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Abstract

Human-machine interaction is rapidly gaining significance in our daily lives.

While speech recognition has achieved near-human performance in recent

years, the intricate details embedded in speech extend beyond the mere ar-

rangement of words. Speech Emotion Recognition (SER) is therefore acquir-

ing a growing role in this field by decoding not only the linguistic content but

also the emotional nuances of human spoken communication and enabling

therefore a more exhaustive comprehension of the information conveyed by

speech signals.

Despite the success that neural networks have already achieved in this

task, SER is still challenging due to the variability of emotional expression,

especially in real-world scenarios where generalization to unseen speakers

and contexts is required. In addition, the high resource demand of SER mod-

els, combined with the scarcity of emotion-labelled data, hinder the develop-

ment and application of effective solutions in this field.

In this thesis, we present multiple approaches to overcome the aforemen-

tioned difficulties. We first introduce a multiple-time-scale (MTS) convo-

lutional neural network architecture to create flexibility towards temporal

variations when analyzing time-frequency representations of audio data. We

show that resilience to speed fluctuations is relevant in SER tasks, since emo-

tion is expressed through complex spectral patterns that can exhibit signifi-

cant local dilation and compression on the time axis depending on speaker

and context. The results indicate that the use of MTS consistently improves
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the generalization of networks of different capacity and depth, compared to

standard convolution.

In a second stage, we propose a more general approach to discourage un-

wanted sensitivity towards specific target properties in CNNs, introducing

the novel concept of anti-transfer learning. While transfer learning assumes

that the learning process for a target task will benefit from re-using repre-

sentations learned for another task, anti-transfer avoids the learning of rep-

resentations that have been learned for an orthogonal task, i.e., one that is

not relevant and potentially confounding for the target task, such as speaker

identity and speech content for emotion recognition. In anti-transfer learn-

ing we penalize similarity between activations of a network being trained

and another network previously trained on an orthogonal task. This leads to

better generalization and provides a degree of control over correlations that

are spurious or undesirable. We show that anti-transfer actually leads to the

intended invariance to the orthogonal task and to more appropriate feature

maps for the target task at hand. Anti-transfer creates a computation and

memory cost at training time, but it enables enables the reuse of pre-trained

models.

In order to avoid the high resource demand of SER models in general

and anti-transfer learning specifically, we propose RH-emo, a novel semi-

supervised architecture aimed at extracting quaternion embeddings from real-

valued monoaural spectrograms, enabling the use of quaternion-valued net-

works for SER tasks. RH-emo is a hybrid real/quaternion autoencoder net-

work that consists of a real-valued encoder in parallel to a real-valued emo-

tion classifier and a quaternion-valued decoder. We show that the use of RH-

emo, combined with quaternion convolutional neural networks provides a

consistent improvement in SER tasks, while requiring far fewer trainable pa-

rameters and therefore substantially reducing the resource demand of SER

models.
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Finally, we apply anti-transfer learning to quaternion-valued neural net-

works fed with RH-emo embeddings. We demonstrate that the combina-

tion of the two approaches maintains the disentanglement properties of anti-

transfer, while using a reduced amount of memory, computation, and train-

ing time, making this a suitable approach for SER scenarios with limited re-

sources and where context and speaker independence are needed.
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Chapter 1

Introduction

1.1 Motivation

The sound of the human voice plays an important role in human commu-

nication, since it is able to carry information that goes beyond the meaning

of the sequence of uttered words. The understanding of emotion is essen-

tial for a complete and correct interpretation of a speech signal, since it gives

information about the feelings and potentially intentions of a speaker. In cer-

tain circumstances the emotional content of speech can even invert the literal

meaning of a sentence. This happens for example when a sentence is pro-

nounced with sarcasm. The study of Mehrabian and Wiener (1967) suggests

that the amount of non-verbal information conveyed by speech is largely

higher than the information carried by the mere words’ sequence. Their spe-

cific approach quantifies the attributed information content of speech to the

spoken words as 7%, while the non-verbal vocal expression conveys 38%

and the facial expression 55%. These findings pertain to a specific setup in

which the authors examined how recipients interpret incongruous emotional

cues encompassing visual, lexical, and vocal aspects. While the experiment’s

scope is limited, and the aforementioned metrics shouldn’t be regarded as

definitive or dependable measurements, this research underscores the signif-

icance of acknowledging the influence of non-verbal communication. Nev-

ertheless, emotion interpretation can be ambiguous even for humans, since
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it strongly depends, among other factors, on the context, on the speech style

of a person and on her/his cultural background (Scherer, 2003).

Human-machine interaction is becoming increasingly important in our

everyday life and in this field a correct interpretation of human speech is fun-

damental. Research on automatic speech recognition reached near-human

performance in recent years, making it possible to confidently identifying

which words are uttered even in audio signals with non-optimal recording

quality and for an extensive amount of different languages (Malik et al., 2021;

Nassif et al., 2019). Nevertheless, this information without the understand-

ing of speaker’s non-verbal behavior is incomplete, and a correct interpre-

tation of the emotional intention helps provide a more comprehensive ac-

count of the information conveyed by spoken communication (Mehrabian

and Wiener, 1967). Speech Emotion Recognition (SER) is therefore acquir-

ing a growing role in human-machine interaction, complementing research

in automatic speech recognition and natural language processing.

1.2 Problem Overview and Research Objectives

Despite the impressive success that neural networks have achieved in this

task, SER is still challenging due to the variability of emotional expression,

especially in real-world scenarios where generalization to unseen speakers

and contexts is required (Rybka and Janicki, 2013a; Hozjan and Kačič, 2003;

Issa, Demirci, and Yazici, 2020; Wang et al., 2020; Akçay and Oğuz, 2020).

In context-independent scenarios, the generalization capabilities of SER

models can be harmed by the presence of a different vocabulary in train-

ing, validation and test sets. This is particularly evident when only a limited

set of words or sentences is recorded. In this context, the features learned

by a network can be overly specialized to the specific words present in the

training set. Therefore, even though the learned features can be effective for
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emotion estimation, they can be inappropriate with different words or sen-

tences. On the other hand, in speaker-independent contexts a SER estimator

can overly specialize to the specific timbre or speech style of a person present

in the training set. In this case, models can overly adapt to the way a specific

person expresses emotions, for instance to intonation fluctuations, to global

speech volume, and to the general character of his/her voice. This encour-

ages models to fail recognizing equivalent emotions expressed by different

individuals. Another obstacle to SER is the general scarcity of emotionally-

labelled audio data, which is due to the high cost of the recording and la-

belling such data. Moreover, a further well-known difficulty is that emo-

tional information in speech involves long-term temporal dependencies that

are in the order of seconds (Rigoulot, Wassiliwizky, and Pell, 2013; Khorram

et al., 2017; Lian et al., 2019). This forces models to analyze large temporal

windows and, consequently, to use a large amount of resources.

In this thesis, we investigate solutions to the most influential and common

issues related to SER: the difficulty of extracting emotion-related representa-

tions that are disentangled from other uncorrelated and potentially mislead-

ing features (as speech style and context), and the high resource demand of

SER models. Although different types of data can be used to perform Emo-

tion Recognition in general (among others, speech audio signals, electroen-

cephalogram signals, face and body video recordings, text transcription), in

this work we specifically focus on audio signals.

