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Abstract
The stable module category of a selfinjective algebra is triangulated, but need not have any
nontrivial t-structures, and in particular, full abelian subcategories need not arise as hearts of a
t-structure. Thepurpose of this paper is to investigate full abelian subcategories of triangulated
categorieswhose exact structures are related, andmore precisely, to explore relations between
invariants of finite-dimensional selfinjective algebras and full abelian subcategories of their
stable module categories.

Keywords Triangulated · Abelian · Stable module categories
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1 Introduction

Definition 1.1 Let C be a triangulated category with shift functor �. A distinguished abelian
subcategory of C is a full additive subcategory D of C which is abelian, such that for any
short exact sequence

0 X
f

Y
g

Z 0

in D there exists a morphism h : Z → �(X) in C such that the triangle

X
f

Y
g

Z
h

�(X)

is exact in C.

Proper abelian subcategories, introduced in [18, Def. 1.2], admissible abelian subcat-
egories, from [5, Def. 1.2.5], and thus hearts of t-structures are distinguished abelian
subcategories, but not all distinguished abelian subcategories are proper abelian subcate-
gories. Full abelian subcategories of a triangulated category are not necessarily distinguished;
see Example 9.5.
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The main motivation for considering this definition is the abundance of distinguished
abelian categories in stable module categories of finite-dimensional selfinjective algebras,
and the hope that these may therefore shed light on the invariants of selfinjective algebras in
terms of their stable module categories. A conjecture of Auslander–Reiten predicts that for A
a finite-dimensional algebra over a field, the stable category mod(A) of finitely generated left
A-modules should determine the number of isomorphism classes of nonprojective simple A-
modules. If this conjecture were true for blocks of finite group algebras, it would imply some
cases of Alperin’s weight conjecture. By a result of Martinez–Villa [29], it would suffice to
prove the Auslander–Reiten conjecture for selfinjective algebras. If A is selfinjective, then
mod(A) is triangulated.

The following result recasts the Auslander–Reiten conjecture for selfinjective algebras in
terms of maximal distinguished abelian subcategories of mod(A). ForD an abelian category,
we denote by �(D) the number of isomorphism classes of simple objects, with the convention
�(D) = ∞ if D has infinitely many isomorphism classes of simple objects. For A a finite-
dimensional algebra over a field, we write �(A) = �(mod(A)); that is, �(A) is the number of
isomorphism classes of simple A-modules.

Theorem 1.2 Let A be a finite-dimensional selfinjective algebra over a field such that all
simple A-modules are nonprojective. The following hold.

(i) IfD is a distinguished abelian subcategory ofmod(A) containing all simple A-modules,
then the simple A-modules are exactly the simple objects inD. In particular, in that case
we have �(A) = �(D).

(ii) The stable module category mod(A) has a maximal distinguished abelian subcategory
D satisfying �(D) = �(A).

Statement (i) of this theorem is Theorem 3.8, and statement (ii) will be proved in Sect. 6.
The maximal distinguished abelian subcategories in (ii) are in general far from unique. Note
that mod(A) may have distinguished abelian subcategories D satisfying �(D) = ∞; see
Example 9.3. We describe a simple construction principle of distinguished abelian subcate-
gories in stable module categories of selfinjective algebras.

Theorem 1.3 Let A be a finite-dimensional selfinjective algebra over a field, and let I be a
proper ideal in A.Denote by r(I ) the right annihilator of I in A. The canonicalmap A → A/I
induces an embedding mod(A/I ) → mod(A) as a distinguished abelian subcategory in
mod(A) if and only if r(I ) ⊆ I .

This will be proved in Sect. 3 as a consequence of Theorem 3.1, itself a consequence of
the more general Theorem 2.1.

A subcategory D of a triangulated category C is called extension closed if for any exact
triangleU → V → W → �(U ) in C withU ,W belonging toD, the object V is isomorphic
to an object in D. Hearts of t-structures on a triangulated category C are extension closed
distinguished abelian subcategories. In general, distinguished abelian subcategories need not
be extension closed.

Theorem 1.4 Let A be a finite-dimensional selfinjective algebra over a field, and let I be an
ideal in A such that r(I ) ⊆ I ⊆ J (A). The following are equivalent.

(i) The distinguished abelian subcategory mod(A/I ) of mod(A) is extension closed.
(ii) The canonical functor mod(A/I ) → mod(A) is an equivalence of k-linear categories.
(iii) The algebra A is aNakayamaalgebra such that all projective indecomposable A-modules

have composition length 2.
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(iv) We have soc(A) = r(I ) = I = J (A).

This will be proved in Sect. 3.
If a triangulated category C carries a structure of a monoidal category and if D is a

distinguished abelian subcategory of C which is also a monoidal subcategory of C, we callD
a monoidal distinguished abelian subcategory of C. Stable module categories of finite group
algebras provide examples of monoidal distinguished abelian subcategories which do not
arise as heart of a t-structure. For G a finite group and p a prime, we denote by O p(G) the
smallest normal subgroup of G such that G/O p(G) is a p-group.

Theorem 1.5 Let k be a field of prime characteristic p and G a finite group. Let N be a
normal subgroup of G of order divisible by p.

(i) Restriction along the canonical surjection G → G/N induces a full embedding of
mod(kG/N ) as a symmetric monoidal distinguished abelian subcategory in mod(kG).

(ii) The heart of any t-structure on mod(kG) is zero. In particular, mod(kG/N ) is not the
heart of a t-structure on mod(kG).

(iii) If O p(N ) = N, then the distinguished abelian subcategorymod(kG/N ) ofmod(kG) is
extension closed.

This Theorem will be proved alongside more precise results: statement (i) will be proved
in Theorem 4.2, statement (ii) follows from Corollaries 2.8, 2.9, and statement (iii) will be
proved as part of Proposition 7.8. For a partial converse of statement (iii) see Proposition 7.9.

For k a field of prime characteristic p and P a finite p-group, theAuslander–Reiten conjec-
ture is known to hold for kP (cf. [25, Theorem 3.4]). We use this to classify the distinguished
abelian subcategories of mod(kP) which are equivalent to the module categories of split
finite-dimensional algebras in Theorem 4.4.

Hearts of t-structures intersect trivially their shifts. This need not be the case for arbitrary
distinguished abelian subcategories. This following result describes the intersection of a
distinguished abelian subcategory and its shift in the ambient triangulated category.

Theorem 1.6 Let C be a triangulated category and let D be a distinguished abelian subcat-
egory of C. Let W be an object in D such that �(W ) is an object in D. Then W is injective
in D and �(W ) is projective in D.

This is proved in Corollary 5.4. This result is used in Proposition 6.1 to identify precisely
in what way a distinguished abelian subcategory need not be proper in the sense of [18, Def.
1.2].

Section 2 describes some construction principles of distinguished abelian subcategories of
stable module categories. Section 3 describes distinguished abelian subcategories of mod(A)

whose simple objects are the simple A-modules, where A is a finite-dimensional selfinjective
algebra. Section 4 specialises previous results to distinguished abelian subcategories in finite
group algebras over a field of prime characteristic p, and includes a proof of the first statement
of Theorem1.5. Section 5 contains some general facts on distinguished abelian subcategories.
In particular, it is shown in Proposition 5.1 that the morphism h in Definition 1.1 is unique.
Section 6 contains technicalities, needed for the proof of Theorem 1.2, on the interplay
between short exact sequences inmod(A) and short exact sequences in a distinguished abelian
subcategory D of mod(A). The main result of Sect. 7 is a criterion on extension closure of
distinguished abelian subcategories, needed for the last part of Theorem 1.5. Section 8 relates
embeddings of module categories of selfinjective algebras to a result of Cabanes. Section 9
contains examples and further remarks.
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Remark 1.7 The present paper, investigating abelian subcategories of triangulated categories
in situations where there are no t-structures with a nontrivial heart, started out as a speculation
about a possible analogue of stability spaces (cf. [7]) for stable module categories of finite-
dimensional selfinjective algebras. Another interesting angle to pursue would be connections
with abelianquotient categories of triangulated categories,which appear in numerous sources,
for instance, in [14, 17, 22], in the context of torsion and mutation pairs in triangulated
categories. See also [12], which explores this topic with a particular emphasis on stable
module categories of finite-dimensional selfinjective algebras.

Notation 1.8 Throughout this paper, k is a field. Modules are unital left modules, unless
stated otherwise, and algebras are nonzero unital associative. Let A be a finite-dimensional
k-algebra. We denote by mod(A) the abelian category of finitely generated A-modules. We
denote by mod(A) the stable module category of mod(A). That is, the objects of mod(A) are
the same as in mod(A), and for any two finitely generated A-modules U , V , the morphism
space in mod(A) from U to V is the k-space HomA(U , V ) = HomA(U , V )/Hompr

A (U , V ),
where Hompr

A (U , V ) is the space of all A-homomorphisms from U to V which factor
through a projective A-module. Composition in mod(A) is induced by that in mod(A).
We write EndA(U ) = HomA(U ,U ) and EndprA (U ) = Hompr

A (U ,U ). See [27, §2.13] for
more details. The Nakayama functor of A is the functor ν = A∨ ⊗A − on mod(A), where
A∨ = Homk(A, k) is the k-dual of A regarded as an A-A-bimodule. We say that the alge-
bra A is split if EndA(S) ∼= k for every simple A-module S, or equivalently, if A/J (A) is
isomorphic to a direct product of matrix algebras over k.

The algebra A is called selfinjective if A is injective as a left (or right) A-module. Equiva-
lently, A is selfinjective if the classes of finitely generated projective and injective A-modules
coincide. By results of Happel [15], if A is selfinjective, then mod(A) is a triangulated cate-
gory, with shift functor � induced by the operator sending an A-moduleU to the cokernel of
an injective envelope U → IU , and with exact triangles in mod(A) induced by short exact
sequences in mod(A). If A is selfinjective, then the Nakayama functor ν on mod(A) is an
equivalence and induces an equivalence onmod(A), and τ = �−2◦ν is theAuslander–Reiten
translate. The algebra A is a Frobenius algebra if A is isomorphic to its k-dual A∨ as a left
or right A-module. A Frobenius algebra is selfinjective. The algebra A is called symmetric if
A is isomorphic to its k-dual A∨ as an A-A-bimodule. The image s in A∨ of 1A under some
bimodule isomorphism A ∼= A∨ is called a symmetrising form of A. If A is symmetric, then
A is a Frobenius algebra, hence selfinjective, and the Nakayama functor is isomorphic to the
identity functor on mod(A). Finite group algebras, their blocks, and Iwahori–Hecke algebras
are symmetric. See for instance [38, Ch. III], [27, §§2.11, 2.14] and [28, Appendix A.3] for
more background.

For I a left ideal in A, its right annihilator r(I ) = {a ∈ A | I a = 0} is a right ideal, and for
J a right ideal in A, its left annihilator l(J ) = {a ∈ A | a J = 0} is a left ideal. If I is an ideal in
A, then so are r(I ) and l(I ). By results of Nakayama in [30, 31], if A is selfinjective, then the
correspondencs I 
→ r(I ) and J 
→ l(J ) are inclusion reversing bijections between the sets
of left and right ideals in A. These bijections are inverse to each other and restrict to bijections
on the set of ideals in A. In particular, for any ideal I in A we have r(l(I )) = I = l(r(I )).
Moreover, still for A selfinjective, the socle soc(A) of A as a left A-module is equal to
the socle of A as a right A-module, and we have r(J (A)) = l(J (A)) = soc(A). If A is
a Frobenius algebra, then dimk(I ) + dimk(r(I )) = dimk(A), and if A is symmetric, then
r(I ) = l(I ) for any ideal I in A. See [38, Chapter IV, Section 6] for details.

We will make use without further comment of the standard Tensor-Hom adjunction.

123



On abelian subcategories of triangulated categories Page 5 of 43     7 

2 Distinguished abelian subcategories in stable module categories

The stable module category of a finite-dimensional non-semisimple selfinjective k-algebra A
need not have any t-structures with a nontrivial heart (see Proposition 2.7 and Corollary 2.8),
but it always has distinguished abelian subcategories, and these tend to come in varieties (see
Proposition 2.6). The first result in this section describes those distinguished abelian sub-
categories of mod(A) which arise as image of a full exact embedding mod(D) → mod(A)

for some other finite-dimensional k-algebra D. By the Eilenberg–Watts Theorem, any full
exact embedding mod(D) → mod(A) is of the form Y ⊗D − for some A-D-bimodule
which is finitely generated projective as a right D-module. Not any embedding of mod(D)

as a distinguished abelian category in mod(A) is, however, induced by a full exact embed-
ding mod(D) → mod(A). In particular, we do not know whether in general an embedding
mod(D) → mod(A) as a distinguished abelian subcategory is induced by tensoring with a
suitable A-D-bimodule (and we expect this not to be the case). See Remark 2.10.

Theorem 2.1 Let A be a finite-dimensional selfinjective k-algebra, and let D be a finite-
dimensional k-algebra. Let Y be a finitely generated A-D-bimodule. The functor Y ⊗D − is
a full exact embedding of mod(D) into mod(A) and induces an embedding of mod(D) as a
distinguished abelian subcategory of mod(A) if and only if the following conditions hold.

(1) EndprA (Y ) = {0},
(2) Y is projective as a right D-module, and
(3) the Tensor-Hom adjunction unit maps V → HomA(Y , Y ⊗D V ), v 
→ (y 
→ y ⊗ v),

are isomorphisms, for all finitely generated D-modules V .

We state some parts of the proof of Theorem 2.1 as separate lemmas in slightly greater
generality.

Lemma 2.2 Let A be a finite-dimensional selfinjective k-algebra. Let D be a full abelian
subcategory of mod(A) such that Hompr

A (U , V ) = {0} for all A-modules U, V in D. Then
the image of D in mod(A) is a distinguished abelian subcategory of mod(A), which as an
abelian category, is equivalent to D.

Proof The fact that D is a full subcategory of mod(A), together with the hypothesis
Hompr

A (U , V ) = {0} for all U , V in D, implies that the image of D in mod(A) is a full
subcategory of mod(A) which is equivalent toD. By the assumptions onD, exact sequences
in D remain exact in mod(A). Since distinguished triangles in mod(A) are induced by short
exact sequences in mod(A), it follows that the image of D in mod(A) is a distinguished
abelian subcategory. ��
Lemma 2.3 Let A be a finite-dimensional k-algebra and Y a finitely generated A-module
such that EndprA (Y ) = {0}. Set D = EndA(Y )op. The following hold.

(i) Let m, n be positive integers and let U, V be quotients of the A-modules Ym, Y n,
respectively. Then Hompr

A (U , V ) = {0}.
(ii) For any two finitely generated D-modules M, N we have Hompr

A (Y ⊗D M, Y ⊗D N ) =
{0}.

Proof With the assumptions in (i), there are surjective A-homomorphisms α : Ym → U and
β : Yn → V . Let ψ : U → V be an A-homomorphism which factors through a projective
A-module P . Let γ : U → P and δ : P → V be A-homomorphisms such that ψ = δ ◦ γ .
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Since P is projective and β is surjective, there is an A-homomorphism ε : P → Y n such
that β ◦ ε = δ. Note that the homomorphism ε ◦ γ ◦ α : Ym → Yn factors through P , hence
is zero by the assumptions on Y . Thus ψ ◦ α = δ ◦ γ ◦ α = β ◦ ε ◦ γ ◦ α = 0, and hence
ψ = 0 as α is surjective. This shows that Hompr

A (U , V ) = {0} as stated. Let M , N be as
in (ii). As a left A-module, we have Y ⊗k M ∼= Ym , where m = dimk(M), and we have a
canonical surjection of A-modules Y ⊗k M → Y ⊗D M ; similarly for Y ⊗k N . Thus (ii) is
a special case of (i). ��

The following observation is well-known (see the papers [1] and [32] on static and adstatic
modules). We include a short proof for convenience.

