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In many medical studies, the outcome measure (such as quality of life, QOL) for
some study participants becomes informatively truncated (censored, missing,
or unobserved) due to death or other forms of dropout, creating a nonignorable
missing data problem. In such cases, the use of a composite outcome or impu-
tation methods that fill in unmeasurable QOL values for those who died rely
on strong and untestable assumptions and may be conceptually unappealing
to certain stakeholders when estimating a treatment effect. The survivor aver-
age causal effect (SACE) is an alternative causal estimand that surmounts some
of these issues. While principal stratification has been applied to estimate the
SACE in individually randomized trials, methods for estimating the SACE in
cluster-randomized trials are currently limited. To address this gap, we develop
a mixed model approach along with an expectation–maximization algorithm to
estimate the SACE in cluster-randomized trials. We model the continuous out-
come measure with a random intercept to account for intracluster correlations
due to cluster-level randomization, and model the principal strata membership
both with and without a random intercept. In simulations, we compare the per-
formance of our approaches with an existing fixed-effects approach to illustrate
the importance of accounting for clustering in cluster-randomized trials. The
methodology is then illustrated using a cluster-randomized trial of telecare and
assistive technology on health-related QOL in the elderly.
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1 INTRODUCTION

The informative “truncation” or “censoring” by death problem is a challenge in many studies. When death occurs, a
non-mortality outcome cannot be measured or defined for those who die before the time of planned study measurement.
Further, as the reason for the inability to measure an important study outcome is known and itself meaningful (ie, non-
ignorable or missing not at random), this truncation is informative and can bias inference with statistical models that
assume missing completely at random (MCAR) or missing at random (MAR).1-4 A common example of this problem in
the medical literature is missing QOL measures due to death. Researchers have a limited number of options in such set-
tings.3,4 Composite outcomes (eg, applying the worst possible QOL value to those who die) are a popular solution, but
can be difficult to interpret, and similar summary values of a composite outcome in different studies may represent very
different combinations of clinical outcomes.5,6 Imputation strategies are another potential solution, but they also raise
conceptual challenges as any imputed value for an informatively unmeasured outcome results in an explicit or implicit
valuation of that health state to equal a value observed among those who did not die, which may not be appealing or
logical to certain stakeholders. Other potential approaches, such as a survivors-only or complete case analysis, produce
estimates that do not have a clear causal interpretation under the counterfactual outcome framework, that is, those who
survive under treatment and control can be systematically different, and this obscures the target estimand.7,8 In this arti-
cle, we focus on cluster-randomized trials (CRTs) where randomization occurs at the cluster level, and, thus, participant
observations are correlated, and we investigate the survivor average causal effect (SACE), defined using principal strat-
ification, as a potential solution for the truncation-by-death problem.1 Specifically for CRTs, we propose to model the
non-mortality outcome using a finite mixture regression model with a random intercept, where the mixture weights are
obtained through either fixed-effects (FE) or mixed-effects (ME) regression.

Under the potential outcomes framework, Frangakis and Rubin9 first considered the principal stratification method
to estimate the principal causal effects with independent and identically distributed data. The principal stratification
approach has been used to address a wide range of similar problems, including truncation-by-death, noncompliance (eg,
using the related complier average causal effect (CACE)10), and surrogate outcomes.11 This framework (detailed more
fully in Section 2) allows researchers to consider cohort members as belonging to one of four possible strata (Table 1).
Under truncation-by-death, two strata include those who would or would not survive regardless of treatment: these are
the always survivors and never survivors strata. The other two strata include those who would only survive under treatment
or control, classified as the protected or the harmed (alternatively framed as the compliant or the defiant, respectively
in the noncompliance literature). Because the pair of counterfactual non-mortality outcomes are only well-defined for
those who would survive under both treatment and control, the SACE is defined as the effect of an intervention on the
non-mortality outcome among the always survivors. In other words, the SACE as a causal estimand applies only to a
specific subset of individuals rather than the original trial population.

Principal stratification and the SACE estimand have been used in a number of settings. For example, Zhang and
Rubin used the SACE to examine the impact of an educational program on test scores when the scores were not possible
to collect among those who dropped out of school before taking the test.1 The SACE approach has also been used to
gain insight into the effect of intensive care unit-based interventions for critically ill patients.12-15 Bounds of the SACE
providing the smallest and the largest possible values without modeling assumptions have also been derived.1,16,17 In
practice, however, the bounds may be too wide to be informative for deciding whether the effect is positive or negative,18

and there is substantial interest in many medical studies to obtain a point estimate of the SACE. Zhang et al developed a
likelihood-based method for SACE point estimation using the expectation–maximization (EM) algorithm,19 and applied
their method to estimate the effect of a job training program on wages in a setting where wages are only meaningfully
defined for the employed individuals.20 Since then, other methods for estimating the SACE have been developed and
include the use of a sensitivity analysis procedure,21 leveraging a pre-treatment covariate,18 weighting and regression

T A B L E 1 The four principal strata of trial participants using principal stratification.

ss Always survivors {Sij(1) = 1, Sij(0) = 1}

sn Protected {Sij(1) = 1, Sij(0) = 0}

ns Harmed {Sij(1) = 0, Sij(0) = 1}

nn Never survivors {Sij(1) = 0, Sij(0) = 0}
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WANG et al. 3

under a nonparametric structural equations model,22 leveraging a substitution variable in the always survivors stratum,23

and methods based on the principal scores.24,25

The aforementioned approaches focus on randomized trials or observational studies where treatment assignment
is at the individual level and where data observations are typically independent (uncorrelated). However, many multi-
center studies where the SACE would be useful must deal with clustering by study sites, and methods for estimating
principal-strata-specific effects, such as the SACE, in such settings are currently limited with a few exceptions for esti-
mating the average effect of treatment assignment for compliers (ie, CACE). Specifically, principal stratification has been
applied in clustered encouragement designs where the treatment encouragement is assigned at the cluster level to address
treatment non-compliance.26,27 In CRTs, groups of individuals, instead of individuals, are randomized to different arms.
Due to shared features among individuals within clusters, it is likely that the outcomes in the same cluster are more
similar than those from different clusters.28,29 The resulting similarity (or homogeneity) of patients (and thus their out-
comes) within the same cluster then induces a positive intracluster correlation that must be accounted for in the analysis
of the trial to ensure valid statistical inference. In CRTs with one-sided noncompliance, a multilevel mixture model has
been developed to estimate the CACE.30,31 Under one-sided noncompliance, individuals assigned to treatment could be
a never-taker if they do not take the treatment, but individuals have no access to treatment if assigned to the control
condition. This results in compliers and never-takers as two principal strata, and facilitates likelihood-based inference
for the CACE based on multilevel models for both the outcome and compliance strata. Under one-sided noncompliance,
the model fitting procedure based on the EM algorithm19 and numerical integration has been implemented through the
statistical modeling program Mplus.

In this article, we develop a mixed model estimators to support estimation of the SACE under a principal stratifica-
tion framework adapted for CRTs. To explicitly account for possible intracluster correlations when estimating the SACE,
we develop a clustered mixture model by introducing cluster-level random intercepts into the stratum-specific poten-
tial outcome models (Section 3.2). We adopt the multinomial logistic regression with and without random intercepts to
model the membership probability in each principal stratum20 and differentiate the latent strata in the trial population.
In the outcome model, conditional on the random intercept, each individual’s observed outcome in a treated cluster can
come from the always survivor stratum or the protected stratum, and thus follows a mixture distribution.20,32 Similarly,
in a control cluster, a non-survivor whose outcome is not observed has a mixture representation (never survivors or the
protected). Our formulation differs from methods developed for estimating the CACE in CRTs30,31 in that we have consid-
ered three latent strata under monotonicity (instead of 2 strata under one-sided noncompliance) based on survival status
and that the non-mortality outcomes of interest are not observable in certain strata. Our formulation is similar to Tong
et al.,33 who developed a Bayesian mixture model to estimate the SACE in CRTs. In contrast to Tong et al.,33 we consider
the frequentist paradigm and develop an EM approach for estimating the SACE in CRTs. Further comparison between
the frequentist and the Bayesian approach in this context, however, will be left for future work.