1.3 Research Questions

The primary focus of this research work addresses the following research

questions:

• What are the major difficulties that neural networks exhibit when per-

forming emotion recognition from audio speech signals?
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We provide an answer to this question in Chapter 2 and 3. We identified

the main SER challenges as the scarce generalization and high resource

demand of models.

• Can a neural network learn emotion-related representations that are

disentangled from the the context and from the speech style of a per-

son? If yes, how?

We respond to this question with the work presented in Chapter 4, 5

and 7. We show that it is possible to achieve such disentanglement

in two different ways: enforcing time scale invariance and promoting

independence from unwanted features with anti-transfer learning.

• Is it possible to inject invariance towards a specific feature in a neu-

ral network? If yes, could this improve the independence of learnt

emotion-related representations from the context and from the speech

style of a person?

We address this question in Chapter 5, showing that that this behavior

can be achieved through anti-transfer learning. We demonstrate that

this technique can promote the independence of the learnt representa-

tions from the aforementioned confounding factors.

• How can we reduce the high amount of computational resources needed

when performing Speech Emotion Recognition with neural networks?

We deal with this question in Chapters 6 and 7. We show that the use

of quaternion-valued neural networks (based on quaternion algebra, an

extension of complex algebra) can reduce the resource demand of mod-

els while maintaining or improving their classification performance.
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1.4 Main Contributions

In this research work, we present different approaches to overcome the afore-

mentioned difficulties related to SER.

We propose specific solutions to achieve independence from context (i.e.,

which words are pronounced by a speaker) and from the speech style of a

person when performing SER with neural networks. The first is achieved

through a recurrent neural network design and the second relies on a cus-

tom convolution layer, called Multi-Time-Scale, that extracts features at mul-

tiple time scales, consequently improving invariance towards timing fluctu-

ations of speech. As a more general solution to improve the invariance of

the learnt representations from irrelevant features, we propose a novel learn-

ing paradigm, that we call anti-transfer learning, through which it is possi-

ble to diverge the features learnt by a network from the ones extracted by

another network that is pretranied on a different task. This helps to learn

emotion-related features that are independent from the context and speech

style. Moreover, we propose a solution to overcome the high resource de-

mand of models through the combination of quaternion information process-

ing and a custom features extractor, called RH-emo, that maps real-valued

spectrograms into the quaternion domain while optimizing the quaternion

representation for SER tasks.

Lastly, we apply the anti-transfer learning paradigm to quaternion-valued

neural networks fed with RH-emo embeddings, merging the disentangle-

ment properties of the first and the resource saving capabilities of the latter.

The contributions of our work are specifically:

• We propose a convolution layer design for SER from audio signals that

learns locally-scale-invariant features in the time dimension.
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• For the first time, to the best of our knowledge, we introduce the con-

cept of anti-transfer learning to achieve task-invariance between a pre-

trained network and a new one.

• We define a novel method, RH-emo, that draws quaternion-valued em-

beddings from speech signals, where each quaternion component is tai-

lored to a specific emotional characteristic.

• We apply anti-transfer learning to quaternion-valued neural networks,

preserving the disentanglement properties of anti-transfer while opti-

mizing its resource demand.

• We apply our approaches to multiple popular emotion-labelled speech

datasets and with different neural network architectures, providing ex-

tensive analysis of the experimental results that confirm the effective-

ness of the proposed methods.

• We provide open source code for all developed approaches1 2 3

1.5 Publications

1.5.1 Journal Papers

1. Eric Guizzo, Tillman Weyde, Simone Scardapane and Danilo Comminiello

(2023). ‘Learning Speech Emotion Representations in the Quaternion

Domain’, IEEE/ACM Transactions on Audio, Speech, and Language

Processing 31: pp. 1200-1212.

2. Eric Guizzo, Tillman Weyde, Giacomo Tarroni (2021). ‘Anti-Transfer

Learning for Task Invariance in Convolutional Neural Networks for

Speech Processing’, Neural Networks 142: pp. 238-251.
1https://github.com/ericguizzo/multi
2https://github.com/ericguizzo/anti_transfer
3https://github.com/ispamm/rhemo

https://github.com/ericguizzo/multi
https://github.com/ericguizzo/anti_transfer
https://github.com/ispamm/rhemo
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1.5.2 Conference Papers

1. Eric Guizzo, Tillman Weyde, Giacomo Tarroni, Danilo Comminiello

(2023), ‘Quaternion Anti-Transfer Learning for Speech Emotion Recog-

nition’, IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics (WASPAA). .

2. Eric Guizzo, Tillman Weyde, Jack Barnett Leveson (2020), ‘Multi-Time-

Scale Convolution for Emotion Recognition from Speech Audio Sig-

nals’, IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 6489-6493.

3. Francesco Barbieri, Eric Guizzo, Federico Lucchesi, Giovanni Maffei,

Fermin Moscoso del Prado Martin and Tillman Weyde (2019), ‘Towards

a Multimodal Time-Based Empathy Prediction System’, IEEE Inter-

national Conference of Automatic Face and Gesture Recognition. The

work described in this paper won the OMG-Empathy Challenge 2018.

1.5.3 Code

The following repositories contain the code that reproduces the approaches

presented in this thesis:

• https://github.com/ericguizzo/multi_time_scale

• https://github.com/ericguizzo/anti_transfer

• https://github.com/ericguizzo/transferable_quaternion_embeddings

1.6 Organization of the Thesis

Parts of this thesis are re-adapted from the papers listed in Section 1.5. This

thesis is organized as follows:

https://github.com/ericguizzo/multi_time_scale
https://github.com/ericguizzo/anti_transfer
https://github.com/ericguizzo/transferable_quaternion_embeddings
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• Chapter 1: Introduction provides an overview of the thesis, covering mo-

tivation behind the work, problems and research objectives, and the

main contributions of the thesis. Publications and Code details are also

presented.

• Chapter 2: Literature Review merges and extends the literature review

sections of all papers listed in Chapter 1.5 and is divided in 4 sections.

The first describes general strategies to perform SER and how datasets

are configured. The second is dedicated to scale-invariance. The third

regards general approaches and concepts that are influential for super-

vised task-specific invariance and the latter describes methods to im-

prove SER models’ efficiency, including quaternion audio representa-

tions and processing.

• Chapter 3: Preliminary Study on a Context-Independent Scenario is adapted

from Conference Paper 2, with additional results and discussion that

are not included in the original work. This Chapter contains prelimi-

nary collaborative work in which we identified the main research ques-

tions and motivations discussed in this dissertation. Here we introduce

an approach to perform SER by predicting context-independent contin-

uous time-varying emotional features. Specifically, we adopt an ensem-

ble of different architectures, each specific to a different input domain

(audio, video and face/body landmarks).

• Chapter 4: Increasing Speaker-Independence: Multi-Time-Scale Modelling is

adapted from Conference Paper 3, with additional results and discus-

sion that are not included in the original work. The Chapter describes

a general method to achieve scale-invariance in CNNs, which in turn

improves the independence of the learnt emotional features from the
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speech style of a speaker. This approach is based on the Multi-Time-

Scale convolution layer, that is a custom convolution layer that simul-

taneously extracts audio features at multiple time scales.