Lemma 2.4 Let A, D be finite-dimensional k-algebras, and let Y be a finitely generated A-
D-bimodule. The functor Y ⊗D − : mod(D) → mod(A) is a full k-linear embedding if and
only if the adjunction unit V → HomA(Y , Y ⊗D V ), v 
→ (y 
→ y ⊗ v) is an isomorphism,
for every finitely generated D-module V .

Proof The functor Y ⊗D − is a full embedding if and only if for any two finitely gen-
erated D-modules U , V , the map HomD(U , V ) → HomA(Y ⊗D U , Y ⊗D V ) induced
by Y ⊗D − is an isomorphism, hence if and only if the canonical map HomD(U , V ) →
HomD(U ,HomA(Y , Y ⊗D V )) is an isomorphism. By considering the case U = D, one
sees that this is the case if and only if the adjunction map V → HomA(Y , Y ⊗D V ) itself is
an isomorphism, whence the result. ��
Proof of Theorem 2.1 By Lemma 2.4, the functor Y ⊗D − : mod(D) → mod(A) is a full
embedding, if and only if the condition (3) holds. This embedding is exact if and only if Y is
flat as a right D-module. Since Y is finitely generated, this is equivalent to requiring condition
(2). It follows from the Lemmas 2.2 and 2.3 that the composition with the canonical functor
mod(A) → mod(A) yields an embedding of mod(D) as a distinguished abelian subcategory
in mod(A) if and only if (1) holds as well. This concludes the proof of Theorem 2.1. ��

If both A and D are selfinjective, then Theorem 2.1 yields the following result.

Theorem 2.5 Let A be a finite-dimensional selfinjective k-algebra. Let Y be a finitely gen-
erated A-module. Suppose that EndA(Y ) is selfinjective. Set D = EndA(Y )op, and regard Y
as an A-D-bimodule. The following are equivalent.

(i) The functor Y ⊗D − : mod(D) → mod(A) is a full exact embedding and induces an
embedding of mod(D) as a distinguished abelian subcategory in mod(A).

(ii) We have EndprA (Y ) = {0}, and Y is projective as an EndA(Y )-module.

Proof If (i) holds, then (ii) holds by Theorem 2.1. Suppose that (ii) holds. Note that the
hypotheses imply that D = EndA(Y )op is selfinjective and that Y is projective as a right
D-module. Thus the conditions (1) and (2) in Theorem 2.1 are satisfied. We need to show
that condition (3) in that Theorem holds as well. That is, given a finitely generated D-module
V , we need to show that the adjunction map V → HomA(Y , Y ⊗D V ) is an isomorphism.
Note that this is clear if V = D as a consequence of the assumption D = EndA(Y )op. Thus
this is the case for V any free D-module of finite rank. In general, since D is selfinjective,
V is isomorphic to a submodule of a free D-module of finite rank. Thus there is an exact
sequence of D-modules of the form

0 V Dn Dm
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for some positive integers n and m. By the hypotheses in (ii), the functor Y ⊗D − is exact,
and hence we have an exact sequence of A-modules of the form

0 Y ⊗D V Y ⊗D Dn Y ⊗D Dm

Since the functor HomA(Y ,−) is left exact, this yields an exact sequence of D-modules of
the form

0 HomA(Y , Y ⊗D V ) HomA(Y , Y ⊗D Dn) HomA(Y , Y ⊗D Dm)

By naturality of the adjunction maps, we get a commutative diagram of D-modules with
exact rows

0 V

α

Dn

β

Dm

γ

0 HomA(Y , Y ⊗D V ) HomA(Y , Y ⊗D Dn) HomA(Y , Y ⊗D Dm)

where α, β, γ are the adjunction maps. By the above remarks, β and γ are isomorphisms.
The exactness of the rows implies that α is an isomorphism as well. This shows that condition
(3) in Theorem 2.1 holds as well, and hence the result follows from Theorem 2.1. ��

Using a Theorem of Cabanes [9, Theorem 2] one can identify the image of the functor
Y ⊗D − in Theorem 2.5 more precisely; see Sect. 8.

If A is a Frobenius algebra over an algebraically closed field, then the ideals I containing
their right annihilators form subvarieties of certain Grassmannians.

Proposition 2.6 Let A be a finite-dimensional Frobenius algebra over k. Suppose that k
is algebraically closed. The set of proper ideals I in A satisfying r(I ) ⊆ I is a projective
variety whose connected components are subvarieties of the GrassmanniansGr(n, A), where
dimk (A)

2 ≤ n < dimk(A).

Proof If A is a Frobenius algebra, then, as a consequence of [38, Lemma IV.3.6], we have
dimk(A) = dimk(I ) + dimk(r(I )). Since r(I ) ⊆ I , it follows that dimk(A) ≤ 2 dimk(I ).
Thus the ideals satisfying r(I ) ⊆ I satisfy dimk (A)

2 ≤ dimk(I ). In each dimension, they
form subvarieties of the Grassmannians, since being an ideal with an annihilator of a fixed
dimension is obviously a polynomial condition (obtained by fixing a k-basis of A). ��

If A is symmetric, then A is selfinjective, but none of the distinguished abelian subcat-
egories constructed above arises as the heart of a t-structure. More precisely, we have the
following result.

Proposition 2.7 Let A be a finite-dimensional selfinjective k-algebra. Denote by ν the
Nakayama functor on mod(A). Then the heart of any ν-stable t-structure on mod(A) is
zero.

Proof Let (C≤0, C≥0) be a t-structure on C = mod(A). Suppose that this t-structure is
preserved by the Nakayama functor ν. For any A-module U in C≤0 and any A-module V in
C≥0 we have HomA(U , �−1(V )) = {0}. Auslander–Reiten duality for selfinjective algebras
yields a duality between the space Hom(U , �−1(V )) ∼= HomA(ν(U ), ν(�−1(V ))) and
HomA(V , ν(U )) (see e. g. [38, Ch. III, Theorem 6.3]). Thus HomA(V , ν(U )) = {0}. Since
the heart C≤0 ∩ C≥0 of the t-structure is ν-stable, it follows that all morphisms in the heart
of this t-structure are zero. ��

123
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Corollary 2.8 Let A be a finite-dimensional symmetric k-algebra. Then the heart of any t-
structure on mod(A) is zero.

Proof The Nakayama functor of a symmetric algebra is isomorphic to the identity functor,
and hence the statement is a special case of Proposition 2.7. ��

Note that this Corollary follows also from more general results on negative Calabi–Yau
triangulated categories in [16, §5.1], combinedwith Tate duality for symmetric algebras (Tate
duality for symmetric algebras is the specialisation of the aforementioned Auslander–Reiten
duality to the case where the Nakayama functor is isomorphic to the identity). Since finite
group algebras are symmetric, this implies in particular the second statement of Theorem 1.5:

Corollary 2.9 Let G be a finite group. Then the heart of any t-structure on mod(kG) is zero.

Remark 2.10 With the notation of Theorem 2.1, not every embedding of mod(D) as a distin-
guished abelian subcategory of mod(A) lifts in general to a full embedding mod(D) →
mod(A). Suppose that Y ⊗D − : mod(D) → mod(A) is a full exact embedding and
induces an embedding mod(D) → mod(A) as distinguished abelian subcategory. Let M
be an A-A-bimodule inducing a stable equivalence of Morita type on A. Then the functor
M⊗AY ⊗D− : mod(D) → mod(A) is exact but no longer necessarily full. It induces still an
embedding of mod(D) as a distinguished abelian subcategory, because the functor M ⊗A −
induces a triangulated equivalence on mod(A), hence permutes distinguished abelian subcat-
egories. It is not clear whether an embedding mod(D) → mod(A) as a distinguished abelian
subcategory is necessarily induced by tensoring with a suitable A-D-bimodule.

Remark 2.11 Let A be a finite-dimensional selfinjective k-algebra, D a finite-dimensional k-
algebra, and Y an A-D-bimodule which is finitely generated projective as a right D-module.
Then the functormod(D) → mod(A) induced by Y⊗D− extends to a functor of triangulated
categories Db(mod(D)) → mod(A). Indeed, since Y is finitely generated projective as a
right D-module, it follows that Y ⊗D − induces a functor Db(mod(D)) → Db(mod(A)).
Composed with the canonical functor Db(mod(A)) → mod(A) from [36, Theorem 2.1] or
[8, Theorem 4.4.1], this yields a functor Db(mod(D)) → mod(A).

3 Simplemodules in distinguished abelian subcategories

We consider in this section distinguished abelian subcategories of mod(A) whose simple
objects are simple A-modules, where A is a finite-dimensional selfinjective k-algebra.

Theorem 3.1 Let A be a finite-dimensional selfinjective k-algebra and let I be a proper ideal
in A. The following statements are equivalent.

(i) The composition of canonical functorsmod(A/I ) → mod(A) → mod(A) is an embed-
ding of mod(A/I ) as a distinguished abelian subcategory in mod(A).

(ii) The ideal I contains its right annihilator r(I ).
(iii) We have EndprA (A/I ) = {0}.
(iv) For any two finitely generated A/I -modules U, V , we have Hompr

A (U , V ) = {0}.
(v) We have r(I )2 = {0}.

Any full abelian subcategory of a distinguished abelian subcategory of a triangulated
category is clearly again a distinguished abelian subcategory. In particular, if the canonical
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functor mod(A/I ) → mod(A) is an embedding as a distinguished abelian subcategory, then
so is the canonical functor mod(A/J ) → mod(A) for any ideal J which contains I , because
this factors through the embedding mod(A/J ) → mod(A/I ) induced by the canonical
surjection A/I → A/J .

Every ideal which squares to zero gives rise to a distinguished abelian subcategory in the
stable module category of a selfinjective algebra.

Corollary 3.2 Let A be a finite-dimensional selfinjective k-algebra, and let J be an ideal in
A such that J 2 = {0}. Set I = l(J ). Then the canonical surjection A → A/I induces an
embedding mod(A/I ) → mod(A) of mod(A/I ) as a distinguished abelian subcategory in
mod(A).

Proof We have r(I ) = r(l(J )) = J , hence r(I )2 = {0} by the assumptions. The result
follows from the equivalence of the statements (i) and (v) in Theorem 3.1. ��

If A is a finite-dimensional Hopf algebra, then mod(A) is a monoidal abelian category,
and A is selfinjective, by a result of Larson and Sweedler [24]. Given two A-modules U ,
V , if one of U , V is projective, then so is U ⊗k V (see e. g. [6, Proposition 3.1.5]). Thus
mod(A) is a monoidal triangulated category. If I is a proper Hopf ideal in A, then A/I is
a Hopf algebra, the canonical surjection A → A/I is a homomorphism of Hopf algebras,
and hence induces a full embedding of monoidal categories mod(A/I ) → mod(A). Thus
Theorem 3.1 implies immediately the following observation.

Corollary 3.3 Let A be a finite-dimensional Hopf algebra over k and let I be a proper Hopf
ideal in A containing its right annihilator r(I ). Then the composition of canonical functors
mod(A/I ) → mod(A) → mod(A) is an embedding of mod(A/I ) as a monoidal distin-
guished abelian subcategory in the monoidal triangulated category mod(A).

Some of the implications in Theorem 3.1 hold in slightly greater generality.

Lemma 3.4 Let A be a finite-dimensional k-algebra, and let J be a proper left ideal in A.
We have EndprA (A/J ) = {0} if and only if r(J ) ⊆ J .

Proof Note first that if β : A/J → A is an A-homomorphism, then β ◦ π is an A-
endomorphism of A with kernel containing J , hence induced by right multiplication with
an element y ∈ r(J ). Conversely, right multiplication with an element y ∈ r(J ) factors
through π . Let α : A/J → A/J be an endomorphism of A/J as a left A-module such that
α factors through a projective A-module. Then α factors through the canonical surjection
π : A → A/J ; that is, there is an A-homomorphism β : A/J → A such that α = π ◦ β. By
the above, the endomorphism β ◦ π of A is induced by right multiplication with an element
y ∈ r(J ). Since π is surjective, we have α = 0 if and only if α ◦ π = π ◦ β ◦ π = 0, or
equivalently, if and only if Im(β ◦ π) ⊆ ker(π) = J . Since the image of β ◦ π is Ay, it
follows that α = 0 if and only if y ∈ J . The result follows. ��
Lemma 3.5 Let A be a finite-dimensional k-algebra and let I be a proper ideal in A. Suppose
that r(I ) ⊆ I . Then for any two A/I -modules U, V we have Hompr

A (U , V ) = {0}.
Proof Set Y = A/I , regarded as an A-A/I -bimodule. Then EndprA (Y ) = {0} by Lemma 3.4,
and we have EndA(Y ) ∼= (A/I )op, hence D = EndA(Y )op ∼= A/I . Using this isomorphism,
if U is an A/I -module, then Y ⊗A/I U = A/I ⊗A/I U ∼= U , regarded as an A-module via
the canonical surjection A → A/I . The result follows from Lemma 2.3. ��
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Lemma 3.6 Let A be a finite-dimensional selfinjective k-algebra, and let I be an ideal in A.
The following are equivalent.

(i) We have r(I ) ⊆ I .
(ii) We have l(I ) ⊆ I .
(iii) We have r(I )2 = 0.
(iv) We have l(I )2 = 0.

Proof If r(I ) ⊆ I , then taking left annihilators yields I = l(r(I )) ⊇ l(I ), so (i) implies (ii).
A similar argument shows that (ii) implies (i). Since I · r(I ) = 0, it follows that if r(I ) ⊆ I ,
then r(I )2 = 0. Thus (i) implies (iii). A similar argument shows that (ii) implies (iv). If
r(I )2 = 0, then r(I ) ⊆ l(r(I )) = I , so (iii) implies (i), and a similar argument shows that
(iv) implies (ii). ��
Proof of Theorem 3.1 We are going to prove Theorem 3.1 as a special case of Theorem 2.1.
SetY = A/I , regarded as an A-A/I -bimodule.We have EndA(Y ) = EndA/I (Y ) ∼= (A/I )op.
Clearly Y is projective as a right A/I -module. Given an A/I -module V , the adjunction unit
V → HomA(A/I , A/I ⊗A/I V ) is trivially an isomorphism. Thus the A-A/I -bimodule
satisfies the conditions (2) and (3) in Theorem 2.1. Therefore the composition of functors
mod(A/I ) → mod(A) → mod(A) is an embedding of mod(A/I ) as a distinguished abelian
subcategory if and only if (1) holds, that is, if and only if EndprA (A/I ) = {0}. This proves the
equivalence of (i) and (iii). It follows from Lemma 3.4 that the statements (ii) and (iii) are
equivalent. The implication (iii) ⇒ (iv) follows from Lemma 3.5. The implication (iv) ⇒ (i)
follows from Lemma 2.2. The equivalence of (ii) and (v) holds by Lemma 3.6. ��
Proof of Theorem 1.3 Theorem 1.3 follows from the equivalence of the statements (i) and (ii)
in Theorem 3.1. ��
Proof of Theorem 1.4 The hypothesis r(I ) ⊆ I and Theorem 1.3 imply that mod(A/I ) is
indeed a distinguished abelian subcategory of mod(A). The inclusions r(I ) ⊆ I ⊆ J (A)

imply that soc(A) ⊆ r(I ), and hence A has no simple projective modules.
Since I ⊆ J (A), it follows that mod(A/I ) contains all simple A-modules. Thus the image

of mod(A/I ) in mod(A) is extension closed if and only if mod(A/I ) contains all indecom-
posable non-projective A-modules, and hence if and only if the embedding mod(A/I ) →
mod(A) is an equivalence. This shows that (i) and (ii) are equivalent. If (ii) holds, then
mod(A) is an abelian category, hence semisimple. This forces that all indecomposable non-
projective A-modules are simple, hence that all projective indecomposable A-modules have
composition length 2 (here we use that A is selfinjective, so every projective indecomposable
module has a simple top and socle). This implies that A is a Nakayama algebra all of whose
projective indecomposable modules have composition length 2. Thus (ii) implies (iii). If (iii)
holds, then every indecomposable non-projective A-module is simple, and hence (iii) implies
(ii). Clearly A is a selfinjective Nakayama algebra with all projective indecomposable mod-
ules of composition length 2 if and only if soc(A) = J (A), whence the equivalence between
(iii) and (iv). ��
Remark 3.7 Lemma 3.6 implies that working with left or right modules yields equivalent
statements. To illustrate this point, by Theorem 3.1, we have r(I ) ⊆ I if and only if we have
a full embedding mod(A/I ) → mod(A). There is an obvious right module analogue which
states that l(I ) ⊆ I if and only if we have a full embedding mod((A/I )op) → mod(Aop).
Thus Lemma 3.6 implies that we have a full embedding mod(A/I ) → mod(A) if and
only if we have a full embedding mod((A/I )op) → mod(Aop). In other words, the full
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distinguished abelian subcategories in mod(A) and mod(Aop) constructed in Theorem 3.1
and its right module analogue correspond bijectively to each other.

