 by allowing for non-pre-emptive and

pre-emptive duopolistic competition in Section 3.3.3 and 3.3.4, respectively. Next,

in Section 3.3.5 we explore how the optimal subsidisation and capacity investment

policy changes when the Government optimises social welfare. Section 3.4 proceeds

with various numerical examples, results and policy implications, whereas Section

3.5 concludes the chapter offering suggestions for further research.

3.2 Related research and our contribution

Although traditional real options models address the problem of optimal investment

under uncertainty ignoring the implications of competition (McDonald and Siegel,

1985, 1986), the game-theoretic real options literature has grown considerably in

recent years. Nevertheless, models that allow for strategic interactions often analyse

their implications for investment timing without considering managerial discretion

over project scale (Bar-Ilan and Strange, 1999; Dangl, 1999; Bøckman et al., 2008,

Hagspiel et al., 2016a), or take no notice of the implications of the wide range of

support schemes deployed to incentivise investment in many industries. Examples

of real options models for strategic capacity investment include Huisman and Kort

(2015), who analyse the problem of optimal capacity investment under duopolistic

competition and demonstrate how discretion over project scale may be used strate-

gically to deter or accommodate the entry of a rival. Other related examples include
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Huberts et al. (2015) and Jeon (2021).

Examples of policy-oriented real options models include Boomsma et al. (2012),

Boomsma and Linnerud (2015) and Ritzenhofen et al. (2016). More recently, Bigerna

et al. (2019) consider a firm that has the option to invest in renewable energy under

economic uncertainty and empirically analyse how a subsidy, in the form of a feed-in

premium, affects its capacity investment policy. For a given environmental target,

they derive the required investment scale and determine the corresponding optimal

subsidy level and investment threshold. The contribution of this line of work includes

the provision of policy insights not only on how various support schemes, such as

feed-in tariffs, renewable portfolio standards and green certificate trading, may differ

in incentivising green investments, but also on how random revisions of support

schemes may impact investment incentives. However, the optimal investment and

subsidisation policies are determined ex-post, and, thus, they do not reflect the

equilibrium from the strategic interaction between a firm’s and a Government’s

optimisation objectives.

Such strategic interactions are analysed in bi-level real options models, with

the objective to understand private firms’ investment behaviours and Governments’

optimal subsidisation strategies under uncertainty (Pennings, 2000; Pennings, 2005;

Yu et al., 2007). For example, Pennings (2000) studies how the Government’s choice

on the level of subsidy and taxation may impact a private firm’s optimal investment

strategy. Results indicate that, when the tax income is exactly offset by the sub-

sidy, a firm can invest earlier as the tax rate increases, which renders subsidisation a

more effective fiscal incentive. Other related examples include Danielova and Sarkar

(2011), Barbosa et al. (2016), Tian (2018), Jin et al. (2021) and Silaghi and Sarkar

(2021). Allowing for discretion over project scale, Lukas and Thiergart (2019) anal-

yse the effect of uncertainty and investment stimulus (in the form of cash grants) on

optimal investment timing, scaling and debt financing strategies. Their results indi-

cate that, when the Government aims to maximise its profit, the relationship between

the equilibrium subsidy and price uncertainty is ambiguous. Also, social welfare op-

timisation objectives are analysed in Pawlina and Kort (2006), Yang et al. (2018)
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and Azevedo et al. (2021). The latter demonstrate the effect of a Government’s

subsidisation and taxation policy on a monopolist’s capacity investment strategy

and show that, by choosing the appropriate tax-subsidy package, the Government

is able to implement a welfare-maximising policy.

Although existing bi-level real options models do not extend beyond the strate-

gic interactions between a Government and a private firm, recent game-theoretic,

albeit static, models demonstrate that the market structure can influence both the

design of subsidies and the private firms’ investment incentives (Wang and Zhou,

2020; Yang et al., 2021). For example, Yang and Nie (2015) analyse the effectiveness

of different subsidy strategies under asymmetric duopoly. They find that, while sub-

sidising the smaller firm benefits the social welfare, subsidising the larger firm can

improve the total R&D investment output, especially when the cost gap between the

firms is significant. Also, Nie et al. (2016) consider a unilateral and a bilateral sub-

sidy and show that the firms’ positioning is critical to a Government’s subsidisation

policy since the output of the subsidised firm is the highest (lowest) if the firm is

the leader (follower). More recently, Yang et al. (2021) developed a game-theoretic

model between a Government and two symmetric firms and derived the equilibrium

the two firms can reach regarding their technology improvement decisions. Their

results confirm that a subsidy is critical for expanding the green product market

and improving social welfare. Allowing for economic uncertainty is an important

extension of this line of work in analysing the implications of firm-level strategic

interactions for optimal subsidy design in a deregulated environment.

Therefore, in this chapter, we develop a stylised, game-theoretic real options

model for analysing the interaction between a Government and two symmetric firms

(Grenadier, 1996; Thijssen et al., 2012). More specifically, we assume that the Gov-

ernment offers a unilateral subsidy to the first investor (leader) in the form of a cash

grant, while imposing a tax rate on the firms’ revenues. Our work does not con-

sider bilateral subsidisation schemes, as these often arise in asymmetric competition

(Lahiri and Ono, 1999; Toshimitsu, 2003; Yang and Nie, 2015; Nie et al., 2020), but

focuses on how the entry of a follower, in the context of symmetric duopoly, impacts
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the alignment of the Government’s and the leader’s objectives regarding optimal

subsidisation and capacity investment policies. We begin with the benchmark case

of monopoly, which we subsequently extend to pre-emptive and non-pre-emptive

duopolistic competition. In all cases, we derive the equilibrium subsidisation policy

together with the equilibrium capacity investment policy for the monopolist, leader

and follower. The subsidisation and capacity investment policies are derived under

a profit and welfare-maximising Government, thus allowing comparison of results

under optimisation objectives that have so far been considered separately in the

existing literature.

Thus, our work contributes to the existing literature on strategic capacity in-

vestment that ignores either economic uncertainty (Nie et al., 2016) or strategic

interactions between private firms and the Government (Huisman and Kort, 2015).

By integrating these features in a bi-level real options framework, we are able to

derive new insights on the Government’s subsidisation policy and a firm’s capacity

investment policy. Our results complement prior contributions on duopolistic com-

petition that ignores the interaction between private firms and a Government, as

they indicate that both the market structure and the type of duopolistic compe-

tition can have a significant impact on the equilibrium subsidisation and capacity

investment policy. Contrary to conventional intuition, we find that, even though the

follower receives no support from the Government, they can actually benefit from the

leader’s subsidy and invest not only earlier but also in greater capacity. Moreover, it

is shown that the loss in the value of the leader, due to the presence of a rival, rela-

tive to the monopolist increases with price uncertainty and that, although a subsidy

can mitigate this loss, its effect becomes less pronounced as uncertainty increases.

Our results also suggest that a profit (welfare)-maximising Government does not

offer (offers) a subsidy in a highly uncertain environment or when the tax rate is

low, while a higher tax rate does not always decelerate investment. Finally, we find

that, while competition is always desirable for a social planner, a profit-maximising

Government may benefit more under pre-emptive competition.
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3.3 Problem formulation

3.3.1 Model setting

We consider two symmetric firms, each with a perpetual option to invest in a project

of infinite lifetime. The firms have discretion over both the timing of investment and

project scale and face demand uncertainty. The exogenous demand shock process is

given by

dXt = µXtdt+ σXtdWt, X0 ≡ X, (3.1)

where t ≥ 0 denotes time, µ > 0 is the annual growth rate, σ > 0 is the annual

volatility and W = {Wt : t ≥ 0} is the standard Brownian motion. Also, we assume

that both the private firms and the Government are risk-neutral and denote by r > µ

the risk-free rate (Silaghi and Sarkar, 2021). Thus, as in Hagspiel et al. (2016b) and

Jeon (2021), the output price Pt is given by

Pt = Xt(1− ηQt), (3.2)

where Qt is the total market output at time t and η > 0 is the price elasticity of the

inverse demand function. Since the firms face no variable operating cost, we assume

that, after investing, they both produce at full capacity2 (Dobbs, 2004).

To incentivise investment under market structure i ∈ {m, p, n}, that is,

monopoly, pre-emptive duopoly, or non-pre-emptive duopoly, the Government pro-

vides a unilateral subsidy to the first investor in the form of a lump-sum cash grant,

denoted by Si. This is consistent with Nie et al. (2016) and Jung and Feng (2020),

who show that the Government has less incentive to subsidise the follower over the

leader. Indeed, granting a subsidy to the follower may reduce a firm’s incentive to

invest first and, therefore, we do not consider this case. Subsidising the follower

could be intended to offset a strategic disadvantage and would be pertinent within

asymmetric competition, but less plausible in a symmetric duopoly where the firms

2In Chapter 3 and 4, we assume that the firms have to produce up to capacity. This assump-
tion aligns with Dixit (1980) that entry deterrence strategies under competition are most effective
when firms commit to operating at full capacity. Furthermore, when technology learning is consid-
ered, firms have a stronger motivation to maximise production capacity as it leads to cumulative
experience, ultimately expediting cost reduction (Della Seta et al., 2012).
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are assumed to be identical3.

Since the Government receives tax income from the projects’ operating cash flow

in the form of a corporate tax τ ∈ [0, 1], it may pursue a profit (π) maximisation

objective. Alternatively, it may maximise social welfare (w). To distinguish between

the two, we denote the equilibrium subsidy by S̃ki , where k ∈ {π,w}; for example,

S̃πm corresponds to the equilibrium subsidy under monopoly for a profit-maximising

Government.

We denote by Tij the random time at which firm j ∈ {l, f}, i.e., a leader

or a follower, respectively, enters the industry. Also, we denote the investment

threshold of each firm by Xij and its capacity by Qij , with optimal thresholds(
X∗
ij , Q

∗
ij

)
and equilibrium thresholds

(
X̃k
ij , Q̃

k
ij

)
. For example, if the subsidy is

exogenously defined, then the optimal investment threshold and project scale of the

non-pre-emptive leader is denoted by X∗
nl and Q∗

nl, respectively. If the subsidy is

endogenously defined via alignment of the firm’s and the Government’s optimisation

objectives, then the equilibrium investment threshold and project scale are denoted

by X̃π
nl = X∗

nl

(
S̃πn

)
and Q̃πnl = Q∗

nl

(
S̃πn

)
, respectively. The investment cost I(·) is

assumed to be a linear function of the installed capacity, i.e., I(Qij) = δQij , δ > 0

(Bigerna et al., 2019; Nagy et al., 2021). Finally, we denote by Fij(·) the value of

the firm’s investment opportunity, by Vij(·) the expected value of the active project,

and by Gki (·) the Government’s value function. As in, for example, Dangl (1999),

each firm’s optimisation objective at time t is summarised as

Fij (Xt, t) = max

{
e−r∆tEXt [Fij(Xt+∆t, t+∆t)] ,max

Qij

Vij (Xt, Qij)

}
, (3.3)

where EXt [·] denotes the expectation conditional on the demand shock level Xt. The

outer maximisation represents the firm’s decision to either postpone investment or

invest immediately at time t. As suggested by the first argument, if the firm defers

investment for a time interval ∆t, then its return is the discounted expected value

3The Government may threaten to subsidise the follower to force the leader accept a smaller
subsidy and, to maintain the first-mover advantage, a firm will always accept a smaller subsidy.
However, the Government does not necessarily benefit from such a bargain, as offering a smaller
subsidy to the leader delays both firms’ investment, and the present value of their revenues upon
investment is reduced due to the discounting effect.
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(conditional on the current demand level Xt) of waiting to invest after ∆t, reflecting

the expected capital appreciation of the option to invest. This value is compared

with the second argument that reflects the firm’s value function under immediate

investment, where the firm must choose the size of the project so as to maximise its

expected net present value at investment.

3.3.2 Monopoly

This problem has already been examined by Lukas and Thiergart (2019), albeit in

the absence of an inverse demand function. By contrast, we assume here that the

firm has market power, and present the results under the assumptions of Section

3.3.1 for ease of reference and comparison with the case of duopoly. As shown at

the top of Figure 3.1, the monopolist can choose the investment time, Tm, at which

they install the capacity Qm and incur the investment cost, δQm, less the cash

grant, Sm. Meanwhile, upon the monopolist’s investment, the Government receives

a perceptual stream of tax income from the operating project.

Monopolist

(1− τ)(1− ηQm)QmXt · · ·

0 Tm t

− (δQm − Sm)

Government
τ (1− ηQm)QmXt · · ·

0 Tm t

−Sm

Figure 3.1: Irreversible capacity investment and subsidy design under monopoly.

We first assume that the monopolist does not have the option to postpone

investment and, therefore, must invest immediately. By exercising a now-or-never

investment opportunity, the monopolist knows the price of the output and must

determine the corresponding size of the project by maximising, with respect to Qm,

the discounted to time zero expected project value given by

Vm(X,Qm, Sm) = EX
[∫ ∞

0
(1− τ)(1− ηQm)QmXte

−rtdt− (δQm − Sm)

]
. (3.4)
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The optimal capacity satisfying

Φm(X,Sm) = max
Qm

Vm(X,Qm, Sm)

is obtained by applying the first-order necessary condition (FONC) to (3.4) and is

given by

Q∗
m =

1

2η

(
1− δ(r − µ)

(1− τ)X

)
. (3.5)

Next, we assume that the demand is too low to justify immediate investment.

Subject to the optimal capacity choice at investment, i.e., the inner maximisation

in (3.3), the monopolist’s objective upon deferred investment is to determine the

random first-passage time of Xt through the investment threshold from below, i.e.,

Tm = inf {t ≥ 0 : Xt ≥ Xm}. The monopolist’s optimisation objective is

Fm(X,Sm) = sup
Tm∈S

EX

[∫ ∞

Tm

(1− τ)(1− ηQ∗
m)Q∗

mXte
−rtdt− (δQ∗

m − Sm)e−rTm

]
, (3.6)

where S is the set of stopping times of the filtration generated by Xt. We can then

rewrite (3.6) using the law of iterated expectations and the strong Markov property

of the geometric Brownian motion4:

Fm(X,Sm) = sup
Tm∈S

EX

[
e−rTm

]
Φm(Xm, Sm) = max

Xm>X

(
X

Xm

)β

Φm (Xm, Sm) , (3.7)

where the second equality follows from the stochastic discount factor EX
[
e−rTm

]
=

(X/Xm)
β (Dixit and Pindyck, 1994, p. 315), with β > 1 the positive root of σ2x(x−

1)/2 + µx− r = 0.

By applying the FONC to the unconstrained optimisation problem (3.7) and

integrating condition (3.5) for optimal capacity choice at investment, where we set

X = X∗
m, we obtain the optimal investment policy. All proofs can be found in

Appendix B.

Proposition 3.3.1. The following results hold:

4For each s ≥ 0, XTm+s is independent of the past given XTm .
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1. The optimal investment threshold under monopoly is given by

X∗
m(Sm) =


max{X, c(Sm)}, if Sm ≤

(
β−

√
β2−1

)
δ

2βη

X, if otherwise

(3.8)

and the optimal capacity by

Q∗
m(Sm) =


δ+2βηSm+

√
δ2−4β2ηSm(δ−ηSm)

2(β+1)ηδ , if X < X∗
m(Sm)

1
2η

(
1− δ(r−µ)

(1−τ)X

)
, if otherwise

, (3.9)

where

c(Sm) =
r − µ

1− τ

(β + 1)δ2

βδ − 2βηSm −
√
δ2 − 4β2ηSm(δ − ηSm)

.

2. Both the optimal investment threshold and optimal capacity decrease with in-

creasing subsidy5.

As suggested in the bottom part of (3.8), if the subsidy is high enough, it outweighs

the value of waiting and the monopolist is better off investing immediately and

installing the capacity indicated in the bottom part of (3.9). Otherwise, the optimal

investment policy is given in the top parts of (3.8) and (3.9).

Next, we analyse the Government’s decision and derive the optimal (equilib-

rium) subsidy. Upon the monopolist’s investment at Tm, the Government receives

a perceptual stream of tax income from the operating project. Hence, the Govern-

ment’s discounted net income at time 0 is given by

Gπm(X,Sm) = EX

[∫ ∞

T ∗
m

τ(1− ηQ∗
m(Sm))Q

∗
m(Sm)Xte

−rtdt− Sme
−rT ∗

m

]

=

(
X

X∗
m(Sm)

)β [
τ(1− ηQ∗

m(Sm))Q
∗
m(Sm)

X∗
m(Sm)

r − µ
− Sm

]
. (3.10)

We assume that the Government chooses the level of subsidy so as to maximise

5The latter is due to the assumption of a lump-sum subsidy that remains constant regardless
of the firm’s investment size. However, if the Government offers a subsidy commensurate with the
investment size, e.g., sQ for s ≥ 0, the subsidy per unit of output, s, will have no impact on the
firm’s optimal capacity.
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its net income, i.e., S̃πm = argmaxSm≥0G
π
m(X,Sm). The equilibrium subsidisation

strategy for the Government is given in the following proposition.

