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Abstract

Background: Artificial intelligence (AI) has the potential to improve prenatal

detection of congenital heart disease. We analysed the performance of the current

national screening programme in detecting hypoplastic left heart syndrome (HLHS)

to compare with our own AI model.

Methods: Current screening programme performance was calculated from local and

national sources. AI models were trained using four‐chamber ultrasound views of

the fetal heart, using a ResNet classifier.

Results: Estimated current fetal screening programme sensitivity and specificity for

HLHS were 94.3% and 99.985%, respectively. Depending on calibration, AI models

to detect HLHS were either highly sensitive (sensitivity 100%, specificity 94.0%) or

highly specific (sensitivity 93.3%, specificity 100%). Our analysis suggests that our

highly sensitive model would generate 45,134 screen positive results for a gain of

14 additional HLHS cases. Our highly specific model would be associated with two

fewer detected HLHS cases, and 118 fewer false positives.

Conclusion: If used independently, our AI model performance is slightly worse than

the performance level of the current screening programme in detecting HLHS, and

this performance is likely to deteriorate further when used prospectively. This

demonstrates that collaboration between humans and AI will be key for effective

future clinical use.

Key points

What is already known on this topic?

� Artificial intelligence (AI) can be used to interpret medical images and make diagnoses,

including detecting fetal congenital heart disease (CHD) by ultrasound.

� The sensitivity of the current English screening programme for fetal cardiac malformations

is publicly available, but specificity is not reported.
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What this study adds?

� The current screening programme in our region is operating at a very high specificity for

fetal hypoplastic left heart syndrome (HLHS).

� Using a curated retrospective dataset, it is possible to train AI models to detect HLHS with a

performance approaching that of the current screening programme.

� Current AI models do not have high enough specificity to be used independently for

screening for fetal CHD, meaning that human‐AI interaction when performing or inter-

preting ultrasound will be important to select cases for specialist referral.

1 | INTRODUCTION

Congenital heart disease (CHD) is the most common group of

congenital malformations.1–3 Prenatal detection of CHD improves

postnatal outcome for some forms of CHD,4,5 facilitates parental

choice, and in selected cases may allow therapeutic intervention in

utero.

In the UK, the Fetal Anomaly Screening Programme (FASP)

stipulates an offer of an ultrasound scan performed by screening

sonographers between 18þ0 and 20þ6 weeks' gestational age (to be

completed by 23þ0 weeks), including an examination of the cardiac

four‐chamber view and outflow tracts.6 Uptake of the screening ul-

trasound is 99.1%, indicating excellent access to care.7 However,

current screening programmes fall short of achieving universal

detection of CHD. Data from the National Congenital Anomaly and

Rare Disease Registration Service (NCARDRS) have recently been

published describing the national FASP prenatal detection rates (i.e.

the sensitivity of the screening test) in England for a number of

congenital anomalies, including some specific CHD lesions.8 For hy-

poplastic left heart syndrome (HLHS), the focus of this paper, the

current sensitivity is around 92.7% at the anomaly scan, at 94.7% for

the screening programme overall.8

Artificial intelligence (AI) applied to ultrasound examination of

the fetal heart has been explored to improve diagnostic accuracy in

the context of fetal CHD, and it has been suggested that some AI

models match expert performance levels.9–11 There is a paucity of

information about the impact that AI might have on current CHD

screening programmes. To estimate the potential effect of the

application of AI in this field, detailed estimates are required of the

performance of AI models, and also current national screening

programmes.

The aims of our present study were:

1) To combine nationally collected data from NCARDRS with data

from our own fetal cardiology unit to estimate the current

sensitivity and specificity of the FASP in our region in detecting

HLHS, as an example CHD lesion.

2) To describe the development and performance of an AI algorithm

to detect HLHS from ultrasound images.

3) To assess how our AI model compares to current screening pro-

gramme performance, and to consider how such models might be

integrated into the current screening system.

2 | METHODS

2.1 | Estimating performance of the current
national screening programme

To assess the current performance of FASP in detecting fetal HLHS,

data were combined from NCARDRS and our local clinical unit to

calculate true positive, false positive, true negative, and false nega-

tive rates. Figure 1 shows a schematic diagram of how these rates are

defined. Formulae and figures used to calculate these rates are

shown in Supporting Information S1 and Table S1.