• Chapter 5: A Supervised Method for Task-Specific Invariance: Anti-Transfer

Learning is adapted from Journal Paper 2, with additional discussion

that is not included in the original work. This Chapter describes a

method to supervisely disentangle the features learnt by a CNN from

the features that a different pretrained CNN extracts. This approach

permits to selectively improve the independence of SER models’ pre-

dictions from any specific feature, including speech style and context.

• Chapter 6: Improving efficiency: Speech Emotion Representations in the Quat-

ernion Domain is adapted from Journal Paper 1, with additional discus-

sion that is not included in the original work. This chapter introduces a

solution to overcome one of the most common problems related to SER:

the high resource demand of SER models. This is achieved through the

use quaternion-valued CNNs fed with custom quaternion embeddings

extracted directly from the audio signals.

• Chapter 7: Anti-transfer Learning in the Quaternion Domain merges and

extends the approaches presented in Chapter 5 and 6. We applied the

concept of anti-transfer learning to quaternion-valued networks, merg-

ing the convenient properties of quaternion information processing with

the task-specific disentanglement that anti-transfer learning provides.

In this Chapter we present results and discussion that are not included

in Conference Paper 1.

• Chapter 8: Conclusions and Future Work has the final remarks and sum-

marizes about the problems addressed in the thesis and the proposed



10 Chapter 1. Introduction

approaches, followed by the future scope of work. All references are

provided after the Conclusions.

• Appendix A: Quaternion Convolutional Neural Networks introduces the

principles of quaternion algebra, quaternion Neural Networks and, more

specifically, Quaternion CNNs.

• Appendix B: Example Conversation from the OMG Empathy Dataset includes

a reference transcription of a story extracted from the dataset we adopted

in Chapter 3.
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Chapter 2

Literature Review

This Literature Review merges and extends all Literature Review sections of

the Papers listed in Chapter 1.5 and is divided into four sections.

First, state-of-the-art strategies to perform SER are discussed and the gen-

eral structure of emotion-labelled speech datasets is outlined. In the second

part, we summarize existing approaches to achieve speaker and context in-

variance in SER models. After this, we focus on presenting methods and

concepts related to supervised task-specific invariance. In the fourth part we

present existing studies and techniques aimed at limiting the resource de-

mand of SER models. This Literature Review responds to the first Research

Question, which in turn is the foundation for the following studies presented

in this thesis.

2.1 Strategies for Speech Emotion Recognition

A traditional approach to SER is based on two consecutive stages: hard-

coded extraction of affect-related features followed by a learning-based clas-

sification or regression. Various combinations of features and machine learn-

ing models have been proposed. The most commonly used features are:

base pitch, formant features, energy/spectral features, and prosody. A wide

variety of learning models has been proposed: Artificial Neural Networks

(Bhatti, Wang, and Guan, 2004; Cowie et al., 2001; Nicholson, Takahashi,
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and Nakatsu, 2000), Bayesian Networks, (Ververidis and Kotropoulos, 2008),

Hidden Markov Models (Mao, Chen, and Fu, 2009; Nwe, Foo, and De Silva,

2003), Support Vector Machines (Zhou et al., 2006; Hu, Xu, and Wu, 2007),

and Gaussian Mixture Models (Neiberg, Elenius, and Laskowski, 2006). Gen-

erally, in state-of-the-art methods there was no default choice of features and

classifier type (El Ayadi, Kamel, and Karray, 2011). With the advent of deep

learning, end-to-end learning mostly replaced hard-coded feature extraction

and selection, with models automatically extracting features from low-level

representations of the input data (usually Fourier-based transforms, wavelet

transforms or raw audio data). This enables a model to fine-tune the fea-

ture extraction for a specific task and, consequently, often obtain a higher

accuracy compared to engineered feature extraction. A range of deep learn-

ing architectures have been adopted for SER. The most commonly used are

variants of convolutional neural networks (Badshah et al., 2017; Sun, 2020;

Issa, Demirci, and Yazici, 2020), recurrent neural networks (Lee and Tashev,

2015; Chernykh and Prikhodko, 2017) or combinations of the two (Trigeor-

gis et al., 2016; Lim, Jang, and Lee, 2016). Various studies directly compare

the performance of approaches using end-to-end learning and hard-coded

feature extraction, showing that the former generally provides a higher clas-

sification accuracy on the same data (Kim, Lee, and Provost, 2013; Mao et

al., 2014; Huang et al., 2014; Han, Yu, and Tashev, 2014). Nevertheless, as a

drawback, deep learning models generally requires a higher computational

cost and longer training times than traditional machine learning techniques

and the end-to-end learning usually requires a large amount of labelled data

(Rossenbach et al., 2020; Laptev et al., 2020).

In the recent years, State-of-the-art (SOTA) approaches for SER tasks evol-

ved from the use of plain deep networks, integrating complex solutions that

can be radically different for each specific case and for each dataset as, among

others, data augmentation (Pham, Dang, and Nguyen, 2021; Jothimani and
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Premalatha, 2022; Etienne et al., 2018; Xu et al., 2021), attention (Pham, Dang,

and Nguyen, 2021; Xu et al., 2021; Ho et al., 2020; Kakouros et al., 2022), ad-

versarial attacks (Latif, Rana, and Qadir, 2018), multimodal processing (Ho

et al., 2020; Bouali, Ahmed, and Mazouzi, 2022), speaker-aware processing

(Kim and Vossen, 2021; Li et al., 2020b), transformer designs (Ho et al., 2020;

Li et al., 2020b). The high degree of approaches variability, connected with

the fact that many existing studies are based on different methods to compute

the scores, different data splits and may use multiple data domains, make it

difficult to clearly identify a unique SOTA approach for SER.

2.1.1 Emotion-Labelled Speech Datasets

As the aforementioned SER research work show, SER tasks are addressed

with supervised learning strategies in the vast majority of cases, which rely

on emotion-labelled databases of speech recordings. The design of such

datasets has therefore a big impact on the quality of the SER models trained

on them. One of the most influential aspects is the way the speakers ex-

press different emotional states (Ververidis and Kotropoulos, 2003; Akçay

and Oğuz, 2020). To this respect, Akçay and Oğuz (2020) define 3 main cate-

gories of SER datasets:

• Elicited emotional speech databases: emotions are induced by creating situ-

ations that encourage certain emotional states in non-professional speak-

ers.

• Actor based speech databases: emotions are acted by professional and

trained artists.

• Natural speech databases: speech data is collected from real-world dia-

logues.
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Each type of dataset has advantages and disadvantages. On the one hand, us-

ing professional actors ensures that all target emotions appear in the dataset,

but emotions may sound forced and unnatural. This type of strongly-emphasised

emotions can be easier to be detected by a SER model, however, a model

trained on professionally-acted emotions is unlikely to generalize to real-

world data, as this may present a completely different distribution. On the

other hand, naturally-expressed emotions better reflect real world situations,

but this setup does not allow to precisely control the amount of data recorded

for each target emotion, and it is also possible that only a small subset of emo-

tions is expressed (Cao, Verma, and Nenkova, 2015; Akçay and Oğuz, 2020).

SER datasets can be classified also according to the type of used vocabu-

lary (usually referred as context):

• Scripted scenario databases: actors pronounce a selection of short sen-

tences.

• Semi-scripted scenario databases: professional or non professional speak-

ers talk about specific topics or interact with people that ask ask se-

lected questions.