Proposition 3.3.2. The equilibrium subsidy of a profit-maximising Government

under monopoly is

S̃πm =



0, if r−µ
1−τ

β+1
β−1δ ≤ X

min{S1, S2}, if r−µ
1−τ

β+1√
β2−1

δ ≤ X < r−µ
1−τ

β+1
β−1δ

S1, if otherwise

(3.11)

with

S2 =
1

4βη

δ2 −A2

βδ −A
(3.12)

and

S1 =


δθ

2βηψ , if τ > 1
β+1

0, if otherwise

, (3.13)

where

A = βδ − r − µ

1− τ

(β + 1)δ2

X
, ψ =

(
τ

1− τ
− 1

β

)−2

− 1 and θ =
√
β2 + ψ − β.

As indicated in the top part of (3.11), the Government will not grant a subsidy if

the output price is high enough to allow the firm to invest immediately. Conversely,

if the output price is too low to justify immediate investment (bottom part), the

Government will grant a subsidy given in the top part of (3.13) if the corporate tax

rate is greater than the critical value 1/(β + 1)6. Finally, according to the middle

part of (3.11), the firm will postpone investment (invest immediately) in the absence

(presence) of a sufficiently high subsidy, where S2 is the minimum subsidy required

by the firm to undertake immediate investment. Notice that S1 is independent of

X and that the equilibrium subsidy depends on X only when S̃πm = S2, where

S2 decreases with increasing X. Having derived the equilibrium subsidy, we can

6It is worth noting that this critical value, 1/(β+1), increases (decreases) with greater uncertainty
and growth rate (interest rate). This implies that the Government tends not to provide a subsidy
when uncertainty is high.
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now introduce it into (3.8) and (3.9) to obtain the equilibrium investment threshold

X̃π
m = X∗

m

(
S̃πm

)
and equilibrium capacity Q̃πm = Q∗

m

(
S̃πm

)
.

Corollary 3.3.1. The equilibrium investment threshold under monopoly is given by

X̃π
m =


r−µ
1−τ

(β+1)δψ

βψ−θ(
√
ψ+1+1)

, if τ > 1
β+1

r−µ
1−τ

β+1
β−1δ, if otherwise

,

and the equilibrium capacity is given by

Q̃πm =



ψ+θ(
√
ψ+1+1)

2(β+1)ηψ , if τ > 1
β+1 and X < X̃π

m

1
(β+1)η , if τ ≤ 1

β+1 and X < X̃π
m

1
2η

(
1− δ(r−µ)

(1−τ)X

)
, if X ≥ X̃π

m

.

Consistent with extant contributions, we find that a larger subsidy accelerates

investment, thereby resulting in installing less capacity (see Proposition 3.3.1). We

also confirm that a higher tax rate reduces the firm’s incentive to invest and must be

offset by a larger subsidy in order to stimulate investment, as shown in Proposition

3.3.3. Note that this subsidy can never be infinite and is bounded from above

by (β −
√
β2 − 1)δ/(2βη). This is because as τ approaches 1, the firm’s incentive

to invest is extremely low and a large amount of subsidy is required to reduce

the investment threshold by a small amount. However, from the Government’s

perspective, it is not worth it because the extra tax income is not sufficient to cover

the cost of providing a greater subsidy. Consistent with conventional real options

literature, the results suggest that uncertainty increases the investment threshold

and the amount of installed capacity, however, as we will show in Section 3.4, its

effect on equilibrium subsidy is ambiguous and the Government is not willing to

provide a subsidy when uncertainty is high.

Proposition 3.3.3. The equilibrium subsidy increases with the corporate tax rate

while the monopolist’s equilibrium capacity decreases.

Furthermore, by allowing for an inverse demand function, we observe that the
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optimal (equilibrium) investment threshold depends on (is independent of) the price

elasticity of demand, η, as shown in Proposition 3.3.4. Intuitively, the investment

scale shrinks as η increases, so the Government has a greater incentive to grant

smaller subsidy. In turn, the reduction in subsidy postpones investment, thereby

offsetting the effect of increased η.

Proposition 3.3.4. An increase in the elasticity of demand decreases both the sub-

sidy and firm’s equilibrium capacity but has no effect on the investment threshold.

3.3.3 Non-pre-emptive duopoly

We begin with the symmetric, non-pre-emptive duopoly (Goto et al., 2008; Mason

and Weeds, 2010; Siddiqui and Takashima, 2012), where the leader’s role is assigned

exogenously. As shown in Figure 3.2, the leader enjoys monopoly profits from time

Tnl until the follower’s entry at time Tnf
7. Upon that, the total market output

increases from Qnl to Qnl + Qnf , whereas the market price per unit output drops

from (1− ηQnl)Xt to (1− ηQnl − ηQnf )Xt. This trade-off directly affects the tax

income of the Government along with the subsidy level, and, in what follows, we

conduct a step-by-step analysis in the order of follower, leader and Government to

obtain their optimal strategy.

3.3.3.1 Follower

We assume that the leader has already entered the market, and begin by analysing

the follower’s capacity investment policy. Given the leader’s optimal capacity, the

follower’s value of the active project is

Vnf (X,Qnf ;Qnl) = EX

[∫ ∞

0

(1− τ) (1− ηQnl − ηQnf )QnfXte
−rtdt− δQnf

]
. (3.14)

In solving Φnf (X;Qnl) = maxQnf
Vnf (X,Qnf ;Qnl), we get, by applying the FONC,

the follower’s condition for optimal capacity at investment

Q∗
nf (X;Qnl) =

1

2η

(
1− ηQnl −

δ(r − µ)

(1− τ)X

)
. (3.15)

7This plot corresponds to the leader’s entry deterrence strategy as introduced in Huisman and
Kort (2015). Considerations related to other strategies are discussed later on, e.g., when the follower
undertakes immediate investment following the leader’s actions.
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Leader
(1− τ)Xt (1− ηQnl)Qnl (1− τ)Xt (1− ηQnl − ηQnf )Qnl · · ·

0 Tnl Tnf t

− (δQnl − Sn)

Follower
(1− τ)Xt (1− ηQnl − ηQnf )Qnf · · ·

0 Tnf t

−δQnf

Government
τXt (1− ηQnl)Qnl τXt (1− ηQnl − ηQnf ) (Qnl +Qnf ) · · ·

0 Tnl Tnf t

−Sn

Figure 3.2: Irreversible capacity investment and subsidy design under duopolistic compe-
tition.

Next, we assume that immediate investment is not possible and, similarly to

the case of monopoly, we derive the follower’s expected option value

Fnf (X;Qnl) = sup
Tnf∈S

EX

[∫ ∞

Tnf

(1− τ)
(
1− ηQnl − ηQ∗

nf

)
Q∗
nfXte

−rtdt− δQ∗
nfe

−rTnf

]

= max
Xnf>X

(
X

Xnf

)β
Φnf (Xnf ;Qnf ) . (3.16)

The FONC applied to (3.16) together with the condition for optimal capacity choice

at investment yield the expression for the optimal investment threshold, X∗
nf (Qnl),

and the optimal capacity, Q∗
nf (Qnl), as shown in Proposition 3.3.5. Note that, unlike

the case of monopoly, the optimal investment policy of the follower depends on that

of the leader.

Proposition 3.3.5. For Qnl < 1/η, the optimal investment threshold of the follower

is given by

X∗
nf (Qnl) =

β + 1

β − 1

r − µ

1− τ

δ

1− ηQnl
(3.17)

and the optimal capacity by

Q∗
nf (Qnl) =

1− ηQnl
(β + 1)η

. (3.18)
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3.3.3.2 Leader

As shown in Figure 3.2, the leader enjoys monopoly profits from Tnl until Tnf . The

active project value of the non-pre-emptive leader is given by

Vnl (X,Qnl, Sn) = EX

[∫ T ∗
nf

0
(1− τ) (1− ηQnl)QnlXte

−rtdt− (δQnl − Sn)

]

+EX

[∫ ∞

T ∗
nf

(1− τ)
(
1− ηQnl − ηQ∗

nf

)
QnlXte

−rtdt

]

=
1− τ

r − µ
(1− ηQnl)QnlX − 1− τ

r − µ
ηQ∗

nfQnlX
∗
nf

(
X

X∗
nf

)β
− (δQnl − Sn) , (3.19)

where the first term reflects the monopoly profits of the leader in the absence of the

follower, the second term is the expected loss in value due to the follower’s entry,

and the third term is the investment cost reduced by the subsidy. We maximise the

leader’s active project value, that is, Φnl (X,Sn) = maxQnl
Vnl (X,Qnl, Sn), and the

option value of the non-pre-emptive leader is given by

Fnl(X,Sn) = max
Xnl>X

(
X

Xnl

)β
Φnl (Xnl, Sn) . (3.20)

Solving (3.20) gives the optimal investment threshold, X∗
nl(Sn), and optimal capac-

ity, Q∗
nl(Sn), of the leader, as we show in Proposition 3.3.6.

Proposition 3.3.6. For X < X∗
nl, the optimal capacity of the leader under non-

pre-emptive duopoly is obtained as the solution to

δ

(
1−

(
β

β + 1

δQnl − Sn

δQnl

)β
)
(1− (β + 1)ηQnl)Qnl − (1− 2ηQnl)βSn = 0, (3.21)

and the optimal investment threshold is given by

X∗
nl(Sn) = max

{
X,

β

β − 1

r − µ

1− τ

δQ∗
nl − Sn

(1− ηQ∗
nl)Q

∗
nl

}
. (3.22)

For X∗
nf > X ≥ X∗

nl, the optimal investment capacity of the leader is the solution to

1− τ

r − µ
(1− 2ηQnl)X−δ− δ

β − 1

(
β − 1

β + 1

1− τ

r − µ

1− ηQnl
δ

X

)β (1− (β + 1)ηQnl
1− ηQnl

)
= 0
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and, for X ≥ X∗
nf ≥ X∗

nl,

Q∗
nl(Sn) =

1

2η

(
1− r − µ

1− τ

δ

X

)
, for X ≥ r − µ

1− τ
δ. (3.23)

Note that by setting Sn = 0 and τ = 0, we can retrieve the optimal investment

policy presented in Huisman and Kort (2015), where the non-pre-emptive leader’s

investment decision aligns with that of the monopolist (see Proposition 3.3.1). More

specifically, the optimal investment decisions as indicated in (3.21) and (3.22) corre-

spond to what Huisman and Kort (2015) introduced as the entry deterrence strat-

egy. That is, when the initial price, X, is low, the leader can deter the follower

from entering the market and enjoy a period of monopoly by investing in a capacity

greater than a certain level8. Indeed, from (3.17) and (3.22), we can show that

X∗
nl(S) < X∗

nf for any S ≥ 0 if X is low. On the other hand, when the initial price,

X, is high, the leader’s ability to deter the follower’s entry may diminish. Under such

circumstances, the leader can apply an entry accommodation strategy by opting for a

smaller capacity, which will trigger the follower to make its investment immediately

afterward9 (see the last scenario in Proposition 3.3.6). This study places its primary

emphasis on comprehending the disparities between the investment thresholds of the

leader and the follower. Accordingly, we restrict our analysis to the scenario where

the initial price level is low, to the extent that it always favors the leader’s adoption

of an entry deterrence strategy, leading to a situation where neither firm pursues

immediate investment.

Next, we analyse the optimal subsidisation policy of the Government. Following

from the bottom part of Figure 3.2, the Government’s value function is formulated

8As Proposition 3 in Huisman and Kort (2015) highlights, there exists a specific range for the
investment threshold within which the leader will contemplate the entry deterrence strategy. In our
particular context, this deterrence interval is defined as (X1, X2), with X1 being the solution to the

equation 1−τ
r−µ

X1 − δ −
(

1−τ
r−µ

β−1
β+1

X1
δ

)β
δ

β−1
= 0 and X2 = 2β−1

β+1
r−µ
1−τ

δ.
9Particularly, the leader will only employ this entry accommodation strategy if the optimal

capacity, as indicated in (3.23), results in the immediate investment of the follower. Interested
readers may refer to Proposition 4 in Huisman and Kort (2015).
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as

Gπn(X,Sn) = EX

[∫ T ∗
nf

T ∗
nl

τ (1− ηQ∗
nl(Sn))Q

∗
nl(Sn)Xte

−rtdt− Sne
−rT ∗

nl

]

+ EX

[∫ ∞

T ∗
nf

τ
(
1− ηQ∗

nl(Sn)− ηQ∗
nf (Sn)

) (
Q∗
nl(Sn) +Q∗

nf (Sn)
)
Xte

−rtdt

]

=

(
X

X∗
nl(Sn)

)β (
τ (1− ηQ∗

nl(Sn))Q
∗
nl(Sn)

X∗
nl(Sn)

r − µ
− Sn

)

+

(
X

X∗
nf (Sn)

)β
τ
(
1− 2ηQ∗

nl(Sn)− ηQ∗
nf (Sn)

)
Q∗
nf (Sn)

X∗
nf (Sn)

r − µ
,

(3.24)

where the first term is the discounted present value of the Government’s net tax

income with only one firm in the market, reduced by the subsidy; the second term

reflects the trade-off, whereby the total market output (instantaneous revenue) in-

creases (decreases) upon the follower’s entry. Again, the Government will set the

subsidy level so as to maximise its profit, i.e., S̃πn = argmaxSn≥0G
π
n(X,Sn), which in

this case is solved numerically. By inserting S̃πn in (3.17), (3.18), (3.21) and (3.22),

we obtain the equilibrium capacity, Q̃πnj , and investment threshold, X̃π
nj , for both

firms.

3.3.4 Pre-emptive duopoly

Here, we consider a non-cooperative game in which both leader and follower roles are

not assigned exogenously, therefore both firms have the incentive to pre-empt each

other to receive financial support. Note that, since the follower enters the market

after the leader has invested, the follower’s optimal investment policy is the same as

in Section 3.3.3.1. However, in contrast to Section 3.3.3.2, the optimal investment

threshold of the pre-emptive leader must be determined by considering the strategic

interactions with the follower. Therefore, we begin with the investment decision of

the leader. For a given Xpl, the pre-emptive leader’s capacity should maximise its

active project value:

Φpl (Xpl, Sp) = max
Qpl≥0

1− τ

r − µ
(1− ηQpl)QplXpl − (δQpl − Sp)−

1− τ

r − µ
ηQ∗

pfQplX
∗
pf

(
Xpl

X∗
pf

)β
 .

(3.25)
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The optimal capacity of the pre-emptive leader solves

1− τ

r − µ
(1− 2ηQpl)Xpl − δ − δ

β − 1

(
β − 1

β + 1

1− τ

r − µ

1− ηQpl

δ
Xpl

)β (
1− (β + 1)ηQpl

1− ηQpl

)
= 0.

(3.26)

Next, to determine the pre-emptive leader’s optimal investment threshold, we

consider the strategic interactions between the leader and the follower. As in Huis-

man and Kort (2015), the pre-emption trigger is defined as the intersection point of

the option value of the follower, Fpf (Xpl;Qpl(Sp)), and the active project value of

the leader, Φpl (Xpl, Sp), as formulated in (3.16) and (3.25), respectively. Therefore,

given a subsidy level Sp, the pre-emption trigger X̂ is the solution to equation

Fpf

(
X̂;Q∗

pl

(
X̂, Sp

))
= Φpl

(
X̂, Sp

)
. (3.27)

Intuitively, as illustrated in Figure 3.3, for Xpl < X̂ (Xpl > X̂) the demand is low

(high), and the expected option value of the follower is greater (smaller) than the

active project value of the leader so that each firm is better off being the follower

(leader). For a given investment threshold Xpl, each firm can pre-empt the other

by investing at a lower threshold, i.e., Xpl − ϵ for ϵ > 0. This continues until a

firm is indifferent between being the leader or the follower, which happens at the

intersection of the follower’s option value and the leader’s project value10. Note also

that Φpl (Xpl, Sp) is a linear function of Sp and that an increase in the subsidy shifts

the leader’s project value curve upwards (solid arrow). This leads to a leftward

movement of the intersection of the two curves along the follower’s option value

curve (grey), which lowers the investment trigger (dashed arrow).

3.3.5 Social welfare

From a social planner’s perspective, the goal of the Government is to maximise the

social welfare or total surplus, i.e., the sum of producer surplus (PS), consumer

surplus (CS) and Government’s revenues. Given that the latter are expenses for the

10It is worth noting that the pre-emption game operates in a Stackelberg setup, wherein the
pre-emptive follower optimally reacts to the decisions of the pre-emptive leader. Cournot competi-
tion, more relevant in an accommodation scenario (i.e., only when the initial price is high), is not
applicable here due to the significantly lower investment threshold of the leader under pre-emptive
duopoly.
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Figure 3.3: Active project value of leader with Sp = 0 (solid line) and Sp = 0.15 (dashed
line), and option value of follower (grey).

firm, a social planner maximises the sum of producer surplus and consumer surplus

without taxes and subsidies (Azevedo et al., 2021). Hence, following Huisman and

Kort (2015), the discounted consumer surplus is given by

CSm(X,Sm) =
1

2(r − µ)
ηX∗

m(Sm)Q∗
m

2(Sm)

(
X

X∗
m(Sm)

)β

, (3.28)

and the expected present value of the producer surplus is

PSm(X,Sm) =

(
1

r − µ
X∗

m(Sm)(1− ηQ∗
m(Sm))− δ

)
Q∗

m(Sm)

(
X

X∗
m(Sm)

)β

, (3.29)

where X∗
m(Sm) and Q∗

m(Sm) are given in (3.8) and (3.9), respectively. Thus, the

total social welfare is Gwm(X,Sm) = PSm(X,Sm) + CSm(X,Sm), and, using (3.28)

and (3.29), we obtain

Gw
m(X,Sm) =

(
X

X∗
m(Sm)

)β [
(2− ηQ∗

m(Sm))
X∗

m(Sm)

2 (r − µ)
− δ

]
Q∗

m(Sm). (3.30)

Note that given a fixed subsidy Sm, the firms’ capacity investment policy is the

same as in the previous sections. However, the conflict of interest between the firm

and the Government is weakening. This is because the firm’s value, reflected in

the producer surplus, is now part of the Government’s optimisation objective and

the cost of providing the subsidy is no longer a concern for the Government. We

derive the equilibrium subsidisation strategy for the social planner in the following

proposition, where S̃wm = argmaxSm≥0G
w
m(X,Sm).
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Proposition 3.3.7. The equilibrium subsidy of a social planner under monopoly is

S̃wm =



0, if r−µ
1−τ

β+1
β−1δ ≤ X

min{Sw1 , S2}, if r−µ
1−τ

β+1√
β2−1

δ ≤ X < r−µ
1−τ

β+1
β−1δ

Sw1 , if otherwise

(3.31)

with S2 given in (3.12) and

Sw1 =
τδ
(√

4τ2β2 + 3 (3− 4τ)− 2τβ
)

3βη (3− 4τ)
, for τ ̸= 0.75. (3.32)

Unlike Section 3.3.2, here we find that the Government will offer a subsidy even

when the tax rate is below 1/(β + 1). This can be attributed to the Government

no longer accounting for the tax income covering the cost of the subsidy. Next, we

obtain the equilibrium investment threshold and capacity as follow.