The rest of this article is organized as follows. We define notation in Section 2, and introduce our models and the esti-
mation procedures in Sections 3–5. In Section 6, we conduct a simulation study to compare our approaches of estimating
the SACE with the approach of no random intercept and identify scenarios where it is necessary to account for cluster-
ing. We illustrate the proposed method to estimate SACE in a CRT evaluating a telehealth program in Section 7. Section 8
concludes.

2 NOTATION AND SETUP

Here we review the potential outcomes framework with principal stratification to guide our work in the context of a
parallel-arm CRT. We use the subscript i to indicate the ith cluster, randomized to either treatment or control, and the sub-
script j to indicate the jth individual in that cluster. Thereafter, we outline the assumptions used to support the estimation
of the SACE in CRTs.

2.1 Potential outcomes

In a CRT, individuals within the same cluster share the same treatment status. Let Di ∈ {0, 1} be the binary treatment
assignment for the ith cluster, with Di = 1 indicating treatment and Di = 0 indicating control. Let Sij(Di) be the potential
survival status that would be observed under the treatment assignment Di. Let Yij(Di) be the potential outcome that would
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4 WANG et al.

be observed under treatment condition Di at the end of the study. The outcome Yij(Di) is observed only for a survivor, that
is, for whom Sij(Di) = 1 and therefore whose outcome measure is not truncated due to death or other forms of dropout.

2.2 Principal stratification

Each individual has two potential survivor statuses under treatment and control. Based on them, under the principal strat-
ification framework,9 each individual can be classified into one of the four principal strata, defined by the joint potential
values of the survival status (Table 1). Specifically, we let “s” stand for “survivor” and “n” stand for “non-survivor.” We use
“ss” to represent the always-survivors stratum (ie, {Sij(1) = 1, Sij(0) = 1}) where an individual would survive regardless
of the treatment assignment. We let “sn” indicate the protected stratum (ie, {Sij(1) = 1, Sij(0) = 0}), where an individual
would survive under treatment but would not survive under control. We use “ns” to represent the harmed stratum (ie,
{Sij(1) = 0, Sij(0) = 1}), where individuals would not survive under treatment but would survive under control. Finally,
we let “nn” indicate the never-survivors stratum (ie, {Sij(1) = 0, Sij(0) = 0}), where individuals would not survive in either
treatment or control.

In practice, we cannot observe both Sij(1) and Sij(0) for any individual, that is, we observe only one of Sij(1) and Sij(0)
depending on the assigned treatment status. However, we are able to track the principal stratum to some degree based on
the observed treatment assignment and the observed survival status. In a treatment cluster with Di = 1, a survivor is in
either the “ss” stratum or the “sn” stratum, whereas a non-survivor is in either the “ns” or the “nn” stratum. In a control
cluster with Di = 0, a survivor is in the “ss” or the “ns” stratum while a non-survivor is in the “sn” or the “nn” stratum.
In general, the potential outcomes Yij(1) and Yij(0) can only be well-defined if the patient survives until the time when
the non-mortality outcome is measured. Thus, a common estimand of interest, the SACE, in the presence of truncation,
can be defined in a CRT as a participant-level average of potential outcome contrasts among the always-survivors, or,
equivalently,

SACE = E[Yij(1) − Yij(0)|Sij(1) = Sij(0) = 1]. (1)

2.3 Assumptions

We outline our key assumptions below.

Assumption 1. (non-informative cluster size and cluster randomization) (a) Assume each cluster is drawn
from a super-population of clusters, and the bounded cluster size mi is drawn from a common distribution
of integers, m. (b) For each individual in cluster i, the vector {Sij(1), Sij(0), Sij(1)Yij(1), Sij(0)Yij(0)} follows
a common marginal distribution {S(1),S(0),S(1)Y (1),S(0)Y (0)} that does not depend on the cluster size mi. (c)
The treatment is randomized at the cluster level and does not depend on any post-randomization potential
outcomes, that is, Di ⊥ {Sij(1), Sij(0), Sij(1)Yij(1), Sij(0)Yij(0); j = 1, … ,mi}.

Assumptions 1(a) and 1(b) describe a super-population framework under which we are allowed to define the expecta-
tion of the SACE estimand (1). Specifically, Assumption 1(b) rules out informative cluster size34 such that the distribution
of potential survival statuses and potential outcome variables are independent of the cluster size.35 It is Assumption 1(b)
that permits us to define an individual-level causal estimand similar to the one typically defined for individually random-
ized trials. Assumption 1(c) holds as a result of the cluster-randomized design. While we assume away informative cluster
size in our development, we will return to a discussion on this issue in Section 8. Of note, Assumption 1 is an adaption of
an assumption introduced in Li et al.36 for addressing post-randomization selection bias to accommodate the context of
truncation-by-death in CRTs.

Assumption 2. (Cluter-level SUTVA). Let D be the vector collecting the treatment assignment across all
clusters. The cluster-level stable unit treatment value assumption (SUTVA) states that: (i) an individual’s
potential outcomes and survival status do not vary with treatment assigned to other clusters than the
individual’s own cluster; and (ii) for each cluster, there are no different versions of each treatment level.
Mathematically, we have (i) Yij(D) ≡ Yij(Di) and Sij(D) ≡ Sij(Di); and (ii) If Di = D∗

i , then Yij(Di) = Yij(D∗
i ) and

Sij(Di) = Sij(D∗
i ).
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WANG et al. 5

T A B L E 2 Three key principal strata and a tabulation of the possibly observed non-mortality outcomes in each stratum.

Principal stratum Di = 1, Sij = 1 Di = 0, Sij = 1

ss Always survivors {Sij(1) = 1, Sij(0) = 1} Yij(1) Yij(0)

sn Protected {Sij(1) = 1, Sij(0) = 0} Yij(1) *

nn Never survivors {Sij(1) = 0, Sij(0) = 0} * *

Note: Individuals in the “sn” or the “nn” stratum are alternatively framed as compliers or never-takers in the context of nontreatment compliance.

The cluster-level SUTVA does not exclude the possibility that Yij can be influenced by the treatment received by other
individuals in the same cluster.27,37 However, because individuals in the same cluster receive the same treatment due to
cluster randomization, the number of potential outcomes for each individual remains two, obviating the need to consider
treatment interference within clusters. Therefore, the cluster-level SUTVA primarily assumes away interference between
clusters. Finally, we assume monotonicity such that the cluster-level treatment does not lead to worse survival for each
individual in the same cluster.

Assumption 3. (Monotonicity) Sij(1) ≥ Sij(0).

Under the monotonicity assumption, there are no harmed patients who survive under the control arm but would
die otherwise. This is plausible in many CRTs with system-level interventions, which are likely beneficial, or at least not
harmful, for patients. Each individual is therefore classified into one of the three principal strata, “ss”, “sn”, or “nn”, prior
to the treatment assignment. However, the “ss” stratum is the only group for which both Yij(1) and Yij(0) are well-defined
due to the absence of death truncation. Inference regarding the causal effect of treatment on the outcome will then be
drawn only for the always-survivors where the SACE is well-defined in equation (1). As a more concrete illustration,
Table 2 shows the relationship between each principal stratum and the observed survival status; when the outcome is not
defined for non-survivors, we use an asterisk, *.