True positive and false negative rates were estimated by multi-

plying the published proportion of HLHS cases that were diagnosed

prenatally (including live births, termination of pregnancy, miscar-

riage, and in utero death) or postnatally, respectively, with an esti-

mate of livebirth prevalence of HLHS from the UK screening

committee.8,12

To estimate false positive rates, data from our fetal cardiology

unit were obtained on the proportion of fetuses that were referred to

us following positive FASP screening for CHD that were subse-

quently found to have a normal heart. This was obtained on a

monthly basis for the 6‐month period October 2021–March 2022,

allowing calculation of a mean with 95% confidence intervals (CIs).

This proportion was then multiplied by the previously calculated true

positive rate to give a false positive rate.

True negative rates were estimated by summing the true posi-

tive, false negative, and false positive rates and subtracting this total

from the denominator.

To allow for uncertainty in our estimates, we modelled different

scenarios by varying figures used for both the prenatal detection rate

of HLHS,8 and the proportion of fetuses referred to our unit with

suspected CHD who were found to have a normal heart. By using the

mean value and values at the upper or lower bounds of the 95% CI

for these estimates, three estimated scenarios were modelled (i.e. an

intermediate scenario, and scenarios that either maximise or mini-

mise current screening performance).

2.2 | Artificial intelligence model development

A dataset of fetal echocardiograms was identified by searching our

clinical database (Filemaker Pro, Claris Corporation) to identify scans
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performed between 20þ0 to 23þ6 weeks' gestational age, from 01/

01/2014 to 31/12/2019. HLHS cases were defined as ‘classical

HLHS’, that is, either mitral atresia with aortic atresia or mitral ste-

nosis with aortic atresia. Fetuses with normal hearts from our data-

base over the same time period and gestation range were also

identified, by identifying pregnancies referred for screening due to a

family history of CHD, in whom a normal fetal heart was confirmed.

Exclusion criteria were multiple pregnancy, or extracardiac anomaly

to avoid the AI model inadvertently learning either the extracardiac

anomaly appearance, or the normal heart twin which could be

labelled as disease. Ultrasound scans were performed using Toshiba

Aplio i700/i800 ultrasound machines. Only one scan was used for

each fetus.

Demographic and clinical data were extracted for each patient

from the same database. Variables were compared between groups

using Student's T test (for continuous variables) or chi‐squared test

(for categorical variables).

To identify four chamber (4ch) views, a single expert (TD) iden-

tified up to four frames per scan (no more than one per saved clip)

that represented an ‘ideal’ 4ch view according to standard clinical

definitions. Using this ideal frame, up to 10 frames chronologically

before and after the ideal frame were identified and extracted.

Figure 2 shows an example view for a normal fetal heart and HLHS.

DICOM imaging data were pseudonymized and converted to

Portable Network Graphics (png) image files using a python script.

The image dataset was split on a per‐fetus level into training,

hyperparameter tuning, and test sets (all images for each fetus were

kept in the same set, to ensure there was no contamination of images

from the same fetus between sets). Table 1 shows how the dataset

was split into different sets. Hyperparameter tuning was performed

based on performance on the tuning set. After the final model was

selected based on this, for testing 5‐fold cross‐validation was per-

formed, with the model re‐trained for each fold with a different hold‐
out test set.

Classification models were implemented in Python using Pytorch

1.9 on a PC with a NVIDIA GeForce RTX 3090 GPU. Classification

models were based on the ResNet architecture.13 The final model

used a ResNet50 architecture, trained with a batch size of 8, for 50

epochs. Batch normalisation was employed. The network was pre-

trained using ImageNet. Stochastic gradient descent was used as an

optimiser, with a learning rate of 0.001 and momentum of 0.9. A

cross entropy loss function was used, weighted to account for the

class imbalance in the training set. Images were resampled to

256 � 256 pixels, and normalised. At training time, data augmenta-

tion was used (random horizontal flip, random rotation up to 180°,

and colour jitter).

Performance of the final model was analysed both on a per‐
image basis (all images in each test set being classified indepen-

dently) and on a per‐fetus basis, which more closely simulates a real

clinical environment (whereby a decision is made on each fetus

overall as being affected with CHD or not, using all available im-

ages). This was based on a specified proportional threshold of im-

ages classified as abnormal, above which the entire fetus is

classified as abnormal. This threshold was calibrated, resulting in

either a highly sensitive (a lower threshold of abnormal images

required to classify the fetus as abnormal), or highly specific (a

higher threshold of abnormal images required to classify the fetus

as abnormal) model. 95% CIs for sensitivity and specificity were

calculated using the exact Clopper‐Pearson method for each fold

and the mean calculated.

3 | RESULTS

3.1 | Performance of the current screening
programme in detecting HLHS

Using the intermediate scenario (i.e. using the most likely estimate

for each data point to estimate the overall performance), the current

screening programme in our region has a sensitivity of 94.3% and

specificity of 99.985% in detecting HLHS. Using the maximal per-

formance scenario, it has a sensitivity of 95.9% and specificity of

99.991%, and using the minimal performance scenario, it has a

sensitivity of 92.1% and a specificity of 99.976%.