Corollary 3.3.2. For τ ̸= 0.75, the equilibrium investment threshold under

monopoly is given by

X̃w
m =

r − µ

1− τ

(β + 1)δ(3− 4τ)

β(3− 2τ)−
√

4τ2β2 + 3 (3− 4τ)
(3.33)

and the equilibrium capacity by

Q̃wm =


(3−4τ)−2τβ+

√
4τ2β2+3(3−4τ)

2(β+1)η(3−4τ) , if X < X̃w
m

1
2η

(
1− δ(r−µ)

(1−τ)X

)
, if X ≥ X̃w

m

. (3.34)

While Proposition 3.3.3 still holds in the case of a welfare-maximising Government,

we find that the impact of economic uncertainty on the equilibrium subsidy is no

longer the same. Indeed, contrary to Section 3.3.2, where a profit-maximising Gov-

ernment is better off providing a subsidy only when the uncertainty is low, Propo-

sition 3.3.8 indicates that a social planner is willing to provide more subsidy to the

firm when uncertainty is high.

Proposition 3.3.8. The equilibrium subsidy, investment threshold and capacity in-
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crease with economic uncertainty.

Under duopoly, the discounted social welfare is given in (3.35). More specifi-

cally, the first term is the total surplus of a monopoly market and the second term

represents the increment in social welfare due to the entry of the second investor.

Gw
i (X,Si) =

(
X

X∗
il(Si)

)β [
(2− ηQ∗

il(Si))
X∗

il(Si)

2(r − µ)
− δ

]
Q∗

il(Si)

+

(
X

X∗
if (Si)

)β [(
2− 2ηQ∗

il(Si)− ηQ∗
if (Si)

) X∗
if (Si)

2(r − µ)
− δ

]
Q∗

if (Si)

(3.35)

Again, the equilibrium subsidy can be solved numerically by integrating the

optimal investment strategies of the leader and follower into (3.35) and maximising

it with respect to Si, i.e., S̃
w
i = argmaxSi≥0G

w
i (X,Si). By inserting S̃wi back into the

optimal investment strategies of the firms, we can obtain the equilibrium capacity,

Q̃wij , and investment threshold, X̃w
ij , for both firms.

3.4 Numerical examples and analysis

In this section, we illustrate our model and key findings through a set of numerical

examples. Specifically, we demonstrate how strategic interactions with the Govern-

ment may impact a firm’s capacity investment decision and how the equilibrium

subsidisation policy depends on the market structure, type of duopolistic compe-

tition and the Government’s optimisation objective. We adopt baseline parameter

values from the real options, corporate finance and operational research literature

(see Dixit and Pindyck, 1994; Huisman and Kort, 2015; Hagspiel et al., 2016a), in

particular, r = 10% per year, µ = 6% per year, σ = 10% per year, τ = 0.4 per

year, δ = £0.1 and η = 0.05 per unit output. We set X = £0.005 to ensure that

firms do not undertake immediate investment while we analyse the impact of the

different parameters on the firms’ equilibrium investment threshold. In doing so, we

additionally take into account the empirical analysis of renewable subsidy policy of

Bigerna et al. (2019). We choose to perturb our base parameter values around their

estimates according to r ∈ (0.06, 0.15), µ ∈ (0.03, 0.08) and σ ∈ (0, 0.5). We also

consider τ ∈ (0, 0.7) and η ∈ (0.04, 0.1); finally, we note that the ratios δ/X in our

and their study are comparable. Overall, this way we first ensure that our analysis
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is not limited to a single set of parameter values; second, we show the robustness

and range of our results under stressed parameter values.

Figure 3.4 confirms the impact of an exogenous subsidy on the optimal invest-

ment threshold and optimal capacity of the monopolist, and extends the results to

the duopoly case. Although conventional intuition suggests that the follower will

be worse off if not subsidised, we interestingly find that the follower not only en-

ters the market earlier (left panel), but also installs more capacity (right panel)

if the Government provides more subsidy to the leader. This seemingly implausi-

ble result occurs because the follower’s investment threshold (capacity) is positively

(negatively) correlated with the leader’s capacity (see also expressions 3.17–3.18),

despite the fact that the follower’s investment strategy is not directly affected by

the subsidy. Indeed, the total market output is bounded due to the inverse demand

function, which means that a greater capacity of the leader will squeeze the fol-

lower’s market share. However, by receiving a subsidy, the leader will invest earlier

in a smaller project, stimulating the follower’s motivation to gain a larger market

share. On the other hand, the market output price after the leader’s investment

is higher if the leader decides to invest less, increasing the follower’s incentive to

invest earlier. This reveals an indirect effect of the subsidy that is not captured

when firm-level strategic interactions are ignored and firms are price takers.

Figure 3.4: Impact of exogenous subsidy on firms’ optimal investment threshold (left
panel) and capacity (right panel) under monopoly, non-pre-emptive duopoly
and pre-emptive duopoly, with corresponding equilibrium subsidies Sπ

i =
0.0221, 0.1500 and 0 (vertical lines) when the Government maximises the
profit.
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The implications of economic uncertainty for each firm’s investment policy un-

der an endogenously defined subsidy when the Government maximises the profit are

illustrated in Figure 3.5. As indicated on the left panel, the equilibrium investment

thresholds increase with uncertainty under all market structures. This is attributed

to greater uncertainty increasing the opportunity cost of investment and, in turn,

the value of waiting. However, interestingly, the right panel shows that, while the

leader’s equilibrium capacity strictly increases with uncertainty, this is not true for

the follower. This happens because greater uncertainty raises follower’s incentive

to invest later in more capacity, yet the follower’s capacity is negatively correlated

with the leader’s, as suggested by (3.18). There are therefore two opposing effects

with the former dominating (being dominated by) the latter when σ is small (large).

Qualitative similar results hold for a Government that maximises social welfare.

Figure 3.5: Impact of uncertainty on the equilibrium investment threshold (left panel) and
equilibrium capacity (right panel) under a profit-maximising Government.

The left plots (black lines) in Figure 3.6 confirm the ambiguous impact of price

uncertainty on the equilibrium subsidy when the Government maximises the profit,

and this is extended to the duopoly case, whereby an increase in uncertainty can

lead to an increase (decrease) of the equilibrium subsidy if σ is small (large). The

Government stops eventually subsidising the leader in a highly uncertain environ-

ment. This can be attributed to the rapid increase of the investment threshold when

uncertainty is high (see left panel of Figure 3.5), which has a negative impact on

the discounting of the Government’s payoff. In this case, the effectiveness of the

subsidy is reduced, so that the additional tax income cannot cover the cost of sub-
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sidisation. Also, although the Government’s incentive to offer a subsidy is low under

a pre-emptive duopoly, S̃πp > 0 is still possible when the tax rate is sufficiently high.

As illustrated on the right panel of Figure 3.6, a larger subsidy is required to

mitigate the leader’s loss in project value due to an increase in the tax rate, yet

the equilibrium subsidy of the non-pre-emptive leader is initially (eventually) higher

(lower) than that of the monopolist. The former is driven by the need for financial

support due to competition, i.e., the Government is willing to grant a subsidy to

the leader even if the tax rate is relatively low (i.e., 0.29 < τ < 0.38), when no

subsidy is offered to the monopolist if τ < 0.38. The latter is due to the existence

of a ‘ceiling’, so that a subsidy above this level (e.g., 0.17 for the non-pre-emptive

leader) always induces immediate investment. Thus, we get the maximum subsidy

of 0.23 under monopoly and 0.17 under non-pre-emptive duopoly, which explains

why the equilibrium subsidy of the non-pre-emptive leader no longer increases when

τ > 0.47. Additionally, the critical tax level leading to a positive subsidy is found to

be the highest under a pre-emptive duopoly market (τ = 0.5). This is because the

pre-emptive leader invests earlier than the monopolist or non-pre-emptive leader,

and, therefore, does not need as much fiscal stimulus as the latter.

Contrary to the profit-maximising Government, we find that a social planner

(grey lines) is willing to provide a subsidy even when the tax rate is low (see right

panel) and, as shown in Proposition 3.3.8, this subsidy increases with uncertainty

(see left panel). This happens because the conflict of interest between the firm

and the Government weakens when the Government maximises the social welfare,

as a large proportion of the Government’s value function (i.e., producer surplus)

coincides with the firms’ value functions (Cui et al., 2019). In addition, the cost of

subsidy is no longer a concern for a social planner. Therefore, the social planner

is more willing to provide larger subsidies whenever required by the firm and, as τ

increases, the equilibrium subsidy also gradually increases. Finally, we observe that

the equilibrium subsidy is still the lowest under pre-emptive duopoly, confirming

that it is not optimal for the Government to grant too much subsidy, as it may

induce more intense competition at an undesirable level.
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Figure 3.6: Impact of price uncertainty on the equilibrium subsidy (left panel) and impact
of tax rate on equilibrium subsidy (right panel) under a profit-maximising
(black lines) and welfare-maximising (grey lines) Government.

Figure 3.7 illustrates the impact of the tax rate on the firms’ capacity investment

policy when the Government maximises the profit (top panels) and social welfare

(bottom panels). Interestingly, the top-left panel indicates that the equilibrium

investment threshold does not necessarily increase with τ in all cases. This is because

the subsidy accelerates the leader’s investment and cancels out (all or a part of)

the impact of a higher tax rate. Indeed, an increase in τ in the region 0.29 <

τ < 0.48 leads to an abrupt growth of the equilibrium subsidy, especially when the

Government maximises its profit (see black solid and dotted plots on the right panel

of Figure 3.6). This can outweigh the effect of larger τ and accelerate investment.

However, increasing τ has a slow-down effect on the increase of the equilibrium

subsidy, such that the increasing subsidy gradually becomes dominated by the rising

tax rate, and the investment is deferred. Also, as shown in Propositions 3.3.1 and

3.3.6, the optimal (equilibrium) capacity of each firm is not (is) affected by the tax

rate. Specifically, as shown by the top-right panel in Figure 3.7, the equilibrium

capacity of the monopolist, non-pre-emptive and pre-emptive leader decreases with

increasing τ when this is greater than 0.38, 0.3 and 0.5, respectively, but it is constant

when τ is too low to justify provision of a subsidy. In contrast, the capacity of the

non-pre-emptive and pre-emptive follower exhibits a reverse pattern. Again, this

can be attributed to the multiplicative demand function, which induces a bounded

market output that has to be shared between the two firms. As shown in (3.18),



3.4. Numerical examples and analysis 74

if the leader decides to invest more (less), there will be a smaller (bigger) market

left for the follower. In addition, as the leader’s capacity decreases with rising τ

(see also Proposition 3.3.3), the market price before the entry of the follower, i.e.,

Pt = Xt(1−ηQil) for i ∈ {n, p}, will be higher, raising the incentive of the follower to

invest in larger capacity. On the other hand, the equilibrium investment threshold

is strictly increasing with τ when the Government maximises the social welfare, as

shown in the bottom-left panel. This is because, although the Government is willing

to grant a subsidy when τ is low, this subsidy grows relatively slowly with τ (see

grey lines on the right panel of Figure 3.6), so that the effect of extra subsidy is

dominated by that of rising tax rate.

Figure 3.7: Impact of tax rate on firms’ equilibrium investment threshold (left panels) and
equilibrium capacity (right panels) when the Government maximises the profit
(top panels) or social welfare (bottom panels).

Next, Figure 3.8 illustrates how the leader’s loss in value (relative to the mo-

nopolist) due to the presence of the rival is affected by uncertainty. On the left

panel, we assume an exogenous subsidy level, where Si = 0 (dashed line) or 0.3

(solid line) for i ∈ {m,n, p}, and observe that the leader’s relative loss in the value
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increases with uncertainty. Intuitively, this is because greater uncertainty delays

the follower’s entry but increases its impact. We also observe that the pre-emptive

leader incurs a larger loss than the non-pre-emptive leader under a fixed subsidy.

This is because the former invests earlier and scarifies substantial revenue due to

the threat of pre-emption. Our results show that a subsidy can offset the leader’s

relative loss, however, as uncertainty increases, the impact of the subsidy becomes

less pronounced due to the discounting effect, as the investment threshold of both

the monopolist and leader increases rapidly with σ (left panel of Figure 3.5). There-

fore, the relative loss in value of the leader with Government support (black lines)

converges to that without Government support (grey lines) as uncertainty grows.

The right panel presents a similar trend, except that we use the equilibrium subsidy,

investment threshold and capacity to obtain the leader’s relative loss in value for the

case of a profit-maximising and a welfare-maximising Government (black and grey

lines, respectively).

Figure 3.8: Left: effect of price uncertainty on relative loss in value of the non-pre-emptive
leader (solid lines) and pre-emptive leader (dashed lines) for fixed subsidy level
0 (grey) and 0.1 (black). Right: exogenous subsidy replaced with equilibrium
subsidy.

Figure 3.9 presents the effect of price elasticity of demand, η, on each firm’s

investment policy. The top-right panel indicates that a higher (lower) η allows

for a larger (smaller) installed capacity. However, while the optimal investment

thresholds are affected by η, as shown in Propositions 3.3.1 and 3.3.6, the top-left

panel suggests that the equilibrium investment thresholds are actually independent

of η. This is due to the fact that the equilibrium subsidy is endogenously chosen
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and thus varies with η. Intuitively, as the investment scale shrinks with increasing

η, the total investment cost drops and so does the equilibrium subsidy (see bottom

panel). In turn, a decrease in the subsidy delays investment, thereby offsetting the

impact of an increase in η.

Figure 3.9: Effect of price elasticity on firms’ equilibrium investment threshold (top-left
panel), equilibrium capacity (top-right panel) and equilibrium subsidy (bottom
panels).

Finally, Figure 3.10 illustrates how the Government’s value function depends on

price uncertainty and market structure. We find that both Government’s profit and

social welfare increase when uncertainty is higher as this motivates investment at a

higher price threshold and the installation of a larger project (see Figure 3.5). The

left panel of Figure 3.10 indicates that the Government’s profit is greater under pre-

emptive competition as both firms invest earlier and, thus, the effect of discounting

on its profit is not significant. Note that earlier investment does not necessarily

lead to a large loss in total market output, since even though the pre-emptive leader

invests in less capacity, the investment intensity of the pre-emptive follower is greater

than that of the non-pre-emptive follower. Also, the cost of the subsidy is minimum
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Figure 3.10: The impact of price uncertainty on Government’s profit (left panel) and social
welfare (right panel) under different market structures.

under pre-emptive competition. Interestingly, we observe a huge improvement in

Government’s value under non-pre-emptive duopoly under social welfare (right panel

of Figure 3.10). This is because the Government is no longer concerned about the

cost of the subsidy and, thus, the non-pre-emptive leader will receive more subsidy

from a social planner that rapidly grows with σ (left panel of Figure 3.6). Therefore,

competition is desirable for a social planner, while a profit-maximising Government

may benefit more under pre-emptive competition.

3.5 Concluding discussion

Despite their increasing prominence, models for analysing the interaction between

firm and Government-level policy-making do not account for critical features of a

deregulated environment, such as competition. In this chapter, we address this

disconnect by developing a bi-level real options framework for deriving the equilib-

rium Government subsidisation and firm-level capacity investment policy under a

pre-emptive and non-pre-emptive duopolistic competition.

Our results show that the insights of traditional bi-level real options models

under monopoly cannot be naturally transposed to a deregulated environment. In

particular, we find that strategic interactions with the Government can significantly

affect a firm’s capacity investment decision and that the equilibrium subsidisation

policy crucially depends on market structure and the type of duopolistic competi-

tion. Contrary to conventional intuition, we find that providing a larger subsidy to
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the leader can actually increase the follower’s incentive to invest earlier and in a big-

ger project. Furthermore, the results suggest that the loss in the value of the leader,

due to the presence of a rival, relative to the monopolist increases with economic

uncertainty and, although a subsidy can mitigate this loss, its effect becomes less

pronounced. We confirm that a profit-maximising Government is less willing to offer

a subsidy when uncertainty is high or the tax rate is low, and extend to demonstrat-

ing how the critical tax rate that leads to switching from a subsidy to a non-subsidy

regime changes under different market structures and types of duopolistic competi-

tion. Furthermore, we demonstrate how results are different when the Government

aims to maximise social welfare and show that competition can be desirable for a

social planner, while a profit-maximising Government may benefit the most from

pre-emptive competition.