Under Assumptions 1–3 alone, the SACE estimand (1) can only be partially or set identified. For example, one could
follow the arguments in Zhang and Rubin1 to develop large-sample bounds to interval identify the SACE estimand in a
CRT. For point estimation, our approach follows Zhang et al.,20 Jo et al.,30,31 and Jo38 and leverages multilevel parametric
mixture models for principal stratification analyses. Under Assumptions 1–3, the multilevel parametric modeling assump-
tions are used to empirically identify the SACE estimand in CRTs. We assume the continuous outcomes follow a normal
mixture model. Our model formulation does not assume principal ignorability,24,25 because the design vector of measured
covariates includes an intercept, and therefore, our models encode stratum-specific intercepts and coefficients. We for-
mulate two sets of mixture models, one developed in Section 3 assuming a random intercept only in the potential outcome
model, and the other developed in Section 5 assuming independent random intercepts in the principal strata model as
well as the potential outcome model. Mathematical details of the models and the associated computation strategies are
developed in Sections 3 and 5. We also discuss the caveats of this empirical identification strategy in Section 8.

3 ESTIMATING THE SACE IN CLUSTER-RANDOMIZED TRIALS

In the following, we use subscripts “ss,” “sn,” or “nn” to denote the principal stratum-specific parameters or variables. Let
elements of the random vector zij = (Zss,ij,Zsn,ij, and Znn,ij)′ be the multinomial indicator of the corresponding principal
stratum. For example, zij = (1, 0, 0)′ means the (i, j)th individual belongs to the “ss” stratum. Let xij be a column vector of
measured covariates (including the intercept) of that individual.

3.1 Principal strata membership model

Let pss,ij = E(Zss,ij|xij) be the probability that the the (i, j)th individual belongs to the “ss” stratum, and similarly we define
psn,ij and pnn,ij. We consider a multinomial logistic membership model such that the reference “nn” stratum membership
model is

pnn,ij =
1

1 + exp{x′ij𝜶ss} + exp{x′ij𝜶sn}
, (2)
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6 WANG et al.

where𝜶ss and𝜶sn are the regression coefficient vectors. Under the multinomial logistic regression formulation, we further
have pss,ij = pnn,ij exp{x′ij𝜶ss}, psn,ij = pnn,ij exp{x′ij𝜶sn}. For simplicity, we are not assuming the cluster-level random inter-
cept in the principal strata model; an extension to allow for a cluster-level random intercept and hence the intra-cluster
correlation (ICC) of the principal strata membership is developed in Section 5.

3.2 Potential outcome models within principal strata

Let  denote a normal density function. In the ith treated cluster and under the treatment condition, we model the
potential outcomes in the always-survivors stratum (“ss”) with the random intercept u1i to account for the cluster-level
random variation as

yss,ij(1) = x′ij𝜷ss,1 + u1i + 𝜖ij, u1i ∼ (0, 𝜏2), 𝜖ij ∼ (0, 𝜎2), (3)

and the potential outcome in the protected stratum (“sn”) as

ysn,ij(1) = x′ij𝜷sn + u1i + 𝜖ij, u1i ∼ (0, 𝜏2), 𝜖ij ∼ (0, 𝜎2). (4)

We assume the observed outcome of a survivor yij follows a mixture distribution with the probability pss,ij from the model
(3), and with the probability psn,ij from the model (4). That is, conditional on u1i, the density of a survivor’s outcome in
the ith treated cluster has the mixture model representation

f (yij|xij,u1i) = (x′ij𝜷ss,1 + u1i, 𝜎
2)pss,ij + (x′ij𝜷sn + u1i, 𝜎

2)psn,ij. (5)

In the ith control cluster where Di = 0, we model the potential outcome in the “ss” stratum with the random intercept
u0i as follows:

yss,ij(0) = x′ij𝜷ss,0 + u0i + 𝜖ij, u0i ∼ (0, 𝜏2), 𝜖ij ∼ (0, 𝜎2). (6)

As noted above, by the monotonicity assumption, the outcome is not observed for a non-survivor who has the probabil-
ity psn,ij of belonging to the “sn” stratum, and the probability pnn,ij of belonging to the “nn” stratum. For identifiability
purposes, we maintain the standard assumption that the random intercepts u1i’s, and u0i’s and the residual errors 𝜖ij’s
are all mutually independent for all i and j. For simplicity, we assume the outcome models share the same variance
parameters 𝜏2 and 𝜎2. Under the above parameterization, the ICC among the always-survivors is given by 𝜏2∕(𝜏2 + 𝜎2).
Previous simulations indicate that the restrictions imposed on variance parameters within the mixture model can influ-
ence the principal causal effect estimates.38 When variance heterogeneity is a concern, our model can be extended to
allow for stratum-specific or condition-specific variance parameters for the potential outcomes. We do not pursue this
more complicated model formulation but discuss this extension as future work in Section 8.

3.3 Likelihood function of the complete data

Table 3 shows the possible components of an individual’s likelihood function. As a recap, the observed outcome density
in the treatment group follows a mixture model as in (5). The observed data consist of the observed outcomes and the sur-
vival status of all the individuals. The missing data include the principal stratum indicator variables zij’s and the random
intercepts u1i’s and u0i’s. To arrive at the likelihood function, we now write f , which represents a generic density func-
tion. Suppose there are m1,i individuals in the ith treated cluster, and m0,i individuals in the ith control cluster. That is,
mi = Dim1,i + (1 − Di)m0,i. Let yi = (yi1 · · · yi mi)

′ be the observed outcome vector in each cluster. The likelihood of the
complete data (zij, yi,u1i), assuming the random intercepts are observed, in the ith treated cluster is

m1,i∏

j=1

[

pZss,ij

ss,ij fss,1(yij|xij,u1i)Zss,ij

][

pZsn,ij

sn,ij fsn(yij|xij,u1i)Zsn,ij

][

pZnn,ij

nn,ij

]

f (u1i),
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WANG et al. 7

T A B L E 3 Contribution of each individual’s likelihood function given the survival status and the treatment assignment, and
conditional on the random intercept.

Observation Principal stratum Treatment (Di = 1) Control (Di = 0)

Survivor ss always-survivors pss,ij (x′ij𝜷ss,1 + u1i, 𝜎
2) pss,ij (x′ij𝜷ss,0 + u0i, 𝜎

2)

sn protected psn,ij (x′ij𝜷sn + u1i, 𝜎
2) *

Non-survivor sn protected * psn,ij

nn never-survivors pnn,ij pnn,ij

where fss,1(yij|xij,u1i) = (x′ij𝜷ss,1 + u1i, 𝜎
2) and fsn(yij|xij,u1i) = (x′ij𝜷sn + u1i, 𝜎

2) are from (3) and (4). Similarly, let
fss,0(yij|xij,u0i) = (x′ij𝜷ss,0 + u0i, 𝜎

2) from (6), then in the ith control cluster, the likelihood of the complete data, according
to Table 3, is

m0,i∏

j=1

[

pZss,ij

ss,i fss,0(yij|xij,u0i)Zss,ij

][

pZsn,ij

sn,ij

][

pZnn,ij

nn,ij

]

f (u0i).

4 ESTIMATION VIA EXPECTATION–MAXIMIZATION

The parameters in our models include {𝜷ss,1, 𝜷sn, 𝜷ss,0,𝜶ss,𝜶sn, 𝜎
2
, 𝜏

2}. To estimate these parameters, we developed an EM
algorithm.19 The details of the iterative estimation procedure are provided in the supplementary material (Section S1), and
we only outline the main steps below. We obtain the complete data log-likelihood based on the calculation in Section 3.3.
In the E-step, we calculate the conditional expectation of the complete data log-likelihood given the observed data and the
estimates from the previous iteration. The calculation relies on the conditional mean of Zss,ij and Zsn,ij, and the conditional
mean and variance of u1i and u0i. As assumed, each of Zss,ij and Zsn,ij is conditionally independent of ui1 or ui0.