• Non-scripted scenario databases: free improvisation or real-world data.

Also in this case there are similar advantages and disadvantages. Scripted

scenarios are less complex to classify with an algorithm due to the reduced

variety of utterances, but it is very likely that the algorithm learns features

that are overly specific to the pronounced words. Therefore, they hardly gen-

eralize to different spoken sentences (Jin et al., 2015). Natural scenarios bet-

ter reflect real-world situations, but, again, it is possible that the amount of

different emotions is highly unbalanced and only a small subset of target

emotions is expressed. Semi-scripted datasets are a compromise between the

other 2 and they are the most commonly used datasets for studies in which

real-world application is intended.
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FIGURE 2.1: Example mapping from discrete to dimensional
emotion space from Stanford Encyclopedia of Philosophy (Okasha,

2016).

2.1.2 Emotion labelling

As regards the emotion labelling strategies, there are mainly 2 options, which

can coexist in the same dataset. Discrete models provide a set of fixed stan-

dard emotion categories. The most common are: happy, sad, angry, fearful,

surprised, disgusted, neutral. On the other hand, dimensional models map

emotions into a multidimensional continuous space (Ekman and Oster, 1979;

Mehrabian, 1996). The most adopted solution is a 2D space in which the axes

represent the valence and the arousal, where Valence, also known ad pleasure,

describes the amount of emotional pleasantness, while arousal, also known

as activation, measures the intensity of the emotion. The exact mapping is

still subject of dispute and different studies can use slightly different map-

pings (Mihalache and Burileanu, 2021). Figure 2.1 shows an example map-

ping as exposed in the Stanford Encyclopedia of Philosophy (Okasha, 2016). A

third axis called dominance can be added to this standard paradigm, forming
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a tridimensional emotional space. This third metric measures the amount of

self-confidence of an expressed emotional state.

Both strategies have pros and cons. On the one hand, discrete emotion

labeling offers simplicity and result in easily interpretable outputs that are

user-friendly and comprehensible to non-experts. Nevertheless, this comes

at the cost of losing nuance and expressiveness, since fixed set of categories

may not capture the full richness of emotional experiences, limiting therefore

the models’ capacity to reflect real-world complexity. On the other hand con-

tinuous emotion labelling allows for a more nuanced representation of emo-

tions, embracing the intricacies of human emotions. However, annotating

emotions with greater nuance requires a deeper understanding of emotional

dimensions and their variations. Moreover, nuanced emotional labels can be

more challenging to interpret, both for researchers and end-users. In addi-

tion, developing models that effectively leverage continuous emotional rep-

resentations often necessitates more intricate architectures and advanced ma-

chine learning techniques compared to discrete representations. The choice

between the two depends on the specific goals of the application, the avail-

able resources, and the desired balance between simplicity and accuracy in

capturing emotional nuances. For these above reasons, discretely-labelled

datasets are the most commonly used in the SER research community.

2.1.3 Adopted Datasets

Throughout the whole dissertation we have tested our approaches on 4 widely

used emotion-labelled speech datasets:

1. IEMOCAP: The Interactive Emotional Dyadic Motion Capture Database

(Busso et al., 2008). Acted/scripted/semi-scripted, 10 speakers, English

language, 10000 utterances, 12 hours of audio, 6 discrete emotion labels

+ continuous emotion labels (valence-arousal-dominance).
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2. RAVDESS, the Ryerson Audio Visual Database of Emotional Speech

and Song (Livingstone and Russo, 2018a). Acted/scripted, 24 speak-

ers, English language, 2542 utterances, 2:47 hours of audio, 8 emotion

labels.

3. EmoDb, a Database of German Emotional Speech (Burkhardt et al.,

2005). Acted/scripted, 10 speakers, German language, 535 utterances,

25 min of audio, 7 emotion labels.

4. TESS, the Toronto Emotional Speech Set (Dupuis and Pichora-Fuller,

2011). Acted/scripted, 2 speakers, English language, 2800 utterances,

1:36 hours of audio, 7 emotion labels.

We have chosen this specific combination of corpora for multiple reasons.

In the first instance, IEMOCAP is among the most frequently used speech

emotion datasets and contains both continuous and discrete classification,

which is a strict requirement for the development of the RH-Emo approach,

as we present in Chapter 6 of this dissertation. Moreover, it contains semi-

improvised scenarios that enables to obtain a better insight of model’s gen-

eralization, compared to the other scripted datasets that we adopted. On

the other hand, in RAVDESS, EmoDb and TESS, being acted and scripted

datasets, meticulously engineer emotional expressions by instructing profes-

sional actors to portray specific emotions under controlled conditions, thus

enabling the isolation of emotional cues. This controlled variation provides

a conducive environment to scrutinize the finer nuances of emotion recog-

nition models. In contrast, spontaneous datasets encompass a broader spec-

trum of emotions that arise naturally in real-world interactions. This diver-

sity often introduces inherent complexities like varying background noise,

recording conditions and co-occurring emotions. While these traits mirror

real-life scenarios, they do not allow for the isolation of specific features cru-

cial for studying the effectiveness of anti-transfer learning, as discussed in
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Chapter 5. The lack of systematic variation impedes the precise assessment

of the efficacy of anti-transfer learning techniques in disentangling domain-

specific variations from emotional cues, as these cues intermingle with the

inherent intricacies of natural conversations.

2.2 Speaker and Context Independence

Several solutions have been developed to make SER models robust to un-

seen speakers and context. Among others, Kim et al. (2009) developed a

hard-coded audio feature, the ratio of a spectral flatness measure to a spectral

center, which helps models generalize to new speakers. Schuller et al. (2005)

address this problem using an ensemble of acoustics and linguistic models

merged through late fusion. Kotti and Paternò (2012) developed a cascade

schema that initially aggregates similar emotions in macro-categories and

then gradually goes towards the discrimination of specific emotions. Wang

et al. (2015) developed a Fourier-based feature that describes the voice qual-

ity, which alongside its first and second-order differences helps generaliza-

tion to unseen speakers. Savchenko and Savchenko (2021) propose to fine

tune SER classifier for specific speakers and select the classifier to use with a

speaker recognition system. Liu et al. (2019a) use a combination of convolu-

tional neutral networks, attention-based bidirectional long short-term mem-

ory network and multiple linear support vector machines. Wang et al. (2020)

developed a feature extraction strategy based on wavelet packet coefficient

features. Lu et al. (2022) apply a multi-source unsupervised domain adapta-

tion strategy to learn emotional features independent from their domain, in

this case intended as the speaker identity. Instead Li et al. (2020a) achieve a

similar disentangled emotion representation through an adversarial training

network based on a gradient reversal technique with an entropy loss function

that remove such speaker information.
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2.2.1 Scale Invariance

Scale-invariance in convolutional neural networks has been addressed in a

number of ways. The most common approach for audio by far is data aug-

mentation (Salamon and Bello, 2017a; McFee, Humphrey, and Bello, 2015),

which is frequently done by generating time-stretched variants of the train-

ing data. This procedure is usually part of a pipeline of different transforma-

tions, as in Schlüter and Grill (2015), which has proven effective in various

tasks. However, in this approach the different scales in the data need to be

learned by different filters in the network. Therefore, greater network capac-

ity is required and there is no guarantee that scale-invariance is consistently

achieved .