The following result is Theorem 1.2 (i).

Theorem 3.8 Let A be a finite-dimensional selfinjective k-algebra such that all simple A-
modules are nonprojective. LetD be a distinguished abelian subcategory ofmod(A). Suppose
that D contains all simple A-modules. The simple A-modules are exactly all simple objects
in D. In particular, we have �(D) = �(A).

Proof Let U be an indecomposable nonprojective A-module belonging to D, and let S be a
simple A-module. Let ψ : U → S be an A-homomorphism, and denote by ψ the image of
ψ in HomA(U , S). Note that U , S are both nonzero objects of D, by the assumptions.

We are going to show first that if ψ is not an isomorphism in mod(A), then ψ is not
a monomorphism in D. If ψ is zero, there is nothing to show. If ψ is nonzero, then ψ is
surjective because S is a simple A-module. Assume that ψ is not an isomorphism. Then
ker(ψ) is nonzero. Let T be a simple A-submodule of ker(ψ). The inclusion T → U is an
injective A-homomorphism, hence its image in mod(A) is a nonzero morphism in mod(A).
By construction, the composition T → U → S is zero in mod(A). Since also T belongs to
D, it follows that ψ is not a monomorphism in D.

This argument shows that S is a simple object of D. Indeed, if not, there would have to
be a monomorphism U → S in D which is not an isomorphism. But by the first paragraph,
any such monomorphism is inducd by an isomorphism in mod(A), so is an isomorphism in
D as well. This argument also shows that D contains no other simple objects. Indeed, let U
be an indecomposable nonprojective A-module which is a simple object in D. Consider a
surjective A-homomorphism ψ : U → S onto some simple A-module S. Then S belongs
to D, and the image ψ is a monomorphism in D because U is simple in D. But then ψ is
an isomorphism by the first argument. Thus the simple A-modules are exactly the simple
objects in D, whence the result. ��
Corollary 3.9 Let A be a finite-dimensional selfinjective k-algebra such that all simple A-
modules are nonprojective. Let I be an ideal such that r(I ) ⊆ I ⊆ J (A). Let D be a
distinguished abelian subcategory of mod(A) containing mod(A/I ). Then the simple A-
modules are exactly the simple objects in D.

Proof The hypothesis r(I ) ⊆ I implies, by Theorem 3.1, that mod(A/I ) is a distinguished
abelian subcategory of mod(A). The hypothesis I ⊆ J (A) implies that mod(A/I ) contains
all simple A-modules. The result follows from Theorem 3.8. ��

Removing the reference to simple A-modules yields the following statement.

Corollary 3.10 Let A be a finite-dimensional selfinjective k-algebra such that all simple A-
modules are nonprojective. Thenmod(A)has a semisimple distinguishedabelian subcategory
D such that �(D) is finite and such that for any distinguished abelian subcategory D′ of
mod(A) containing D we have �(D′) = �(D).

Proof Let D be the full subcategory of mod(A) consisting of all semisimple modules in
mod(A). The result follows from Theorem 3.8. ��

The distinguished abelian subcategories of mod(A) of the formmod(A/I ) in Theorem 3.1
have the property that the simple objects in mod(A/I ) remain simple in mod(A). The next
result explores the question under what circumstances a distinguished abelian subcategory
of mod(A) whose simple objects correspond to simple A-modules is of the form mod(A/I )
for some ideal I in A.
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Theorem 3.11 Let A be a finite-dimensional selfinjective k-algebra, and let D be a finite-
dimensional k-algebra. Let Y be a finitely generated A-D-bimodule such that Y is projective
as a right D-module and such that Y has no nonzero projective direct summand as a left
A-module. Suppose that for any simple D-module T the A-module Y ⊗D T is simple and
that the functor Y ⊗D − induces a full embedding of mod(D) as a distinguished abelian
subcategory ofmod(A). Let I be the annihilator in A of Y as a left A-module. Then r(I ) ⊆ I ,
and Y ⊗D − induces an equivalence mod(D) ∼= mod(A/I ).

For the proof, we will need the following elementary observation, which is a sufficient
criterion for an epimorphism in the category of k-algebras to be an isomorphism.

Lemma 3.12 Let D be a finite-dimensional k-algebra and A a unital subalgebra of D. Sup-
pose that the restriction functorResDA : mod(D) → mod(A) is a full embedding which sends
every simple D-module to a simple A-module. Then A = D.

Proof We first show that J (A) = A ∩ J (D). Since simple D-modules restrict to simple
A-modules, it follows that J (A) annihilates every simple D-module, and hence J (A) ⊆
A∩J (D). Since A∩J (D) is a nilpotent ideal in A, we have the other inclusion aswell, whence
the equality J (A) = A ∩ J (D). Thus the inclusion A ⊆ D induces an injective algebra
homomorphism A/J (A) → D/J (D). Since A/J (A) is semisimple, every A/J (A)-module
is injective, and hence A/J (A) is isomorphic to a direct summand of D/J (A) as a right
A/J (A)-module. Thus, for any simple A-module S, the D/J (D)-module D/J (D)⊗A/J (A) S
is nonzero. Regarded as a left D-module, this is a quotient of D ⊗A S. In particular D ⊗A S
is nonzero. Let T be a simple quotient of D ⊗A S and let D ⊗A S → T be a nonzero
D-homomorphism. The standard adjunction yields a nonzero A-module homomorphism
S → ResDA (T ). Since S and ResDA (T ) are both simple A-modules, it follows that S ∼=
ResDA (T ). This shows that ResDA induces a bijection between the isomorphism classes of
simple D-modules and simple A-modules. Since ResDA is a full embedding, we also have
EndD(T ) = EndA(T ). Thus the simple modules for D and A which correspond to each
other through the bijection induced by ResDA have the same dimensions and isomorphic
endomorphism rings. The Artin–Wedderburn Theorem implies that A/J (A) ∼= D/J (D),
and hence D = A + J (D).

We show next that every maximal A-submodule of D is in fact a maximal D-submodule.
Indeed, let M be a maximal A-submodule of D. Then S = D/M is a simple A-module. By
the previous argument, there is a simple D-module T and an A-module isomorphism S ∼=
ResDA (T ). The composition of A-homomorphisms D → D/M = S ∼= ResDA (T ) belongs to
HomA(D, T ) = HomD(D, T ), hence this composition is a D-homomorphism. The kernel
of this D-homomorphism is M , and hence M is a maximal D-submodule of D. Conversely,
any maximal D-submodule N of D is a maximal A-submodule since ResDA (D/N ) remains
simple. Taking the intersection of all maximal submodules of D as an A-module yields
J (A)D = J (D).

It follows that D = A + J (D) = A + J (A)D. Nakayama’s Lemma, applied to the
A-module D, implies that A = D. ��

The converse of Lemma 3.12 holds trivially. One cannot drop in this Lemma the hypoth-
esis that ResDA sends simple modules to simple modules. Consider the subalgebra A of upper
triangular matrices in D = M2(k). The restriction from D to A of the unique (up to iso-
morphism) simple D-module is the unique (up to isomorphism) projective indecomposable
A-module of dimension 2. One verifies easily that ResDA is a full embedding. (The inclusion
A → D is thus an epimorphism in the category of rings; see Stenström [39, Chapter XI,
Proposition 1.2].)
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Lemma 3.13 Let A be a finite-dimensional selfinjective algebra over a field k, let D be a
finite-dimensional k-algebra, and let Y be a finitely generated A-D-bimodule. Suppose that
the functor Y ⊗D − induces a full embedding mod(D) → mod(A). Then, for any finitely
generated D-module V , the map V → HomA(Y , Y ⊗D V ) induced by the adjunction unit is
an isomorphismof D-modules. In particular, the functorHomA(Y ,−) : mod(A) → mod(D)

is a left inverse of the embedding mod(D) → mod(A) induced by Y ⊗D −.

Proof By the assumptions, for any two finitely generated D-modules U , V the map
HomD(U , V ) → HomA(Y ⊗D U , Y ⊗D V ) induced by the functor Y ⊗D − is an iso-
morphism. Specialising this isomorphism to U = D and combining it with the canonical
isomorphism V ∼= HomD(D, V ) yields the result. ��

The converse in Lemma 3.13 need not hold; the issue is that the functor HomA(Y ,−) need
not be right adjoint to the functor induced by Y ⊗D −. The Tensor-Hom adjunction induces
a natural transformation between the induced bifunctors at the level of the stable category
mod(A) (cf. Lemma 9.12 and Remark 9.13), but this need not be an isomorphism.

Lemma 3.14 Let A, D be finite-dimensional k-algebras and let : mod(D) → mod(A) be a
full exact embedding sending simple D-modules to simple A-modules. Then is isomorphic
to a functor of the form Y ⊗D − : mod(D) → mod(A), where Y is an A-D-bimodule
which is a progenerator as a right D-module. Moreover, if I is the annihilator in A of Y as
a left A-module, then  factors through an equivalence � : mod(D) ∼= mod(A/I ) and the
inclusion functor mod(A/I ) → mod(A).

Proof As mentioned at the beginning of Sect. 2, the first statement is a special case of the
Eilenberg–Watts Theorem: since  is a full exact embedding, it is induced by tensoring
over D with an A-D-bimodule Y which is flat as a right D-module. Since this is a functor
between categories of finite-dimensional modules, preserving simple modules, it follows that
Y is a progenerator as a right D-module. Thus D is Morita equivalent to D′ = EndDop(Y ),
via the functor from mod(D) to mod(D′) induced by Y ⊗D −, with Y here regarded as a
D′-D-bimodule. The action of A on Y induces an algebra homomorphism A → D′. Let I
be the annihilator of Y in A. Then the algebra homomorphism A/I → D′ induced by the
action of A on Y is injective. The functor  is the composition of the Morita equivalence
Y⊗D− : mod(D) → mod(D′) followed by the restriction functor along the injective algebra
homomorphism A/I → D′. By the assumptions, preserves simplemodules. Since Y⊗D−
induces an equivalence mod(D) ∼= mod(D′) it induces in particular a bijection between
isomorphism classes of simple D-modules and simple D′-modules. It follows that simple
D′-modules restrict to simple A/I -modules. Lemma 3.12 implies that A/I ∼= D′. Thus 

factors through an equivalence mod(D) → mod(A/I ) as stated. ��
Proof of Theorem 3.11 Since Y ⊗D − induces a full embedding mod(D) → mod(A), it
follows from Lemma 3.13 that for any finitely generated D-modules V , we have an isomor-
phism

V ∼= HomD(D, V ) ∼= HomA(Y , Y ⊗D V )

sending v ∈ V to the image of the map y 
→ (y ⊗ v), where y ∈ Y . Arguing by induction
over dimk(V ), we will show that Hompr

A (Y , Y ⊗D V ) = {0}. If V is simple, then by the
assumptions, Y ⊗D V is simple. Since Y ⊗D V is a quotient of Y and since Y has no
nonzero projective summand as an A-module, it follows that the simple A-module Y ⊗D V
is nonprojective and hence that Hompr

A (Y , Y ⊗D V ) = {0}. Let
0 U V W 0
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be a short exact sequence of nonzero D-modules. This sequence is isomorphic to the short
exact sequence

0 HomD(D,U ) HomD(D, V ) HomD(D,W ) 0

Since Y ⊗D − induces a full embedding mod(D) → mod(A), this yields an exact sequence

0 HomA(Y , Y ⊗D U ) HomA(Y , Y ⊗D V ) HomA(Y , Y ⊗D W ) 0

Since Y ⊗D − is exact, the first exact sequence yields an exact sequence

0 Y ⊗D U Y ⊗D V Y ⊗D W 0

and applying the left exact functor HomA(Y ,−) yields an exact sequence

0 HomA(Y , Y ⊗D U ) HomA(Y , Y ⊗D V ) HomA(Y , Y ⊗D W )

Thus we have a commutative exact diagram of the form

0 HomA(Y , Y ⊗D U ) HomA(Y , Y ⊗D V ) HomA(Y , Y ⊗D W )

0 HomA(Y , Y ⊗D U ) HomA(Y , Y ⊗D V ) HomA(Y , Y ⊗D W ) 0

where the vertical maps are the canonical surjections. Arguing by induction, the left and
right vertical maps are isomorphisms. Thus the top right horizontal map is surjective, and
comparing dimensions implies that the middle vertical map is an isomorphism as well. This
shows that Hompr

A (Y , Y ⊗D V ) = {0} for all finitely generated D-modules V . Applied to
V = D this implies that EndprA (Y ) = {0}. By the first paragraph, this also implies that the
canonical map V → HomA(Y , Y ⊗D V ) is an isomorphism for all V . By Theorem 2.1, the
functor Y ⊗D − induces a full embedding mod(D) → mod(A), and by the assumptions, this
embedding sends simple D-modules to simple A-modules. Since I is the annihilator in A ofY ,
it follows from Lemma 3.14, that the full embedding Y ⊗D − : mod(D) → mod(A) factors
through an equivalence mod(D) ∼= mod(A/I ). By the assumptions, the functor Y ⊗D −
induces a full embedding mod(D) → mod(A). Thus the inclusion mod(A/I ) → mod(A)

induces a full embedding mod(A/I ) → mod(A) as distinguished abelian subcategory. The
inclusion r(I ) ⊆ I follows from Theorem 3.1, whence the result. ��
Example 3.15 Let A be a finite-dimensional selfinjective k-algebra. Suppose that the simple
A-modules are non-projective. Then J (A) contains its right annihilator soc(A) in A. Thus
the subcategory of all semisimple A-modules, which is equivalent to mod(A/J (A)), is a
distinguished abelian subcategory of mod(A). We have �(A) = �(A/J (A)), so for trivial
reasons, mod(A) has distinguished abelian subcategories D whose number of isomorphism
classes �(D) of simple objects in D is equal to the number �(A) of isomorphism classes of
simple A-modules.