In the M-step, we find estimates of 𝜷ss,1 and 𝜷sn by maximizing the conditional complete data log-likelihood of the
treated clusters, and similarly estimate 𝜷ss,0 based on the control clusters. We estimate the remaining parameters using
data from both treated clusters and control clusters. After obtaining the parameter estimates, we also derive an estimator
of the SACE and propose to use the cluster-bootstrap method to construct the confidence intervals.

4.1 E-step

In the ith treated cluster, we can compute

𝜂ss,ij ≡ P(Zss,ij = 1|Sij = 1, xij) =
 (x′ij𝜷ss,1, 𝜎

2 + 𝜏2)pss,ij

 (x′ij𝜷ss,1, 𝜏
2 + 𝜎2)pss,ij + (x′ij𝜷sn, 𝜏

2 + 𝜎2)psn,ij
,

and P(Zsn,ij = 1|Sij = 1, xij) = 1 − 𝜂ss,ij. In the ith control cluster, we have

𝜂sn,ij ≡ P(Zsn,ij = 1|Sij = 0, xij) =
psn,ij

psn,ij + pnn,ij
, P(Zss,ij = 1|Sij = 1, xij) = 1.

To find the conditional mean and variance of u1i, we perform a Monte Carlo E-step calculation.39 Suppose there are m1,i,1
survivors in the ith treated cluster. We find the joint density of (u1i, yi), and the marginal density of yi respectively as
follows:

f (u1i, yi|xij) =

{m1,i,1∏

j=1
f (yij|u1i, xij)

}

f (u1i), f (yi|xij) =
∫

f (u1i, yi|xij)du1i.

To reduce computational intensity, we randomly sample 100 u1i’s from N(0, 𝜎2) given the estimates from the previous
iteration. Our experience based on simulations is that 100 samples provided adequate information about the underlying
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8 WANG et al.

normal distribution. Then we calculate E(ui1|yi) and Var(ui1|yi) numerically based on the posterior density of the random
intercept, f (u1i|yi, xij) = f (u1i, yi|xij)∕f (yi|xij). Specifically, under the linear mixed model setup, we obtain the conditional
mean and variance of u0i in closed forms. Let Xi = (xi1, xi2, … , xij, …) be the design matrix of the ith cluster where the
jth column is the vector of measured covariates of the jth individual. Let 1i be a column vector of 1’s of appropriate order.
Let m0,i,1 be the number of survivors in the ith control cluster. We can arrive at

E(u0i|yi,Xi) =
𝜏

21′i(yi − X′
i𝜷ss,0)

m0,i,1𝜏2 + 𝜎2 , Var(u0i|yi,Xi) =
𝜏

2
𝜎

2

m0,i,1𝜏2 + 𝜎2 .

4.2 M-step

Let m1,1 =
∑

i∶Di=1 m1,i,1 be the total number of survivors in the treatment clusters, and m0,1 =
∑

i∶Di=0 m0,i,1 be the
total number of survivors in the control clusters. We obtain the estimates at the current iteration by the following the
(generalized) least-squares solutions:

̂𝜷ss,1 =

{
∑

i∶Di=1

∑

j≤m1,i,1

𝜂ss,ij(xijx′ij)

}−1
∑

i∶Di=1

∑

j≤m1,i,1

𝜂ss,ijxij
{

yij − E(u1i|yi,Xi)
}
,

̂𝜷sn =

{
∑

i∶Di=1

∑

j≤m1,i,1

(1 − 𝜂ss,ij)(xijx′ij)

}−1
∑

i∶Di=1

∑

j≤m1,i,1

(1 − 𝜂ss,ij)xij
{

yij − E(u1i|yi,Xi)
}
,

̂𝜷ss,0 =

{
∑

i∶Di=0

∑

j≤m0,i,1

(xijx′ij)

}−1
∑

i∶Di=0

∑

j≤m0,i,1

xij
{

yij − E(u0i|yi,Xi)
}
.

To update the variance components parameters, we let yss,ij,1 = yij − x′ij ̂𝜷ss,1 − E(u1i|yi,Xi), ysn,ij = yij − x′ij ̂𝜷sn −
E(u1i|yi,Xi), and yss,ij,0 = yij − x′ij ̂𝜷ss,0 − E(u0i|yi,Xi), based on which we can derive

�̂�

2 =

∑
i∶Di=1

∑
j≤m1,i,1

{

𝜂ss,ij y2
ss,ij,1 + (1 − 𝜂ss,ij)y2

sn,ij + Var(u1i|yi,Xi)
}

m1,1 +m0,1
+

∑
i∶Di=0

∑
j≤m0,i,1

{

y2
ss,ij,0 + Var(u0i|yi,Xi)

}

m1,1 +m0,1
,

𝜏

2 =
∑

i∶Di=1 E(u2
1i|yi, xij) +

∑
i∶Di=0 E(u2

0i|yi,Xi)
n1 + n0

,

where n1 is the number of treated clusters and n0 is the number of control clusters.
Finally, we estimate the coefficient vectors 𝜶ss and 𝜶sn in the multinomial logistic regression using the

Newton–Raphson algorithm. Based on the multinomial likelihood formulation, the first- and second-order derivatives of
𝜶ss are

∑

i∶Di=1

∑

j≤m1,i,1

𝜂ss,ijx′ij +
∑

i∶Di=0

∑

j≤m0,i,1

x′ij −
∑

i∶Di=1

∑

j≤m1,i

exp(x′ij𝜶ss)

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
x′ij

−
∑

i∶Di=0

∑

j≤m0,i

exp(x′ij𝜶ss)

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
x′ij,

and

−
∑

i∶Di=1

∑

j≤m1,i

exp(x′ij𝜶ss)
{

1 + exp(x′ij𝜶sn)
}

{

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
}2 xijx′ij −

∑

i∶Di=0

∑

j≤m0,i

exp(x′ij𝜶ss)
{

1 + exp(x′ij𝜶sn)
}

{

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
}2 xijx′ij.
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WANG et al. 9

Similarly, the first- and second-order derivatives of 𝜶sn are

∑

i∶Di=1

∑

j≤m1,i,1

(1 − 𝜂ss,ij)x′ij +
∑

i∶Di=0

∑

j≤m0,i,0

𝜂sn,ijx′ij

−
∑

i∶Di=1

∑

j≤m1,i

exp(x′ij𝜶sn)
{

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
}x′ij −

∑

i∶Di=0

∑

j≤m0,i

exp(x′ij𝜶sn)
{

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
}x′ij,

and

−
∑

i∶Di=1

∑

j≤m1,i

exp(x′ij𝜶sn)
{

1 + exp(x′ij𝜶ss)
}

{

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
}2 xijx′ij −

∑

i∶Di=0

∑

j≤m0,i

exp(x′ij𝜶sn)
{

1 + exp(x′ij𝜶ss)
}

{

1 + exp(x′ij𝜶ss) + exp(x′ij𝜶sn)
}2 xijx′ij.

These explicit forms of derivatives will be used in the iterative procedures required by the Newton–Raphson formula for
updating the strata membership parameters.

4.3 Estimating the SACE in cluster-randomized trials

Because the joint potential values of the survival status {Sij(1), Sij(0)} are not simultaneously observable, it is not imme-
diate how to derive the SACE from the parameter estimates under our modeling assumptions. To proceed, we base our
estimate on an equivalent form of the SACE (a g-computation formula or model-based standardization formula) below.
We summarize the result in a proposition, and the proof is provided in the supplementary material (Section S2.).