F I GUR E 1 Current screening programme for fetal congenital heart disease.

DAY ET AL. - 3
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3.2 | Artificial intelligence to detect HLHS

We trained convolutional neural networks to automatically detect

fetal HLHS from a curated retrospective dataset of four‐chamber

views from fetal ultrasound scans. No significant differences were

found between the HLHS and normal control patients for scan

gestation, maternal age, maternal ethnicity, or first trimester nuchal

translucency (Table 2).

When analysed on a per‐image basis, the final models achieved a

mean sensitivity of 77.8% (95% CI 73.3%–81.7%) and specificity of

92.7% (95% CI 90.9%–04.7%). When analysed on a per‐fetus basis,

the highly sensitive model had a sensitivity of 100% (95% CI 50.9%–

100%) and specificity of 94% (95% CI 60.4%–99.4%); the highly

specific model had a sensitivity of 93.3% (95% CI 49.9%–99.8%) and

specificity of 100% (95% CI 68.0%–100%) (Table 3).

Receiver operating characteristic curves were plotted for both

the per‐image and per‐fetus analyses (Figure 3), with a mean area

under the curve (AUC) of 0.946 (range 0.917–0.974) for the per‐
image analysis and a mean AUC of 0.997 (range 0.983–1) for the

per‐fetus analysis.

3.3 | The potential effects of introducing AI to the
UK screening programme

Figure 4 and Table 3 show the sensitivity and specificity of the three

performance estimates of the current screening programme for

HLHS, along with our AI model, calibrated to be either highly

sensitive or highly specific. Extrapolated to the UK, compared to the

intermediate estimate of current performance, if operating inde-

pendently at this performance level our highly sensitive AI model

would detect an additional 10 cases of HLHS per year, assuming

756,900 total pregnancies per year (the published 5 years average of

2015–2019 for the UK14). However, given the inferior specificity

compared to the current system, this would also create an additional

45,134 screen‐positive results. The highly specific calibration to the

AI model, compared to the intermediate estimate of current perfor-

mance, would detect two fewer cases of HLHS per year, although

with 118 fewer false positive results.

Compared to the minimal performance assumptions of current

HLHS screening performance, our highly sensitive AI model would

diagnose 14 extra HLHS cases per year, but at the cost of 45,072

more false positive findings. The highly specific calibration AI model

would be similar to the minimal real‐world performance estimate,

with two extra cases of HLHS detected and 180 fewer false positive

results (Table 3).

4 | DISCUSSION

We have developed an algorithm, utilising deep neural networks, to

automate the detection of fetal HLHS. Although our model results

are encouraging, comparison of AI performance to current screening

programmes is a critical step to assess the potential impact of AI, and

to allow consideration of how such models may be incorporated in

clinical workflows. This is the first estimate of the current screening

F I GUR E 2 Examples of fetal four‐chamber
cardiac ultrasound images for (A) normal heart

and (B) hypoplastic left heart syndrome.
Dashed white arrow: normal left ventricle.
Solid white arrow: hypoplastic left ventricle.

TAB L E 1 Numbers of images and fetuses in training, tuning, and testing sets for classification models.

Total Normal controls HLHS cases

Fetuses 4ch images Fetuses 4ch images Fetuses 4ch images

Training seta 130 8260 83 5019 47 3241

Hyperparameter tuning set 15 973 9 593 6 380

Testing seta 16 1015 10 676 6 339

Total 161 10,248 102 6288 59 3960

Abbreviations: 4ch, four‐chamber view; HLHS, hypoplastic left heart syndrome.
a5‐fold cross‐validation was used during final model testing. The figures here apply to fold 1, and vary slightly for each fold.
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TAB L E 3 Performance estimates for the current screening system, and our artificial intelligence models, in detecting fetal hypoplastic left

heart syndrome.

Model Sensitivity Specificity

Projected figures per million pregnanciesa
Projected figures per 756,900 pregnancies

(UK annual average)a

True
positive

True
negative

False
positive

False
negative

True
positive

True
negative

False
positive

False
negative

Real‐world screening performance estimates

Intermediate

performance scenario

0.943 0.99985 217 999,617 153 13 164 756,610 116 10

Maximal performance

scenario

0.959 0.99991 221 999,677 93 9 167 756,656 70 7

Minimal performance

scenario

0.921 0.99976 212 999,530 240 18 160 756,544 182 14

Artificial intelligence models

AI model, calibrated for

sensitivity

1.000 0.940 230 940,000 59,770 0 174 711,486 45,240 0

AI model, calibrated for

specificity

0.933 1.000 215 999,770 0 15 162 756,726 0 12

Abbreviation: AI, artificial intelligence.
aFigures rounded to nearest whole number.