Therefore, the policy-making and managerial relevance of our results is reflected

in the new insights gained when firm-level strategic interactions are integrated into

the evaluation of real options. In particular, not only is competition a key aspect

of deregulated industries and entails a loss in value relative to monopoly that must

be taken into account when designing subsidisation policies, but also the type of

competition can affect significantly a Government’s subsidisation policy. Similarly,

at the firm level, the interaction with Government policy-making produces dynam-

ics under which the investment policy deviates from that of traditional duopolistic

competition, which ignores such interactions. Such strategic interactions tend to be

overlooked in the literature that values bi-level real options, yet if their implications

are not properly understood, subsidisation policies will not be properly designed,

thus potentially inducing under or over-investment cycles and increased regulatory

risk following corrective policy actions. Indeed, the history of green investment in

Europe since 2000 includes several examples of under or over-incentivised policies

needing drastic adjustments. Also, in the context of public-private partnerships

(PPPs), the Governments of Mexico and Spain had to pay, respectively, $2.5 billion

and $8.9 billion to their private partners due to inefficient design (Silaghi and Sarkar,

2021).
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We also investigate the robustness of the results by replacing (3.2) with an

iso-elastic demand function, Pt = XtQ
−γ
t , γ ∈ (0, 1). We confirm that the subsidy

can still accelerate the firms’ investment and a higher price uncertainty induces

higher investment threshold and greater capacity for both firms. While the follower

can still benefit from the subsidy (by investing earlier), we find that its capacity

decreases with higher subsidy amount. This can be attributed to the unbounded

market output under an iso-elastic demand function, such that the follower can

always choose to invest more if the leader’s capacity increases (see also Boonman

and Hagspiel, 2014). Thus, in this case, the follower becomes the larger capacity

in the market and earns a greater profit. As a result, both firms want to be the

follower and have no incentive to invest first under pre-emptive duopoly.

In Chapter 4, we ignore firm-level strategic interactions and transition from

a lump-sum subsidy to a continuous price-based support, akin to a feed-in tariff.

This allows us to incorporate policy uncertainty (i.e., subsidy retraction) consid-

erations in our model, a common occurrence when new energy technologies reach

cost competitiveness driven by the learning effect. Nevertheless, the joint effect of

technological learning and subsidy retraction on a firm’s capacity investment and

the Government’s subsidy design has not received enough attention, making it an

important and unaddressed question.



Chapter 4

Optimal capacity investment and

subsidy design under technological

learning and uncertainty

Rising concerns about climate change have incentivised the deployment of alternative

energy technologies at unprecedented levels, which, in turn, require Government

support until they become cost-competitive. Although the duration of support often

correlates with the cost reduction progression as a result of technological learning,

this relationship is yet to be analysed to provide insights on optimal investment

and subsidy retraction. To this end, we develop a bi-level real options framework

to derive a private firm’s optimal investment as well as the Government’s optimal

subsidy retraction policy. We find that a larger subsidy can accelerate investment,

but its impact on project scale is ambiguous. A bigger project speeds up the cost-

reduction process, thereby incentivising a firm to install more capacity, but also

the retraction of subsidy as the operating and maintenance cost reaches grid parity

sooner. The results further suggest that, although the duration of the subsidy is

shorter when the learning rate is high, the firm is still willing to invest earlier.

Interestingly, a higher tax rate does not necessarily delay the investment or induce

a smaller project size.
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4.1 Introduction

Investment in alternative energy technologies (AETs) is critical to addressing press-

ing climate change concerns. However, the substantial capital requirements of these

technologies combined with increasing economic uncertainty raises private firms’ in-

centive to act more cautiously, thus reducing the likelihood of meeting timely the

required sustainability targets. Therefore, Governments worldwide have deployed

a wide range of support schemes to incentivise investment in AETs, which in turn

will facilitate faster technological learning and lower their investment and operating

costs towards commercial maturity (Yao et al., 2015; Pan et al., 2021; Zahoor et al.,

2022)1. Meanwhile, the maturity threshold, also referred to as grid parity, is attained

when an AET becomes cost-competitive, at which point market forces take over and

no further Government support is required. Although grid parity is among the key

determinants of the duration of Government support (Sendstad et al., 2022), mod-

els for analysing the correlation between grid parity and subsidy duration remain

underdeveloped and, therefore, the implications of technological learning for capac-

ity investment and optimal subsidy retraction remain an important open research

question.

Efficient subsidy design is critical, as under-subsidised projects may fail to incen-

tivise the necessary capacity investments, while over-subsidised projects can strain

the Government’s financial position. Additionally, empirical evidence on renewable

energy (RE) incentives and investment in Europe since 2000 emphasise how unex-

pected revisions of subsidy schemes can decelerate RE deployment, significantly. For

example, the effects of subsidy revisions in the UK energy sector saw investment in

wind and solar power fall by 56% after the Government banned subsidies for on-

shore wind and made massive cuts in funding for solar power in 2017 (Independent,

2018; Guardian, 2018). Empirical results also indicate that a retroactive subsidy

change decreases the investment rate by approximately 45% for solar photovoltaic

1Here, technological learning refers to learning-by-doing, as originally introduced by Wright
(1936). That is, the investment and operating costs of AETs decrease with cumulative energy
produced or capacity installed, which can be attributed to the growing experience of technicians,
technological breakthroughs, better use of preventive maintenance interventions and increasing
digital capabilities of firms (Kobos et al., 2006; Steffen et al., 2020).
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and 16% for onshore wind (Sendstad et al., 2022). Therefore, a stable policy envi-

ronment with credible policy commitments is crucial for incentivising private firms’

investments.

Analysing the implications of technological learning for capacity investment and

optimal subsidy design is a challenging task, in which the following trade-offs must

be balanced. First, from a private firm’s perspective, capacity investment decisions

are particularly risky, as a large capacity increases the downside risk in the event

of an unexpected recession, while a small capacity can lead to forgone revenues if

market conditions suddenly become favourable. Second, a large capacity accelerates

the learning process, which may cause an earlier subsidy retraction, as the operating

and maintenance (O&M) cost will reach grid parity sooner. Third, the duration of a

subsidy should be designed so that investment intensity targets are met in a timely

manner. However, a large (small) duration may induce a firm to invest earlier (later)

in a smaller (bigger) project. Finally, the subsidy level, digression rate or grid parity

should be determined endogenously aligning the profit-maximisation objective of a

firm and the Government.

Analysing these trade-offs is amenable to real options theory, which addresses

the problem of investment under uncertainty while reflecting the value from embed-

ded managerial discretion. In this chapter, we develop a real options framework to

analyse the interaction between a private firm’s capacity investment and the Gov-

ernment’s subsidy retraction policy. Specifically, the private firm holds the option

to invest in an AET, factoring in considerations related to technological learning

and price uncertainty. The firm receives price-based support, akin to a feed-in tariff

(FIT), wherein it receives a fixed support payment on top of the remuneration ob-

tained from selling the produced electricity in the market (Klein et al., 2008; Couture

and Gagnon, 2010). However, the support is subject to retraction once the technol-

ogy’s O&M cost drops to a certain threshold optimally chosen by the Government

so as to maximise its own net tax income. Thus, the contribution of our work is

threefold. First, we develop a suitable framework to analyse the trade-off between

technological learning and subsidy retraction in a firm’s optimal investment policy.
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Second, we obtain the equilibrium investment timing, project scale and subsidy re-

traction threshold by analysing the non-cooperative game between the Government

and a firm. Finally, we provide managerial insights that contribute to informed

decision-making for both parties.

We proceed by discussing some related work in Section 4.2 and present our

assumptions and notation in Section 4.3.1. In Section 4.3.2, we derive the equilibrium

investment policy of the firm as well as the equilibrium subsidy retraction policy

of the Government under a fixed project scale. We then allow in Section 4.3.3

for a continuously scalable capacity. Section 4.4 proceeds with various numerical

examples, results and policy implications, whereas Section 4.5 concludes this chapter.

Proofs of results are given in Appendix C.

4.2 Related work

The implications and effectiveness of different support schemes, e.g., renewable port-

folio standards, FITs, green-certificate trading and tax exemptions, for RE invest-

ment under uncertainty are addressed in the real options literature, with Danielova

and Sarkar (2011), Boomsma et al. (2012), Zhang et al. (2014) and Kitzing et al.

(2017) reflecting some relevant examples in the field. More recently, Bigerna et al.

(2019) consider a firm that has the option to invest in RE under economic uncer-

tainty and analyse how a feed-in premium affects the investment timing and project

scale. For a given environmental target capacity, they determine the optimal subsidy

level and investment threshold. Other examples in the same line of work include

Kim and Lee (2012), Ritzenhofen et al. (2016) and Li et al. (2020). However, despite

the important contribution, there are two key limitations. First, the effectiveness

of a subsidy is typically assessed ex post by analysing the impact of an exogenous

subsidy on the timing and intensity of RE investments, thus disregarding the interac-

tion between firm and Government policy-making (Alizamir et al., 2016). Second, it

overlooks that the subsidy level is often designed to gradually decline as RE becomes

more cost-competitive. Consequently, the potential adverse impact of subsidy di-

gression or retraction on RE investment has not been sufficiently explored (Ma et al.,
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2021).

The endogenous derivation of investment and subsidisation policies requires a

bi-level framework that aligns the firm- and Government-level optimisation objec-

tives. Examples of models where the investment and subsidisation policy are derived

ex ante by aligning the profit-maximising objective of a firm with the Government’s

objective of providing a subsidy at zero-expected cost, include Pennings (2000), Yu

et al. (2007) and Azevedo et al. (2021). Also, Lukas and Thiergart (2019) analyse a

firm’s optimal capacity investment and the Government’s subsidisation policy when

debt financing is possible. They derive the subsidy level that the Government should

offer ex ante so as to maximise their net tax income at the time of the firm’s invest-

ment. Although this work passes over the policy uncertainty and the implications

of subsidy retraction, a key result is that the capacity investment and subsidisa-

tion policies can differ substantially when the firm’s and Government’s optimisation

objectives are misaligned.

Allowing for policy uncertainty, Dalby et al. (2018) show that a decrease in the

expected time of a policy change postpones investment and find that investors prefer

a lower subsidy that is available for a longer time period to a larger subsidy with a

high risk of retraction. Also, Nagy et al. (2021) find that increasing the subsidy size

or the probability of subsidy retraction incentivises a firm to accelerate investment

at the expense of a smaller project. Similarly, Barbosa et al. (2020) analyse two FITs

under market and regulatory uncertainty, where the reduction of the tariff level is

modelled via a Poisson process, and find that an increase in the likelihood or size of

tariff reduction accelerates investment. Furthermore, Hagspiel et al. (2021) develop

a real options model for investment in a RE project, where a subsidy is available

for an exponentially distributed time period. They find that the effects of subsidy

retraction risk on the firm’s investment strategy differ significantly depending on

whether it is assumed to be time-dependent or constant over time.

The aforementioned approaches deal with the effects of policy uncertainty on

RE investment by making some probabilistic assumption about the time of subsidy

withdrawal, yet they overlook how this depends on technological learning. However,
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Governments’ policy-making often relies on technological learning, as the retraction

of a subsidy occurs when a RE technology approaches its grid parity (IRENA, 2022).

Hence, learning curves have been recognised as a critical factor behind a firm’s

production strategy and the Government’s energy planning and policy-making (Smit

and Junginger, 2007; Neij et al., 2017; Upstill and Hall, 2018), and various empirical

models are developed to obtain the learning curves of RE technologies (McDonald

and Schrattenholzer, 2001; Nemet, 2006; Söderholm and Sundqvist, 2007).

In particular, Steffen et al. (2020) estimate the O&M learning curves for onshore

wind and solar photovoltaic in Germany by analysing the empirical relationship

between cost reductions and the cumulative energy produced. Their results reveal a

substantial decrease in O&M costs as cumulative experience increases. In addition,

they demonstrate that learning-by-doing is one of the most pivotal mechanisms

contributing to this cost reduction. As indicated in Steffen et al. (2020), O&M costs

are non-negligible, typically accounting for 20%–25% of lifecycle costs for wind and

solar plants in Europe. More specifically, the cost reductions associated with each

doubling of cumulative experience range from 9.2% to 12.8% for onshore wind and

from 15.7% to 18.2% for solar photovoltaic technologies. Similar studies on the

impact of learning on O&M cost reduction of RE include Ederer (2015), Wiser et al.

(2019) and Victoria et al. (2021).

Within the context of investment under uncertainty, the implications of tech-

nological learning are analysed in Majd and Pindyck (1987), who assume a fixed in-

vestment size and a declining marginal cost as a function of cumulative capacity. In

the same line, Della Seta et al. (2012) allow for flexibility in both investment timing

and project scale. Their results indicate that the presence of technological learning

affects a firm’s investment, significantly. Specifically, a firm will invest later (earlier)

and in a larger (smaller) project if the learning process is slow (fast). Siddiqui and

Fleten (2010) consider a firm that may choose either an existing RE technology

or an unconventional energy technology that requires cost-reducing enhancement

measures prior to deployment. More recently, Sarkar and Zhang (2020) examine

the optimal investment and financing choices of a levered firm with a learning-curve
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technology and find that the optimal leverage ratio is an increasing function of the

learning speed.

In light of the previous discussion, with this chapter we contribute to the existing

literature by developing a stylised game-theoretic real options model for analysing

the strategic interaction between the Government and a private firm, and the joint

effect of technological learning and subsidy retraction on a firm’s optimal AET in-

vestment policy. More specifically, the learning effect is reflected in the decreasing

O&M cost of the AET, where an increase in the installed capacity accelerates the

accumulation of experience, thus resulting in a faster cost-reduction process. Mean-

while, the Government provides a fixed subsidy (per unit output) to the firm that

will be retracted when the AET become cost-competitive. We kick off with the

benchmark case where the firm has discretion only over the investment timing, and

derive the optimal subsidy retraction threshold for the Government along with the

firm’s equilibrium investment threshold. We then consider the joint determination

of investment timing and capacity size and analyse the impact of subsidy retraction

and technological learning on the firm’s investment strategy.

Consistent with Lukas and Thiergart (2019), Azevedo et al. (2021) as well our

results in Chapter 3, we find that a larger subsidy (i.e., a later subsidy retraction)

accelerates the firm’s investment; however, the optimal capacity size does not neces-

sarily decrease with larger subsidy. Results also suggest that technological learning

hastens investment, yet its impact on the equilibrium capacity is non-monotonic.

This can be attributed to the trade-off between cost reduction and subsidy retrac-

tion. We show that the equilibrium duration of the subsidy is shorter when the

learning rate is high, but, interestingly, the firm is still willing to invest earlier. In

addition, greater economic uncertainty hastens subsidy retraction and delays the

firm’s investment. Notably, our findings suggest that a higher tax rate does not al-

ways discourage the firm’s investment by causing delays or inducing smaller project

sizes. Finally, we demonstrate the value of production flexibility.
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4.3 Model

4.3.1 Problem formulation

We consider a private firm with a perpetual option to invest in an AET of infinite

lifetime. The firm has discretion over both the time of the investment and the size of

the project and faces demand uncertainty. The exogenous demand shock parameter

is denoted by Xt, where t ≥ 0 is continuous and denotes time, and is assumed to

follow a geometric Brownian motion:

dXt = µXtdt+ σXtdWt, X0 ≡ x,

where µ > 0 is the annual growth rate, σ > 0 the annual volatility and dWt the

increment of the standard Brownian motion. Thus, the output price Pt is given by

Pt = Xt (1− ηQt) ,

where Qt is the total market output at time t and η > 0 the price elasticity parameter

of the inverse demand function. Our analysis can accommodate a wide range of

demand functions (e.g., iso-elastic demand function), in this chapter we focus on a

linear demand function and leave the analysis related to other demand functions for

further research.

As illustrated in Figure 4.1, the firm invests at time Λ with capacity size Q

incurring a linear sunk cost δQ, δ > 0 (Bigerna et al., 2019; Nagy et al., 2021).

After investment has taken place, the project will operate at full capacity (Huisman

and Kort, 2015). The variable O&M cost is

Ct(Q) = C0e
−γQ(t−Λ), t ≥ Λ, C0 ≥ 0, (4.1)

where γ ∈ [0,∞) is an exogenous parameter that determines the speed of the learning

process (Della Seta et al., 2012; Sarkar and Zhang, 2020); a high (low) γ means that

the unit O&M cost declines rapidly (slowly) with cumulative production.