Proposition 1. (A model-based g-computation formula) Under Assumptions 1–3 and assuming the multilevel
mixture model, we have

E[Yij(1) − Yij(0)|Sij(1) = Sij(0) = 1] =
E
[

(x′ij𝜷ss,1 + u1i)pss,ij

]

P
[
Sij(1) = Sij(0) = 1|Di = 1

] −
E
[

(x′ij𝜷ss,0 + u0i)pss,ij

]

P
[
Sij(1) = Sij(0) = 1|Di = 0

] .

After we obtain the parameter estimates, we get the estimated p̂ss,ij from the principal strata model. In the ith treatment
cluster, let ŷij = x′ij ̂𝜷ss,1 + ̂E(u1i|yi,Xi). In the ith control cluster, let ŷij = x′ij ̂𝜷ss,0 + ̂E(u0i|yi,Xi). Proposition 1 suggests that
we can estimate the SACE using the sample analog

̂SACE =

∑
i∶Di=1

∑m1,i
j=1 p̂ss,ijŷij

∑
i∶Di=1

∑m1,i
j=1 p̂ss,ij

−

∑
i∶Di=0

∑m0,i
j=1 p̂ss,ijŷij

∑
i∶Di=0

∑m0,i
j=1 p̂ss,ij

. (7)

Finally, we obtain the confidence interval of the estimate using the bootstrap method of sampling the clusters with replace-
ment.40,41 We randomly sample the treated clusters and the control clusters separately. For each bootstrap sample, we
fit the model and obtain the SACE estimate. The 95% confidence intervals are obtained from the 2.5% and the 97.5%
quantiles of the bootstrap estimates.

5 AN EXTENSION TO INCLUDE A CLUSTER-LEVEL RANDOM
INTERCEPT IN THE STRATA MEMBERSHIP MODEL

In some cases, one may be interested in accounting for unmeasured cluster-level variation in the strata membership
model. Specifically, we could include a random intercept v1i or v0i in the ith treated or the ith control cluster into the multi-
nomial logistic membership model. In the ith treated cluster, the reference “nn” stratum membership model becomes

pnn,ij =
1

1 + exp{x′ij𝜶ss + v1i} + exp{x′ij𝜶sn + v1i}
,
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10 WANG et al.

and we further have pss,ij = pnn,ij exp{x′ij𝜶ss + v1i}, and psn,ij = pnn,ij exp{x′ij𝜶sn + v1i}. We assume the v1i’s and v0i’s indepen-
dently follow the normal distribution (0, 𝛾2). From Hedeker,42 this model formulation induces an ICC (on the latent
response scale) for the strata membership defined as 𝛾2∕(𝛾2 + 𝜋2∕3). We also assume they are independent of the random
intercepts in the outcome models,31 and are independent of the residual errors there. Under this model specification, an
individual’s principal strata membership is assumed to be independent of the cluster-level random effect in the potential
outcome model given the measured baseline covariates. This assumption will likely be more plausible when a rich set of
risk factors are collected at baseline but will be violated when at least one cluster-level risk factor that happens to predict
the strata membership is omitted from data collection. For example, under this last scenario, there can be a nonzero cor-
relation between v1i and u1i given only the observed covariates and incorrectly assuming their independence may lead to
biased parameter estimates.

With the extra random intercept in the strata model, the complete data of the ith treated clusters are (zij, yi,u1i, v1i)
whose likelihood is

m1,i∏

j=1

[

pZss,ij

ss,ij fss,1(yij|xij,u1i)Zss,ij

][

pZsn,ij

sn,ij fsn(yij|xij,u1i)Zsn,ij

][

pZnn,ij

nn,ij

]

f (u1i)f (v1i).

Similarly, in the ith control cluster, the likelihood of the complete data is
m0,i∏

j=1

[

pZss,ij

ss,i fss,0(yij|xij,u0i)Zss,ij

][

pZsn,ij

sn,ij

][

pZnn,ij

nn,ij

]

f (u0i)f (v0i).

Based on the complete data likelihood, we develop the EM algorithm to estimate the model parameters
{𝜷ss,1, 𝜷sn, 𝜷ss,0,𝜶ss,𝜶sn, 𝜎

2
, 𝜏

2
, 𝛾

2}. The iterative estimation procedure is similar to that in Section 4, and the detailed
derivation is provided in the supplementary material (Section S3). Estimates of the parameters except for 𝛾2 have the anal-
ogous formulations as in the basic strata model without the random intercept. Importantly, the first- and second- order
derivatives of𝜶ss and𝜶sn are now functions of the v1i’s and v0i’s. The E-step calculation also relies on the conditional mean
of v1i and v0i given the observed data. We perform a Monte Carlo E-step calculation by random sampling 100 v1i’s or v0i’s
from N(0, 𝛾2) given the estimates from the previous iteration. Then we calculate the conditional expectation numerically
based on the posterior density.

In addition to the observed outcome yi, the observed data also include the principal strata status znn,ij’s in a treated clus-
ter or zss,ij’s in a control cluster. We let z∗i = {znn,ij ∶ j = 1, … ,m1,i} in the ith treated cluster or z∗i = {zss,ij ∶ j = 1, … ,m0,i}
in the ith control cluster. An updated estimate of 𝛾2 is given by

�̂�

2 =
∑

i∶Di=1 E(v2
1i|z

∗
i ,Xi) +

∑
i∶Di=0 E(v2

0i|z
∗
i ,Xi)

n1 + n0
.

Once our model parameters are estimated (after convergence of the EM algorithm), the SACE estimate is computed by
(7), where the estimate of the principal strata model p̂ss,ij is replaced by the integrals ∫ pss,ijf (v1i)dv1i or ∫ pss,ijf (v0i)dv0i
calculated numerically. We again use the bootstrap method, that is, sampling the clusters with replacement, to obtain the
95% confidence interval.

6 A SIMULATION STUDY

We follow the ADEMP (aims, data-generating mechanisms, methods, estimands, performance measures) framework43 to
describe our simulation setups. The goal of our simulations is to examine the finite-sample performance of the proposed
methods for estimating SACE in parallel-arm CRTs. We examine settings with the number of clusters nc = 30 and 60 in
each arm to capture medium and large numbers of clusters.44,45 In each cluster, the number of individuals is simulated
from a normal distribution after rounding to the nearest integer with mean m ∈ {25, 50}, and standard deviation 3. The
variance parameters satisfy 𝜏2 + 𝜎2 = 2, and we set the ICC of the outcome models as 𝜌 = 𝜏2∕(𝜏2 + 𝜎2) = 0.01, 0.05, and
0.1, corresponding to those commonly reported in the CRT literature.46 These ICC values correspond to 𝜏2 = 0.02, 0.1
and 0.2, and 𝜎2 = 1.98, 1.9 and 1.8. We simulate two covariates independently, one from a Bernoulli distribution with a
probability of success as 0.5, and the other from a standard normal distribution. Values of the fixed effects, including the
intercepts, are specified at 𝜷ss,1 = (−0.5, 1, 1.5)′, 𝜷sn = (−0.3, 0.8, 1.3)′, and 𝜷ss,0 = (−0.2, 1, 1)′.