F I GUR E 3 Receiver operating characteristic curves for
hypoplastic left heart syndrome detection models, based on per‐
image analysis and per‐fetus analysis. AUC, area under the curve.

F I GUR E 4 Estimates of performance of the current UK
screening system, and our artificial intelligence models, in detecting
hypoplastic left heart syndrome.

TAB L E 2 Demographic and clinical details for the dataset used for AI model development.

HLHS cases (n = 59) Normal controls (n = 102) p Value

Gestation at time of scan (weeks), mean (SD) 21.0 (1.3) 21.43 (1.3) 0.24

Maternal age (years), mean (SD) 31.3 (5.9) 31.93 (5.8) 0.53

Self‐reported maternal ethnicity, n (%) Any White: 49 (83.1) Any White: 80 (78.4) 0.37

Any Black: 2 (3.4) Any Black: 11 (10.8)

Any Asian: 3 (5.1) Any Asian: 3 (2.9)

Other: 1 (1.7) Other: 1 (1.0)

Not recorded: 4 (6.8) Not recorded: 8 (6.9)

NT in first trimester (mm), mean (SD) 2.0 (0.9) 1.7 (0.4) 0.06

Abbreviations: AI, artificial intelligence; HLHS, hypoplastic left heart syndrome.
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programme for a single CHD lesion that includes an estimation of

false positives (allowing calculation of screening specificity). The

striking feature across all our estimates is the extremely high speci-

ficity of the current screening programme for HLHS, meaning only a

small number of false positive cases are referred for specialist

assessment in fetal cardiology units.

AI has shown promise in the automatic classification of medical

images, including fetal CHD on ultrasound.9 In addition, AI has pre-

viously been shown in many contexts to be more reproducible and

consistent than human performance.15 Under current screening

programmes, significant variation in the detection rate of CHD has

previously been demonstrated across regions, and (although we have

not assessed this in the present study) it is possible that AI might

become a useful tool to improve consistency, potentially ‘levelling up’

worse performing areas to match those with higher performance.16

If our AI models were used entirely independently of a human

diagnostic decision‐maker (i.e. AI analysis of human‐acquired ultra-

sound images), compared to the current screening programme the

highly sensitive calibration of our AI model would be projected to

detect slightly more cases of HLHS per year, but at the cost of many

thousands of false positive findings (Table 3). This is unlikely to be

compatible with the capacity of specialist services if each false pos-

itive resulted in a referral. The highly specific calibration of our model

would avoid this problem but may detect slightly fewer cases of

HLHS per year than the current screening programme.

However, entirely independent use of such AI models is probably

neither desirable nor optimal. As we have discussed in previous work,

the real‐time, operator‐dependent nature of ultrasound means that

AI in this context will have to be used in collaboration, with sonog-

raphers and AI working together.17 Used in this way, our AI models

could be of benefit, as the human operator acquiring and or inter-

preting the scan may be able to overrule false positive AI model

outputs, but still use the correct AI outputs to improve their sensi-

tivity and reduce false negatives.18,19

To achieve this, a local system with human review of images

flagged by AI either during or after the scan itself would be required.

Although there is evidence that AI may reduce scan time,20 this might

be offset to some degree by additional review time, depending on

how AI models were implemented into the clinical workflow. In

current practice, screening ultrasound reports are generated at the

time of patient attendance, and delay to reporting might also cause

additional parental anxiety until a review is taken to pass images as

normal or refer on for further assessment.

How the AI model output should best be communicated to the

human operator to facilitate this collaboration is still not fully un-

derstood, and is an area of active research.21 As we have previously

discussed, trust, and calibration of trust, become very important is-

sues in this context.17 As shown in the present study, it is likely that

any AI model used to detect fetal CHD will be fallible, and will fail in

certain situations. For the human‐AI team to be effective, the human

operator needs to have some way of recognising when this failure has

occurred, so they can fall back on their own judgement, but also be

appropriately confident that they can trust the AI in most

situations.22,23 For this to be useful when performing ultrasound,

such feedback will likely have to be presented to the human operator

in real‐time, as the operator may need to modify image acquisition

based on the AI model output (taking additional images of a certain

cardiac plane, for example). Nevertheless, if a usable and effective

feedback system can be developed, then an effective human‐AI team

might be feasible, even with a less than perfect AI model

performance.