Example 3.16 Let A be a finite-dimensional selfinjective k-algebra. Suppose that soc2(A) ⊆
J (A)2. Since soc2(A) is the right annihilator of J (A)2, it follows from Theorem 3.1 that the
composition of canonical functors mod(A/J (A)2) → mod(A) → mod(A) is an embedding
of mod(A/J (A)2) as a distinguished abelian subcategory in mod(A). If A is indecomposable
as an algebra, then so is A/J (A)2, and both have the same quiver. Therefore, in this situa-
tion, C = mod(A) has a connected distinguished abelian subcategory D = mod(A/J (A)2)

satisfying �(D) = �(A) and Ext1D(S, T ) ∼= Ext1C(S, T ), for any two simple objects S, T in
D.
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Remark 3.17 The property soc2(A) ⊆ J (A)2 in the previous Example is not invariant under
stable equivalences, in fact, not even under derived equivalences. For instance, the Brauer
tree algebra of a star with four edges has this property, but the Brauer tree algebra of a line
with four edges (and no exceptional vertex) does not.

4 Distinguished abelian subcategories for finite group algebras

We describe special cases of the situation arising in Theorem 3.1 involving finite group
algebras. We use without further comments standard properties of finite p-group algebras in
prime characteristic p; see e.g. [27, Section 1.11].

Theorem 4.1 Let k be a field of prime characteristic p and A a finite-dimensional selfinjective
k-algebra. Suppose that Z(A)× has a nontrivial finite p-subgroup Z such that A is projective
as a kZ-module. Set I = I (kZ) · A, where I (kZ) is the augmentation ideal of kZ. Then I
contains its right annihilator in A. In particular, restriction along the canonical surjection
A → A/I induces a full embeddingmod(A/I ) → mod(A) ofmod(A/I ) as a distinguished
abelian subcategory in mod(A).

Proof The right annihilator of I (kZ) in kZ is the 1-dimensional ideal soc(kZ) = (
∑

z∈Z z) ·
kZ , and we have soc(kZ) ⊆ I (kZ). Since A is a free left or right kZ -module, an easy
argument shows that the right annihilator of I (kZ) · A = A · I (kZ) is therefore soc(kZ) · A =
A · soc(kZ), which is contained in I (kZ) · A. Thus the statement is the special case of
Theorem 3.1 with I = I (kZ) · A. ��

Let G be a finite group. The module category mod(kG) of the finite group algebra kG
over a field k is a symmetric monoidal category with respect to the tensor product −⊗k − of
kG-modules over k. It is well-known that if U , V are finitely generated kG-modules with at
least one ofU , V projective, thenU ⊗k V is projective as well. Therefore the tensor product
over k induces a commutativemonoidal structure on the triangulated categorymod(kG). If N
is a normal subgroup of G, then the canonical surjection G → G/N induces an embedding
of symmetric monoidal categories mod(kG/N ) → mod(kG). The following result implies
the first statement in Theorem 1.5.

Theorem 4.2 Let k be a field of prime characteristic p and G a finite group. Let N be a
normal subgroup of G. Restriction along the canonical surjection G → G/N induces a
full embedding mod(kG/N ) → mod(kG) of mod(kG/N ) as a symmetric monoidal distin-
guished abelian subcategory in mod(kG) if and only if p divides the order of N .

Proof The fact that the functormod(kG/N ) → mod(kG) is a functor of symmetricmonoidal
categories is obvious (see the remarks preceding the Theorem). We need to show that this
induces an embedding as a distinguished abelian subcategory in mod(kG) if and only if
|N | is divisible by p. The kernel of the canonical algebra homomorphism kG → kG/N is
equal to I = kG · I (kN ), where I (kN ) is the augmentation ideal of kN . Arguing as in the
previous proof, the right annihilator of I (kN ) in kN is the 1-dimensional ideal (

∑
y∈N y)kN .

This is contained in I (kN ) if and only if p divides |N |. Indeed, if p divides |N |, then∑
y∈N y = ∑

y∈N (y − 1) ∈ I (kN ). If p does not divide |N |, then (
∑

y∈N y)kN is a
complement of I (kN ) in kN . Since kG is free as a right kN -module of rank |G : N |, it
follows that the right annihilator of I is equal to kG · (∑y∈N y). Therefore, if p divides |N |,
then the right anihilator of I is contained in I by the previous argument. The result follows in
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that case from Theorem 3.1. If |N | is prime to p, then kG/N is a projective kG-module, so
EndkG(kG/N ) vanishes, and in particular, the canonical functor mod(kG/N ) → mod(kG)

is not an embedding.
Alternatively, one can also show this using a special case of Higman’s criterion. LetU , V

be kG/N -modules. When regarded as kG-modules, the elements of N act as identity on U ,
V . Thus any k-linear map τ : U → V is a kN -homomorphism, and TrG1 (τ ) = |N |TrGN (τ ).
If p divides |N |, then this expression is zero in k. It follows from the special case [27,
Proposition 2.13.11] of Higman’s criterion that Hompr

kG(U , V ) = {0}. Equivalently, we
have HomkG(U , V ) ∼= HomkG(U , V ) = HomkG/N (U , V ). This shows that if p divides
|N |, then mod(kG/N ) can indeed be identified canonically with a full subcategory of
mod(kG). Note that kG/N is a projective kG/N -module. Thus every kG/N -endomorphism
of kG/N is equal to TrG/N

1 (σ ) for some linear endomorphism σ of kG/N . Equivalently,
every kG-endomorphism of kG/N is of the form TrGN (σ ) for some kN -endomorphism σ

of kG/N . If |N | is coprime to p, then σ = 1
|N |Tr

N
1 (σ ), hence τ = TrG1 ( 1

|N |σ), which
shows that τ factors through a projective kG-module. Equivalently, the canonical map
EndkG/N (kG/N ) → EndkG(kG/N ) is zero. This shows that if |N | is coprime to p, then the
canonical functor mod(kG/N ) → mod(kG) is not an embedding. ��
Remark 4.3 Let k be a field of prime characteristic p.

(1) LetG be a finite group having a nontrivial normal p-subgroup Q. It is well-known that the
kernel I of the canonical algebra homomorpism kG → kG/Q is contained in the radical
J (kG) and hence that �(kG) = �(kG/Q). Thus Theorem 4.2 illustrates Theorem 3.8,
constructing explicitly the distinguished abelian subcategory mod(kG/Q) of mod(kG)

whose number of isomorphism classes of simple objects is equal to that of mod(kG).
(2) Theorem 4.2 implies that if P is a nontrivial finite p-group, then any cyclic subgroup

of Z(P) yields a distinguished abelian subcategory of mod(kP). But then so does any
shifted cyclic subgroup of Z(P), suggesting that distinguished abelian subcategories
should form varieties which are related to cohomology support varieties.

Combining Theorem 3.11, a result of J. F. Carlson [10, Theorem 1], and [25, Theorem 3.4]
yields the following classification of those distinguished abelian subcategories of the stable
module category of a finite p-group algebra in prime characteristic p which are equivalent to
module categories of finite-dimensional split k-algebras (i.e. finite-dimensional k-algebras
whose simple modules have 1-dimensional endomorphism algebras). If P is a finite p-
group, then a finiteley generated kP-module V is called endotrivial if V ⊗k V ∗ ∼= k ⊕U for
some projective kP-module. If V is endotrivial, then V ⊗k − and V ∗ ⊗k − induce inverse
equivalences on mod(kP). In particular, V ⊗k − sends in that case any distinguished abelian
subcategory D of mod(kP) to a distinguished abelian subcategory, denoted V ⊗k D, of
mod(kP).

Theorem 4.4 Let p be a prime, P a nontrivial finite p-group and k a field of characteristic
p. Let D be a finite-dimensional split basic k-algebra such that there is an embedding
 : mod(D) → mod(kP) as distinguished abelian subcategory of mod(kP).

(i) We have �(D) = 1; that is, D is split local.
(ii) Let V is an indecomposable kP-module corresponding to a simple D-module under the

functor . Then V is an endotrivial kP-module.
(iii) If  is induced by a functor Y ⊗D − for some finitely generated kP-D-bimodule Y

which is projective as a right D-module, then there is an ideal I of kP containing its
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right annihilator in kP such that D ∼= (kP)/I and such that  induces an equivalence
between mod(D) and the distinguished abelian subcategory V ⊗k mod((kP)/I ).

The first statement of Theorem 4.4 holds slightly more generally, based on the following
observation which is a consequence of the proof of [25, Theorem 3.4].

Lemma 4.5 Let p be a prime, P a nontrivial finite p-group, and suppose that char(k) = p.
Let D be a distinguished abelian subcategory of mod(kP) such that D has a simple object.
Suppose that for every simple object X in D we have EndD(X) ∼= k. Then �(D) = 1.

Proof By the assumptions on D we have �(D) ≥ 1 (we include here by convention the
case where D has infinitely many isomorphism classes of simple objects). Arguing by
contradiction, suppose that �(D) ≥ 2. Thus D has two nonisomorphic simple objects S,
T . Since D is a full subcategory of mod(kP), the objects S, T remain nonisomorphic in
mod(kP). Again by the assumptions, we have EndkP (S) ∼= k ∼= EndkP (T ), and we have
HomkP (S, T ) = {0} = HomkP (T , S). It is shown in the proof of [25, Theorem 3.4] that this
is not possible. ��

Proof of Theorem 4.4 Denote by D the distinguished abelian subcategory of mod(kP)

obtained from taking the closure under isomorphisms inmod(kP) of the image of the embed-
ding  : mod(D) → mod(kP). By Lemma 4.5, the category D has a unique isomorphism
class of simple objects, whence (i). Let V be an indecomposable kP-module such that V is
simple as an object inD. Then in particular EndkP (V ) ∼= k. A result of J. F. Carlson [10, The-
orem 1] implies that V is endotrivial, which shows (ii). The exact functor V⊗k− onmod(kP)

induces an equivalence on mod(kP), with inverse induced by the functor V ∗ ⊗k −. Thus
after replacingD by the image ofD under the functor V ∗ ⊗k −, we may (and do) assume that
the trivial kP-module k belongs toD, and is the—up to isomorphism unique—simple object
ofD. In other words, with the notation and hypotheses of statement (iii), the kP-D-bimodule
Y is projective as a right D-module and the functor Y ⊗D − sends a simple D-module to the
trivial kP-module. Thus the hypotheses of Theorem 3.11 are satisfied, implying statement
(iii). ��

Example 4.6 Let p = 2, let P be a finite 2-group of order at least 4, let Z be a subgroup
of order 2 of Z(P), and set Q = P/Z . By Theorem 4.2, the abelian category mod(kQ)

can be identified with a distinguished abelian subcategory of mod(kP). This subcategory
is not proper in the sense of [18, Def. 1.2]. Tensoring the obvious short exact sequence of
kZ -modules

0 k kZ k 0

by kP ⊗kZ − yields a short exact sequence of kP-modules

0 kQ kP kQ 0 .

In other words, regarding kQ as a kP-module via the canonical surjection P → Q implies
that �(kQ) ∼= kQ. Thus we have a distinguished exact triangle in mod(kP) of the form

kQ 0 kQ kQ

The first three terms of this triangle belong tomod(kQ) but do not form a short exact sequence
in mod(kQ).
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5 Basic properties of distinguished abelian subcategories

Weshow that a short exact sequence in a distinguished abelian subcategoryD of a triangulated
category C determines a unique exact triangle in C; that is, we show that the morphism h in
Definition 1.1 is unique. If not stated otherwise, the shift functor of a triangulated category
is denoted by �.

Proposition 5.1 Let C be a triangulated category and let D be a distinguished abelian sub-
category of C. Let

0 X
f

Y
g

Z 0

be a short exact sequence in D. There is a unique morphism h : Z → �(X) in C such that

X
f

Y
g

Z
h

�(X)

is an exact triangle in C.

Proof The existence of h is clear by definition; we need to show the uniqueness. Let h,
h′ : Z → �(X) be morphisms in C such that the triangles

X
f

Y
g

Z
h

�(X)

X
f

Y
g

Z
h′

�(X)

are exact. The pair of identity morphisms (IdX , IdY ) can be completed to a morphism of
triangles (IdX , IdY , a). That is, there is a morphism a : Z → Z satisfying a ◦ g = g and
h′ ◦ a = h. Since Z belongs to D and since D is a full subcategory of C, it follows that a is
a morphism in the abelian category D. Since g is an epimorphism in D, this forces a = IdZ ,
whence h′ = h. ��
Remark 5.2 The definition of a distinguished abelian subcategoryD of a triangulated category
C does not requireD to be closed under isomorphisms in C. One easily checks that the closure
of D under isomorphisms in C is again a distinguished abelian subcategory of C which is
equivalent to D as an abelian category.

Proposition 5.3 Let C be a triangulated category and let D be a distinguished abelian sub-
category of C. Let

0 X
f

Y
g

Z 0

be a short exact sequence inD and let W be an object in C. If W belongs toD, then the maps

HomC(�(W ), Y ) HomC(�(W ), Z)

HomC(�(Y ),W ) HomC(�(X),W )

induced by composition with g and precomposition with �( f ) are surjective.

Proof SinceD is a distinguished abelian subcategory inC, there is amorphismh : Z → �(X)

such that the triangle

X
f

Y
g

Z
h

�(X)
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in C is exact. Applying the functor HomC(W ,−) yields a long exact sequence of the form

· · · HomC(W , �−1(Y )) HomC(W , �−1(Z)) HomC(W , X) HomC(W , Y ) · · ·

The right map is induced by composing with the monomorphism f in D. Thus if
W belongs to D, then the right map is injective. But then the map in the middle is
zero, so the left map is surjective. Since � is an equivalence, it follows that the map
HomC(�(W ), Y ) HomC(�(W ), Z) is surjective. Similarly, we have a long exact
sequence

· · · HomC(�(Y ),W ) HomC(�(X),W ) HomC(Z ,W ) HomC(Y ,W ) · · ·

The right map is induced by precomposing with the epimorphism g inD. Thus ifW belongs
to D, then the right map is injective, hence the map in the middle is zero, and therefore the
left map is surjective. This concludes the proof. ��

Unlike hearts of t-structures, distinguished abelian subcategories need not be disjoint
from their shifts—they may contain periodic objects. The following consequence of Propo-
sition 5.3—which is Theorem 1.6—shows that ifD is a distinguished abelian subcategory in
a triangulated category C, then D ∩ �(D) is a subcategory of the additive category proj(D)

generated by the projective objects in D.

Corollary 5.4 Let C be a triangulated category and let D be a distinguished abelian subcat-
egory of C. Let W be an object in D such that �(W ) is an object in D. Then W is injective
in D and �(W ) is projective in D.

Proof By Proposition 5.3, if g : Y → Z is an epimorphism in D, then every morphism
�(W ) → Z lifts through g. Since �(W ) belongs to D, it follows that �(W ) is projective
in D. Similarly, by Proposition 5.3 (applied with �(W ) instead of W ), if f : X → Y is
a monomorphism in D, then every morphism X → W factors through f , and hence W is
injective in D. ��

Remark 5.5 There is no converse to this Corollary 5.4: an injective object in a distinguished
abelian subcategory D of a triangluated category C need not have the property that �(W )

belongs toD. For instance, if k has prime characteristic p and P is a finite p-group of order at
least 3, thenD = add(k) is a semisimple distinguished abelian subcategory of C = mod(kP),
so the trivial kP-module k is injective in D, but �(k) is an indecomposable kP-module of
dimension |P| − 1, so does not belong to D. In the context of finite group algebras, the
situation of Corollary 5.4 seems to be a characteristic 2 phenomenon—see Example 4.6.