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9939 by C
ity, U

niversity O
f L

ondon, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WANG et al. 11

We simulate the principal strata membership variable zij from the multinomial logistic model introduced in Section 3.1
without the cluster-level random intercept, and then from the model in Section 5 with a cluster-level random intercept.
In the latter case, we set the variances of the random intercept to be 𝛾2 = 0.37 and 0.8, which correspond to the ICC of
the strata membership of 0.1 and 0.2 using the latent response definition.42 In what follows, we write 𝛾2 = 0 to denote
the principal strata simulation model with no random intercept. In each scenario, we specify two sets of coefficients in
the principal strata models, that is, 𝜶ss = (1, 2, 1)′ and 𝜶sn = (−0.5,−1.5,−1)′ in setting A, and 𝜶ss = (1.6, 0.2, 0.1)′ and
𝜶sn = (−0.1,−0.1,−0.2)′ in setting B. We maintain the marginal principal strata proportion to be roughly the same in both
settings (Section S4 of the supplementary material). In setting A, the odds ratios associated with the binary and continuous
covariates are 7.39 and 2.72 in the “ss” stratum, and 0.22 and 0.37 in the “sn” stratum. In setting B, the odds ratios are
1.22 and 1.11 in the “ss” stratum, and 0.90 and 0.82 in the “sn” stratum. Of note, the covariates are strongly predictive of
the principal strata membership (and hence survival status) in setting A, but are only weakly predictive of the principal
strata membership in setting B.

Under each data-generating process, we compare the performance of the proposed ME approaches with the FE only
outcome modeling approach to assess the necessity of accounting for clustering in the outcome model. The FE approach
is an adaption from Zhang et al.3,20 under the monotonicity and normality assumptions, where there is no cluster-level
random intercept in either the strata-specific potential outcome model or principal strata model. Furthermore, we com-
pare the methods in Section 3 and Section 5 to explore when it becomes necessary to adjust for clustering in the principal
strata membership model beyond adjusting for clustering in the potential outcome models. For ease of reference, we
abbreviate the approach in Section 3 with clustering in the outcome model only as the ME approach, and the approach in
Section 5 with clustering in all models as the ME2 approach. Between the ME approach and the FE approach,20 we retain
the same principal strata membership model. The corresponding SACE estimate of the FE approach follows (7) with the
random intercepts set to zero.

For all simulation scenarios, the true value of the SACE estimand is computed based on the following Monte Carlo
procedure. Let I{Zss,ij = 1} be the indicator function which equals to 1 if the (i, j)th individual is in the “ss” stratum. Under
each data-generating process where we know both potential outcomes, the SACE estimand can be obtained as follows:

∑
i∶Di=1

∑m1,i,1
j=1 yij(1)I{Zss,ij = 1}

∑
i∶Di=1

∑m1,i,1
j=1 I{Zss,ij = 1}

−

∑
i∶Di=0

∑m0,i,1
j=1 yij(0)I{Zss,ij = 1}

∑
i∶Di=0

∑m0,i,1
j=1 I{Zss,ij = 1}

.

To ensure the stability of the computation for the true SACE estimand, we implement the above formula across all 200
simulated datasets, and then consider the average of the 200 SACE values to be the true value of the target estimand.
Finally, for each data-generating process, due to extensive computation time, we carry statistical inference using 200
bootstrap samples in each of the generated 200 simulated datasets (for obtaining the confidence interval of the SACE).
Specifically, since the FE approach assumes independence between individuals, we use individual-level bootstrap for
estimating confidence intervals. Cluster-level bootstrap is used for inference with the proposed ME and ME2 approaches.
To compare model performance, we examine the absolute value of the bias (Table S7 of the supplementary material),
the mean-squared error (MSE) of the estimator (Table 4), as well as the coverage proportion of the bootstrap-based 95%
confidence intervals (Table 5), relative to the true SACE we have obtained for each scenario.

Across the simulation scenarios, although the FE approach has a slightly lower bias overall, all of the approaches
have a small bias of less than 2%. Importantly, the ME2 and ME approaches have smaller MSEs and close to the nominal
95% coverage. Interestingly, under the two levels of ICC for the principal strata membership variables we considered,
the ME approach is generally robust even if the random intercepts are omitted from the principal strata model, but it is
computationally more efficient and thus more convenient to implement. The coverage proportion of the FE approach
deteriorates as the outcome ICC increases. Overall, this comparison demonstrates the necessity of accounting for outcome
clustering in CRTs for more accurate inference with SACE, especially when the outcome ICC becomes larger. When the
principal strata membership ICC does not exceed 0.2, our simulations demonstrate that inference about SACE is robust
as long as the outcome ICC is already accounted for.

Finally, to provide additional intuitions on the performance of each method, we examine the estimation results in
a single simulated dataset of 30 clusters, with the average cluster size being 25. The outcome and strata membership
ICCs are 𝜌 = 0.1 and 𝛾2∕(𝛾2 + 𝜋2∕3) = 0, respectively. The coefficients of the principal strata model are 𝜶ss = (1, 2, 1)′
and 𝜶sn = (−0.5,−1.5,−1)′. Table 6 shows the SACE estimates and the associated 95% confidence intervals. The target
SACE estimand under this data-generating process is computed as −0.19. With that particular simulation dataset, the
three methods ME2, ME, and FE produce the similar SACE point estimates. However, the confidence interval of the FE
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12 WANG et al.

T A B L E 4 Comparison of the MSE (×10−2) of estimating SACE among the proposed ME approach with random intercepts in the
principal strata models (ME2), the proposed ME approach and the FE approach.

𝝆 = 0.01 𝝆 = 0.05 𝝆 = 0.1

𝜸
2 m nc ME2 ME FE ME2 ME FE ME2 ME FE

Setting A 0 25 30 1.47 1.47 1.49 1.73 1.71 1.82 2.93 2.92 3.13

60 0.70 0.70 0.71 0.90 0.91 0.95 1.26 1.27 1.38

50 30 0.95 0.96 0.99 1.19 1.19 1.24 2.09 2.11 2.23

60 0.40 0.40 0.42 0.63 0.63 0.65 0.91 0.91 1.01

0.37 25 30 1.65 1.66 1.69 1.71 1.72 1.76 2.69 2.66 2.86

60 0.84 0.83 0.88 0.99 0.99 1.04 1.26 1.27 1.33

50 30 0.88 0.87 0.92 1.41 1.40 1.50 1.73 1.72 1.88

60 0.37 0.37 0.40 0.63 0.64 0.68 1.00 1.00 1.05

0.8 25 30 1.31 1.31 1.34 2.13 2.14 2.20 2.72 2.67 2.97

60 0.72 0.73 0.75 0.95 0.95 1.03 1.04 1.02 1.15

50 30 0.75 0.74 0.77 1.18 1.18 1.30 1.94 1.96 2.14

60 0.41 0.42 0.44 0.67 0.66 0.70 1.00 0.99 1.07

Setting B 0 25 30 1.60 1.63 1.66 1.75 1.73 1.90 2.58 2.60 2.52

60 0.78 0.77 0.84 1.04 1.02 1.20 1.37 1.38 1.50

50 30 1.18 1.17 0.90 1.56 1.57 1.52 1.62 1.62 1.82

60 0.41 0.41 0.45 0.64 0.63 0.78 0.83 0.82 0.90

0.37 25 30 1.85 1.87 1.50 2.09 2.09 2.34 2.34 2.41 2.42

60 0.81 0.80 0.91 1.07 1.06 1.15 1.37 1.38 1.48

50 30 0.95 0.96 0.97 1.77 1.77 1.78 2.10 2.07 2.18

60 0.44 0.44 0.44 0.63 0.63 0.66 0.87 0.88 0.89

0.8 25 30 1.79 1.79 1.77 1.82 1.81 2.08 2.23 2.26 2.52

60 0.77 0.78 0.92 0.86 0.86 0.98 1.18 1.20 1.29

50 30 0.81 0.79 0.86 1.31 1.30 1.37 1.91 1.88 2.26

60 0.41 0.42 0.44 0.60 0.58 0.63 0.86 0.85 0.86

approach fails to cover the true value. We also fit two conventional linear mixed effects model (LMM),47 including only
individuals with observed outcomes. Specifically, we adjust for the same set of covariates as main effects only (referred
to as the mixed ANCOVA1 model). In addition, we fit the LMM by adjusting for the mean-centered covariates and all
first-order treatment-by-covariate (mean-centered) interactions (referred to as the mixed ANCOVA2 model). In both mod-
els, we assess the treatment effect by examining the coefficient of the treatment variable. In contrast to the three SACE
estimators (FE, ME, and ME2), the treatment effect estimates from the two LMM further deviate from the true SACE esti-
mand, and the two 95% confidence intervals fail to contain the true SACE estimand either. This is not surprising because
the LMM approach is based on the observed survivors only, and the treatment effect coefficient often does not bear a valid
causal interpretation in the presence of truncation-by-death.