Another strategy for scale-invariance in neural networks is to design it

into the training and inference methods, so that it is applied consistently and

without the need for additional training examples. There are many existing

approaches to achieve this and the majority of them use a pyramidal struc-

ture, in which the scale is progressively narrowed along the network. Dalal

and Triggs (2005), Felzenszwalb et al. (2009), and Sermanet et al. (2013) use

parallel models trained with images at descending resolutions and then com-

bine the obtained predictions as an ensemble model. Szegedy et al. (2015)

achieve scale invariance with multiple loss functions, separately computed

in layers with different resolutions within the network. Inception networks

(Szegedy et al., 2017; Szegedy et al., 2015; Szegedy et al., 2016) use parallel

convolution layers with different filter sizes, matching features at different

scales, but also increasing the number of variables in the network. While a

variation of the latter approach relies on merging by summation or concate-

nation the features produced by the different re-scaled branches of a con-

volution layer (Long, Shelhamer, and Darrell, 2015; Hariharan et al., 2015;

Kong et al., 2016; Liu, Rabinovich, and Berg, 2015; Bell et al., 2016). Wang



20 Chapter 2. Literature Review

et al. (2019a) propose a convolutional architecture, in which a scaling factor

is learned by the network for every layer.

The majority of studies of scale-invariance in neural networks is focused

on computer vision tasks. In the acoustic domain, in addition to data aug-

mentation techniques (Schlüter and Grill, 2015), scale-invariance can also be

addressed through specific hard-coded transforms (Marchand and Peeters,

2016a) that are robust to some extent to scale variations. Nevertheless, since

they are hard-coded, these methods need manual intervention and are usu-

ally highly task-specific, while embedding scale-invariance in the models

provides a more generic solution that can be applied to multiple domains.

The work of Zhu, Engel, and Hannun (2016) is an exception to this trend.

They show that a network with 𝑛 identically-sized filters performs worse

than a network with the same number of filters, but split in 3 different sizes.

Nevertheless, their models learn independent filters at different scales, in-

creasing the number of free parameters. This achievement encourages the

hypothesis that robustness to scale-invariance can enhance the performance

of a CNN-based audio classifier.

Sequence-to-sequence alignment is another task that benefits from scale-

invariant representation. In this domain, Time Warping is a leading tech-

nique that allows for stretching and compressing the time axis of sequences

to find the optimal alignment that minimizes a defined distance metric be-

tween corresponding points (Putri and Lestari, 2015). This in turn permits to

make predictions that are robust to temporal distortions and fluctuation, en-

hancing models’ performance on disparate tasks as automatic speech recog-

nition (Permanasari, Harahap, and Ali, 2019), time series analysis (Choi et al.,

2020) and music information retrieval (Putri and Lestari, 2015).

Locally scale-invariant convolutional neural networks, as introduced for im-

age recognition by Kanazawa, Sharma, and Jacobs (2014), are similar to our

multi-time-scale convolution approach that we present in Chapter 4. This
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method consists of performing feature-extraction through multiple parallel

convolution layers, whose outputs are locally merged through max-pooling.

This produces a self-contained structure that can substitute a canonical con-

volution layer. The key feature of their approach is the possibility of match-

ing a feature at multiple scales without increasing the number of free vari-

ables in the network. It permits introducing several re-scaled parallel branches

at different points in the network, providing higher flexibility then pyrami-

dal architectures.

2.3 Task-Specific Invariance

2.3.1 Selective Representation Transfer

Transfer learning has been used with neural networks for a long time and

in many different applications (Caruana, 1995; Bengio, 2012; Hamel et al.,

2013; Shin et al., 2016; Tan et al., 2018a). Pretraining models has become stan-

dard practice in image classification and related tasks (Studer et al., 2019;

Xie and Richmond, 2018; Han et al., 2018) and pretrained language models

have become a common starting point in NLP (Qiu et al., 2020b). The trans-

fer of knowledge from a trained network to a new task by re-using weights

of a layer has been developed early on (Pratt, 1992; Gutstein, Fuentes, and

Freudenthal, 2007).

The work of Gatys, Ecker, and Bethge (2016) on image style transfer is

fundamental for the transfer of selective representations in neural networks.

Based on the assumption that features become increasingly task-specific to-

wards the last layer of a network (Yosinski et al., 2014), a strategy was de-

veloped by Gatys, Ecker, and Bethge (2016) to separate content and style

of an image and to transfer the style alone to another image. The authors

used a CNN that was pretrained on object recognition as a feature extractor
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to estimate the style-related and the content-related information of an image

in a CNN. The style of an image is represented by the Gram matrix com-

puted on the initial layers, which contains information about texture, i.e. the

co-occurrence of low-level features. The content is represented by the raw

feature maps of the final layers. During the training of the style transfer net-

work, the feature extractor separately extracts the style and the content from

two different images and compares them to the corresponding features ex-

tracted from an image that is being generated, creating two deep feature loss

values: style and content loss. The minimization of these losses promotes

the generation of an image with the style of one image and the content of the

other one. This idea received much attention in the computer vision com-

munity and has been further explored and improved (Ulyanov et al., 2016;

Dumoulin, Shlens, and Kudlur, 2017). It has also been applied in the audio

domain to audio style transfer with MelGan (Pasini, 2019), using both speech

and music sources.

2.3.2 Deep Feature Losses

Deep feature losses involve comparing the feature representations of data at

various layers of a neural network to measure their difference or similarity.

The majority of studies regarding deep feature losses is based on the idea

of encouraging a network to develop similar deep representations to a pre-

trained network in selected layers, e.g. in line with the work of Gatys, Ecker,

and Bethge (2016). These losses play a pivotal role in various machine learn-

ing tasks: by assessing the agreement of feature representations at different

layers of the network they enable models to capture semantic information

and abstract features rather than focusing on low-level discrepancies. This,

in turn, helps the models to improve the quality of the predictions or the gen-

erated content (Johnson, Alahi, and Fei-Fei, 2016; Zhang et al., 2018; Sahai,
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Weber, and McWilliams, 2019).

Deep feature losses have been used in several computer vision tasks as

texture synthesis (Gatys, Ecker, and Bethge, 2015), image super-resolution

(Johnson, Alahi, and Fei-Fei, 2016) and conditional image synthesis (Chen

and Koltun, 2017; Dosovitskiy and Brox, 2016). According to recent stud-

ies (Zhang et al., 2018; Doersch, Gupta, and Efros, 2015), deep feature losses

are highly correlated to human perceptual judgements and are well suited to

solve tasks related to semantic properties of data. Deep feature losses have

several successful applications also in the audio domain. They have been

used by Beckmann et al. (2019) to enhance the similarity between the deep

representations of two networks and therefore transferring knowledge from

one to the other, enhancing the networks’ performance in several speech pro-

cessing tasks. A deep feature loss was successfully used by Sahai, Weber,

and McWilliams (2019) to perform audio source separation, obtaining a su-

perior performance compared to spectrogram-based loss. Kegler, Beckmann,

and Cernak (2019) applied the same conceptual idea to speech enhancement,

language identification, speech, noise and music classification, and speaker

identification.