Proposition 5.6 Let C be a triangulated category and let D be a distinguished abelian sub-
category of C. Let

0 X
f

Y
g

Z 0

be a short exact sequence in D and let W be an object in C.

(i) If W is a projective object in D, then the map

HomC(W , �(X)) → HomC(W , �(Y ))

induced by composition with �( f ) is injective.
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(ii) If W is an injective object in D, then the map

HomC(Z , �(W )) → HomC(Y , �(W ))

induced by precomposition with g is injective.

Proof SinceD is a distinguished abelian subcategory inC, there is amorphismh : Z → �(X)

such that the triangle

X
f

Y
g

Z
h

�(X)

in C is exact. Applying the functor HomC(W ,−) yields a long exact sequence of the form

· · · HomC(W , Y )
g∗

HomC(W , Z)
h∗

HomC(W , �(X))
�( f )∗

HomC(W , �(Y )) · · ·

If W is projective in D, then g∗ is surjective, hence h∗ is zero. This implies that �( f )∗ is
injective, proving (i). A dual argument, applying the functor HomC(−,W ), and using the
fact that � is an equivalence, shows (ii). ��

A morphism f : X → Y in a category D is split if there exists a morphism g : Y → X
in D such that f = f ◦ g ◦ f . In that case, one can choose g such that g = g ◦ f ◦ g (see
e. g. [27, Proposition 1.12.21]). If D is an abelian category, an easy verification shows that
every morphism in D is split if and only if every monomorphism (resp. every epimorphism)
in D is split. It is well-known that all epimorphisms and monomorphisms in a triangulated
category are split (see e. g. [28, Proposition A.2.9]).

Proposition 5.7 Let C be a triangulated category andD a distinguished abelian subcategory.
If the inclusion functor D ⊆ C has a left adjoint or a right adjoint as an additive functor,
then every morphism in D is split.

Proof Suppose that the inclusion functorD ⊆ C has a left adjoint. That is, for any objectU
inD and anyobject X inCwehave a natural isomorphismHomD((X),U ) ∼= HomC(X ,U ).
Thus any monomorphism U → U ′ in D induces an injective map HomC(X ,U ) →
HomC(X ,U ′). This shows that the morphism U → U ′ is a monomorphism in C, hence
split in C. Since D is a full subcategory of C it follows that the monomorphism U → U ′
is split in D, and hence every morphism in D is split. A similar argument shows that if the
inclusion functor D ⊆ C has a right adjoint, then every epimorphism in D is split, whence
the result. ��

If D is a finite-dimensional k-algebra, then D is semisimple if and only if every morphism
in mod(D) is split. Thus Proposition 5.7 has the following immediate consequence.

Corollary 5.8 Let A be a finite-dimensional selfinjective k-algebra, D a finite-dimensional
k-algebra, and  : mod(D) → mod(A) a full embedding of mod(D) as a distinguished
abelian subcategory inmod(A). If has a left adjoint or a right adjoint, then D is semisimple.

This Corollary implies in particular that even if  is induced by tensoring with a suitable
A-D-bimodule, the Tensor-Hom adjunction does not in general yield a right adjoint to ;
see Lemma 9.12 and Remark 9.13 for some more comments.

Remark 5.9 By a result of Balmer and Schlichting [4, Theorem 1.5], the idempotent comple-
tion Ĉ of a triangulated category C is triangulated in such a way that the canonical embedding
C → Ĉ is an exact functor. Since this embedding is full, it follows that a distinguished
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abelian subcategory D of C remains a distinguished abelian subcategory of Ĉ. Since any
abelian category is idempotent split, it follows that the indecomposable objects in D remain
indecomposable in Ĉ.

Example 5.10 Let k be a field of characteristic 2 and let P be a finite 2-group of order at least
4. Let Z be a central subgroup of order 2 of P . Set Y = kP/Z as left kP-module. Then
EndprkP (Y ) = {0} andEndkP (Y ) ∼= (kP/Z)op.ClearlyY is a progenerator of the distinguished
abelian subcategory mod(kP/Z) of mod(kP), obtained from the restriction functor  given
by the canonical surjection kP → kP/Z . The functor is trivially isomorphic toY⊗kP/Z −.
As mentioned in Example 4.6, we have �(Y ) ∼= Y , where � is the shift functor in mod(kP).
In other words, as a kP-module, Y has period 1. Therefore, Y is also a progenerator of
the distinguished abelian subcategory �(mod(kP/Z)). The subcategories mod(kP/Z) and
�(mod(kP/Z)) are different; in fact, their intersection is add(Y ) because of Proposition 5.4.
In particular, the embedding � ◦  : mod(kP/Z) → mod(kP) is not induced by the
functor Y ⊗kP/Z −. It is, though, still induced by tensoring with a bimodule, namely the
kP-kP/Z -bimodule�P×P/Z (Y ). This is because we have composed the embeddingwith
the self-equivalence � on mod(kP), which is a stable equivalence of Morita type, hence
induced by tensoring with a suitable bimodule. One should expect that composing  with
a stable equivalence on mod(kP) which is not of Morita type would yield embeddings
mod(kP/Z) → mod(kP) as distinguished abelian subcategories which are not induced by
tensoring with any bimodule.

6 Exact sequences in distinguished abelian subcategories

Any exact triangle X → Y → Z → �(X) in a triangulated category C such that X ,
Y , Z belong to the heart A of a t-structure is in fact induced by a short exact sequence
0 → X → Y → Z → 0 in A. In an arbitrary distinguished abelian subcategory, this
need not be the case. The case where a nonzero object W and its shift �(W ) belong to a
distinguished abelian subcategory D of C yields an exact triangle

W 0 �(W ) �(W )

which is not induced by an exact sequence in D. As noted in Corollary 5.4, in that situation
W is injective in D and �(W ) is projective in D. This situation arises in Example 4.6.

The following result shows that these are essentially the only exact triangles with three
terms in D which can arise besides those induced by short exact sequences in D. As before,
we denote the shift functor in a triangulated category by �.

Proposition 6.1 Let D be a distinguished abelian subcategory in a triangulated category C,
and let

X
f

Y
g

Z
h

�(X)

be an exact triangle in C such that X, Y , Z belong to D. Then this triangle is isomorphic to
a direct sum of two exact triangles of the form

X ′ f ′
Y

g′
Z ′ h′

�(X ′)

W 0 �(W ) �(W )
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where X ′, Z ′, W , �(W ) are in D, and where the sequence

0 X ′ f ′
Y

g′
Z ′ 0

is exact in D. Moreover, W is injective in D and �(W ) is projective in D.

Proof SinceD is abelian, the morphism g has a kernel f ′ : X ′ → Y inD. Then in particular
g ◦ f ′ = 0, and hence there is a morphism v : X ′ → X such that f ◦ v = f ′. Since f ′
is the kernel of g and since g ◦ f = 0, there is a unique morphism w : X → X ′ such that
f = f ′ ◦ w. Thus

f ′ ◦ w ◦ v = f ◦ v = f ′

and since f ′ is a monomorphism, this forcesw◦v = IdX ′ . Denote by g′ : Y → Z ′ a cokernel
of f ′ in D, so that we get a short exact sequence

0 X ′ f ′
Y

g′
Z ′ 0

inD. SinceD is distinguished, this can be completed to an exact triangle in C with amorphism
h′ : Z ′ → �(X ′). The morphisms v and w yield morphisms of triangles

X ′ f ′

v

Y
g′

Z ′ h′

a

�(X ′)

�(v)

X
f

w

Y
g

Z
h

b

�(X)

�(w)

X ′
f ′ Y

g′ Z ′ h′
�(X ′)

Sincew◦v = IdX ′ , it follows that b◦a is an automorphism of Z ′. Therefore (IdX ′ , IdY , b◦a)

is an automorphism of the third triangle, and hence so is its inverse. After replacing b by
(b ◦ a)−1 ◦ b, we therefore may choose b in such a way that b ◦ a = IdZ ′ . It follows that the
first triangle is a direct summand of the second, and that it has a complement isomorphic to

W 0 �(W ) �(W )

whereW is the complement of X ′ in X determined by ker(w). The last statement onW (resp.
�(W )) being injective (resp. projective) in D follows from Corollary 5.4. ��
Corollary 6.2 Let C be a triangulated category, D a distinguished abelian subcategory of C,
and T a thick subcategory of C. Suppose that T ⊆ D. Then all objects in T are projective
and injective in D, and every morphism in T is split.

Proof Since T is closed under powers of �, it follows from Corollary 5.4 that all objects in
T are projective and injective in D. Let f : X → Y be a morphism in T . Complete f to an
exact triangle

X
f

Y
g

Z
h

�(X)

in T (or equivalently, in C). Since T is contained inD, it follows that (possibly after replacing
Z by an isomorphic object) Z belongs to D, and hence the morphism g belongs to D. This
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triangle is the direct sum of two triangles as in Proposition 6.1. All terms in these two triangles
are in T , hence projective and injective in D. The first of the two triangles is induced by a
short exact sequence in D, and therefore split. The second of the two triangles is trivially
split. The result follows. ��

Following Jørgensen [18, Definition 2.2], [19, Definition 0.1], a full additive subcategory
D of a triangulated category C is called a proper abelian subcategory if it has the property
that a triangle X → Y → Z → �(X) in C with X , Y , Z in D is exact in C if and only if
the sequence 0 → X → Y → Z → 0 is exact in D. We write D ∩ �(D) = 0 if no nonzero
object W in D has the property that �(W ) is isomorphic to an object in D.

Corollary 6.3 Let C be a triangulated category. A distinguished abelian subcategory D of C
is proper if and only if D ∩ �(D) = 0.

Proof If D ∩ �(D) = 0, then Proposition 6.1 implies that D is proper. If D ∩ �(D) �= 0,
then there is a nonzero object W in D such that �(W ) belongs to D. Thus all terms of the
exact triangle W → 0 → �(W ) → �(W ) are in D, but the sequence 0 → W → 0 →
�(W ) → 0 is not exact in D, and hence D is not proper. ��
Remark 6.4 With the notation of Corollary 6.2, suppose that D is equivalent to mod(D) for
somefinite-dimensional symmetric k-algebra D and thatT is a thick subcategory ofCwhich is
contained inD. ThenT is generated, as an additive category, by indecomposable projective (or
equivalently, injective) objects inD. By the assumption onD, each projective indecomposable
objectU in D has an endomorphism with image the socle ofU . This endomorphism is split,
hence an isomorphism, and thus U is simple. Therefore, in this situation, T consists of
projective semisimple objects in D which are permuted by �.

Proposition 6.5 Let C be a triangulated category and let D, D′ be distinguished abelian
subcategories of C such that D ⊆ D′. Then D is an abelian subcategory of D′; that is, the
inclusion functor D ⊆ D′ is exact.

Proof Let

0 X
f

Y
g

Z 0

be a short exact sequence in D. We need to show that this sequence remains exact in D′.
Since D is a distinguished abelian subcategory of C, it follows that there is a morphism
h : Z → �(X) in D such that the triangle

X
f

Y
g

Z
h

�(X)

in C is exact. The objects X , Y , Z belong to D, hence to D′. By Proposition 6.1, this triangle
is a direct sum of exact triangle of the form

X ′ f ′
Y

g′
Z ′ h′

�(X ′)

W 0 �(W ) �(W )

where X ′, Z ′, W , �(W ) are in D′, and where the sequence

0 X ′ f ′
Y

g′
Z ′ 0
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is exact in D′. Since D is full in C, hence in D′ and since any abelian category is idempotent
complete, it follows that X ′, Z ′, W belong to D (up to isomorphism). Since D is a full
subcategory of C, hence of D′, it follows that the morphisms f ′, g′ belong to D. Thus f is
the direct sum in D of f ′ and the zero morphism W → 0. But f is also a monomorphism in
D, and hence W = 0. The result follows. ��
Proposition 6.6 Let C be an essentially small triangulated category. Every distinguished
abelian subcategory of C is contained in a maximal distinguished abelian subcategory of C,
with respect to the inclusion of subcategories.

Proof We may assume that C is small, so that the distinguished abelian subcategories form a
set. Let T be a totally ordered set of distinguished abelian subcategories of C, where the order
is by inclusion. In view of Zorn’s Lemma, we need to show that T has an upper bound. We
claim that E = ∪D∈T D is such an upper bound. We need to show that E is a distinguished
abelian subcategory. By construction, E is a full subcategory of C. We show next that E is an
abelian category. Let f : X → Y be a morphism in E . Then there is D ∈ T containing X ,
Y , and since D is a full subcategory of C, it follows that f is a morphism in D. Thus f has a
kernel a : W → X in D. We are going to show that a is a kernel of f in E . Let g : Z → X
a morphism in E such that f ◦ g = 0. We need to show that g factors uniquely through a.
Since T is totally ordered, there is D′ ∈ T such that D ⊆ D′ and such that g is a morphism
in D′. By Proposition 6.5, the morphism a remains a kernel of f as a morphism in D′. Thus
there is a unique morphism h : Z → W in D′ such that a ◦ h = g. We need to show that h
is unique in E with this property. Let j : Z → W be a morphism in E such that a ◦ j = g.
Then j belongs to a category D′′ ∈ T , which we may choose such that D′ ⊆ D′′. Again by
Proposition 6.5, the morphism a remains a monomorphism inD′′. Since a ◦ j = g = a ◦h, it
follows that j = h. This shows that the kernel of f in any subcategory D ∈ T containing f
is the kernel of f in E . A similar argument shows that the cokernel of f in any subcategory
D ∈ T containing f is the cokernel of f in E . This implies also that the canonical map
coker(ker( f )) → ker(coker( f )) in E is an isomorphism, since it is an isomorphism in any
subcategory D ∈ T containing the morphism f . By the above arguments, any short exact
sequence in E is a short exact sequence in D for some D ∈ T , hence can be completed to
an exact triangle in C. This shows that E is a distinguished abelian subcategory in C. Thus
T has an upper bound in the set of distinguished abelian subcategories of C. Zorn’s Lemma
implies the result. ��
Proof of Theorem 1.2 Statement (i) is Theorem 3.8. For statement (ii), let A be a finite-
dimensional selfinjective algebra over a field k such that all simple A-modules are
nonprojective. Then J (A) contains its annihilator soc(A). Thus mod(A/J (A)) is a dis-
tinguished abelian subcategory of mod(A) containing all simple A-modules such that
�(mod(A/J (A))) = �(A). By Proposition 6.6 there is a maximal distinguished abelian
subcategory in C which contains mod(A/J (A)). By Corollary 3.9 the simple A-modules are
exactly the simple objects in D. Thus �(D) = �(A), whence the result. ��

The next two Propositions are tools for passing between short exact sequences in mod(A),
for some finite-dimensional selfinjective algebra A, and short exact sequences in a distin-
guished abelian subcategory of the stable category mod(A).

Proposition 6.7 Let A be a finite-dimensional selfinjective algebra over a field k, and let D
be a distinguished abelian subcategory of mod(A). Let

0 X
f

Y
g

Z 0
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be a short exact sequence in D. Suppose that X, Y , Z have no nonzero projective direct
summands as A-modules. The following hold.

(i) There is a finitely generated projective A-module Q and a short exact sequence of A-
modules

0 X
a

Y ⊕ Q
b

Z 0

such that f and g are the images of a and b in mod(A), respectively.
(ii) In addition, if X or Z is simple as an A-module, then Q = 0 in the first statement.