To stimulate the firm’s investment, the Government offers a subsidy S (per unit
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output per unit of time) to the firm that takes the form of a fixed premium on top

of the firm’s marginal revenues (Nagy et al., 2021; Barbosa et al., 2020; Nagy et al.,

2023). The subsidy is available when the firm invests, but its retraction is triggered

at time

T = inf{t : Ct(Q) < ωC0, 0 ≤ ω ≤ 1}, (4.2)

that is, once the O&M cost drops below a fraction ω of its starting level C0, where

ωC0 represents the grid parity (or maturity threshold) of this AET. More in detail,

ω signifies the ratio between the O&M cost when the subsidy is withdrawn at t = T

and the initial O&M cost at t = Λ. Thus, a small ω indicates that the initial cost

of the AET is much higher than its grid parity, and, therefore, the Government

is willing to provide the subsidy for a longer period; on the other hand, a large ω

corresponds to the case where the AET is close to its commercial maturity, thereby

the subsidy is expected to be withdrawn soon. According to (4.1) and (4.2), the

duration of the subsidy is

C0e
−γQ(T−Λ) = ωC0 =⇒ T − Λ = − lnω

γQ
, (4.3)

which implies that the firm will receive more subsidy if the Government retracts later

(by setting a smaller ω), and less subsidy if the learning process is too fast, i.e., high

learning speed or capacity size. Additionally, the Government receives corporate

tax, subject to rate τ , on the firm’s revenues. All cash flows are discounted at a

constant rate r.

Firm
(1− τ)(1− ηQ)Xt − Ct(Q) + S (1− τ)(1− ηQ)Xt − Ct(Q) · · ·

0 Λ t

−δQ

T

Government
τ (1− ηQ)Xt − S τ (1− ηQ)Xt · · ·

0 Λ T t

Figure 4.1: Instantaneous cash flows per unit output of the firm and Government.
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The firm’s investment threshold and installed capacity are denoted by X and Q,

while the optimal investment threshold and capacity by X∗ and Q∗. The equilibrium

subsidy retraction threshold is denoted by ω̃, with X̃ = X∗ (ω̃) and Q̃ = Q∗ (ω̃)

the firm’s equilibrium investment threshold and capacity, respectively. In addition,

V (·) denotes the expected value of the active project, F (·) the expected value of

the firm’s investment opportunity, and G(·) the Government’s value function. To

distinguish between the case of fixed and flexible capacity size, we denote the optimal

(equilibrium) decision variable(s) in the former case as X∗
f

(
X̃f and ω̃f

)
and the

objective functions of the firm and the Government as Vf (·), Ff (·) and Gf (·).

To facilitate the exposition of our results, we state our research questions in the

form of the following testable hypotheses:

H1: Technological learning and subsidy retraction are opposing forces with an am-

biguous combined impact on a firm’s capacity investment policy.

While a higher learning rate enhances cost reduction and incentivises greater

investment, it drives the cost closer to grid parity, triggering earlier subsidy

retraction. Consequently, the combined influence of technological learning

and subsidy retraction may result in a non-monotonic effect on the firm’s

investment size.

H2: Higher learning rate shortens the duration of the subsidy, yet may still accel-

erate the firm’s investment decision.

The duration of the subsidy given in (4.3) decreases with increasing γ, in-

dicating that the firm may receive a smaller subsidy if the learning curve is

steep. However, this does not necessarily discourage the firm’s investment,

as a higher learning rate speeds up the cost-reduction process and offsets the

effect of a smaller subsidy.

H3: An increase in the tax rate does not necessarily decelerate the firm’s investment

or decrease the size of the project.

Within a bi-level framework, the Government may consider setting a lower

subsidy retraction threshold, ωC0, to offset the adverse effect of a higher tax
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rate that tends to delay the firm’s investment. In addition, the presence of

technological learning can raise the firm’s incentive to opt for a bigger project

that facilitates faster O&M cost reductions, even when the tax rate is high.

4.3.2 Benchmark: fixed scale

In this section, we analyse the firm’s optimal investment and the Government’s

subsidy retraction policy, assuming that the firm has no discretion over project

scale. The firm’s value function under a now-or-never investment opportunity is

given by

Vf (x, ω) = Ex
[∫ ∞

0

(
(1− τ)(1− ηQ)Xt − C0e

−γQt + S · 1{e−γQt>ω}

)
Qe−rtdt− δQ

]
=

1− τ

r − µ
x(1− ηQ)Q− C0Q

r + γQ
+
SQ

r

(
1− ω

r
γQ

)
− δQ, (4.4)

where 1{·} is the indicator function, which is equal to one if the condition is satisfied

and zero otherwise; each of the four terms on the right-hand side corresponds to the

gross revenue, accumulated O&M cost, total subsidy received (until revoked) and

lump-sum investment cost, respectively.

Next, we assume that the demand is too low to justify immediate investment.

The firm’s objective when investment is deferred is to maximise the discounted

expected value of all future cash flows, as shown in (4.5)

Ff (x, ω) = sup
Λ∈S

Ex

[∫ ∞

Λ

(
(1− τ)(1− ηQ)Xt − C0e

−γQ(t−Λ) + S · 1{e−γQ(t−Λ)>ω}

)
Qe−rtdt− δQe−rΛ

]
,

(4.5)

where Λ = inf {t ≥ 0 : Xt ≥ Xf} and S denotes the set of stopping times of the

filtration generated by Xt. Based on the law of iterated expectations and the strong

Markov property of process Xt, we can rewrite (4.5) as

Ff (x, ω) = sup
Λ∈S

Ex
[
e−rΛ

]
Vf (Xf , ω) = max

Xf>x

(
x

Xf

)β
Vf (Xf , ω) , (4.6)

where the second equality follows based on the stochastic discount factor Ex
[
e−rΛ

]
=

(x/Xf )
β with β > 1 the positive root of the quadratic equation σ2β(β−1)/2+µβ−

r = 0. By applying the first-order necessary condition (FONC) to the unconstrained
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optimisation problem (4.6), we obtain the expression for X∗
f (ω).

Proposition 4.3.1. For a given subsidy retraction threshold ω, the optimal invest-

ment threshold is given by

X∗
f (ω) =

β

β − 1

r − µ

1− τ

1

1− ηQ

[
C0

r + γQ
− S

r

(
1− ω

r
γQ

)
+ δ

]
. (4.7)

We proceed with the optimal subsidy retraction policy of the Government. From

the bottom part of Figure 4.1, the Government’s value function, i.e., the present

value of the tax income after subtracting the subsidy, is given by

Gf (x, ω) = Ex
[∫ ∞

Λ

(
τ (1− ηQ)Xt − S · 1{e−γQ(t−Λ∗)>ω}

)
Qe−rtdt

]

=

(
x

X∗
f (ω)

)β [
τ

r − µ
(1− ηQ)X∗

f (ω)−
S

r

(
1− ω

r
γQ

)]
Q. (4.8)

We assume that the Government will choose the subsidy retraction threshold so as to

maximise its own net income, i.e., ω̃f = argmaxω≥0Gf (x, ω) (see Proposition 4.3.2).

Plugging ω̃f into (4.7) yields the equilibrium investment threshold X̃f = X∗
f (ω̃f )

given in (4.10). The upper part of (4.9) suggests that the Government will not

provide a subsidy if the tax rate is below the critical level, 1/(β+1), since the extra

tax income will not cover the cost of the subsidy. However, when τ > 1/(β + 1)

the Government is willing to grant a subsidy, and the subsidy retraction threshold

is given in the lower part of (4.9). Note that without technological learning, i.e.,

γ = 0, ω̃f = 1 implies a zero subsidy, whereas if the learning curve is steep, the

Government will set a lower subsidy retraction threshold and ω̃f → 0 as γ → ∞.

Proposition 4.3.2. The equilibrium subsidy retraction threshold and the investment

threshold are respectively given by

ω̃f =


1 if τ ≤ 1

β+1(
1−

( τ
1−τ

β−1)
(

C0
r+γQ

+δ
)
r

( 1
1−τ

β−1)S

) γQ
r

if τ > 1
β+1

(4.9)
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and

X̃f =


β
β−1

r−µ
1−τ

1
1−ηQ

(
C0

r+γQ + δ
)

if τ ≤ 1
β+1

β
β−1

β
β−(1−τ)

r−µ
1−ηQ

(
C0

r+γQ + δ
)

if τ > 1
β+1

. (4.10)

Consistent with existing literature, we show that greater price uncertainty raises

the investment threshold and that the Government is less willing to provide a subsidy

(or retracts the subsidy immediately) in a highly uncertain environment (Lukas and

Thiergart, 2019), see also the left panel of Figure 3.6 in the previous chapter.

Proposition 4.3.3. Greater uncertainty raises both the equilibrium subsidy retrac-

tion threshold ω̃f and the equilibrium investment threshold X̃f .

In our next Proposition 4.3.4, we show that the Government will delay revoking

the subsidy to compensate for the higher tax rate when τ > 1/(β+1). Interestingly,

we find that the firm will invest earlier even though it pays more taxes. This can be

attributed to the opposing effects of a higher tax rate and a later withdrawal of the

subsidy, with the latter’s effect dominating in accelerating investment.

Proposition 4.3.4. An increase in tax rate decreases the equilibrium subsidy re-

traction threshold ω̃f and investment threshold X̃f .

A higher subsidy level leads to an earlier withdrawal, but has no impact on

the firm’s investment timing, as we show in Proposition 4.3.5. Intuitively, while a

larger subsidy expedites investment, its effect is offset by the shorter time horizon of

the subsidy. Finally, an increase in the price elasticity parameter, η, leads to lower

project prices, which means that the firm has to wait longer to enter the market

until prices recover.

Proposition 4.3.5. A greater subsidy (price elasticity) raises the equilibrium sub-

sidy retraction threshold ω̃f (investment threshold X̃f ), but has no effect on the

equilibrium investment threshold X̃f (subsidy retraction threshold ω̃f ).

4.3.3 Joint determination of timing and scale

In what follows, we expand our paradigm to allow for a firm’s flexibility to scale

the size of the project. The firm’s value function under a now-or-never investment
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opportunity is the same as (4.4), except that the size of the project is no longer

exogenous. Let Φ(x, ω) = maxQ {Vf (x, ω,Q)} be the maximised expected value of

the active project. By applying the FONC, we get that the optimal capacity satisfies

1− τ

r − µ
(1−2ηQ)x− C0

r + γQ
+

γC0Q

(r + γQ)2
−δ+ S

r

(
1− ω

r
γQ

)
+
S lnω

γQ
ω

r
γQ = 0. (4.11)

Subject to the optimal capacity choice at investment, the firm’s optimisation objec-

tive when investment is deferred is given by

F (x, ω) = sup
Λ∈S

Ex
[
e−rΛ

]
Φ(X,ω) = max

X>x

( x
X

)β
Φ (X,ω) . (4.12)

By applying the FONC to the unconstrained optimisation problem (4.12), we obtain

the optimal investment threshold and project scale.

Proposition 4.3.6. The optimal investment threshold is given by

X∗(ω) =
β

β − 1

r − µ

1− τ

1

1− ηQ∗(ω)

[
C0

r + γQ∗(ω)
− S

r

(
1− ω

r
γQ∗(ω)

)
+ δ

]
. (4.13)

while the optimal capacity Q∗ satisfies the equation(
β

β − 1

1− 2ηQ∗

1− ηQ∗ − 1

)(
C0

r + γQ∗ − S

r

(
1− ω

r
γQ∗
)
+ δ

)
+

γC0Q
∗

(r + γQ∗)
2 +

S lnω

γQ∗ ω
r

γQ∗ = 0.

(4.14)

Proposition 4.3.7 confirms hypothesis H1 by showing that the effect of the learn-

ing rate on the optimal capacity is non-monotonic. This can be attributed to the

opposing effects of technological learning on cost reduction and subsidy retraction.

More specifically, a higher learning rate expedites the cost-reduction process, rais-

ing the firm’s incentive to invest more. Meanwhile, the duration of the subsidy,

− ln(ω)/(γQ), decreases with increasing learning rate or project scale as the O&M

cost reaches the subsidy retraction threshold earlier. Intuitively, when technology

learning is slow, the subsidy effect dominates that of cost reduction, thus the firm

can invest in a smaller project. However, as the learning rate increases, the cost-

reduction effect becomes more pronounced and the firm may be willing to invest

more at the cost of a smaller subsidy (see Section 4.4).
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Proposition 4.3.7. There is a non-monotonic relationship between the optimal

capacity Q∗ and the learning rate γ.

Finally, we study the optimal subsidy retraction threshold of the Government

that maximises its net tax income. Based on the bottom illustration in Figure 4.1,

the Government’s value function is formulated as

G(x, ω) = Ex
[∫ ∞

Λ∗

(
τ (1− ηQ∗(ω))Xt − S1{e−γQ∗(ω)t>ω}

)
Q∗(ω)e−rtdt

]
=

(
x

X∗(ω)

)β [ τ

r − µ
(1− ηQ∗(ω))X∗(ω)− S

r

(
1− ω

r
γQ∗(ω)

)]
Q∗(ω).

(4.15)

The Government chooses the subsidy retraction level so as to maximise its own

net tax income, i.e., ω̃ = argmaxω≥0G(x, ω), which in this case is solved numerically.

By inserting ω̃ in (4.14) and (4.13), we obtain the equilibrium capacity, Q̃ = Q∗(ω̃),

and the investment threshold, X̃ = X∗(ω̃), for the firm.

4.4 Numerical results

In this section, we illustrate our model and key findings through a set of numerical

examples. We adopt baseline parameter values from the real options literature (see

Huisman and Kort, 2015), in particular, r = 0.1, µ = 0.06, σ = 0.1, τ = 0.4,

x = 0.005, δ = 0.1, η = 0.05, γ = 0.01, C0 = 0.01 and S = 0.005.

We start our analysis with the impact of an exogenous subsidy retraction thresh-

old on the optimal investment threshold and capacity. Consistent with Lukas and

Thiergart (2019) and our results in Chapter 3, we find that a later subsidy retrac-

tion, corresponding to smaller ω, accelerates the firm’s investment as shown in the

left panel of Figure 4.2, the impact, though, on the firm’s optimal capacity level can

vary (see right panel). Under technological learning, the firm has a greater (smaller)

incentive to invest more, as a larger (smaller) project advances (postpones) the

cost-reduction process (subsidy withdrawal). More specifically, when ω is high the

subsidy is likely to be withdrawn sooner and investing in cost reduction to become

more attractive. Decreasing, however, ω increases the subsidy duration making it
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more significant, in which case the firm can choose to invest in a smaller project in

exchange for a longer subsidy.

Figure 4.2: Effect of subsidy retraction threshold on firm’s optimal investment threshold
(left panel) and optimal capacity (right panel).

Consistent with conventional real options intuition, increasing price uncertainty

raises the opportunity cost of investment and, in turn, the value of waiting and

investment threshold, as shown in Figure 4.3. In addition, Figure 4.3 also demon-

strates the impact of technological learning on the equilibrium investment threshold

and project scale; while the former strictly decreases with increasing learning rate

(left panel), the latter exhibits an inverted U-shape (right panel) that confirms hy-

pothesis H1 and Proposition 4.3.7. The former result can be attributed to a higher

learning rate reducing the O&M costs, thus expediting investment. As for the latter,

when the learning rate is low (here, γ < 0.02), the firm invests more as the learning

rate increases; however, if the learning rate is high enough (γ > 0.02), it can lead to

smaller investment capacity (see Proposition 4.3.7).

Naturally, under a flat learning curve, the learning effect is so weak that invest-

ing in a larger project has little effect on cost reduction, therefore the capacity is low

when γ is close to 0. As γ increases, the firm has a stronger incentive to invest more

to reduce the O&M cost. However, if γ is large enough, the cost-reduction process

is fast even with a smaller investment size. Thus, further investing in learning (by

increasing capacity) becomes less attractive, as it is dominated by the cost of delay-

ing the investment (higher discount rate). As a result, and in line with Della Seta

et al. (2012), it becomes optimal for the firm to invest earlier in a smaller project
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when the learning curve is steep.

Figure 4.3: Effect of learning rate and price uncertainty on firm’s equilibrium investment
threshold (left panel) and equilibrium capacity (right panel).

The implications of technological learning for the Government’s subsidy with-

drawal decision are exhibited in Figure 4.4. We find that, although the Government

is willing to retract the subsidy at a lower threshold if the learning rate increases

(left panel), the duration of the subsidy is actually shorter (right panel), i.e., the

total amount of subsidy the firm receives decreases with higher γ. Indeed, with a

steep learning curve, the firm’s O&M cost drops rapidly below grid parity and the

Government sets a lower subsidy retraction threshold to ensure sufficient subsidy

for the firm. However, the duration of the subsidy, − ln(ω̃)/(γQ̃), decreases much

faster with increasing γ than with decreasing ω̃. This result confirms hypothesis H2

and contrasts with the conventional real options intuition that a firm tends to invest

later when the subsidy is low (see left panel of Figure 4.3). The reason is that the

learning rate and subsidy play a similar role in cost reduction and in stimulating

investment, therefore in the presence of technological learning, the firm may rely

less on Government support. Meanwhile, the Government tends to withdraw the

subsidy earlier when price uncertainty is high, as the rapid push of the investment

threshold (see left panel of Figure 4.3) has a negative impact on the Government’s

discounted payoff. In this case, the effect of the subsidy on accelerating investments

is weak and the additional tax income cannot cover the cost of subsidisation, and,

as a result, the Government eventually stops subsidising the firm.

Moving on to the tax rate effects, the left panel of Figure 4.5 exhibits the non-
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Figure 4.4: Effect of learning rate and price uncertainty on equilibrium subsidy retraction
threshold (left panel) and equilibrium subsidy duration (right panel).

monotonic behaviour of the equilibrium investment threshold. While the the tax rate

increases, we observe a particular region (here, 0.39 < τ < 0.55) in which the firm

does not delay the investment. This counter-intuitive finding can be attributed to the

fact that the rising tax rate effect is moderated by the deferral of subsidy withdrawal.