2.3.3 Feature Diversity

Minimizing feature similarity has been shown earlier to improve robustness

and generalization. In the context of ensemble models, Yao and Liu (2004)

minimized mutual information between neural networks. More recently, the

minimum hyperspherical energy (MHE) regularization was introduced by

Liu et al. (2018) and applied to audio source separation by Perez-Lapillo,

Galkin, and Weyde (2020). MHE encourages diverse weight vectors within a

network to improve generalization, but it differs from our approach since we

encourage dissimilarity of feature maps and with respect to another model.
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2.3.4 Domain-Invariant Feature Learning

A common use case for transfer learning is domain adaptation, e.g. to dif-

ferent recording equipment or environments, and a common approach is to

maximize the feature invariance to the domain of the data. Mutual Informa-

tion Minimization is used in Wang, Liu, and Wang (2019) to extract features

independent from the domain of the data points by maximizing the feature

invariance to their domain indicator. In Domain Adversarial Training (DAT)

(Ganin et al., 2016), a gradient reversal layer is introduced to maximize the

loss on domain identification while minimizing the classification loss. A sim-

ilar approach, but with a Siamese architecture, is introduced in Motiian et

al. (2017). In Tzeng et al. (2017), a more general framework is presented,

including generative adversarial approaches, that is also applied in domain

adaptation for acoustic scene classification using unlabeled data for the target

domain (Drossos, Magron, and Virtanen, 2019). Lu et al. (2022) apply a multi-

source unsupervised domain adaptation strategy to a speaker-independent

SER task. They achieve a multi-domainin variant representation of emotional

speech through the use of a a hierarchical alignment layer in the network’s

feature extractor combined with the use of multiple discriminators that con-

fuse the speaker information of emotion features.

Another approach to domain-invariant feature learning is contrastive learn-

ing. This self-supervised technique focuses on learning representations that

are invariant to variations within the same domain while emphasizing dif-

ferences between different data samples. By optimizing the model to distin-

guish between similar and dissimilar samples, contrastive learning can help

the model capture meaningful features that are robust to intra-domain vari-

ability (Jaiswal et al., 2020; Le-Khac, Healy, and Smeaton, 2020). Among

others, Zbontar et al. (2021) propose a unique loss function that encourages

learned representations to be both highly informative and decorrelated. This
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loss function enhances the quality of learned representations by minimiz-

ing redundancy while maximizing the captured information. Li et al. (2021)

train models to predict future elements in a sequence while distinguishing

them from negative samples (contrastive predictive coding), demonstrating

the potential of contrastive learning techniques to enhance SER outcomes

even in data-constrained scenarios. Contrastive learning for SER tasks has

been also proposed by Alaparthi et al. (2022), applying this principle to trans-

former networks.

Temporal management can reinforce domain-invariant feature learning in

various ways. Among others, Techniques like cycle-consistency (Wang, Liu,

and Wang, 2019) and multi-domain prediction (Lei et al., 2021) encourage

models to capture common temporal dynamics by incorporating domain-

agnostic temporal representations and attention mechanisms, shifting net-

work’s focus towards features that transcend domain-specific temporal vari-

ations.

2.3.5 Causal Frameworks

A different way to obtain invariance towards the data domain is causal mod-

elling that is aimed at understanding the mechanism by which changes in

one variable influence changes in another. In practice, it involves consid-

ering and accounting for confounding factors that might lead to erroneous

predictions due to spurious correlation between the cause (target) and the ef-

fect (observed data), where a feature is considered as spurious when it is not

stable and does not hold on different data domains or distributions (Wood-

ward, 2005).

While Neural Networks are excellent in finding statistical correlations be-

tween input features and target outcomes, these correlations do not neces-

sarily imply a causal relationship (Kilbertus, Parascandolo, and Schölkopf,
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2018). Causal frameworks focus on learning causal relationships and uncov-

ering underlying mechanisms in data, rather than merely spurious surface

correlations that might be present in data. This in turn involves identify-

ing which properties of the analyzed data describe spurious correlations and

which properties instead represent the phenomenon by investigating. In this

context, an approach that is particularly relevant to our work is Invariant

Risk Minimization (IRM) (Arjovsky et al., 2019). IRM focuses on learning

representations that are domain invariant by minimizing the prediction risk

across multiple related domains, referred to as environmants. This permits

to exploit domain-specific causal knowledge about confounding factors that

affect both the source and target domains to guide the selection of invariant

features that account for these confounders and lead to better cross-domain

generalization.

2.3.6 Disentanglement

The representation of independent properties of objects or processes has been

recently explored in the literature and is usually referred to as disentanglement

(Hung, Chen, and Yang, 2018; Chou et al., 2018; Nagrani et al., 2020; Lee et al.,

2020). Methods for achieving disentanglement include adversarial training

(Oldfield, Panagakis, and Nicolaou, 2019) or specific architectures, such as

partitioned or factorized variational autoencoders (Li and Mandt, 2018; Hsu

and Glass, 2018). Anti-transfer, the approach that we present in Chapter 5,

can be considered a special case of disentanglement, aiming at the invariance

to the internal representations of distinct orthogonal models.
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2.4 Speech Emotion Recognition Models Optimiza-

tion

2.4.1 Data Scarcity

A well-established solution to overcome the data scarcity in SER is transfer

learning by weight initialization: network weights are initialized with values

from a network that was pretrained with a different task, possibly on a differ-

ent (usually large) dataset. Many variants of this method have been shown to

improve the performance of SER models in limited-data scenarios and even

when the task is rather distant from speech emotion (Macary et al., 2021;

Pepino, Riera, and Ferrer, 2021; Guizzo, Weyde, and Tarroni, 2021). Also,

various data augmentation strategies have been successfully adopted for the

same purpose, e.g. Padi, Manocha, and Sriram (2020) and Shilandari, Marvi,

and Khosravi (2022). On the other hand, the application of dimensionality

reduction transformations to the model’s input data is an established strat-

egy for reducing resource demands while limiting the loss of useful infor-

mation carried by the input data. Among others, autoencoders, PCA-based

approaches, and transformer networks have been used in the field of SER

(Fewzee and Karray, 2012; Patel, Patel, and Mankad, 2021; Pepino, Riera,

and Ferrer, 2021), obtaining improvement both in the model’s efficiency and

classification accuracy.

2.4.2 Model Efficiency

Various techniques have emerged to enhance neural networks model effi-

ciency without compromising performance. Among many others, Quan-

tization reduces the precision of model parameters, compressing them to

lower bit-widths. This minimizes memory and computation requirements,

enhancing the model’s suitability for edge devices. (Han, Mao, and Dally,
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2015). Another relevant technique is pruning, involving removing unneces-

sary connections or neurons from a neural network. This process reduces

model complexity, accelerates inference, and often improves generalization

(Blalock et al., 2020). The pruning process can also be guided and opti-

mized through knowledge-based localization of the relevant information,

as in Balemans et al. (2020). However, aggressive quantization and prun-

ing might adversely affect the model’s performance (Han, Mao, and Dally,

2015; Blalock et al., 2020). Teacher-student methods transfer knowledge from

a larger, more complex model (teacher) to a smaller, more efficient model

(student). This technique optimizes the student’s performance while signif-

icantly reducing model size (Meng et al., 2019). Another relevant branch of

techniques is based on the lottery ticket hypothesis, which posits that within

large neural networks, there exist "winning tickets", that are smaller subnet-

works that, when trained in isolation, can achieve comparable performance.