Proof Since D is a distinguished abelian subcategory of mod(A), it follows that the given
exact sequence in D gives rise to an exact triangle

X
f

Y
g

Z
h

�(X)

in mod(A), for some morphism h. By the construction of exact triangles in mod(A), this
exact triangle is induced by a short exact sequence of A-modules of the form

0 X ⊕ P
a

Y ⊕ Q
b

Z ⊕ R 0

for some finitely generated projective A-modules P , Q, R, such that f and g are the images
of a and b in mod(A). Since a is injective, and since the A-module P is projective, hence
also injective, it follows that a(P) ∼= P splits off the middle term Y ⊕ Q. Since Y has no
nonzero projective summand, it follows that we may assume P = 0. A similar argument
shows that we may assume R = 0, whence the first statement.

For the second statement, assume first that Z is simple as an A-module. Write b = (r , s),
where r = b|Y : Y → Z and s = b|Q : Q → Z . Since g �= 0 in mod(A), it follows that
r �= 0, hence r is surjective as Z is simple. Since Q is projective as an A-module, it follows

that s factors through r .Write s = r ◦t for some t : Q → Y . Set Q′ =
{(−t(x)

x

) ∣
∣
∣
∣ x ∈ Q

}

.

This is a submodule of Y ⊕ Q, isomorphic to Q, and contained in ker(b). Since Q′ is also
injective, it follows that Q′ is isomorphic to a direct summand of X , hence Q′ = 0 by the first

statement, and so also Q = 0.Assume next that X is simple.Writing a =
(
u
v

)

: X → Y⊕Q,

we have that u �= 0, so u is injective. Thus a(X) is not contained in the summand Q, hence
intersects this summand trivially since X is simple. Thus b sends Q to a submodule of Z
isomorphic to Q. Since Q is also injective as an A-module, it follows that Q is isomorphic to
a direct summand of Z , hence zero by the first statement. This proves the second statement.

��
Proposition 6.8 Let A be a finite-dimensional selfinjective algebra over a field k, and let D
be a distinguished abelian subcategory of mod(A). Let

0 X
a

Y ⊕ Q
b

Z 0

be a short exact sequence of A-modules such that Q is a projective A-module, and such
that the A-modules X, Y , Z belong to D. Suppose that as an object in D, X has no nonzero
injective direct summand, or that as an object in D, Z has no nonzero projective direct
sumand. Then the sequence

0 X
f

Y
g

Z 0
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is exact in D, where f = a and g = b are the images in mod(A) of a and b, respectively.

Proof By the construction of mod(A) as a triangulated category, the given short exact
sequence of A-modules determines an exact triangle in mod(A) of the form

X
f

Y
g

Z
h

�(X)

for some morphism h in mod(A). By Proposition 6.1, this triangle is isomorphic to a direct
sum of two exact triangles of the form

X ′ f ′
Y

g′
Z ′ h′

�(X ′)

W 0 �(W ) �(W )

such that the sequence

0 X ′ f ′
Y

g′
Z ′ 0

is exact inD, whereW is an injective object inD such that �(W ) is a projective object inD.
Thus f is a monomorphism in D if and only if W = 0, which is equivalent to �(W ) = 0,
hence to g being an epimorphism in D. The result follows. ��
Remark 6.9 Any commutative square in a triangulated category C

X
f

a

Y

b

X ′
f ′ Y ′

can be completed to a morphism of exact triangles

X
f

a

Y
g

b

Z
h

c

�(X)

�(a)

X ′
f ′ Y ′

g′ Z ′
h′ �(X ′)

In general, c is not uniquely determined by (a, b). If, however, the two exact triangles are
determined by short exact sequences

0 X
f

Y
g

Z 0

0 X ′ f ′
Y ′ g′

Z ′ 0

in a distinguished abelian subcategory D of C, then a and c are both determined by b alone.
Indeed, D is a full subcategory of C, so a, b, c all are morphisms in D, and since f ′ is a
monomorphism and g an epimorphism in D, it follows that b determines both a and c. In
particular, any endomorphism (a, b, c) of the exact triangle

X
f

Y
g

Z
h

�(Z)
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is determined by the endomorphism b of Y , or equivalently, the algebra homomorphism from
the endomorphism algebra of this triangle to EndC(Y ) sending (a, b, c) to b is injective. This
is a necessary criterion for an exact triangle to have the property that its components belong
to a distinguished abelian subcategory of C.

Remark 6.10 Remark 6.9 can be rephrased as stating that the inclusion functor of a dis-
tinguished abelian subcategory D of a triangulated category C sends morphisms of exact
sequences in D to morphisms of exact triangles in C. Indeed, if

0 X

a

f
Y

b

g
Z

c

0

0 X ′
f ′ Y ′

g′ Z ′ 0

is a commutative exact diagram in D, then c is uniquely determined by b, and hence the
diagram

X

a

f
Y

b

g
Z

c

h
�(X)

�(a)

X ′
f ′ Y ′

g′ Z ′
h′ �(X ′)

in C is commutative, where h, h′ are the unique morphisms such that the rows are exact
triangles.

In a similar vein, given two composable monomorphisms X → Y and Y → Z in D, the
obvious diagram in D

X Y Y/X

X Z Z/X

Z/Y Z/Y

describing the third isomorphism theorem can be extended uniquely to an octahedral diagram
in C of the form

X Y Y/X �(X)

X Z Z/X �(X)

Z/Y Z/Y �(Y )

�(Y ) �(Y/X)
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The kernel and cokernel of a morphism in a distinguished abelian subcategory are related
with the third term of the exact triangle determined by that morphism, via the octahedron in
C associated with an epi-mono factorisation of the morphism.

Proposition 6.11 Let D be a distinguished abelian subcategory in a triangulated category
C. Every morphism f : X → Y in D gives rise to an octahedron in C of the form

X
u

C

v

�(ker( f )) �(X)

X
f

Y g V
h

�(X)

�(u)

coker( f )

w

coker( f )
w

�(C)

�(C) �2(ker( f ))

where C is an object in D, u an epimorphism in D, v a monomorphism in D, and where
ker( f ) and coker( f ) denote the kernel and cokernel of f in D, respectively.

Proof Since D is abelian, we have a canonical isomorphism C = coker(ker( f )) ∼=
ker(coker( f )) in D. Since D is a distinguished abelian subcategory, the obvious short exact
sequences

0 ker( f ) X
u

C 0

0 C
v

Y coker( f ) 0

can be completed to exact triangles

ker( f ) X
u

C �(ker( f ))

C
v

Y coker( f )
w

�(C)

Rotating the first of these two exact triangles yields an exact triangle

X
u

C �(ker( f )) �(X)

Thus an octahedron associated with the factorisation

X
f

u

Y

C

v

has the form as stated. ��
Remark 6.12 With the notation of Proposition 6.11, the kernel and cokernel of f and the
factorisation of f via C are unique up to unique isomorphism. Once fixed, they determine
the morphisms in the top horizontal and left vertical exact triangle uniquely, by Lemma 5.1.
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7 Extension closed distinguished abelian subcategories

As mentioned in the introduction, unlike hearts of t-structures, distinguished abelian sub-
categories in a triangulated category need not be extension closed. We develop criteria for a
distinguished abelian subcategory D to be extension closed in a triangulated category C in
terms of Ext-bifunctors.

Let (C, �) be a k-linear triangulated category and let D be a distinguished abelian
subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D.
This hypothesis ensures that D has enough injective objects. We are going to compare
ExtnC(U , V ) = HomC(U , �n(V )) and ExtnD(U , V ), where n ≥ 0. For n = 0 these two
spaces are equal since D is full in C. We investigate the case n = 1. In order to calcu-
late Ext1D , we will make use of the usual shift operator �D on D, defined as follows. For
each object U in D choose a (minimal) injective envelope ιU : U → IU in D, and set
�D(U ) = coker(ιU ). That is, we have a short exact sequence in D of the form

0 U
ιU

IU �D(U ) 0

Definition 7.1 Let (C, �) be a k-linear triangulated category and let D be a distinguished
abelian subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D.
For each object U in D and each nonnegative integer n, define a morphism

σn,U : �n
D(U ) → �n(U )

in C inductively as follows. We set σ0,U = IdU , assuming implicitly that �0
D (resp. �0) is

the identity operator (resp. identity functor) on D (resp. C). We define

σ1,U : �D(U ) → �(U )

as the unique morphism such that the triangle

U
ιu

IU �D(U )
σ1,U

�(U )

in C is exact. For n ≥ 2, we define

σn,U = �(σn−1,U ) ◦ σ1,�n−1
D (U )

where we identify �D ◦ �n−1
D = �n

D and � ◦ �n−1 = �n .

The uniqueness of the morphism σ1,U , and hence of σn,U , in this Definition follows
from Proposition 5.1. We are going to show that in the situation above, Ext1D(−,−) is a
subbifunctor of Ext1C(−,−) restricted to D.

Theorem 7.2 Let (C, �) be a k-linear triangulated category and let D be a distinguished
abelian subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D.
For any two objects U, V in D, the morphism σ1,V : �D(V ) → �(V ) induces an injective
map Ext1D(U , V ) → Ext1C(U , V ) which is natural in U and V .

Proof We start with the standard description of calculating Ext1D(U , V ) using an injective
resolution of V

0 V
ιV

I 0
δ0

I 1
δ1

I 2 · · ·
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with notation chosen such that I 0 = IV , and Im(δ0) = ker(δ1) = �D(V ). By definition,
Ext1D(U , V ) is the degree 1 cohomology of the cochain complex obtained from applying
HomD(U ,−) to the above injective resolution of V , of the form

HomD(U , I 0) HomD(U , I 1) HomD(U , I 2) · · ·
where the first two maps are induced by composing with δ0 and δ1, respectively. Amorphism
ϕ : U → I 1 is in the kernel of the second map if and only if it factors through ker(δ1) =
Im(δ0) = �D(V ). Thus the kernel of the map

HomD(U , I 1) HomD(U , I 2)

can be identified with HomD(U , �D(V )), and hence Ext1D(U , V ) is the cokernel of the map

HomD(U , I 0) HomD(U , �D(V ))

induced by composition with δ0.
Applying the functor HomC(U ,−) to the exact triangle

V
ιV

IV
δ0

�D(V )
σ1,V

�(V )

yields an exact sequence

· · · HomD(U , IV ) HomD(U , �D(V )) HomC(U , �(V )) · · ·
Taking the quotient of the middle term by the image of the left term yields a monomorphism
ExtD(U , V ) → HomC(U , �(V )) = Ext1C(U , V ) as stated. We need to show the natural-
ity. Since this map is defined by applying the functor HomC(U ,−) to the above diagram,
and since the Yoneda embedding U 
→ HomC(U ,−) is contravariantly functorial in U ,
it follows immediately that the map ExtD(U , V ) → HomC(U , �(V )) = Ext1C(U , V ) is
contravariantly functorial in U .

In order to show functoriality in V , let ψ : V → W be a morphism inD. Then ψ extends
to a morphism IV → IW , and hence there is a commutative diagram of exact triangles

V

ψ

IV �D(V )
σ1,V

τ

�(V )

�(ψ)

W IW �D(W )
σ1,W

�(W )

The morphism τ depends on the choice of an extension of ψ to IV → IW . If τ , τ ′ are
two morphisms making the above diagram commutative, then σ1,W ◦ (τ − τ ′) = 0, and
hence τ − τ ′ factors through the morphism IW → �D(V ) in the diagram. Thus applying
HomD(U ,−) to τ − τ ′ induces the zero map Ext1D(U , V ) → Ext1D(U ,W ), showing the
functoriality in V . This proves the result. ��
Corollary 7.3 Let (C, �) be a k-linear triangulated category and let D be a distinguished
abelian subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D.
Suppose that Ext1C(X , Y ) = 0 for all X, Y in D. Then the k-algebra D is semisimple.

Proof The hypotheses and Theorem 7.2 imply that Ext1D(U , V ) = 0 for any two finitely
generated D-modules U , V , whence the result. ��
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One may wonder whether the substantial literature on torsion pairs and mutation in [11,
12, 17, 18, 21], particularly in the context of simple-minded systems in stable categories of
selfinjective algebras, allows for a broader theory including distinguished abelian subcate-
gories.

The next result is a criterion when the canonical maps Ext1D(U , V ) → Ext1C(U , V ) in the
previous Theorem yield an isomorphism of bifunctors on D.

Theorem 7.4 Let (C, �) be a k-linear triangulated category and let D be a distinguished
abelian subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D.
The following are equivalent.

(i) The category D is extension closed in C and D ∩ �(D) = 0.
(ii) The morphisms σ1,V induce isomorphisms Ext1D(U , V ) ∼= Ext1C(U , V ) for all objects

U, V in D.

Proof Suppose that (i) holds. Let U , V be objects in D. By Theorem 7.2 we need to show
that the map Ext1D(U , V ) → Ext1C(U , V ) induced by σ1,V is surjective. Letψ : V → �(U )

be a morphism in C; that is, ψ ∈ Ext1C(W ,U ). We need to show that there exists a morphism
ϕ : V → �D(U ) in C (which is then automatically in D as D is full, thus representing an
element in Ext1D(U , V )) such that ψ = σ1,V ◦ϕ. Complete ψ to an exact triangle in C of the
form

V X U
ψ

�(V )

Since D is extension closed, it follows that X can be chosen to belong to D (possibly after
replacing X by an isomorphic object). The morphism V → X belongs then to D. Since
D ∩ �(D) = 0 it follows from Proposition 6.1 that this is a monomorphism in D. Thus the
morphism ιV : V → IV extends to a morphism X → IV , and hence there exists a morphism
of exact triangles

V X

τ

U
ψ

ϕ

�(V )

V
ιV

IV �D(V )
σ1,V

�(V )

Thus ψ = σ1,V ◦ ϕ. This shows that (i) implies (ii).
Suppose conversely that (ii) holds. Then the map Ext1D(U , V ) → Ext1C(U , V ) is in

particular surjective. Let ψ ∈ Ext1C(U , V ) = HomC(U , �(V )). Then there is ϕ ∈
HomD(U , �D(V )) such that the square

U
ψ

ϕ

�(V )

�D(V )
σ1,V

�(V )

is commutative in C, hence can be completed to a morphism of triangles of the form

V X

τ

U
ψ

ϕ

�(V )

V
ιV

IV �D(V )
σ1,V

�(V )
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In order to show thatD is extension closed, we need to show that X is isomorphic to an object
in D. Consider a pullback diagram in D of the form

X ′

τ

U

ϕ

IV �D(V )

Since the morphism IV → �D(V ) is an epimorphism in D, so is the morphism X ′ → U in
the last square. Thus this square can be completed to an exact commutative diagram in D of
the form

0 V X ′

τ

U

ϕ

0

0 V
ιV

IV �D(V ) 0

This in turn can be completed to morphism of exact triangles

V X ′

τ ′

U
ψ ′

ϕ

�(V )

V
ιV

IV �D(V )
σ1,V

�(V )

But then ψ ′ = σ1,V ◦ ϕ = ψ , and this forces X ′ ∼= X in C. Thus (ii) implies (i). This
completes the proof. ��
Corollary 7.5 Let (C, �) be a k-linear triangulated category and let D be a proper abelian
subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D. Then D
is extension closed in C if and only if the morphisms σ1,V , with V running over the objects
in D, induce an isomorphism of bifunctors Ext1D(−,−) ∼= Ext1C(−,−).