Indeed, as examined by Pennings (2000) and Yu et al. (2007), subsidisation is more

efficient in accelerating private investments compared to tax cuts.

More interesting, and in contrast to the existing literature (Lukas and Thiergart,

2019) (see also Proposition 3.3.3 and the top-right panel of Figure 3.7 in the previous

chapter), is the V-shaped relationship between the equilibrium capacity and tax

rate in the right panel that confirms hypothesis H32. When the tax rate is low

(0.39 < τ ≤ 0.47), the O&M cost is relatively low compared to the net income,

and thus the firm’s incentive for cost reduction is also low. As a result, the firm will

choose to expedite investment with less capacity to offset the effect of rising tax rate.

Conversely, when the tax rate is high (τ > 0.47), the cost-cutting process becomes

more attractive to the firm due to lower net income. Therefore, a further increase

in the tax rate leads to larger investment scale, thereby to deferred investment. The

lower panel shows that it is not optimal for the Government to grant a subsidy

when the tax rate is below 1/(β + 1), since the additional tax income cannot cover

the cost of the subsidy. As the tax rate increases, ω̃ decreases, indicating that the

2Noting that, under a fixed subsidy level (e.g., for τ < 0.39 or τ > 0.55), the investment threshold
strictly decreases with an increasing tax rate, while the capacity remains constant. These findings
align with Azevedo et al. (2021), who compared the distinct impacts of tax cuts and subsidies,
demonstrating that a tax cut encourages earlier investments without affecting the capacity size.
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Government is willing to provide the subsidy for a longer period to compensate

for the higher tax rate. Furthermore, if the tax rate is high (here, τ > 0.55), the

Government should never revoke the subsidy.

Figure 4.5: Tax rate effect on firm’s equilibrium investment threshold (top-left panel),
equilibrium capacity (top-right panel), and equilibrium subsidy retraction
threshold (bottom panel).

We conclude our numerical analysis with Figure 4.6 illustrating how the firm’s

relative loss in value in the absence of discretion over project scale, as given by

the percentage difference between the option value (4.5) when the firm invests at

fixed capacity Q as opposed to equilibrium capacity Q̃, is affected by economic

uncertainty and technological learning. The left panel exhibits zero relative loss

at the equilibrium capacity, but this increases with under- or over-investment with

greater economic uncertainty leading to higher (lower) relative loss if the firm under-

invests (over-invests). Naturally, this is because the equilibrium capacity increases

with uncertainty (see right panel of Figure 4.3), and the relative loss due to under-

investment (over-investment) with a fixed capacity is magnified (attenuated). The

right panel indicates a rather ambiguous effect of learning rate on relative loss.
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When γ is small, a larger learning rate hoists (reduces) the relative loss in value

in the case of under-investment (over-investment); however, this effect reverses for

large γ. This is due to the non-monotonic relationship of the equilibrium capacity

with the learning rate, as shown in the bottom-right panel of Figure 4.3, where it

first increases with γ before starting to decrease.

Figure 4.6: Relative loss in value due to fixed capacity, subject to varying σ (left panel)
and γ (right panel).

4.5 Concluding discussion

In recent years, the literature on optimal subsidy design for AET has experienced

rapid growth, with various models being developed to explore the implications of

policy uncertainty on AET investments. While these models have provided valuable

insights, they often rely on probabilistic assumptions about the timing of subsidy

retraction and overlook the impact of technological learning. In practice, learning

curves have emerged as a critical factor affecting a firm’s production strategy and the

Government’s subsidisation policy-making. Indeed, subsidies are typically phased

out as technological learning drives down the cost of AETs towards commercial

maturity.

In this chapter, we examine the joint impact of technological learning and sub-

sidy retraction on the equilibrium subsidisation policy of the Government and the

capacity investment policy of a firm by developing a bi-level real options framework.

Our results show that, while technology learning propels investment and encour-

ages the installation of a larger project, it also speeds up subsidy retraction. Con-
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sequently, the firm faces the trade-off between expediting (or slowing down) cost

reduction and receiving less (more) subsidy when deciding the investment capac-

ity. Interestingly, even though the duration of the subsidy dwindles with increasing

learning rate, the firm remains willing to invest earlier. This is because the learning

effect moderates the impact of reduced subsidy, making early investment still at-

tractive despite the shorter subsidy period. In addition, we show that, under highly

uncertain environments, it is optimal for the Government to withdraw the subsidy

earlier, while the firm tends to delay its investment and opt for larger capacity.

Our analysis offers valuable insights not only for investors but also for policy-

makers aiming to design efficient subsidisation schemes. Contrary to conventional

intuition, which suggests that a higher tax rate would discourage the firm’s invest-

ment, causing delays and leading to smaller capacity, our results challenge this ide-

ology, particularly when subsidies and technological learning are taken into account.

This occurs because, as the Government increases the tax rate, it also extends the

duration of the subsidy provided to the firm offsetting part of the effect caused by

the rising tax rate.



Chapter 5

Concluding remarks and future

directions

The primary objective of this thesis is to develop models that support private firms

and the Government in make more informed investment decisions. This is achieved

through an in-depth investigation of two critical domains within the field of opera-

tional research: project scheduling and investment under uncertainty and strategic

interactions. For the former, we depart from the common assumption that decision-

makers are risk-neutral, thereby demonstrating the significance of risk consideration

in the valuation and planning of complex projects. This is especially pertinent in

today’s landscape characterised by rising market uncertainty and the deregulation

of many industries. As for the latter, we develop bi-level real options models in order

to derive the equilibrium investment and subsidisation policies taking into account

the strategic interaction between private firms and the Government. Furthermore,

we expand our model to explore the relationship between technological learning and

subsidy retraction. We reveal their joint impact on a firm’s investment strategy and

extract valuable insights for the Government in formulating well-informed subsidy

retraction policies. Hence, we believe that this work contributes significantly to an

important area of decision-making.

Below, we summarise the key findings of this thesis, discuss the limitations of

each chapter and offer directions for further research.

In Chapter 2, we develop a risk assessment and optimal scheduling framework
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for sequential capacity expansion under output price and technological uncertainty.

We derive the distribution, VaR and CVaR of the project’s NPV. The novelty of our

work lies in demonstrating the potentially positive impact of duration variability on

the stochastic project scheduling problem, whereby we highlight the importance of

risk considerations. We show that both the duration variability and the decision-

makers’ risk preferences can significantly affect the optimal sequence of stages of a

serial project and that this also depends on the capacity expansion cost. Specifically,

in cases where the expansion cost of each stage is high, the variability in duration

negatively impacts a project’s NPV and increases its risk exposure. Consequently,

decision-makers should prioritise the execution of stages with lower duration vari-

ability. However, when the cost is relatively low, it might be optimal for risk-neutral

decision-makers to initially execute stages with higher duration variability, as this

can result in a larger expected NPV. Taking also into account the decision-makers’

attitudes towards risk, we find that executing stages with lower duration variabil-

ity earlier does not guarantee lower risk exposure. Contrary to the intuition that

increasing uncertainty entails greater risk exposure, our results indicate that higher

duration variability may not lead to higher downside risk; instead, it may be bene-

ficial not only for risk-neutral but also for risk-averse decision-makers.

Hence, Chapter 2 conveys crucial implications for investment under uncertainty

when the true distribution of a project’s makespan is unknown, as ignoring or un-

derestimating the uncertainty associated with the project may lead to inappropriate

project scheduling and, therefore, lower NPV or greater downside risk. Future re-

search directions for Chapter 2 may include studying the potential effects of the

volatility of the price dynamics on the risk measures of the project, or the devel-

opment of a real options framework to allow for discretion over investment timing

(Heydari and Siddiqui, 2009; Jeon, 2021). The objective would be to investigate how

managerial flexibility influences the distribution of the NPV and the risk measures

of a serial project. Also, a computational comparison of different approximation

methods and an algorithmic study on more elaborated project scheduling models

taking risk aversion into account can also be meaningful extensions of this work.
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Furthermore, we investigate the optimal capacity investment and subsidy design

problem through a non-cooperative game involving both the firm and the Govern-

ment. Despite their increasing prominence, models for analysing the interaction

between firm and Government-level policy-making do not account for critical fea-

tures of a deregulated environment, such as competition and policy uncertainty.

Therefore, we address these disconnects in Chapter 3 and 4 by developing a bi-

level real options framework for deriving the equilibrium Government subsidisation

and firm-level capacity investment policy under duopolistic competition and under

technological learning and subsidy retraction, respectively.

Our results in Chapter 3 clearly indicate that the insights of traditional bi-level

real options models under monopoly cannot be naturally transposed to a deregulated

environment. In particular, we find that strategic interactions with the Government

can significantly affect a firm’s capacity investment decision and that the equilibrium

subsidisation policy crucially depends on market structure and the type of duopolis-

tic competition. Contrary to conventional intuition, we find that providing a larger

subsidy to the leader can actually increase the follower’s incentive to invest earlier

and in a bigger project. Furthermore, we demonstrate how results are different when

the Government aims to maximise social welfare and show that competition can be

desirable for a social planner, while a profit-maximising Government may benefit the

most from pre-emptive competition. Therefore, the policy-making and managerial

relevance of our results is reflected in the new insights gained when firm-level strate-

gic interactions are integrated into the evaluation of real options. In particular, not

only is competition a key aspect of deregulated industries and entails a loss in value

relative to monopoly that must be taken into account when designing subsidisation

policies, but also the type of competition can affect significantly a Government’s

subsidisation policy. Similarly, at the firm level, the interaction with Government

policy-making produces dynamics under which the investment policy deviates from

that of traditional duopolistic competition, which ignores such interactions. Such

strategic interactions tend to be overlooked in the literature that values bi-level real

options, yet if their implications are not properly understood, subsidisation policies
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will not be properly designed, thus potentially inducing under or over-investment

cycles and increased regulatory risk following corrective policy actions.

Directions for future work of Chapter 3 may include relaxation of the assump-

tion of unilateral subsidy and allowance for asymmetric competition. More specif-

ically, it would be interesting to analyse how the positioning and cost asymmetry

of firms can affect the equilibrium subsidy, and whether the Government should

offer either bilateral subsidies to both firms or a unilateral subsidy to the larger

or smaller firm. Also, our model does not consider production flexibility (Hagspiel

et al., 2016a) or sequential capacity expansion options, so the project size is fixed at

investment and cannot be adjusted afterwards; both options would be meaningful

additions to this work. Finally, the assumption of duopolistic competition could

be relaxed to explore optimal investment and subsidisation policies under oligopoly

when the accordion effect occurs (Bouis et al., 2009).

While the literature on optimal subsidy design for AET has experienced rapid

growth, with various models being developed to explore the implications of policy

uncertainty on AET or RE investments, they often rely on probabilistic assump-

tions about the timing of subsidy retraction and overlook the effects of technological

learning. Yet, learning curves have emerged as a critical factor affecting a firm’s pro-

duction strategy and the Government’s subsidisation policy-making, where subsidies

are typically phased out as the learning effect drives the cost of AET gradually to-

wards its commercial maturity. Therefore, we examine in Chapter 4 the joint impacts

of technological learning and subsidy withdrawal on the firm’s capacity investment.

Our results show that, while technology learning propels investment and encourages

larger capacity size, it also speeds up the retraction of subsidies. Consequently, the

firm faces the trade-off between expediting (or slowing down) cost reduction and

receiving less (more) subsidy when deciding the investment capacity. Interestingly,

our findings indicate that, even though the duration of the subsidy dwindles with

increasing learning rates, the firm remains willing to invest earlier. This is because

the learning effect moderates the impact of reduced subsidy, making early invest-

ment still attractive despite the shorter subsidy period. In addition, we show that,
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under highly uncertain environments, it is optimal for the Government to withdraw

the subsidy earlier, while the firm tends to delay its investment and opt for larger

capacity. Contrary to conventional intuition, our research reveals that a higher tax

rate does not necessarily result in investment delays or reduced capacity size, partic-

ularly in the presence of subsidies and technological learning. This occurs because,

as the Government increases the tax rate, it may simultaneously extend the duration

of the subsidies provided to the firm to compensate the firm for paying more tax;

meanwhile the learning effect diminishes the firm’ incentive to under-invest. Hence,

Chapter 4 offers valuable insights not only for investors but also for policy-makers

aiming to design efficient subsidisation schemes.

A limitation of our model is that while the subsidy retraction threshold is

determined endogenously by the Government, we assume an exogenous and fixed

subsidy level S. Therefore, an important direction for future work would be to

allow for both an endogenous subsidy level and subsidy retraction. Also, in addition

to the Government’s profit-oriented strategy, other objectives may be integrated

within the same framework, such as social welfare optimisation (Yang et al., 2021)

or revenue-neutral, i.e., zero-cost, tax-subsidy packages (Pennings, 2000; Azevedo

et al., 2021).



Appendix A

Proofs and Supplementary Results of

Chapter2

A.1 Proofs of the Propositions

Proof of Proposition 2.3.1. From (2.2), we have that

GV (v) = P
(
PD0

r − α
+
PD1

r − α
e−(r−α)T1 − cD1 ≤ v

)
= P

(
T1 ≥ − 1

r − α
ln

(r − α)(v + cD1)− PD0

PD1

)
,

from which (2.5) follows for v ≥ PD0/(r − α) − cD1. The density function (2.6)

follows from differentiating (2.5) with respect to v.

Proof of Proposition 2.3.2. By definition of VaR, we have that

VaRp (V ) = − inf{v ∈ R : P (V ≤ v) > p}

= − inf

{
v ∈ R : 1− FT1

(
− 1

r − α
ln

(r − α)(v + cD1)− PD0

PD1

)
> p

}
= − inf

{
v ∈ R : v >

PD0

r − α
+
PD1

r − α
e
−(r−α)F−1

T1
(1−p) − cD1

}
,

from which the final result follows. The CVaR follows by definition.
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A.2 The case of managerial investment flexibility

In what follows, we develop a real options framework which incorporates the firm’s

discretion over investment timing. In this case, the firm is not obligated to invest

immediately in the next capacity expansion after each stage is completed. Instead, it

has the option to delay the next investment while waiting for more favourable price

conditions (refer also to Heydari and Siddiqui (2009) for a study of the optimal

interruption policy of multiple-exercise interruptible load contracts).

We denote by Ti =
∑i

j=1(wj + τj) the completion time of stage i, which now

includes both waiting times {wj}ij=1 and construction times {τj}ij=1 of all stages up

to i. Let P (i) be the investment threshold of stage i and P (i)∗ the optimal investment

threshold. Hence, wi is the random first-passage time of the price process through

the investment threshold from below, i.e., wi = inf
{
t ≥ 0 : PTi−1+t ≥ P (i)

}
.

Figure A.1 illustrates the cash flows of a single-stage capacity expansion when

the firm has discretion over investment timing. We assume that the initial output

price of the project is too low to justify immediate investment, therefore the firm

must defer it.

∫ T1

0
e−rtPtD0dt

∫ ∞

T1

e−rtPtD
′
1dt · · ·

0

−cD1

T1 t

existing project’s cash flow cash flow after expansion 1

w1 τ1

Fig. A.1. Single-stage capacity expansion.

The firm’s expected option value is determined via backward induction. Therefore,

we first assume that the project is already active and accrues stochastic revenues.

The conditional expected NPV of the project is given by

V (P, τ1) =
PD0

r − α
+
PD1

r − α
e−(r−α)τ1 − cD1. (A.1)

Moving backwards, we assume that the initial output price is too low to justify
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immediate investment, so the firm must wait for a period of time, w1. The firm’s

optimisation objective is

F (P, τ1) = sup
w1∈S

E
[∫ w1+τ1

0
e−rtPtD0dt+

∫ ∞

w1+τ1

e−rtPtD
′
1dt− C1e

−rw1

∣∣∣∣P, τ1]
= sup

w1∈S
E
[∫ ∞

0
e−rtPtD0dt

∣∣∣∣P]
+E

[(∫ ∞

τ1

e−rtPw1+tD1dt− cD1

)
e−rw1

∣∣∣∣P, τ1]
= max

P (1)>P

PD0

r − α
+

(
P

P (1)

)ρ(P (1)D1

r − α
e−(r−α)τ1 − cD1

)
, (A.2)

where S is the set of stopping times of the filtration generated by the price process.

Note that the last equality follows from the stochastic discount factor E [e−rw1 |P ] =(
P/P (1)

)ρ
((Dixit and Pindyck, 1994, p. 315)), with ρ > 1 the positive root of

β2x(x− 1)/2+αx− r = 0. By applying the first-order necessary condition (FONC)

to the unconstrained optimisation problem (A.2), we obtain the optimal investment

threshold of the first capacity expansion:

P (1)∗ =
ρ

ρ− 1
c(r − α)e(r−α)τ1 . (A.3)

We now consider the two-stage capacity expansion as illustrated in Figure A.2.

∫ T1

0
e−rtPtD0dt

∫ T2

T1

e−rtPtD
′
1dt

∫ ∞

T2

e−rtPtD
′
2dt · · ·

0

−cD1 −cD2

T1 T2 t

existing project’s cash flow cash flow after expansion 1 cash flow after expansion 2

w1 τ1 w2 τ2

Fig. A.2. Two-stage capacity expansion.