Identifying these subnetworks enables efficient model training, as Frankle

and Carbin (2018) demonstrated. A further successful approach towards

model’s efficiency consists of decomposing layers of a neural network into

low-rank matrices reduces the number of parameters, accelerating compu-

tations. This technique balances efficiency gains with accuracy preservation

(Sainath et al., 2013). Dynamic computation a further relevant method which

is based on adapting the model’s computation complexity based on input

data. In this context, MobileNets (Howard et al., 2017) introduce depth-wise

convolutions, reducing computations for specific layers, dynamic-depth net-

works (Sun, Li, and Xu, 2022) adapt the depth (number of layers) of a neural

network based on the complexity of the input data, while sparse activation

strategies use only a subset of neurons based on the input data characteristics

(Glorot, Bordes, and Bengio, 2011). Temporal management can be exploited

to boost model efficiency by strategically processing time-dependent data.

By identifying and capitalizing on key temporal patterns, models can reduce
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redundant computations, focus on critical moments, and optimize memory

usage. Techniques like multi-source features down-sampling (Tzinis, Wang,

and Smaragdis, 2020) or temporal attention (Tan et al., 2023) can extract rel-

evant information, streamlining computations. Leveraging temporal depen-

dencies allows for more informed resource allocation, resulting in faster in-

ference and reduced computational overhead, thus enhancing overall model

efficiency.

2.4.3 Quaternion Information Processing

A recent and increasingly popular strategy to improve the efficiency and the

performance of deep learning models is the use of quaternion information

processing (Tay et al., 2019; Grassucci, Comminiello, and Uncini, 2021; Gras-

succi, Cicero, and Comminiello, 2022; Grassucci, Zhang, and Comminiello,

2021; Greenblatt and Agaian, 2018; Parcollet et al., 2018; Muppidi and Radfar,

2021).

Quaternion algebra is a branch of abstract algebra that deals with the

mathematical properties and operations involving quaternions (please re-

fer to Appendix 8.3 for the mathematical details. Quaternions are a spe-

cific type of mathematical object that extends the concept of complex num-

bers into four dimensions, as introduced by the Irish mathematician William

Rowan Hamilton in the mid-19th century. Quaternion neural networks per-

form operations based on quaternion algebra. In quaternion layers input

and weights matrices are treated as quaternion entities and Real-valued op-

erations are substituted with quaternion-valued. These operations include

quaternion multiplication (or Hamilton product), addition, and other spe-

cialized operations specific to quaternions. The most important difference

with real-valued layers is that the dot product is substituted by Hamilton

product, which has the same output shape of a real-valued equivalent one
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but has less degrees of freedom, specifically using one quarter of the train-

able parameters (see Appendix A for further details) (Tay et al., 2019).

Performing operations in the quaternion domain permits to take advantage

of intra-channel correlations in multi-channel signals (Bulow and Sommer,

2001; Mandic, Jahanchahi, and Took, 2010), i.e., among the color channels of

RGB-encoded images. Quaternion-valued neural networks have also been

successfully adopted in the audio domain (Comminiello et al., 2019b; Com-

miniello et al., 2019a; Qiu et al., 2020a; Muppidi and Radfar, 2021) and specifi-

cally for speech recognition (Parcollet et al., 2018) and speech emotion recog-

nition (Muppidi and Radfar, 2021). Nevertheless, an intrinsic limitation of

quaternion information processing is that it requires three or four-dimensional

data as input, where intra-channel correlations exist (Greenblatt and Aga-

ian, 2018; Grassucci, Comminiello, and Uncini, 2021; Grassucci, Zhang, and

Comminiello, 2021; Grassucci, Cicero, and Comminiello, 2022). This is nec-

essary to enable the benefits derived from the use of the Hamilton product

instead of the regular dot product, as further discussed in Section A. In the

audio domain, first-order Ambisonics (Furness, 1990) signals are naturally

suited for a quaternion representation, being four-dimensional and present-

ing strong correlations among the spatial channels, and the application of

quaternion networks to problems related to this audio format has already

been extensively investigated (Comminiello et al., 2019a; Qiu et al., 2020a;

Brignone et al., 2022; Grassucci et al., 2023). Nevertheless, in the vast ma-

jority of cases, audio-related machine-learning tasks deal with monaural sig-

nals, which are usually treated as vectors of scalars (time-domain signals),

matrices of scalars (magnitude spectrograms), or 3D tensors (complex spec-

trograms). Hence they can not be naturally represented as a quaternion en-

tity and additional processing is required to produce a suitable quaternion

representation of these signals.
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2.4.4 Quaternion Representations from Real-Valued Data

A number of different approaches have been proposed to overcome the ne-

cessity of having three or four-dimensional input data with intra-channel

correlations. Among others, Parcollet et al. (2018) use Mel spectrograms,

cepstral coefficients, and first and second-order derivatives as the four axes

of the encoded quaternion. In contrast, Muppidi and Radfar (2021) convert

Mel spectrograms to color-scaled images and use the RGB channels as axes

of the encoded quaternion, following a computer vision-oriented approach.

Parcollet et al. (2019) presented two learning-based approaches to map real-

valued vectors into the quaternion domain, by producing through a network

four-channel representations of the input data that present meaningful intra-

channel correlations. On the one hand, the Real to H-space encoder Parcollet

et al. (2019), applied to speech recognition tasks, consists of a simple real-

valued dense layer applied at the beginning of a quaternion classifier net-

work, which is trained jointly with the classifier. On the other hand, the Real

to H-space Autoencoder, tested in the natural language processing field (con-

versation theme identification) (Parcollet et al., 2019) operates in an unsuper-

vised way. Such a method contains a real-valued encoder and a quaternion-

valued decoder, where the latter is expected to enable both the network’s em-

beddings and output to present meaningful intra-channel correlations that

can be exploited by a quaternion-valued classifier network.
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Chapter 3

Preliminary Study on a

Context-Independent Scenario

This Chapter includes an adapted version of Conference Paper 2 (see sec-

tion 1.5) and extends it with additional results and discussions.

In the first stage of our work we participated to the above-mentioned

OMG-Empathy Prediction Challenge 2018 alongside with researchers from AI

team of Telefonica Alpha, Barcelona.

This challenge represents the starting point of all other studies present

in this dissertation. While developing our challenge solution, we found that

speaker/context independence and high resource demand of models are fun-

damental problems to solve for successful real-world applications of SER.

Based on this, we decided after the challenge to dedicate my entire PhD to

explore ways to address these problems and we defined the research ques-

tions of this dissertation accordingly.

The OMG Challenge setup is configured as a context-independent SER

scenario, as the models’ performance is tested on an unseen vocabulary, but

spoken by known actors. Here SER models are expected to develop a certain

degree of invariance towards the vocabulary used by the speakers and gener-

alize towards new words that are unseen in the training and validations set.

Our solution is based on the processing of multiple different data streams, as
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further explained below, but I have mainly worked on the part that concerns

the audio information.

This Chapter, together with Chapter 4, addresses the second Research

Question.