Proof This follows from Theorem 7.4 and Corollary 6.3. ��
If I is an injective module over a finite-dimensional k-algebra D, then Ext1D(U , I ) =

{0} for any D-module U . Therefore, if a triangulated category C has an extension closed
distinguished abelian subcategory equivalent to mod(D), then Ext1C(U , I ) must also vanish
thanks to the previous Theorem (where we identify U , I to their images in C). This yields
the following characterisation of extension closed distinguished abelian subcategories which
are equivalent to mod(D).

Theorem 7.6 Let (C, �) be a k-linear triangulated category and let D be a distinguished
abelian subcategory of C such that D ∼= mod(D) for some finite-dimensional k-algebra D.
The following are equivalent.

(i) The category D is extension closed, and D ∩ �(D) = 0.
(ii) For any two objects U, Y in D such that Y is injective in D we have Ext1C(U , Y ) = {0}.
Proof Suppose thatD is extension closed and satisfiedD∩�(D) = 0. LetU , Y be objects in
D such that Y is injective inD. Then Ext1D(U , Y ) = {0}. Theorem 7.4 implies Ext1C(U , Y ) =
{0}.
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Conversely, suppose that Ext1C(U , Y ) = {0} for any two objects U , Y in D such that Y is
injective inD. ByTheorem7.4, it suffices to show that there is an isomorphismExt1D(U , V ) ∼=
Ext1C(U , V ) induced by σ1,V , for any two objects U , V in D. Let U , V be objects in D.
Consider a short exact sequence in D of the form

0 V
ιV

IV �D(V ) 0

for some injective object IV in D. Applying HomD(U ,−) yields a long exact sequence of
ExtD-spaces. Since Ext1D(U , IV ) = {0}, this long exact sequence yields in particular an
exact 4-term sequence
0 HomD(U , V ) HomD(U , IV ) HomD(U , �D(V )) Ext1D(U , V ) 0

Completing the previous short exact sequence to an exact triangle

V
ιV

IV �D(V )
σ1,V

�(V )

and applying the functor HomC(U ,−) yields a long exact sequence of ExtC-spaces. Since
Ext1C(U , IV ) = {0} by the hypotheses, this long exact sequence yields in particular an exact
sequence

HomC(U , V ) HomC(U , IV ) HomC(U , �D(V )) Ext1C(U , V ) 0

The first three terms coincide with the first three nonzero terms in the previous 4-term exact
sequence becauseD is a full subcategory of C, and hence the same is true for the fourth terms.
By construction, the isomorphism Ext1D(U , V ) ∼= Ext1C(U , V ) arising in this way is induced
by σ1,V . The result follows from Theorem 7.4. ��

We compare �D , �E for distinguished abelian subcategories D ⊆ E such that D, E are
equivalent tomodule categories. As before, injective envelopes are understood to beminimal.

Proposition 7.7 Let (C, �) be a k-linear triangulated category, and letD, E be distinguished
abelian subcategories of C such that D ∼= mod(D) and E ∼= mod(E) for some finite-
dimensional k-algebras D, E. Suppose that D ⊆ E and that the simple objects of D and E
coincide. We have a monomorphism �D(X) → �E (X) in E , for any object X in D.

Proof Let X → I be an injective envelope of X inD, and let I → J be an injective envelope
of I in E . By Proposition 6.5, D is an abelian subcategory of E , and hence X → I remains
a monomorphism in E . Thus the composition X → I → J is a monomorphism in E . We
need to show that this is an injective envelope of X in E . Since E is a module category of a
finite-dimensional algebra, we need to show that every simple subobject S → J of J in E
factors through the map X → J . Note that S → J factors through I → J because J is an
injective envelope of I in E . Since S is also simple in D and X → I an injective envelope
of X in D, it follows that this map factors indeed through X → J . Thus the monomorphism
I → J induces the required monomorphism via �D(X) ∼= I/X → J/X ∼= �E (X). ��

The following result proves the last statement in Theorem 1.5.

Proposition 7.8 Let k be a field of prime characteristic p, let G be a finite group, and let
N be a normal subgroup of order divisible by p in G. If O p(N ) = N, then the canonical
image ofmod(kG/N ) inmod(kG) is a distinguished abelian subcategory which is extension
closed.
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Proof The fact that mod(kG/N ) embeds as a distinguished abelian subcategory into
mod(kG) follows from Theorem 4.2. Note that since k has characteristic p, it follows that
H1(N ; k) = Hom(N , k) is trivial if and only if O p(N ) = N . Suppose that O p(N ) = N .
Then, as mentioned above, we have H1(N ; k) = 0. Let

U V W �(U )

be an exact triangle in mod(kG) such thatU and W belong to mod(kG/N ), or equivalently,
such that N acts trivially on U and W . By Proposition 6.1 there is a short exact sequence of
kG/N -modules

0 U ′ V W ′ 0

for some direct summands U ′, W ′ of U , W , respectively. Since N acts trivially on U , W ,
hence onU ′, V ′, and since H1(N , k) = 0 it follows that the restriction to N of this sequence
splits. But then N acts trivially on V , and hence V belongs tomod(kG/N ). Thusmod(kG/N )

is extension closed in mod(kG). ��
We have a partial converse of Proposition 7.8

Proposition 7.9 Let k be a field of prime characteristic p, let G be a finite group, and let N
be a normal subgroup of order divisible by p in G. Suppose that if p = 2, then the order of N
is divisible by 4. If the canonical image of mod(kG/N ) is an extension closed distinguished
abelian subcategory in mod(kG), then O p(N ) = N.

Proof Assume that mod(kG/N ) is extension closed in mod(kG). Arguing by contradiction,
suppose that O p(N ) is a proper subgroup of N . Then H1(N ; k) = Ext1kN (k, k) is nonzero.
That is, we have a nonsplit exact sequence of kN -modules

0 k Z k 0

Applying the induction functor kG ⊗kN − yields a nonsplit exact sequence of kG-modules

0 kG/N X kG/N 0

such that the restriction to kN is nonsplit. Note that N does not act trivially on Z , hence
also not on X . Since mod(kG/N ) is assumed to be extension closed, it follows that X is
isomorphic, in mod(kG) to a kG/N -module. That is, X = Y ⊕ Y ′ with Y ′ a projective
kG-module and Y a kG/N -module. Since N does not act trivially on X we have Y ′ �= 0.
But then ResGN (Y ′) is a nonzero projective kN -module, and N acts trivially on ResGN (Y ).
Since restriction to a Sylow p-subgroup P of N is injective on the cohomology of N with
coefficients in k, it follows that the restriction to kP of the previous exact sequence is a
nonsplit exact sequence of kP-modules

0 U V ⊕ V ′ W 0

with U , V , W acted upon trivially by P and V ′ a nonzero projective kP-module. Since p is
odd or 4 divides |P| this is not possible. ��
Corollary 7.10 Let k be a field of prime characteristic p, let G be a finite group, and let
Q be a nontrivial normal p-subgroup of G of order at least 3. Then the canonical image
of mod(kG/Q) in mod(kG) is a distinguished abelian subcategory which is not extension
closed.
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Proof Since O p(Q) is trivial but Q is not, this is a special case of Proposition 7.9. Alterna-
tively, this follows also from Theorem 1.4: the kernel I of the canonical map kG → kG/Q
is equal to I = I (kQ)kG, which is contained in J (kG). Its annihilator in kG is the ideal
(
∑

y∈Q y) · kG. If Q has order at least 3, then this is strictly smaller than I , and hence
Theorem 1.4 implies that mod(kG/Q) is not extension closed in mod(kG). ��

The hypothesis |Q| ≥ 3 is necessary: if p = 2 and G = Q has order 2, then mod(kG) is
semisimple, hence equivalent to the extension closed subcategory mod(kG/Q) = mod(k).

Remark 7.11 A result in [13, §2.1, Theorem (b)] gives a sufficient criterionwhen an extension
closed exact subcategoryD of a triangulated category C has the property that Ext1D and Ext1C
are isomorphic as bifunctors on D.

8 Selfinjective distinguished abelian subcategories

Let A be a finite-dimensional k-algebra and Y a finitely generated A-module. We denote by
modY (A) the full k-linear subcateory of mod(A) of all A-modules which are isomorphic to
Im(ϕ) for some ϕ ∈ EndA(Ym) and some positive integer m. We denote by add(Y ) the full
additive subcategory of mod(A) of modules which are isomorphic to finite direct sums of
direct summands ofY . ClearlymodY (A) contains add(Y ). By a result ofCabanes [9, Theorem
2], if E = EndA(Y ) is selfinjective, then the canonical functor HomA(Y ,−) : mod(A) →
mod(Eop) restricts to a k-linear equivalence modY (A) ∼= mod(Eop). We use the results and
methods fromCabanes [9] to identify in a similar vein the distinguished abelian subcategories
constructed earlier inTheorem2.5.Wedenote bymodY (A) the imageofmodY (A) inmod(A).
If Y has no nonzero projective direct summand, then no module in modY (A) has a nontrivial
projective summand, and hence the canonical functor modY (A) → modY (A) induces a
bijection on isomorphism classes of objects.

Theorem 8.1 Let A be a finite-dimensional selfinjective k-algebra. Let Y be a finitely
generated A-module such that the algebra E = EndA(Y ) is selfinjective. Suppose that
EndprA (Y ) = {0} and that Y is projective as an E-module. Set D = Eop.

(i) The functor Y ⊗D − : mod(D) → mod(A) induces a full embedding Y : mod(D) →
mod(A) of mod(D) as a distinguished abelian subcategory in mod(A), and moreover
Y induces an equivalence of abelian categories mod(D) ∼= modY (A).

(ii) The A-module Y , regarded as an object in the abelian category modY (A), is a progen-
erator of modY (A).

(iii) The canonical functormod(A) → mod(A) induces an isomorphismof abelian categories
modY (A) ∼= modY (A).

Asmentioned earlier, not every distinguished abelian subcategory ofmod(A) is of the form
as described in Theorem 8.1, since any selfequivalence of mod(A) as a triangulated category
induces a permutation on distinguished abelian subcategories which need not preserve the
distinguished abelian subcategories of the form as described in Theorem 8.1. Note that
the hypothesis EndprA (Y ) = {0} implies that Y has no nonzero projective direct summand.
Therefore, the second statement of Theorem 8.1 implies that the isomorphism classes of
indecomposable summands of the A-module Y are determined by modY (A).

Corollary 8.2 Let A be a finite-dimensional selfinjective k-algebra. Let Y , Y ′ be finitely gen-
erated A-modules which both satisfy the hypotheses on Y in Theorem 8.1. ThenmodY (A) =
modY ′(A) if and only if add(Y ) = add(Y ′) in mod(A).
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Remark 8.3 Corollary 8.2 does not imply that a distinguished abelian subcategory is neces-
sarily determined by a progenerator—the same object in C could be a progenerator of several
distinguished abelian subcategories. This Corollary only asserts that the distinguished abelian
subcategories obtained as in Theorem 8.1 are determined by their progenerators. See the
Example 5.10.

We use the following notation from [9]. For any k-algebra A, any two A-modules Y , U ,
and any subset M of HomA(Y ,U ), we set M · Y = ∑

μ∈M μ(Y ); that is, M · Y is the A-
submodule of U spanned by the sum of the images of the A-homomorphisms in M . Setting
E = EndA(Y ), we consider Y as an A-Eop-bimodule in the obvious way. The following
Proposition collects the technicalities for the proof of Theorem 8.1.

Proposition 8.4 Let A be a finite-dimensional selfinjective k-algebra and Y a finitely gener-
ated A-module such that E = EndA(Y ) is selfinjective. Suppose that Y is projective as an
E-module. Set D = Eop.

(i) Let n be a positive integer and let M be an Eop-submodule ofHomA(Y , Yn). The canon-
ical A-homomorphism

� : Y ⊗D M → M · Y
sending y ⊗ μ to μ(y), where y ∈ Y and μ ∈ M, is an isomorphism. In particular,
Y ⊗D M belongs to modY (A).

(ii) Let M be a finitely generated D-module. The canonical D-homomorphism

M → HomA(Y , Y ⊗D M)

sending m ∈ M to the map y 
→ y ⊗ m for y ∈ Y is an isomorphism.
(iii) Let U be an A-module contained in modY (A). The canonical evaluation map

 : Y ⊗D HomA(Y ,U ) → U

sending y ⊗ η to η(y), where y ∈ Y and η ∈ HomA(Y ,U ), is an isomorphism.
(iv) The category modY (A) is an abelian subcategory of mod(A), and the functor

HomA(Y ,−) : mod(A) → mod(D) restricts to an equivalence of abelian categories

modY (A) ∼= mod(D)

with an inverse induced by the functor Y ⊗D − : mod(D) → mod(A).
(v) The equivalence modY (A) ∼= mod(D) in (iv) sends Y to the regular D-module D. In

particular, Y is a progenerator of the category modY (A).
(vi) If EndprA (Y ) = {0}, then Hompr

A (U , V ) = {0} for any two A-modules U, V in modY (A).

Proof There is clearly a well-definded A-homomorphism� : Y ⊗D M → M ·Y as described
in (i), and this map is obviously surjective. To show that this map is also injective, consider
the diagram

Y ⊗D M
�

M · Y

Y ⊗D HomA(Y , Yn) Yn

where the vertical maps are induced by the inclusions M ⊆ HomA(Y , Yn) and M · Y ⊆ Yn ,
and where the bottom horizontal map is the obvious evaluation map. A trivial verification
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shows that this diagram commutes. Since HomA(Y , Yn) is a free D-module of rank n, it
follows that the bottom horizontal map is an isomorphism. Since Y is projective as a right
D-module by the assumptions, it follows that the left vertical map is injective. This implies
that � is injective, whence (i). Since E , hence D, is selfinjective, we may assume that the
D-module M in (ii) is a submodule of HomA(Y , Yn) for some positive integer n. Applying
the functor HomA(Y ,−) to the isomorphism � yields an isomorphism

HomA(Y , Y ⊗D M) ∼= HomA(Y , M · Y )

By [9, Lemma 5], the right side in this isomorphism is equal to M (this is an equality of
subsets of HomA(Y , Yn)). The inverse of this isomorphism is the map described in (ii). For
(iii), observe first that the map  is surjective, since U is in modY (A), hence a quotient of
a finite direct sum of copies of Y . For the injectivity, again since U is in modY (A), hence
isomorphic to a submodule of Yn for some positive integer n, it follows that there is a
commutative diagram of the form

Y ⊗D HomA(Y ,U )


U

Y ⊗D HomA(Y , Yn) Yn

where the right vertical map is injective. The left vertical map is then injective, too, since
Y is projective as an Eop-module, and the bottom horizontal map is an isomorphism. This
shows that  is injective, whence (iii). One can prove (iii) also by applying (i) and (ii)
with U = M · Y . Statement (iv) follows from (ii) and (iii). Statement (v) is an immediate
consequence of (iv). Statement (vi) follows from Lemma 3.5. ��
Proof of Theorem 8.1 In the situation of Theorem 8.1, Cabanes’ linear equivalence from [9,
Theorem 2] is an equivalence of abelian categories, by Proposition 8.4 (iv). By construction,
modY (A) is the image in mod(A) of modY (A). Thus we need to show that the inclusion
modY (A) ⊆ mod(A) composed with the canonical functor mod(A) → mod(A) is still
a full embedding. By Proposition 8.4 (vi) we have Hompr

A (U , V ) = {0} for any two A-
modules U , V in modY (A). This implies that the canonical functor modY (A) → mod(A)

is a full embedding. Since exact triangles in mod(A) are induced by short exact sequences
in mod(A), it follows that the image modY (A) of modY (A) in mod(A) is a distinguished
abelian subcategory in mod(A). Thus Theorem 8.1 follows from Proposition 8.4. ��
Proof of Corollary 8.2 Note that the hypothesis EndprA (Y ) = {0} implies that Y has no nonzero
projective direct summand; similarly forY ′. Thus the linear subcategories add(Y ) and add(Y ′)
of mod(A) are equal if and only if their images in mod(A) are equal. This equality is clearly
equivalent to modY (A) = modY ′(A), whence the result. ��

9 Examples and further remarks

The following example illustrates that Theorems 2.5 and 8.1 cover some cases not covered
by Theorem 3.1.