Starting with the second capacity expansion, we first consider the case that once the

construction of the first stage is completed at T1, the price process is high enough for

immediate investment, i.e., P (2) = PT1+w2 ≤ PT1 . The conditional expected NPV of
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the second expansion (discounted to time T1 = w1 + τ1) is given by

V (PT1 , τ2) =
PT1D2

r − α
e−(r−α)τ2 − cD2. (A.4)

Next, if P (2) > PT1 , that is, the firm cannot invest directly in the second stage and

must wait, the maximised value of the option to invest in the second stage is given

by

F (2) (PT1 , τ2) = sup
w2∈S

E
[∫ ∞

w2+τ2

e−rtPT1+tD2dt− C2e
−rw2

∣∣∣∣PT1 , τ2]
= max

P (2)>PT1

(
PT1
P (2)

)ρ(P (2)D2

r − α
e−(r−α)τ2 − cD2

)
. (A.5)

The optimal investment threshold of the second expansion is then

P (2)∗ =
ρ

ρ− 1
c(r − α)e(r−α)τ2 . (A.6)

Working backwards to the first stage, if it is still optimal to wait, i.e., P (1)∗ ≥ P ,

the maximised option value of the first capacity expansion is

F (1) (P, τ1, τ2) = sup
w1∈S

E
[∫ ∞

w1+τ1

e−rtPtD1dt− C1e
−rw1 + e−rT1E

[
F (2) (PT1 , τ2)

]∣∣∣P, τ1, τ2]
= max

P (1)>P

(
P (1)D1

r − α
e−(r−α)τ1 − cD1 + e−rτ1E

[
F (2) (PT1 , τ2)

])( P

P (1)

)ρ
,

(A.7)

where the conditional expectation of the option value of the second expansion, given

the information at time T1, depends on whether or not the second stage is executed

immediately, i.e., whether or not P (2)∗ ≤ PT1 :

E
[
F (2) (PT1 , τ2)

∣∣∣PT1 , τ2] =

(
P (2)∗D2

r − α
e−(r−α)τ2 − cD2

)(
PT1
P (2)∗

)ρ
P
(
P (2)∗ > PT1

)
+

(
PT1D2

r − α
e−(r−α)τ2 − cD2

)
P
(
P (2)∗ ≤ PT1

)
. (A.8)

In Table A.1, we present the optimal scheduling of a two-stage project when the
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firm has the option to delay the investment for each stage. Our results confirm that

executing the stage with higher duration variability is not always harmful.

Table A.1: Optimal scheduling of a two-stage project, when the firm has the option to delay
the next investment, for decision makers with risk appetite ω and duration
variability s, where τ1 ∼ LogN (ln 3− 1/2, 1) and τ2 ∼ LogN

(
ln 3− s2/2, s

)
.

π = (1, 2): execute stage 1 followed by stage 2; π = (2, 1): execute stage 2
followed by stage 1.

c = 2

Option Value VaR0.05 Optimal Sequence π∗
ω

π = (1, 2) π = (2, 1) π = (1, 2) π = (2, 1) ω = 0 ω = 0.25 ω = 0.5 ω = 0.75 ω = 1

s = 0.5 17.7865 17.8093 -14.8091 -14.6098 (2, 1) (1, 2) (1, 2) (1, 2) (1, 2)
s = 1.5 17.8716 17.8171 -14.4123 -13.7516 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 2.0 17.9705 17.9143 -14.4424 -14.0803 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 2.5 18.0860 18.0576 -14.5931 -14.8854 (1, 2) (2, 1) (2, 1) (2, 1) (2, 1)
s = 3.0 18.1942 18.2050 -14.8093 -15.7409 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)

We note that, while the generalised multi-stage problem does not admit an

analytical solution, it is, nevertheless, possible to solve it numerically to obtain the

optimal scheduling of the serial project.
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Proofs of the Propositions of Chapter

3

Proof of Proposition 3.3.1.

1. If the demand is low, the firm must defer investment, i.e., X < X∗
m(Sm), ∀Sm.

From (3.7), the value of the monopolist’s investment opportunity is given by

Fm(X,Sm) = max
Xm>X

(
X

Xm

)β [
1− τ

r − µ
(1− ηQ∗

m)Q∗
mXm − δQ∗

m + Sm

]
. (B.1)

Applying the FONC to (B.1), the optimal investment threshold can be ex-

pressed as

X∗
m(Q

∗
m, Sm) =

β

β − 1

r − µ

1− τ

δQ∗
m − Sm

(1− ηQ∗
m)Q

∗
m

. (B.2)

Substituting X∗
m into (3.5) and solving with respect to Q∗

m yields

Q∗
m(Sm) =

−b+
√
b2 − 4ac

2a
for b2 − 4ac ≥ 0,

where a = (β + 1)ηδ/(β − 1), b = −(δ + 2βηSm)/(β − 1) and c = βSm/(β −

1). Substituting Q∗
m(Sm) into (B.2) gives the optimal investment threshold,

X∗
m(Sm) = c(Sm) if c(Sm) ≥ X; otherwise X∗

m(Sm) = X. If b2 − 4ac < 0, i.e.,

Sm > (β −
√
β2 − 1)δ/(2βη), then Q∗

m(Sm) is not real and a local maximum

of (B.1) does not exist. In this case, the firm invests either immediately or

never. As limXm→∞ Fm(X,Sm) = 0, we conclude that X∗
m = X and the

corresponding optimal investment capacity Q∗
m is given by (3.5).
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2. Having derived analytical expressions for X∗
m(Sm) and Q∗

m(Sm), we can also

determine how Sm affects the optimal investment policy. For X < X∗
m(Sm),

the optimal investment capacity is given in the top part of (3.9), and differen-

tiating with respect to Sm yields

∂Q∗
m(Sm)

∂Sm
=

β

(β + 1)δ

(
1− β(δ − 2ηSm)√

δ2 − 4β2ηSm(δ − ηSm)

)
. (B.3)

Since

β > 1 ⇐⇒ 1 <
β(δ − 2ηSm)√

δ2 − 4β2ηSm(δ − ηSm)
,

we have that ∂Q∗
m(Sm)/∂Sm < 0. From (3.5), we observe that the optimal

capacity level is increasing in Xm, i.e., ∂Q
∗
m(Sm)/∂X

∗
m > 0. Consequently,

∂X∗
m(Sm)

∂Sm
=
∂X∗

m(Sm)

∂Q∗
m(Sm)

∂Q∗
m(Sm)

∂Sm
< 0.

Proof of Proposition 3.3.2. From Proposition 3.3.1, we have that Sm ∈ [0, (β−√
β2 − 1)δ/2βη]. From the top part of (3.8), X∗

m(0) = max[X, (r−µ)(β+1)δ/((1−

τ)(β − 1))] and X∗
m

(
(β −

√
β2 − 1)δ/2βη

)
= max[X, (r− µ)(β +1)δ/((1− τ)(β2 −

1)1/2)]. We conduct a case-by-case analysis.

First, when the X is too low, the firm will always postpone the investment, i.e.,

X < (r−µ)(β+1)δ/((1−τ)(β2−1)1/2), even if the Government grants the maximum

subsidy level. Rearranging (3.5), we obtain X∗
m(Q

∗
m) = (r−µ)δ/((1−τ)(1−2ηQ∗

m)),

where Q∗
m(Sm) is given by (3.9). Then, the discounted value of the Government’s

tax income at time 0 in (3.10) can be written as

Gm(X,Sm) =

(
X(1− τ) (1− 2ηQ∗

m(Sm))

(r − µ)δ

)β [
τ (1− ηQ∗

m(Sm))Q∗
m(Sm)δ

(1− τ)(1− 2ηQ∗
m(Sm))

− Sm

]
. (B.4)

Differentiating Gm(X,Sm) with respect to Sm, we get

∂Gm(X,Sm)

∂Sm
=

(
X(1− τ)(1− 2ηQ∗

m(Sm))

(r − µ)δ

)β [∂Q∗
m(Sm)

∂Sm

(
τδ

1− τ

−2(β − 1)ητ(1− ηQ∗
m(Sm))Q

∗
m(Sm)δ

(1− τ)(1− 2ηQ∗
m(Sm))

2
+

2ηβSm
1− 2ηQ∗

m(Sm)

)
− 1

]
,
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where ∂Q∗
m(Sm)/∂Sm is given by (B.3). Solving ∂Gm(X, S̃

π
m)/∂Sm = 0 gives the

equilibrium subsidy S̃πm = θ/(2βηψ) for τ > 1/(1 + β). If τ ≤ 1/(1 + β), the local

maximum of (B.4) does not exist and S̃πm = 0. Hence, in this case, S̃πm = S1.

Second, we consider the case when the initial price of the project is high enough

that the firm is willing to invest immediately even without a subsidy, i.e., when

X ≥ (r − µ)(β + 1)δ/((1 − τ)(β − 1)). In this case, X∗
m(Sm) = X, ∀Sm making no

sense for the Government to provide any subsidy.

Finally, if ∃Sm > 0 such that X ≥ X∗
m(Sm), i.e., (β + 1)δ/

√
β2 − 1 ≤ (1 −

τ)X/(r−µ) < (β+1)δ/(β− 1), it is still possible for the firm to invest immediately

if it receives sufficient subsidy. We denote by S2 the subsidy level that leads to

immediate investment, i.e., S2 = inf{s ∈ [0, (β −
√
β2 − 1)δ/(2βη)] : X∗

m(s) =

X} = (δ2 − A2)/(4βη(βδ − A)). The Government’s action set is as follows: if

S1 ≥ S2, it will not offer more subsidy than the firm needs and the optimal subsidy

will be S2; if S1 < S2, it will not be optimal for the Government to induce immediate

investment resulting in S̃πm = S1. Hence, S̃πm = min{S1, S2}.

Notice that, as τ → 1, the firm will not invest immediately as X < r−µ
1−τ

β+1√
β2−1

δ

and, therefore, S̃πm = S1. Meanwhile, from (3.13), we can obtain limτ→1 S̃
π
m =(

β −
√
β2 − 1

)
δ/2βη, indicating the maximum subsidy that the Government is

willing to provide to a firm (see also equation 3.8). From Corollary 3.3.1, we arrive

at limτ→1 X̃
π
m = ∞, that is, the firm will never invest as all the revenue goes to the

Government.

Proof of Corollary 3.3.1. This follows directly from Propositions 3.3.1 and 3.3.2.

Proof of Proposition 3.3.3. For τ > 1/(β + 1), differentiating S̃πm with respect

to ψ, we get

∂S̃πm
∂ψ

=
δ(β2 + ψ)−

1
2

4βηψ2

(
ψ − 2(β2 + ψ) + 2β

√
β2 + ψ

)
= −δθ

2(β2 + ψ)−
1
2

4βηψ2
< 0.

Since ∂ψ/∂τ < 0, we have that ∂S̃πm/∂τ > 0. Given that ∂θ/∂ψ = (β2 + ψ)−1/2/2,
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we differentiate Q̃πm with respect to ψ and obtain

∂Q̃πm
∂ψ

= f(ψ)

(√
1 + ψ −

√
1 +

ψ

β2

)
> 0,

as f(ψ) = ψ/(β(
√
β2 + ψ+β)(

√
1 + ψ+1)) is a strictly positive function. Therefore,

∂Q̃πm
∂τ

=
∂Q̃πm
∂ψ

∂ψ

∂τ
< 0.

Proof of Proposition 3.3.4. Given τ > 1/(β + 1), ∂S̃πm/∂η < 0 follows from

(3.13). In addition, ∂Q̃πm/∂η < 0 and ∂X̃π
m/∂η = 0 follow directly from Corollary

3.3.1.

Proof of Proposition 3.3.5. This follows the lines of proof of Proposition 3.3.1.

The only difference is that the subsidy term in (B.1) vanishes as the follower receives

no support, while the inverse demand function becomes 1 − ηQnl − ηQnf .

Proof of Proposition 3.3.6. Using the follower’s investment strategy as shown in

Proposition 3.3.5 in (3.20), the option value of the leader, given investment threshold,

Xnl, and capacity, Qnl, can be written as

Fnl(X,Sn) =

(
X

Xnl

)β [(1− τ)(1− ηQnl)QnlXnl

r − µ
− δQnl + Sn

− δQnl
β − 1

(
(β − 1)(1− τ)(1− ηQnl)Xnl

(β + 1)(r − µ)δ

)β]
. (B.5)

Then, by maximising (B.5) with respect to Xnl, we obtain the leader’s optimal

investment threshold as a function of Qnl:

X∗
nl(Sn) =

β

β − 1

r − µ

1− τ

δQnl − Sn
(1− ηQnl)Qnl

. (B.6)

Substituting (B.6) back into (B.5) and maximising it with respect to Qnl, we obtain

Q∗
nl as the solution to (3.21). If, however, X > X∗

nl(Sn), the leader will invest

immediately at time 0, with the corresponding Q∗
nl maximising (3.19). Additionally,

if X is so large that X > X∗
nf , both firms will invest immediately, with Q∗

nl obtained
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in the same way.

Proof of Proposition 3.3.7. It can be derived by following the same procedure

as shown in the proof of Proposition 3.3.2 with Gm(X,Sm) replaced by SWm(X,Sm)

as formulated in (3.30).

Proof of Corollary 3.3.2. This follows directly from Propositions 3.3.1 and 3.3.7.

Proof of Proposition 3.3.8. Rewriting the upper part of (3.31) and (3.33) as

Sw
1 =

τδ

3η (3− 4τ)

(√
4τ2 +

3 (3− 4τ)

β2
− 2τ

)
and X̃w

m =
r − µ

1− τ

(1 + 1
β )δ(3− 4τ)

(3− 2τ)−
√
4τ2 + 3(3−4τ)

β2

,

respectively, we can obtain ∂Sw1 /∂β < 0 and ∂X̃w
m/∂β < 0, and, therefore,

∂Sw1 /∂σ > 0 and ∂X̃w
m/∂σ > 0. Next, we show that

∂

∂β

(√
4τ2β2 + 3 (3− 4τ)− 2τβ

)
=

4τ2β√
4τ2β2 + 3 (3− 4τ)

− 2τ

is negative, if 3 > 4τ , and positive, if 3 < 4τ . Substituting this to the upper part of

(3.34), we obtain ∂Q̃wm/∂β < 0.



Appendix C

Proofs of the Propositions of Chapter

4

Proof of Proposition 4.3.1. By applying the FONC to (4.6) with respect to Xf ,

the optimal investment threshold X∗
f is the solution to

−βVf
(
X∗
f , ω

)
+X∗

f

∂Vf
∂Xf

(
X∗
f , ω

)
= 0, (C.1)

with Vf

(
X∗
f , ω

)
given in (4.4). Substituting (4.4) into (C.1), X∗

f satisfies

(β − 1)
1− τ

r − µ
X∗
f (1− ηQ)Q = β

(
C0Q

r + γQ
+ δQ− SQ

r

(
1− ω

r
γQ

))
. (C.2)

By rearranging (C.2), we obtain (4.7).

Proof of Proposition 4.3.2. Differentiating Gf (x, ω) in (4.8) with respect to ω,

we get

∂Gf (x, ω)

∂ω
=

(
τ

r − µ
(1− ηQ)

∂X∗
f (ω)

∂ω
+

S

γQ
ω

r
γQ

−1

)
Q

(
x

X∗
f (ω)

)β

− β

(
τ

r − µ
(1− ηQ)X∗

f (ω)−
S

r

(
1− ω

r
γQ

))
Q

(
x

X∗
f (ω)

)β ∂X∗
f (ω)

∂ω

X∗
f (ω)

,

(C.3)
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where from (4.7)

∂X∗
f (ω)

∂ω
=

β

β − 1

r − µ

1− τ

1

1− ηQ

S

γQ
ω

r
γQ

−1
.

Setting

∂Gf
∂ω

(x, ω̃f ) = 0

yields

S

γQ
ω̃

r
γQ

−1

f + β
S

r

(
1− ω̃

r
γQ

f

)
1

X∗
f (ω)

∂X∗
f (ω)

∂ω
= (β − 1)

τ

r − µ
(1− ηQ)

∂X∗
f (ω)

∂ω

=⇒
(

β

1− τ
− 1

)
S

r

(
1− ω̃

r
γQ

f

)
=

(
βτ

1− τ
− 1

)(
C0

r + γQ
+ δ

)
,

(C.4)

where both sides of (C.4) are positive if τ > 1/(β + 1) and ω̃f is given in the

lower part of (4.9). If τ ≤ 1/(β+1), the local maximum of (4.8) does not exist and

ω̃f = 1, i.e., the Government will not provide a subsidy. Substituting ω̃f into (4.6),

we obtain the equilibrium investment threshold, X̃f = X∗
f (ω̃f ).

Proof of Proposition 4.3.3. To understand how ω̃f varies with σ, we first

analyse the impact of β. In relation to the lower part of (4.9), we have for

f(β) =
τ

1−τ β − 1
1

1−τ β − 1

that

∂f(β)

∂β
=

τ

β − 1 + τ
− τβ − 1 + τ

(β − 1 + τ)2
=

(
β

1− τ
− 1

)−2

> 0,

for τ > 1/(β+1). Substituting this to the lower part of (4.9) implies that ∂ω̃f/∂β <

0. Since ∂β/∂σ < 0, we get that

∂ω̃f
∂σ

=
∂ω̃f
∂β

∂β

∂σ
> 0. (C.5)

Next, we analyse how the equilibrium investment threshold X̃f varies with σ.



