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Abstract. Recently the development of inter-module connections (IMCs) for steel modular building systems (MBSs) 

has gained traction with many researchers and engineers being in pursuit of universally performant connection 

systems. While numerous studies reviewed IMCs for hot-rolled steel MBSs, most of them focused on a limited number 

of connections and were inconsistent in naming conventions and classification methods, posing a challenge for the 

development of new and meaningful connections. The present study aims to provide a harmonised overview of the 

existing literature by proposing a unified nomenclature and a systematic classification based on the method of joining. 

A multi-attribute ranking system was developed and employed to identify “must-have” features for the development of 

future designs and key areas of improvement for existing configurations, serving as a useful decision-making tool for 

both researchers and practitioners concerned with this topic. 

 

1. INTRODUCTION 

Modular Building Systems (MBSs) are a Modern Method of Construction (MMC) which adopts principles of 

Offsite Manufacturing (OSM) and Offsite Construction (OSC), delivering ready-to-install, fully finished structural 

modules; MBSs enable reduced manufacturing costs due to standardisation and mass production, speed of onsite 

construction guaranteed by straight-forward assembly sequences, and superior end-products delivered by better quality 

control and improved accuracy of production lines [1]. These innate advantages have bolstered the confidence to adopt  

steel MBSs in the high-rise construction sector, where corner-supported modules are typically preferred for the high 

buckling resistance of hot-rolled steel SHS columns and the planning freedom of unobstructed walls [2]. 

To date, several studies have investigated the structural behaviour of multi-storey and high-rise steel MBSs [3–7], 

reaching a consensus that inter-module connections (IMCs) are paramount in the structural performance of steel MBSs. 

In the past decade, the development of IMCs for hot-rolled steel MBSs has gained traction, putting researchers and 

engineers in pursuit of universally performant connection systems. This led to the development of a large and growing 

volume of proposed IMCs that introduced a pressing need for harmonisation of the literature to promote a well-

structured development of future designs. While numerous studies reviewed IMCs for hot-rolled steel MBSs, even the 

most noteworthy of them [8–12] focused on a limited number of connections and were inconsistent in naming 

conventions and classification methods, posing a challenge for the development of new and meaningful connections. 

The present study aims to provide a harmonised overview of the existing literature by proposing a unified 

nomenclature and a systematic classification based on the method of joining. The main advantages of this classification 

stem from its consistency all-throughout based on joint typologies and the scalability that supports its adoption and 

further expansion as new connections are proposed. Moreover, a new multi-attribute ranking system was developed 

and employed to identify “must-have” features and key areas of improvement for existing connections. 
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2. STATE-OF-THE-ART INTER-MODULE CONNECTIONS 

In the present section the wide and often tangled literature of IMCs for hot-rolled steel MBSs was systematically 

re-organised, drawing attention to the key features of these systems. IMCs were classified and labelled under three 

main categories, based on the main coupling method: locking devices (LD01-07), post-tensioned (PT01-06), and 

bolted joints (CTC01-16, BTB01-12, FTF01-19). 

2.1. IMCs with locking devices 

Seven innovative IMCs were identified in this category (Table 1). In general, these joints used either tool-driven 

or gravity-actioned mechanisms as showed in Figure 1. 

 

ID code Joint typology ID code Joint typology 

LD01 [13] Twistlock LD05 [14] Torque-activated pin device 

LD02 [15] Interlocking grooves LD06 [16] Self-locking spring-activated tabs 

LD03 [17] Rotary device and screwed nut LD07 [18] Self-locking spring-activated sliding blocks 

LD04 [19] Self-locking plug-in device   

Table 1 : IMCs with locking devices 

 

Figure 1. IMCs with locking devices 

2.2. Post-tensioned (PT) IMCs 

PT IMCs (Table 2) consisted of rods inserted through hollow sections (continuously throughout the full length of 

columns). When necessary, bar continuity was ensured by couplers or sleeve nuts, while nuts tightened the rods to 

connecting plates, which could also enhance the shear force transfer by various types of shear keys (Figure 2). 