Example 9.1 Let A be a finite-dimensional selfinjective k-algebra. Let Y be a nonprojective
uniserial A-module of length 2 with two non-isomorphic simple composition factors S and
T . Then EndA(Y ) ∼= EndA(Y ) ∼= k, and hence modY (A) = add(Y ) is abelian semisimple,
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but is not the category of a quotient of A. Indeed, such a quotient algebra would have to be
semisimple, but modY (A) contains no simple A-module, because neither the simple quotient
S of Y nor the simple submodule T of Y are contained in modY (A).

There are trivial examples of distinguished abelian subcategories beyond those constructed
in Theorems 2.5 and 8.1.

Example 9.2 Let A be a split finite-dimensional selfinjective k-algebra. Let n be a positive
integer and let {Xi | 1 ≤ i ≤ n} be a set of A-modules which are pairwise orthogonal in
mod(A); that is, EndA(Xi ) ∼= k and HomA(Xi , X j ) = {0}, where 1 ≤ i, j ≤ n, i �= j .
Set Y = ⊕n

i=1Xi . Then EndA(Y ) is a commutative split semisimple k-algebra, and the
image of add(Y ) is a semisimple distinguished abelian subcategory of mod(A), equivalent
to mod(EndA(Y )). See for instance [12, 23, 34, 35, 37] for more details on orthogonal sets
of modules in mod(A).

There are examples of distinguished abelian subcategories of stable module categories
that have infinitely many isomorphism classes of simple objects.

Example 9.3 Let A be a finite-dimensional selfinjective k-algebra. If A has two nonisomor-
phic simple modules S, T such that dimk(Ext1A(S, T )) ≥ 2 and if k is infinite, then A has
infinitely many pairwise non-isomorphic uniserial modules of length 2 with composition
factors S and T , from top to bottom. The A-endomorphism algebra of any such module is
1-dimensional, and there is no nonzero A-homomorphism between any two non-isomorphic
uniserial modules with these composition factors. Therefore the full additive subcategory of
mod(A) generated by these modules is a semisimple distinguished abelian subcategory with
infinitely many isomorphism classes of simple objects.

The next example shows that the hypothesis on D to contain all simple A-modules in the
statement of Theorem 3.8 is necessary.

Example 9.4 Suppose that k is an algebraically closed field of characteristic 5. Consider
the algebra A = kD10 ∼= k(C5 � C2). This is a symmetric Nakayama algebra with two
nonisomorphic simple modules S, T and uniserial projective indecomposable modules of
length 5. Let U be a uniserial module of length 2 with composition factors S and T . Then
EndA(U ) = EndA(U ) ∼= k. Thus the finite direct sums of modules isomorphic to U form a
semisimple distinguished abelian subcategoryD of mod(A) in whichU is up to isomorphism
the unique simple object. We have soc2(A) = r(J (A)2) ⊆ J (A)2. Thus mod(A/J (A)2) is
a distinguished abelian subcategory of mod(A) containing the simple A-modules S and T
and all uniserial modules of length 2. In particular, mod(A/J (A)2) contains the subcategory
D, but the simple object U in D does not remain simple in mod(A/J (A)2).

The following example shows the existence of full abelian subcategories in a triangulated
category which are not distinguished.

Example 9.5 The idea to construct a full abelian subcategory which is not distinguished in
a triangulated category is simply this: start with a non-exact full embedding of an abelian
category D into another abelian category E , and then embed E as a distinguished abelian
subcategory into a triangulated category T . Then D is a full abelian subcategory of T , but
not distinguished. If E is the module category of a ring, one could take for T the derived
category of that ring and embed E as the heart of the canonical t-structure on T . Here is a
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concrete example in the context of stablemodule categories of finite-dimensional selfinjective
algebras.

Suppose that char(k) = 7, and set A = k(C7�C2). This is a symmetricNakayama algebra
with two isomorphism classes of simple modules S and T such that the projective covers of
S and T are uniserial with composition series of length 7. Let Y be the three-dimensional
quotient of a projective cover PS of S. The unique composition series of Y has composition
factors isomorphic to S, T , S, from top to bottom. Thus EndA(Y ) ∼= k[x]/(x2). The full
additive subcategory D = add{Y , S} of mod(A) is equivalent to the module category of the
2-dimensional local algebra k[x]/(x2), with S corresponding to the trivial k[x]/(x2)-module
and Y corresponding to the regular k[x]/(x2)-module. The inclusion functor D ⊂ mod(A)

is full but not exact: the module Y has composition series S, T , S, and hence we have a
sequence

0 S Y S 0

with nonzero maps to and from Y . This sequence is exact in D, but not in mod(A). Since
the objects in D are annihilated by J (A)3, we can regard D as a full subcategory of
mod(A/J (A)3), and then by the above, the embedding D → mod(A/J (A)3) is not exact.
Since J (A)3 containes its annihilator J (A)4 in A, it follows fromTheorem 3.1 that the canon-
ical surjection A → A/J (A)3 induces a full embedding ofmod(A/J (A)3) as a distinguished
ablian subcategory ofmod(A). The image ofD inmod(A) is a full abelian subcategorywhich
is not distinguished, since the above sequence which is exact inD but not in mod(A/J (A)3)

cannot be completed to an exact triangle in mod(A).

Let A be a symmetric k-algebra and I a proper ideal in A. By a result of Nakayama [30,
Theorem 13], the quotient algebra A/I is symmetric if and only if I = ann(z) for some
z ∈ Z(A). In that case, if s is a symmetrising form on A, then z · s has kernel I and induces
a symmetrising form on A/I . The following Proposition shows that the elements z ∈ Z(A)

satisfying z2 = 0 parametrise the symmetric quotients A/I of A satisfyingEndprA (A/I ) = {0}
through the correspondence z 
→ ann(z).

Proposition 9.6 Let A be a symmetric k-algebra and I a proper ideal in A such that I =
ann(z) for some z ∈ Z(A). We have EndprA (A/I ) = {0} if and only if z2 = 0.

Proof By the assumptions on I and z, multiplication by z induces an A-A-bimodule iso-
morphism A/I ∼= Az mapping a + I to az, where a ∈ A. An endomorphism of Az as a
left A-module factors through a projective module if and only if it factors through the map
A → Az given by multiplication with z. Any A-homomorphism Az → A extends to an
endomorphism of A (because A is symmetric) hence is induced by right multiplication with
an element c. Composing the two maps Az → A → Az given by right multiplication with
c and z, respectively, yields the endomorphism of Az given by right multiplication with cz,
and the image of this endomorphism is Az2c. It follows that this endomorphism is zero for
all c ∈ A if and only if z2 = 0. The result follows. ��

Different elements in Z(A) may have the same annihilators. If z, z′ ∈ Z(A) such that
I = ann(z) = ann(z′), and if s is a symmetrising form for A, then both z · s and z′ · s induce
symmetrising forms on A/I . Thus there exists an element y ∈ A such that y+ I ∈ Z(A/I )×
and such that z′ = yz. Specialising Theorem 3.1 to symmetric quotients of symmetric
algebras yields the following result.
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Proposition 9.7 Let A be an indecomposable nonsimple symmetric k-algebra. Let z ∈ Z(A)

such that z2 = 0 and such that soc2(A) ⊆ Az. Set I = ann(z). Then I ⊆ J (A)2, the
algebras A and A/I have the same quiver, A/I is symmetric, and the canonical functor
mod(A/I ) → mod(A) induces an embedding mod(A/I ) → mod(A) as distinguished
abelian subcategory. In particular, mod(A) has a connected distinguished abelian subcate-
gory D satisfying �(D) = �(A).

Proof By [30, Theorem 13] the algebra A/I is symmetric. By the assumptions, we have
soc2(A) ⊆ Az. Taking annihilators yields I ⊆ J (A)2, and hence A and A/I have the same
quiver. In particular, �(A) = �(A/I ). Since z2 = 0, it follows from Proposition 9.6 that
EndprA (A/I ) = {0}. Theorem 3.1 implies the result. ��
Example 9.8 Let p be a prime number such that p ≥ 7, and let k be a field of characteristic
p. Let

A = k〈x, y | x p = y p = 0, xy = −yx〉
Then A is a split local symmetric algebra of dimension p2 with basis {xi y j | 0 ≤ i, j ≤ p−1}.
The linear map sending x p−1y p−1 to 1 and all other monomials in this basis to 0 is a
symmetrising form for A. The monomials xi y j with either both i , j even or one of them
equal to p − 1 form a basis of Z(A). The monomial x p−1y p−1 is a basis of soc(A), and the
set {x p−2y p−1, x p−1y p−2, x p−1y p−1} is a basis of soc2(A). The element z = x p−3y p−3

belongs to Z(A), satisfies z2 = 0 (this is where we use p ≥ 7), and we have soc2(A) ⊆ Az.
Thus A and z satisfy the assumptions in Proposition 9.7. Therefore, setting I = ann(z), we
have a full embedding mod(A/I ) → mod(A) as distinguished abelian subcategory, and the
algebras A and A/I are both symmetric and have the same quiver. More precisely, we have

A/I ∼= k〈x, y |x3 = y3 = 0, xy = −yx〉
which is a 9-dimensional quantum complete intersection, with basis the image of the set of
monomials {1, x, y, x2, xy, y2, x2y, xy2, x2y2}. Indeed, z is annihilated, in A, by a mono-
mial xi y j if and only if at least one of i , j is greater or equal to 3.

Remark 9.9 The center of an essentially small k-linear category C is the k-algebra Z(C) of
k-linear natural transformations on the identity functor IdC on C. Let C be an essentially small
k-linear triangulated category, and let D be a k-linear distinguished abelian subcategory of
C. Restriction to objects in D induces a k-algebra homomorphism Z(C) → Z(D). If D ∼=
mod(D) for some k-algebra D, then this induces a k-algebra homomorphism Z(C) → Z(D).
If in addition D a finite-dimensional k-algebra, then this yields finite-dimensional k-algebra
quotients of Z(C). Finally, if C = mod(A) for some finite-dimensional selfinjective k-algebra
A, then the canonical isomorphism Z(A) ∼= Z(mod(A)) induces an algebra homomorphism
Z(A) → Z(mod(A)), where Z(A) is the stable center of A. Thus restriction to a distinguished
abelian subcategory of mod(A) which is equivalent to mod(D) for some finite-dimensional
k-algebra D yields a k-algebra homomorphism Z(A) → Z(D). Such a homomorphism is
in general neither injective nor surjective.

Remark 9.10 Let C be an essentially small triangulated category, and letD be a distinguished
abelian subcategory of C. The Grothendieck group K(D) ofD is the abelian group generated
by the isomorphism classes [X ] of objects X in D subject to the relations [X ] − [Y ] + [Z ]
for any short exact sequence 0 → X → Y → Z → 0 in D. The Grothendieck group
K(C) of C is the abelian group generated by the isomorphism classes [X ] of objects X in
C subject to the relations [X ] − [Y ] + [Z ] for any exact triangle X → Y → Z → �(X)
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in C. Since short exact sequences in D can be completed to exact triangles in D, it follows
that the inclusion D → C induces a canonical group homomorphism K(D) → K(C). In
general, this group homomorphism need not be injective or surjective. If C is monoidal and
D a monoidal distinguished abelian subcategory such that tensor products with objects in
C and D preserve exact triangles in C and short exact sequences in D, respectively, then
the canonical map K(D) → K(C) is a ring homomorphism. If C = mod(A) for some
finite-dimensional selfinjective k-algebra A, then K(C) is the quotient of K(mod(A)) by the
subgroup generated by the images in K(mod(A)) of finitely generated projective A-modules
(see e.g. [40, Proposition 1]), and hence K(C) is finite precisely if the Cartan matrix of A
is nonsingular. If D is a distinguished abelian subcategory of C which contains all simple
A-modules, then the canonical group homomorphism K(D) → K(C) is surjective.

Remark 9.11 Let A be a finite-dimensional selfinjective algebra over a field k and let I
be an ideal in A which contains its right annihilator r(I ). Then the distiguished abelian
subcategory mod(A/I ) is functorially finite in mod(A) (cf. [2, §3], [3]). Indeed, let U be an
A-module. Then U/IU and the annihilator UI of I in U are in mod(A/I ). The canonical
mapU → U/IU , regarded as a morphism in mod(A), is a left approximation ofU , and the
inclusion UI → U , again regarded as a morphism in mod(A), is a right approximation of
U . (Of course, mod(A/I ) is also functorially finite in mod(A), by the same argument.)

The Tensor-Hom adjunction induces a natural transformation of bifunctors at the level of
stable categories, but this need not be an isomorphism (cf. Proposition 5.7).

Lemma 9.12 Let A be a finite-dimensional selfinjective k-algebra, and let D be a finite-
dimensional k-algebra. Let Y be a finitely generated A-D-bimodule, U a finitely generated
A-module and V a finitely generated D-module. The Tensor-Hom adjunction

� : HomA(Y ⊗D V ,U ) ∼= HomD(V ,HomA(Y ,U ))

sends Hompr
A (Y ⊗D V ,U ) to HomD(V ,Hompr

A (Y ,U )) and induces a natural map

� : HomA(Y ⊗D V ,U ) → HomD(V ,HomA(Y ,U )) .

Proof We need to show that � sends Hompr
A (Y ⊗D V ,U ) to HomD(V ,Hompr

A (Y ,U )).
Let π : P → U be a projective cover of U . Then any A-homomorphism ending at U
which factors through a projective A-module factors through π . Let ϕ : Y ⊗D V → U
be an A-homomorphism which factors through π . That is, there is an A-homomorphism
α : Y ⊗D V → P such that ϕ = π ◦ α. For v ∈ V , denote by αv : Y → P the A-
homomorphism defined by αv(y) = α(y ⊗ v), for all y ∈ Y . Through the adjunction �, the
homomorphismϕ corresponds to themap v 
→ (y 
→ ϕ(y⊗v)) inHomD(V ,HomA(Y ,U )).
Now ϕ(y ⊗ v) = π(α(y ⊗ v)) = π(αv(y)), hence the map y 
→ (ϕ(y ⊗ v)) is equal to
π ◦ αv , hence belongs to Hompr

A (Y ,U ). This shows that � induces a map � as stated ��
Remark 9.13 The map � in Lemma 9.12 need not be an isomorphism. Consider for instance
the case D = A and Y = A regarded as an A-A-bimodule. Then  is the canonical functor
mod(A) → mod(A). The map � is zero for all U , V (because Y is projective as a left
A-module), but ifU = V is nonprojective, then the left side in the map� is EndA(U ), hence
nonzero.

Remark 9.14 Let D be a distinguished abelian subcategory in a triangulated category C, and
let 0 → X → Y → Z → 0 be a short exact sequence in D. If the associated exact triangle
X → Y → Z → �(X) in C is an Auslander–Reiten triangle, then the short exact sequence
above clearly is an Auslander–Reiten sequence in D. The converse need not hold.
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