118

Rearranging the first two terms of the lower part of (4.10), we obtain

∂

∂β

((
1 +

1

β − 1

)(
1 +

1− τ

β − (1− τ)

))
< 0, (C.6)

which implies ∂X̃/∂β < 0. Thus, we obtain

∂X̃f

∂σ
=
∂X̃f

∂β

∂β

∂σ
> 0. (C.7)

Proof of Proposition 4.3.4. To investigate the impact of tax rate on ω̃f , we

first derive how
τ

1−τ
β−1

1
1−τ

β−1
, in relation to the lower part of (4.9), varies with τ and we

obtain

∂

∂τ

(
τ

1−τ β − 1
1

1−τ β − 1

)
=

β + 1

β − 1 + τ
− τβ − 1 + τ

(β − 1 + τ)2

=

(
β

τ + β − 1

)2

> 0. (C.8)

Substituting this to the bottom part of (4.9), we can obtain ∂ω̃f/∂τ < 0 as required.

Next, ∂X̃f/∂τ < 0 can be obtained directly from the lower part of (4.10).

Proof of Proposition 4.3.5. The effects of the subsidy size can be directly

obtained from the lower parts of (4.9) and (4.10). From (4.9) we observe that ω̃f is

independent of η, and ∂X̃f/∂η > 0 can be obtained from the lower part of (4.10).

Proof of Proposition 4.3.6. Following the same steps as in the proof of Propo-

sition 4.3.1, we can obtain the equilibrium investment threshold as a function of

capacity Q, where

X∗(Q∗) =
β

β − 1

r − µ

1− τ

1

1− ηQ∗

(
C0

r + γQ∗ − S

r

(
1− ω

r
γQ∗
)
+ δ

)
. (C.9)

Substituting (C.9) into (4.11) with x replaced by X∗(Q∗), we obtain Q∗ as the
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solution to the equation(
β

β − 1

1− 2ηQ∗

1− ηQ∗ − 1

)(
C0

r + γQ∗ − S

r

(
1− ω

r
γQ∗
)
+ δ

)
+

γC0Q
∗

(r + γQ∗)
2 +

S lnω

γQ∗ ω
r

γQ∗ = 0,

(C.10)

as shown in (4.14).

Proof of Proposition 4.3.7. From (4.14), we obtain the optimal capacity Q∗ at

the lower and upper boundaries of the learning rate: for γ = 0, we have that

Q∗ =
1

(β + 1)η
and X∗ =

β + 1

β − 1

r − µ

1− τ

(
C0

r
+ δ

)
,

and for γ = ∞,

Q∗ =
1

(β + 1)η
and X∗ =

β + 1

β − 1

r − µ

1− τ
δ.

The identical equilibrium capacity at γ = 0 and γ = ∞ suggests thatQ∗ is either con-

stant or has a non-monotonic relationship with γ. To show that Q∗ is not constant,

we use proof by contradiction. More specifically, we assume that Q∗ = 1/(β + 1)η

for all γ ≥ 0. Next, by substituting Q∗ = 1/(β + 1)η into (4.14), we get that

0 =
γC0(β + 1)η

(r(β + 1)η + γ)2
+
S lnω(β + 1)η

γ
ω

(β+1)ηr
γ (C.11)

for all γ ≥ 0. Without loss of generality, we find that, for γ = (β + 1)ηr, (C.11)

holds if and only if C0 = −4Sω lnω, which contradicts our underlying assumption.

Therefore, we conclude that Q∗ ̸= 1/(β + 1)η for all γ ≥ 0, and there is a non-

monotonic relationship between the optimal capacity Q∗ and the learning rate γ.
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Dupačová, J., Kozmı́k, V., 2015. Structure of risk-averse multistage stochastic pro-

grams. OR Spectrum 37, 559–582.

Ederer, N., 2015. Evaluating capital and operating cost efficiency of offshore wind

farms: A DEA approach. Renewable and sustainable energy reviews 42, 1034–

1046.

Edgington, T., 2020. Heathrow expansion: What is the third runway plan? https:

//www.bbc.co.uk/news/explainers-51646562. (accessed 16 December 2020).

https://www.bbc.co.uk/news/explainers-51646562
https://www.bbc.co.uk/news/explainers-51646562


BIBLIOGRAPHY 125

Elderton, W.P., Johnson, N.L., 1969. Systems of Frequency Curves. Cambridge

University Press, Cambridge.

Elmaghraby, S.E., Herroelen, W.S., 1990. The scheduling of activities to maximize

the net present value of projects. European Journal of Operational Research 49,

35–49.

Fang, C., Kolisch, R., Wang, L., Mu, C., 2015. An estimation of distribution al-

gorithm and new computational results for the stochastic resource-constrained

project scheduling problem. Flexible Services and Manufacturing Journal 27,

585–605.

Gamba, A., Fusari, N., 2009. Valuing Modularity as a Real Option. Management

Science 55, 1877–1896.

Gollier, C., Proult, D., Thais, F., Walgenwitz, G., 2005. Choice of nuclear power

investments under price uncertainty: Valuing modularity. Energy Economics 27,

667–685.

Goto, M., Takashima, R., Tsujimura, M., Ohno, T., 2008. Entry and Exit Deci-

sions under Uncertainty in a Symmetric Duopoly, in: Real Options Conference,

Citeseer.

Grenadier, S.R., 1996. The Strategic Exercise of Options: Development Cascades

and Overbuilding in Real Estate Markets. The Journal of Finance 51, 1653–1679.

Guardian, 2018. UK green energy investment halves after policy

changes. URL: https://www.theguardian.com/business/2018/jan/16/

uk-green-energy-investment-plunges-after-policy-changes.

Gutjahr, W.J., 2015. Bi-Objective Multi-Mode Project Scheduling Under Risk Aver-

sion. European Journal of Operational Research 246, 421–434.

Hagspiel, V., Huisman, K.J., Kort, P.M., 2016a. Volume flexibility and capacity

investment under demand uncertainty. International Journal of Production Eco-

nomics 178, 95–108.

https://www.theguardian.com/business/2018/jan/16/uk-green-energy-investment-plunges-after-policy-changes
https://www.theguardian.com/business/2018/jan/16/uk-green-energy-investment-plunges-after-policy-changes


BIBLIOGRAPHY 126

Hagspiel, V., Huisman, K.J., Kort, P.M., Nunes, C., 2016b. How to escape a de-

clining market: Capacity investment or Exit? European Journal of Operational

Research 254, 40–50.

Hagspiel, V., Nunes, C., Oliveira, C., Portela, M., 2021. Green investment un-

der time-dependent subsidy retraction risk. Journal of Economic Dynamics and

Control 126, 103936.

Heathrow, 2019. Heathrow Expansion Documents. https://www.heathrow.com/

company/about-heathrow/expansion/documents.

Herroelen, W., Leus, R., 2005. Project scheduling under uncertainty: Survey and

research potentials. European Journal of Operational Research 165, 289–306.

Heydari, S., Siddiqui, A., 2009. Real Options Analysis of Multiple-Exercise Inter-

ruptible Load Contracts, in: Conference on energy economics and technology.

Huang, X., Zhao, T., 2014. Project selection and scheduling with uncertain net

income and investment cost. Applied Mathematics and Computation 247, 61–71.

Huang, X., Zhao, T., Kudratova, S., 2016. Uncertain mean-variance and mean-

semivariance models for optimal project selection and scheduling. Knowledge-

Based Systems 93, 1–11.

Huberts, N.F., Huisman, K.J., Kort, P.M., Lavrutich, M.N., 2015. Capacity Choice

in (Strategic) Real Options Models: A Survey. Dynamic Games and Applications

5, 424–439.

Huisman, K.J., Kort, P.M., 2015. Strategic capacity investment under uncertainty.

The RAND Journal of Economics 46, 376–408.

Independent, 2018. Wind and solar power investment

crashed after government cut funding, show new figures.

URL: https://www.independent.co.uk/news/uk/politics/

wind-power-solar-investment-drop-uk-government-funding-environment/

-figures-budget-a8162261.html.

https://www.heathrow.com/company/about-heathrow/expansion/documents
https://www.heathrow.com/company/about-heathrow/expansion/documents
https://www.independent.co.uk/news/uk/politics/wind-power-solar-investment-drop-uk-government-funding-environment/-figures-budget-a8162261.html
https://www.independent.co.uk/news/uk/politics/wind-power-solar-investment-drop-uk-government-funding-environment/-figures-budget-a8162261.html
https://www.independent.co.uk/news/uk/politics/wind-power-solar-investment-drop-uk-government-funding-environment/-figures-budget-a8162261.html


BIBLIOGRAPHY 127

IRENA, 2022. Renewable power generation costs in 2021. International Renewable

Energy Agency .

Jeon, H., 2021. Investment timing and capacity decisions with time-to-build in a

duopoly market. Journal of Economic Dynamics and Control 122, 104028.

Jin, H., Liu, S., Sun, J., Liu, C., 2021. Determining concession periods and minimum

revenue guarantees in public-private-partnership agreements. European Journal

of Operational Research 291, 512–524.

Johnson, N.L., Kotz, S., Balakrishnan, N., 1994. Continuous Univariate Distribu-

tions. 2 ed., Wiley, New York.

Jung, S.H., Feng, T., 2020. Government subsidies for green technology development

under uncertainty. European Journal of Operational Research 286, 726–739.

Ke, H., Liu, B., 2005. Project scheduling problem with stochastic activity duration

times. Applied Mathematics and Computation 168, 342–353.

Keay, L., 2022. Elizabeth line: Years of delays and billions over budget - but

can Crossrail transform the capital’s fortunes? https://news.sky.com/story/

elizabeth-line-years-of-delays-and-billions-over-budget-but-can/

-crossrail-transform-the-capitals-fortunes-12619900. 2022 (accessed 24

May 2022).

Kim, K.K., Lee, C.G., 2012. Evaluation and optimization of feed-in tariffs. Energy

Policy 49, 192–203.

Kitzing, L., Juul, N., Drud, M., Boomsma, T.K., 2017. A real options approach to

analyse wind energy investments under different support schemes. Applied Energy

188, 83–96.

Klein, A., Held, A., Ragwitz, M., Resch, G., Faber, T., 2008. Evaluation of different

feed-in tariff design options: Best practice paper for the International Feed-in

Cooperation. Energy Economics Group & Fraunhofer Institute Systems and In-

novation Research, Germany 28, 2019.

https://news.sky.com/story/elizabeth-line-years-of-delays-and-billions-over-budget-but-can/-crossrail-transform-the-capitals-fortunes-12619900
https://news.sky.com/story/elizabeth-line-years-of-delays-and-billions-over-budget-but-can/-crossrail-transform-the-capitals-fortunes-12619900
https://news.sky.com/story/elizabeth-line-years-of-delays-and-billions-over-budget-but-can/-crossrail-transform-the-capitals-fortunes-12619900


BIBLIOGRAPHY 128

Kobos, P.H., Erickson, J.D., Drennen, T.E., 2006. Technological learning and re-

newable energy costs: implications for US renewable energy policy. Energy Policy

34, 1645–1658.

Kort, P.M., Murto, P., Pawlina, G., 2010. Uncertainty and stepwise investment.

European Journal of Operational Research 202, 196–203.

Kyriakou, I., Brignone, R., Fusai, G., 2023. Unified moment-based modeling of

integrated stochastic processes. Operations Research Articles in Advance.

Lahiri, S., Ono, Y., 1999. R&D Subsidies under Asymmetric Duopoly: A Note. The

Japanese Economic Review 50, 104–111.

Leyman, P., Vanhoucke, M., 2017. Capital- and resource-constrained project

scheduling with net present value optimization. European Journal of Operational

Research 256, 757–776.

Li, L., Liu, J., Zhu, L., Zhang, X.B., 2020. How to design a dynamic feed-in tar-

iffs mechanism for renewables–a real options approach. International Journal of

Production Research 58, 4352–4366.

Liang, Y., Cui, N., Wang, T., Demeulemeester, E., 2019. Robust resource-

constrained max-NPV project scheduling with stochastic activity duration. OR

Spectrum 41, 219–254.

Lindsay, B.G., Basak, P., 2000. Moments determine the tail of a distribution (but

not much else). The American Statistician 54, 248–251.

Lukas, E., Thiergart, S., 2019. The interaction of debt financing, cash grants and the

optimal investment policy under uncertainty. European Journal of Operational

Research 276, 284–299.

Ma, R., Cai, H., Ji, Q., Zhai, P., 2021. The impact of feed-in tariff degression on

R&D investment in renewable energy: The case of the solar PV industry. Energy

Policy 151, 112209.



BIBLIOGRAPHY 129

Majd, S., Pindyck, R.S., 1987. The Learning Curve and Optimal Production Under

Uncertainty. Working Paper 2423. National Bureau of Economic Research. URL:

http://www.nber.org/papers/w2423, doi:doi: 10.3386/w2423.

Markowitz, H.M., 1968. Portfolio Selection. Yale University Press.

Mason, R., Weeds, H., 2010. Investment, uncertainty and pre-emption. International

Journal of Industrial Organization 28, 278–287.

McDonald, A., Schrattenholzer, L., 2001. Learning rates for energy technologies.

Energy policy 29, 255–261.

McDonald, R., Siegel, D., 1986. The Value of Waiting to Invest. The Quarterly

Journal of Economics 101, 707–727.

McDonald, R.L., Siegel, D.R., 1985. Investment and the Valuation of Firms When

there is an Option to Shut Down. International Economic Review , 331–349.

Nagy, R.L., Hagspiel, V., Kort, P.M., 2021. Green capacity investment under subsidy

withdrawal risk. Energy Economics 98, 105259.

Nagy, R.L.G., Fleten, S.E., Sendstad, L.H., 2023. Don’t stop me now: Incremental

capacity growth under subsidy termination risk. Energy Policy 172, 113309.

Neij, L., Heiskanen, E., Strupeit, L., 2017. The deployment of new energy technolo-

gies and the need for local learning. Energy Policy 101, 274–283.

Nemet, G.F., 2006. Beyond the learning curve: factors influencing cost reductions

in photovoltaics. Energy Policy 34, 3218–3232.

Nie, P.Y., Xiao, X., Wang, C., Cui, T., 2020. Innovation subsidy under duopoly.

Managerial and Decision Economics 41, 362–370.

Nie, P.y., Yang, Y.c., Chen, Y.h., Wang, Z.h., 2016. How to subsidize energy effi-

ciency under duopoly efficiently? Applied Energy 175, 31–39.

http://www.nber.org/papers/w2423


BIBLIOGRAPHY 130

Orsted, 2023. Our offshore wind farms. https://orsted.co.uk/

energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=

EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE.

Pan, X., Guo, S., Li, M., Song, J., 2021. The effect of technology infrastructure

investment on technological innovation —A study based on spatial durbin model.

Technovation 107, 102315.

Pawlina, G., Kort, P.M., 2006. Real Options in an Asymmetric Duopoly: Who Ben-

efits from Your Competitive Disadvantage? Journal of Economics & Management

Strategy 15, 1–35.

Pennings, E., 2000. Taxes and stimuli of investment under uncertainty. European

Economic Review 44, 383–391.

Pennings, E., 2005. How to maximize domestic benefits from foreign investments:

the effect of irreversibility and uncertainty. Journal of Economic Dynamics and

Control 29, 873–889.

Pogue, M., 2004. Investment appraisal: A new approach. Managerial Auditing

Journal 19, 565–569.

Remer, D.S., Nieto, A.P., 1995. A compendium and comparison of 25 project eval-

uation techniques. Part 1: Net present value and rate of return methods. Inter-

national Journal of Production Economics 42, 79–96.

Rezaei, F., Najafi, A.A., Ramezanian, R., 2020. Mean-conditional value at risk

model for the stochastic project scheduling problem. Computers & Industrial

Engineering 142, 106356.

Ritzenhofen, I., Birge, J.R., Spinler, S., 2016. The structural impact of renewable

portfolio standards and feed-in tariffs on electricity markets. European Journal

of Operational Research 255, 224–242.

Rockafellar, R.T., Uryasev, S., et al., 2000. Optimization of Conditional Value-at-

Risk. Journal of Risk 2, 21–42.

https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE
https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE
https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE


BIBLIOGRAPHY 131

Russell, A.H., 1970. Cash Flows in Networks. Management Science 16, 357–373.

Sarkar, S., 2012. Attracting private investment: Tax reduction, investment subsidy,

or both? Economic Modelling 29, 1780–1785.

Sarkar, S., Zhang, C., 2020. Investment and financing decisions with learning-curve

technology. Journal of Banking & Finance 121, 105967.

Sendstad, L.H., Hagspiel, V., Mikkelsen, W.J., Ravndal, R., Tveitstøl, M., 2022. The

impact of subsidy retraction on European renewable energy investments. Energy

Policy 160, 112675.

Siddiqui, A., Fleten, S.E., 2010. How to Proceed with Competing Alternative Energy

Technologies: A Real Options Analysis. Energy Economics 32, 817–830.

Siddiqui, A., Takashima, R., 2012. Capacity switching options under rivalry and

uncertainty. European Journal of Operational Research 222, 583–595.

Silaghi, F., Sarkar, S., 2021. Agency problems in public-private partnerships invest-

ment projects. European Journal of Operational Research 290, 1174–1191.

Smit, T., Junginger, Martin Smits, R., 2007. Technological learning in offshore wind

energy: Different roles of the government. Energy Policy 35, 6431–6444.

Sobel, M.J., Szmerekovsky, J.G., Tilson, V., 2009. Scheduling projects with stochas-

tic activity duration to maximize expected net present value. European Journal

of Operational Research 198, 697–705.
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