7 APPLICATION TO THE WHOLE SYSTEMS DEMONSTRATOR (WSD)
TELECARE QUESTIONNAIRE STUDY

To illustrate our methodology in a real-world trial setting, we reanalyzed the Whole Systems Demonstrator (WSD)
Telecare Questionnaire Study, which is a pragmatic cluster-randomized WSD telecare trial conducted to compare
participant-reported outcomes between home-based telecare with the usual care across three local authority sites in Eng-
land.48,49 In the study, participants registered within a particular general practice, and the general practice (cluster) is the
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WANG et al. 13

T A B L E 5 Comparison of the proportion of coverage (%) of SACE among the proposed ME approach with random intercepts in the
principal strata models (ME2), the proposed ME approach, and the FE approach.

𝝆 = 0.01 𝝆 = 0.05 𝝆 = 0.1

𝜸
2 m nc ME2 ME FE ME2 ME FE ME2 ME FE

Setting A 0 25 30 93.5 94.5 93.5 94.5 94.0 89.0 90.5 89.5 82.5

60 92.5 94.0 93.0 94.5 93.0 91.0 94.5 94.5 80.5

50 30 91.5 92.5 90.5 94.0 94.5 86.0 92.5 91.5 75.0

60 95.0 94.5 93.0 94.5 94.5 83.5 92.0 93.5 76.0

0.37 25 30 93.5 93.0 92.0 94.5 95.5 92.0 94.0 94.0 84.0

60 92.5 94.0 93.5 94.0 93.5 89.5 92.5 92.5 81.5

50 30 94.0 93.0 92.5 91.0 93.5 83.0 94.5 93.5 76.5

60 94.5 93.0 92.5 94.5 95.5 84.0 95.5 93.5 68.0

0.8 25 30 95.5 95.0 95.0 90.5 90.0 84.5 93.0 93.0 82.0

60 95.5 96.0 94.5 93.5 95.5 91.0 95.5 97.0 88.5

50 30 96.0 96.0 95.0 94.5 95.5 85.5 95.0 95.5 75.0

60 95.0 95.0 92.5 93.5 92.5 82.0 92.0 91.5 72.5

Setting B 0 25 30 94.5 94.5 94.5 97.0 97.0 95.0 95.5 95.0 86.5

60 97.0 97.0 96.5 94.0 96.0 92.0 93.0 94.0 89.0

50 30 91.0 90.5 91.5 91.5 92.0 84.5 94.0 94.0 83.5

60 94.0 92.5 92.5 94.0 94.5 87.0 93.0 93.5 83.5

0.37 25 30 93.5 93.5 97.0 94.5 93.0 90.0 95.5 95.5 90.5

60 94.5 94.5 95.5 95.0 93.0 93.0 93.5 92.0 87.5

50 30 93.0 92.5 94.0 90.0 90.0 83.5 90.0 91.0 79.5

60 92.5 94.5 94.0 94.0 95.0 89.0 93.0 95.0 82.5

0.8 25 30 94.0 94.0 96.5 95.5 95.0 90.5 94.0 94.0 89.5

60 96.0 95.5 97.0 98.5 97.5 96.5 94.0 94.0 89.0

50 30 96.0 96.5 97.0 96.5 96.5 88.5 94.0 95.0 82.5

60 96.5 98.0 97.0 95.0 95.5 91.0 94.5 93.5 85.5

Note: The number of clusters is nc = 30 or 60; the average cluster size is m = 25 or 50. The variance of the random intercept in the principal strata
membership model is 𝛾2 = 0, 0.37, or 0.8, and the outcome ICC is 𝜌 = 0.01, 0.05, or 0.1. Setting A: baseline covariates are strongly predictive of the
principal strata membership; Setting B: baseline covariates are weakly predictive of the principal strata membership.

unit of randomization. There were 201 clusters, 100 in the telecare arm, and 101 in the usual care arm. The cluster sizes of
the telecare group ranged from 1 to 20 with an average value of 5.24, and the cluster sizes in the usual care group ranged
from 1 to 23 with an average value of 5.96. For missing data on the baseline covariates and outcomes not due to death,
moving to residential or nursing care or seriously deteriorated health (considered as sources of truncation), we used mul-
tiple imputation to impute a single dataset to fill in missing entries. The imputation step followed from the illustrative
analysis of the WSD telecare trial in Tong et al.,33 who focused on the QOL outcome measured via the Euro-Qol Group’s
EQ-5D-VAS index, a self-rated scale (score range, 0–100) with 5 domains (mobility, self-care, usual activities, pain and
discomfort, and anxiety and depression).

In this study, we examined another outcome: the physical quality of life outcome (PCS) of 1126 participants. The
PCS was as assessed by the Short Form 12-item Survey (SF-12).50 The outcome measures for the trial were collected
at the baseline and also at 12 months, which was the final time of data collection. However, those outcomes were not
measured if participants withdrew from the study. The main reasons for formal withdrawal included death, moving to
residential or nursing care, and deterioration in condition (physical or mental capacity).50 Among the 524 participants in
the telecare arm, 45 (8.58%) of the outcomes were truncated due to the above reasons. In the usual care arm, 82 (13.62%)

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9939 by C
ity, U

niversity O
f L

ondon, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 WANG et al.

T A B L E 6 An illustrative analysis of a single simulated dataset.

Approach Estimate 95% Confidence interval

ME2 −0.46 −0.74 −0.16

ME −0.46 −0.71 −0.15

FE −0.46 −0.68 −0.26

LMM (mixed ANCOVA1) −0.52 −0.78 −0.27

LMM (mixed ANCOVA2) −0.51 −0.66 −0.35

Note: Simulation setting: the number of clusters is nc = 30, and the average cluster size is m = 25. The variance of the random intercept in the
principal strata membership model is 𝛾2 = 0, and the outcome ICC is 𝜌 = 0.1. The true SACE value is −0.19.

T A B L E 7 Estimation of the SACE and the proportion of a principal stratum by the proposed mixed-effects (ME2 and ME)
approach and the fixed effects approach (FE) in the WSD telecare trial.

ME2 ME FE

SACE 0.17 (−0.95,1.29) 0.30 (−0.93,1.30) 0.19 (−1.04, 1.24)

ss: always survivors 0.84 (0.80,0.86) 0.83 (0.79, 0.85) 0.84 (0.80, 0.86)

sn: protected 0.09 (0.05,0.13) 0.06 (0.04, 0.11) 0.07 (0.05, 0.12)

nn: never survivors 0.08 (0.06,0.10) 0.11 (0.08, 0.12) 0.08 (0.06, 0.11)

of the 602 outcomes were truncated due to the above reasons (in this illustrative example, we did not further differentiate
these specific reasons and consider them collectively as truncation). Figure S1 in the supplementary material shows the
outcome truncation proportion for each arm. The telecare arm had a slightly higher mean and standard deviation of the
PCS outcome, 27.63 vs 27.21 and 8.50 vs 8.30. Figure S2 of the supplementary material shows the histograms and the QQ
normal plots of the outcome for all participants and also by arms.