 

ID code Joint typology ID code Joint typology 

PT01 [20] PT rods through SHS columns PT04 [21] PT rods coupled through shear keys 

PT02 [22] PT rods clamped through shear keys PT05 [23] PT rods coupled through shear keys 

PT03 [24] PT rods coupled through steel boxes PT06 [25] PT rods through SHS columns 

Table 2 : Post-tensioned IMCs 

      
 

LD01 LD02 LD03 LD04 LD05 LD06 LD07 
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Figure 2. Post-tensioned IMCs 

2.3. Bolted IMCs 

Bolted IMCs were the most diverse type of IMCs, using common, easy-to-manufacture steel parts such as corner 

fittings, plates, bolts, screws, nuts, washers, and other components like pins, tenons, spigots, or rubber layers. Due to 

the multitude of existing configurations, these connections were further classified based on joint type. 

2.3.1. Column-to-column (CTC) connections 

The most common typology of bolted IMCs are CTC joints (Table 3) derived from classic splice joints for tubular 

sections, with plates which are welded to the ends of the hollow sections and clamped together by bolts (Figure 3). 

 

ID code Joint typology ID code Joint typology 

CTC01 [26] Vertical and horizontal plates CTC09 [27] Intermediate plates and interior bolts 

CTC02 [28] Up-down I beams CTC10 [29] Cruciform plate 

CTC03 [30] Cover plate with blind bolts CTC11 [31] Interlocking pins and connecting plates 

CTC04 [32] Bonded sleeve splice joint CTC12 [33] Connecting plates and resilient layers 

CTC05 [34] Connecting plate and access holes CTC13 [35] In-build tenon and side-plates 

CTC06 [36] Extended connection plate CTC14 [37] Shape-memory alloy (SMA) bolts 

CTC07 [38] Bolted intermediate plate CTC15 [39] Guiding tenons and internal steel pipes 

CTC08 [40] Overlaying extended endplates CTC16 [41] Interconnecting tube and nut 

Table 3 : Column-to-columns bolted IMCs 

 

 
   

 

PT01 PT02 PT03 PT04 PT05 PT06 
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Figure 3. Column-to-column bolted IMCs 

2.3.2. Beam-to-beam (BTB) connections 

BTB connections relocate the joint between floor and ceiling beams (Table 4). The common elements employed in 

this type of connection are gusset plates of various geometries, engineered to closely fill the gaps between modules, 

optimising the unusable space between each of the floor and ceiling cassettes (Figure 4). 

 

ID code Joint typology ID code Joint typology 

BTB01 [42] Cruciform plate BTB07 [43] Interpenetrating tenon devices 

BTB02 [44] Connector plates BTB08 [45] Cross-shaped plug-in connector 

BTB03 [46] Steel gusset plates BTB09 [47] Bolted plug-in adapter with spring pins 

BTB04 [22] Bolted intermediate tenon plate BTB10 [48] Bolted gusset plates 

BTB05 [49] Cruciform socket-shaped tenon BTB11 [50] Plug-in tenon and high-strength and blind bolts 

BTB06 [51] Plug-in tenon device BTB12 [52] Bolted PFC double beam 

Table 4 : Beam-to-beam bolted IMCs 

      
CTC01 CTC02 CTC03 CTC04 CTC05 CTC06 

      
CTC07 CTC08 CTC09 CTC10 CTC11 CTC12 

    

  

CTC13 CTC14 CTC15 CTC16   
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Figure 4. Beam-to-beam bolted IMCs 

2.3.3. Fitting-to-fitting (FTF) connections 

The third type of bolted IMCs stems from the common feature of engaging modules through corner fittings (Table 

5). The shape of these cast corners ranges from the classic ISO design adopted from shipping containers to more refined 

and computationally optimised topologies (Figure 5). 