However, it is important to consider that the AI model perfor-

mance presented here (as in other similar work on the topic) is based

on a highly curated, retrospectively acquired imaging dataset. In

keeping with other fields of medical AI,24 fetal cardiology suffers

from a dearth of research examining how AI might be integrated into

real‐world clinical practice. There are currently no published studies

examining the performance of AI in detecting fetal CHD using pro-

spective data. It is very likely that the performance of our AI models

will degrade significantly when translated to the more unpredictable

clinical world, where any AI tool will need to be able to detect disease

in real‐time, based on a stream of ultrasound images obtained by

clinicians of varying levels of skill and experience. Prospective clinical

trials of any proposed AI model will be essential in order to calculate

real‐world performance metrics, which will be essential in guiding

clinical integration.

The present study has several important limitations. Firstly,

because of the rarity of individual CHD lesions, our available retro-

spective cohort of HLHS fetuses for AI model development is rela-

tively small (59 fetuses). Our AI model performance is similar to

previously published models, and we are currently undertaking work

to enlarge our imaging dataset, meaning that this problem will be

partially ameliorated for future work. However, it will never be

possible to match the cohort sizes of hundreds of thousands seen in

other branches of medical AI (for example chest x‐ray or retinal

photograph interpretation25,26), so any future methods in fetal car-

diology will have to work successfully within this constraint. Our

group and others have explored other AI strategies in the context of

fetal CHD that may be more resilient to data‐scarcity, including image

segmentation, normative representation learning, and unsupervised

anomaly detection.27–29 These methods may prove important as they

are based on the concept of using only normal cases to train detection

models, which may be able to detect abnormal cases despite never

being exposed to that particular pathology at training time.

Secondly, the entire imaging dataset used for AI model develop-

ment was taken from a single centre of fetal cardiology, using only two

ultrasound machine models. In addition, our use of training data from a

tertiary centre may lead to a model that is not fit for its eventually

intended purpose, that is, improving population screening for CHD.

This may have implications on the generalisability of this work else-

where. In addition, we used only a single CHD lesion, HLHS. This was

selected as it is clinically severe, but also diagnoseable on a single

image plane. HLHS has a relatively gross sonographic appearance,

meaning that prenatal detection rates are higher than for some other

CHD lesions.8 However, this likely means that AI detection rates will

also be higher, so we feel that comparison between the two methods is

6 - DAY ET AL.
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still reasonable. We also used a strict definition of ‘classical HLHS’ to

identify cases for AI training, which may be easier for the AI model to

identify compared to other, rarer, subtypes. Further work expanding

our findings to other CHD lesions is required.

Thirdly, a major component of our real‐world performance

modelling was the false positive rate, calculated using our local data.

To facilitate referral from sonographers who are not cardiac experts,

we do not require referring departments to make a putative diag-

nosis or explain exactly why they have referred, other than saying

they are concerned that the heart is abnormal. This means that these

data were not recorded in a disease‐specific fashion; hence, we have

used a value for CHD as a whole rather than HLHS explicitly. How-

ever, given the severity of HLHS, it is unlikely that our estimates of

current screening specificity were overly optimistic, as false positive

referrals of suspected HLHS are likely to be low.

Fourthly, when estimating current screening performance, we

have had access to data that are available at England‐ or UK‐wide

level (the prenatal detection rates, and birth prevalence, of HLHS

respectively), and data that are only available at a local level (the

proportion of screen‐positive fetal referrals that were diagnosed with

a normal heart). We acknowledge that this means that our perfor-

mance metrics are very much estimates rather than true measure-

ments, and could best be described as the regional performance of a

national screening programme. However, we have tried to account for

the uncertainty in our estimates by varying the figures used in the

calculations (within reasonable limits), and the main message of

extremely high specificity of the current system remains valid.

Finally, as in most work on AI in medical image interpretation, we

have only attempted the relatively narrow task of single image

analysis. This task does not entirely replicate the cognitive processes

performed by a sonographer during live scanning, who will combine

non‐imaging clinical data, previous imaging examinations, and the

complex spatio‐temporal relationship between multiple frames in the

live video stream to make their final diagnostic decision. We also

have not taken into account clinical risk factors that may be of use in

improving model performance. We and others are exploring more

advanced machine learning methods to harness such additional in-

formation, potentially improving AI model performance.

5 | CONCLUSION

Our findings suggest that our AI models are probably not good

enough to operate independently in diagnosing fetal HLHS on ul-

trasound images. They may be of benefit in augmenting human per-

formance, but this needs further work to fully assess, particularly in

prospective clinical trials.
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