Each participant’s demographic information was also recorded, including age, gender, ethnicity, number of comorbid
conditions, level of education, and the Index of Multiple Deprivation score based on their postcode at the time of enroll-
ment into the trial. We applied the proposed approaches (ME2 and ME) and the FE approach to analyze the PCS outcome
adjusting for these baseline covariates and also the baseline measurement of PCS. The estimated outcome model ICC’s
were 0.02 and 0.01 from the ME2 and ME approaches, and the estimated ICC of the strata membership was 0.16 by the
ME2 approach. Table 7 shows the SACE estimates together with their 95% confidence intervals based on 500 bootstrap
replicates (obtained in a similar fashion as in our simulation study). The table also presents the estimated proportion
of each principal stratum as the average of the individual probabilities for belonging to each stratum. Across the three
methods, the estimated proportions are similar, and all confidence intervals include zero.

We further compared the three clustered SACE estimates with the two LMM approaches (mixed ANCOVA1 and mixed
ANCOVA2) introduced in Section 6 which excludes the individuals with truncated quality-of-life outcomes. After exclud-
ing the truncated outcomes, the coefficient estimate from the mixed ANCOVA1 model was 0.06 with 95% confidence
interval (−0.81, 0.93). In addition, we obtained the main treatment effect coefficient as 0.08 with 95% confidence interval
(−0.80, 0.95) from the mixed ANCOVA2 model. It is important to note that, although the mixed ANCOVA models can
provide consistent estimators of the average treatment effect in CRTs in the absence of informative truncation,35 their tar-
get estimands are generally challenging to derive analytically under truncation-by-death (except that they are solutions to
the observed-data score equations under the LMM likelihood formulation). In other words, the estimands under LMMs
are ambiguous and difficult to interpret in the WSD telecare trial. In this data example, although the confidence intervals
under the LMM similarly included zero, the magnitude of the point estimates were smaller than those offered by the mix-
ture modeling approaches (whose estimands were the SACE). It is also worth noting that using a LMM excluded the 127
(11.28%) individuals from the analysis. In contrast, the ME, ME2, and FE methods leverage all data information to target
the SACE, which bears a clear causal interpretation. For example, we interpreted the results under ME2, which account
for clustering in both the potential outcome models and the principal strata membership model. That is, in the analysis
of the WSD telecare trial, the average difference in physical quality of life measurement between the telecare arm and
the usual care arm, among the participants whose outcome would not be truncated regardless of treatment assignment
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WANG et al. 15

(the subset of always survivors), was estimated as 0.17. The associated 95% confidence interval was (−0.95, 1.29) and
included zero.

8 SUMMARY AND DISCUSSION

In many trials, both individually and cluster randomized, participant outcomes will be unobserved due to
truncation-by-death or other informative dropout reasons (eg, migration or leaving school). In such settings, the SACE
estimand can provide valuable insights about treatment effects among a defined subset of individuals who would not
experience truncation under either treatment or control. We develop a mixed-model approach to estimate the SACE in
CRTs and explore the performance characteristics of this approach using simulations. It is worth noting that our method-
ology allows for the inclusion of covariates, which are commonly used to improve precision in CRTs, and can be easily
extended to observational data settings when the cluster-level assignment is assumed to be ignorable. It is worth noting
that we recommend adjusting for baseline covariates when estimating SACE, even in randomized trials, because ran-
domization does not ensure covariate balance across principal strata, and failure to adjust for covariates can lead to a
misspecified Gaussian mixture model, and thus biased SACE estimates. For point estimation, we describe a Monte Carlo
EM algorithm and construct confidence intervals using cluster-level bootstrap. In our simulations under the CRT setting,
we observe that confidence intervals derived from the proposed approach have closer to the nominal 95% coverage than
the approach with fixed effects only, highlighting the importance of accounting for clustering in the potential outcome
model. However, we also find that when the clustering in the potential outcomes is already accounted for, adjusting for
clustering in the principal strata model does not lead to appreciable differences in the inference for SACE when the ICC of
the strata membership variable is within the commonly reported range in CRTs (ie, less than 0.2). Although we have not
identified issues on multiple solutions or non-convergence using our EM algorithm in our data application, in practice,
one could consider using multiple sets of initial values to check the sensitivity of the EM estimates and avoid conver-
gence to a local minima. Finally, while our development has centered around a continuous outcome, our mixed-model
approach can be extended to study binary outcomes or count outcomes with modifications to the EM algorithm, and we
plan to report those developments in a separate report.

The estimation of the SACE in CRTs with our method relies on several assumptions. Firstly, we have assumed
monotonicity as a nonparametric (structural) assumption. This assumption, while seemingly plausible for the WSD
trial studying cluster-level treatment with perceived benefit against no intervention, may be less reasonable for certain
study designs, such as a comparative effectiveness trial comparing two active treatments. Under our likelihood-based
inference strategy, relaxing the monotonicity assumption to include the harmed strata may lead to additional computa-
tional challenges and potential convergence issues of the EM algorithm (because the likelihood may become relatively
flat with additional strata). Alternatively, nonparametric assumptions that replace the monotonicity assumption, such
as the explainable nonrandom survival assumption studied in Hayden et al.,14 may be worth further investigating
for CRTs.

Secondly, we have relied on parametric assumptions for deriving a likelihood-based SACE estimator. In our setup, the
likelihood assumption is necessary because Assumptions 1–3 can only partially identify or interval identify the SACE.1
That is, the mixture model likelihood and the nonparametric assumptions are combined to identify the SACE in CRTs
empirically. In the context of independent data and treatment noncompliance, Jo38 has provided an insightful discussion
on the mechanics of mixture models for point identification of principal causal effects (but only focused on the two-strata
case). Jo38 noted that the distance between principal strata (location parameters of each mixture component) could impact
empirical identification of the principal causal effects under likelihood-based inference, and developed the moving exclu-
sion restriction condition for diagnostics and sensitivity analyses. In general, when there is insufficient distance between
the mixture components, the standard error and the width of the confidence interval for the SACE estimate may inflate,
compromising the precision for inference. For Gaussian mixture modeling with independent data, Mercatanti et al.51

developed analytical insights and empirical results to show that including a secondary outcome can effectively sharpen
the inference on mixture model parameters for the primary outcome, and a greater improvement can be expected as the
distance between mixture components increases. It is therefore reasonable to expect that, with a single outcome, violat-
ing the normality assumption can also lead to bias in the SACE estimates, but including a secondary outcome may reduce
such bias. We anticipate that these general findings for mixture models (mostly developed for independent data) would
be useful for our setting with correlated data, but a formal extension to accommodate multilevel data warrants future
research.
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16 WANG et al.

Thirdly, we have assumed an equal-variance constraint (across both arms and strata) in the potential outcome models
as this offers a single, interpretable outcome ICC parameter that is often of interest in CRTs. While the equal-variance
constraint is not a necessary condition for point identification, it can lead to biased inference for the SACE when the true
outcome variances or ICCs differ by arm or strata.38 We did not fully explore arm-specific and strata-specific variances and
ICCs in this work, but such an extension is possible by modifying the steps of our EM algorithm. We leave a comprehensive
evaluation of this more complicated model to future work.

Finally, we have assumed away informative cluster sizes (ie, the presence of a marginal association between cluster size
and potential outcomes or their contrasts), which have been recently shown to have a critical impact on the clarity of target
estimands in CRTs.34,52 When informative cluster size is present, there are at least two versions of target estimands—one
defined as a cluster-level average and one defined as an individual-level average. The implications of informative cluster
sizes can be potentially more complex as not only the original cluster size can be informative, but the always-survivor
strata size can also be informative. This complexity necessitates more precise definitions of target estimands to describe
the SACE in CRTs, alternative identification conditions and possible modifications of the inferential procedure. A detailed
treatment for estimating SACE in the presence of informative cluster sizes is beyond the scope of this article, and the
impact of informative cluster sizes under truncation-by-death will be explored in our future work.
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