 

ID code Joint typology ID code Joint typology 

FTF01 [53] Steel hollow cube bracket FTF11 [54] Square pipe blocks with internal circular pipes 

FTF02 [55] Intermediate plate FTF12 [56] Gusset plates and locating pins 

FTF03 [57] Gusset plates and locating pins FTF13 [25] Bolted corner fittings 

FTF04 [58] Tie plates and spigots FTF14 [59] Vertical bolts through columns 

FTF05 [60] Tie plates and twist locks FTF15 [61] Corner fittings with internal threaded aperture 

FTF06 [62] Rubber isolator and steel clamps FTF16 [63] Corner fittings with rubber isolation 

FTF07 [64] Transverse clamps FTF17 [65] Bolted endplates and intermediate plates 

FTF08 [64] Cross-shaped clamp FTF18 [66] External bolts and positioning plate 

FTF09 [64] X-shaped clamp FTF19 [67] Cruciform plate and horizontal bolts 

FTF10 [64] Bolted corner fittings   

Table 5 : Fitting-to-fitting bolted IMCs 

  
   

 
BTB01 BTB02 BTB03 BTB04 BTB05 BTB06 

   
 

  

BTB07 BTB08 BTB09 BTB10 BTB11 BTB12 
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Figure 5. Fitting-to-fitting bolted IMCs 

3. MULTI-ATTRIBUTE RANKING OF IMCS 

3.1. The framework of the proposed scoring system 

The scoring system (Table 6) was based on the same three core criteria used by Srisangeerthanan et al. [12], namely, 

structural, manufacturing and constructional performance attributes, while the scale and marking criteria were fully re-

configured by adopting a more holistic perspective based on qualitative analysis. Additionally, characteristics such as 

design resilience through re-centring and energy dissipation, reusability and design flexibility were not explicitly 

considered in the metrics of the previous study and were thus included in the present review. Scoring for all attributes 

was done on 3-point rating scales, except for the vertical and horizontal load transfer (VH) attribute where a 0-1 integer 

scale was adopted based on whether a connection met or not the criterium. The maximum possible score for a system 

was 25 points, while the minimum a connection could score was 8. 

In lack of consistent quantitative data about the designs considered, a qualitative approach based on visual 

inspection combined with engineering knowledge and intuition was adopted in the characterisation of the connection 

systems. Weightings were kept equal to ensure an overall level of impartiality. Nevertheless, it is believed that through 

the scoring metrics proposed herein a practical, comprehensive, and scalable multi-attribute ranking system was 

achieved, which could be used as is or tailored by researchers and practising engineers for other specific objectives. 

 

 

 

 

 

 

 

 
 

   

FTF01 FTF02 FTF03 FTF04 FTF05 

 
    

FTF06 FTF07 FTF08 FTF09 FTF10 

   
 

 

FTF11 FTF12 FTF13 FTF14 FTF15 

    

 

FTF16 FTF17 FTF18 FTF19  
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A. Structural performance metrics 

Metric Score Description  

VH 
0 Does not meet the requirement 

1 Meets the requirement 

DR 

1 Low energy dissipating capability, no self-centring 

2 Moderate energy dissipating capability, moderate or no self-centring 

3 Good energy dissipating capability, self-centring 

FD 

1 Limited scaling opportunities 

2 Moderate scaling opportunities 

3 Good scaling opportunities 

B. Constructional performance metrics 

Metric Score Description  

DfA 

1 Complex: no self-aligning features, large number of tasks, difficult access, complex tooling 

2 Moderate: self-aligning features, moderate number of tasks, moderate access, moderate tooling 

3 Lean: efficient self-aligning features, small number of tasks, easy access, simple tooling 

DfD 

1 Difficult to disassemble 

2 Easy to disassemble and parts of the assembly need to be replaced 

3 Easy to disassemble and parts of the assembly can be reused 

TC 

1 Limited tolerance control 

2 Moderate tolerance control 

3 Good tolerance control 

C. Manufacturing performance metrics 

Metric Score Description  

JC 

1 Numerous parts; complex geometry; complex manufacturing sequences; difficult to mass-produce; 

2 
Moderate number of parts; reasonable geometry; moderate manufacturing sequences; reasonable 

to mass-produce 

3 Small number of parts; Easy-to-manufacture geometry; easy to mass-produce; 

EI 

1 Difficult integration of connection parts into final joint (e.g., welding of complex parts) 

2 Reasonable integration of connection parts into final joint (e.g., fastening) 

3 
Simple joint configuration (e.g., no post-manufacturing integration required or fast procedures such 

as inter-locking) 

EP 

1 Demanding pre-attachment process (e.g., welding of additional components to finished modules) 

2 
Reasonable pre-attachment process (e.g., fastening of additional components to finished modules, 

drilling holes) 

3 
Easy pre-attachment process (e.g., no additional components required, or connection parts are 

already integrated into module framing i.e., corner fittings) 

Notes: VH - Vertical and horizontal connectivity; DR – Design resilience; DF – Design flexibility; DfA – Design for 

Assembly; DfD – Design for Disassembly; TC – Tolerance control; JC – Joint complexity; EI – Ease of integration; 

EP – Ease of pre-assembly 

Table 6 : Description of the proposed scoring system 

4. APPLICATION OF THE PROPOSED SCORING SYSTEM 

The multi-attribute rankings presented herein were used to determine the highest-scoring IMCs for each 

performance category, revealing the most promising IMCs per attribute as well as the best-performing system for each 

type of connection.  
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4.1. Overall ranking 

In this section the discussion focused on the highest overall scoring IMCs and their bespoke characteristics, 

illustrated in Figure 6, while complete data, plots and scoring method for each metric are available in the full review 

study [68]. 

Overall, the highest scoring systems were FTF06 and FTF11 joints with totals of 21 points each. FTF06 scored 

best in metrics such as DR, DF, DfD and TC due to its flexible, resilient, and demountable configuration. The only 

improvements could be reducing the number of bolts which require on-site tensioning, while manufacturing 

complexity of the lead-rubber bearing may be mitigated by using a high damping rubber bearing instead.  

The next four joints were FTF19, FTF12, FTF03, and BTB09, coming second with totals of 20 points. These 

joints displayed well-balanced scores for all metrics, demonstrating robust IMCs which could be improved in terms of 

resilience, reuse opportunities or complexity of fabrication. 

Next two IMCs scored 19 points each, achieving medium scores in almost all metrics. The CTC11 system 

highlighted the efficiency of common and easy to manufacture features such as interlocking pins and bolted endplates, 

while adding means of energy dissipation and damage control would help improving its resilience and demountability. 

Connection CTC12 had an efficient configuration made of common parts with good energy dissipation provided by 

the rubber layers, yet the inclusion of self-aligning features and mitigating the difficulties in repairing or replacing the 

damaged endplates after an earthquake could be considered for improving its structural and constructional metrics.  

In the end, it must be noted that the purpose of the ranking discussed above was not to suggest that one IMC would 

be better than all the others, as there is no fit-for-all solution in multi-dimensional problems like that of assessing the 

performance of IMCs. As the discussion demonstrates, the proposed framework is useful in revealing key features 

which make efficient designs both in terms of structural, constructional, and manufacturing aspects, while it also 

uncovers areas which require improvement, serving as a good starting point for future research directions. 

 

 

Figure 6. Overall ranking of IMCs 

5. CONCLUDING REMARKS 

This study provided a harmonised overview of the relevant literature, having reviewed, classified, and indexed 

sixty IMCs using a unified nomenclature and a systematic and consistent classification system based on joint typology. 

A new multi-attribute ranking method was developed using a qualitative approach, holding a certain degree of 

subjectivity. Nevertheless, the adoption of the proposed multi-attribute ranking system can facilitate future designs, as 

well as enhance existing connections in low-scoring areas, serving as a useful decision-making tool for both researchers 

and practitioners concerned with this topic. 

The multi-attribute ranking system revealed that the use of corner fittings, bolted joints, self-aligning/locating parts, 

and damage control devices were all must-have features for IMCs with all-round performance. 

More focus should be put on addressing the hindered demountability and reuse opportunities caused by the lack of 

seismic resilience. The viscoelasticity of elastomers and superelasticity of SMAs were noteworthy recommendations 

in the future research of smart and resilient IMCs for steel MBSs. 
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