3.1 Introduction

We propose a system that separately processes multiple data streams (modal-

ities) which are integrated at a late stage, so-called late fusion. The motiva-

tions for this modular approach are ease of development, enabling different

parts of the team to separately optimize the processing of different modal-

ities, and future extensibility, facilitating the integration of additional data

streams in future iterations of our system.

The given dataset is composed of audio/visual recordings of dialog ses-

sions with 2 actors each, discussing about 8 different topics:

• Talking about a childhood friend.

• How I started a band.

• My relation with my dog.

• I had a bad flight experience.

• I had an adventurous travelling experience.

• I cheated on an exam when I was younger.

• I won a martial arts challenge.

• I ate a very bad food item.

In Appendix A the reader can find an example transcription of a con-

versation extracted from this dataset. In every recording an actor leads on a
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semi-scripted plot on one topic, while a listener freely interacts with the actor.

10 listeners and 4 actors in total participated to the recording of this dataset.

A total of 80 recorded sessions is present in the dataset, that is 10 for every

topic. In the set of 10 sessions of a topic, every session is recorded by a differ-

ent listener. While each conductor recorded all sessions of 2 different topics,

that is 20 sessions each. The average duration of each session is around 5’12",

while the total duration of the dataset is around 512 minutes (approximately

7 hours). Every session is emotionally labelled with a continuous valence

measure. This labelling was produced by self assessment of the same listen-

ers that recorded the videos, who re-analyzed their sessions moving in real

time a joystick to annotate how they felt in terms of valence using a contin-

uous scale ranging from positive (1) to negative (-1) values. This continuous

measure is quantized every video frame, so that 25 measures per second are

given. The dataset is split topic-wise, providing for a context-independent

scenario. In particular, 4 topics as training, 1 topic as validation and 3 topics

as test set.

The main task of this challenge is to perform a continuous valence pre-

diction over time, which in this context is referred as empathy of the listener

with respect to the actor. The performance of a model is measured through

the Concordance Correlation Coefficient (CCC) computed between the model’s

prediction and the actual valence created by the listeners. It is important to

note that the test predictions are performed in a context (topic) unseen during

the training. The main task is divided in 2 sub-tasks:

• Personalized Empathy Track: This modality takes into account the indi-

vidual behavior of each subject in the training data, measuring the abil-

ity of proposed models to learn the empathetic behavior of each of the

listeners over a newly perceived story.

• General Empathy Track: This modality takes into account the aggregated
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FIGURE 3.1: Schematic view of the whole system.

behavior of all the participants for each story, measuring the ability

of proposed models to generalize the global empathetic behavior in a

newly perceived story.

3.2 Methods

We integrate three different modalities (further broken down into five data

streams) in the prediction of the valence ratings of the videos. These modali-

ties are:

• Image information directly extracted from the videos.

• Audio information directly extracted from the videos.

• Language information obtained by automatic transcription of the audio

data.

Figure 3.1 depicts a general schema of the model. Note that, in our model,

the audio and language modalities each give rise to single data stream to be

processed, whereas the image modality is further broken down into three in-

put data streams: one corresponding to the full body of the subjects, another
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one focusing on the face of the subject, and a final one that further synthesizes

specific landmarks extracted from the subjects’ faces. Note that we employ

specific architectures across the five resulting systems, which are specifically

optimized, of each modality. Nevertheless, the loss function and training and

validation sets where held constant across the five sub-systems.

In all five systems, instead of using Story #1 as the validation set and all

other ones as the training set (as was suggested by the instructions), we chose

instead to use Story #2 as our validation set and the remaining ones as our

training set. The reason for this is that we found the statistical properties of

Story #1 to be rather unrepresentative of the stories in the original training

set. In particular, the main frequency at which the ratings oscillated between

positive and negative was found to differ significantly from the others.

All models where trained to minimize 1 − CCC as loss function, where

CCC is the Concordance Correlation Coefficient. For a sequence of valence pre-

dictions 𝑥 and and a sequence ground truth valences 𝑦, the CCC is defined

as:

𝐶𝐶𝐶 =
2 𝜌 𝜎𝑥 𝜎𝑦

𝜎2
𝑥 + 𝜎2

𝑦 +
(
𝜇𝑥 − 𝜇𝑦

)2 (3.1)

where 𝜎𝑖, 𝜇𝑖 refer to the means and standard deviations of the subscripted

sequences, and 𝜌 is the Pearson’s correlation coefficient between 𝑥 and 𝑦. The

CCC measure is a correlation coefficient that additionally penalizes diver-

gences in either mean of variance between the two data sequences. As we

will see below, this motivates some additional post-processing of the output

data.

We experimented with several architectures and hyperparameter values

for each module. For brevity, we present only the configurations that pro-

vided the best performance.
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3.2.1 Audio Model

This model is based on the audio information extracted from the video files.

Every audio file is preprocessed in 4 consecutive stages: pre-emphasis, seg-

mentation, Fourier transform, and normalization. In order to discard low-

frequency-noise, we first pass the signal through an 8th order Butterworth

high-pass filter with 100 Hz cut-off frequency. Then we apply an emphasis

filter based on the following equation:

𝑦(𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − 1)
3

(3.2)

where 𝑥(𝑡) is an audio sample and 𝑥(𝑡 − 1) is the preceding sample. This acts

as a gentle first order high pass filter that emphasizes the spectral range of

speech, with the upper limit of 8kHz defined by the sampling frequency of

16kHz. Every file is segmented into 8-second slices with 20% overlap. Con-

sequently, the STFT is computed for every slice using 16ms sliding windows

with 10ms overlap. This results in exactly 4 STFT frames for each valence

measure (since 1 valence every 40 milliseconds is provided). After this pro-

cess, we discard the phase information and compute the power-law com-

pression by exponentiating the spectrum magnitudes the power of 2/3 to

approximate human perception (Weninger et al., 2014). This technique is

adopted from the method of calculation of the Perceptual Linear Prediction

Coefficients (Hermansky, 1990). Finally, we normalize the spectra to zero

mean and unit standard deviation.

This neural network has a sequence-to-sequence design based on a Re-

current Neural Network. The model’s task is to predict time sequences of

200 valence samples for 8 seconds of input. First, we apply a layer of bi-

directional Gated Recurrent Units (GRU) with 250 neurons for the forward

and 250 neurons for the backward representation of the input data. Batch
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normalization and Dropout at 30% are applied to the GRUs’ output to re-

duce overfitting. Then the signal is propagated into a fully-connected layer

with 200 neurons using linear activation. We trained the model with a batch

size of 50 samples, using the ADAM optimizer (Kingma and Ba, 2014) and

applying Early Stopping. The mean CCC obtained by this model in the vali-

dation set is 0.32.

3.2.2 Language-based Model

The model for processing the linguistic input stream consists of a recurrent

network that processes the dialogue transcript, which was obtained with the

Amazon Transcribe service 1. Beyond transcription, no further textual pre-

processing is applied. The transcription results in a sequence of words, to-

gether with time-stamps indicating when each word starts and ends. Each

word spans several frames, hence more than one valence value. We address

this by associating each word to the average valence score of all the valence

scores within its span. Each word is represented as a vector of 11 dimensions,

consisting of the features extracted from two emotional lexicons (Warriner,

Kuperman, and Brysbaert, 2013; Staiano and Guerini, 2014).

An LSTM network (Hochreiter and Schmidhuber, 1997) is used to predict

a valence score after each word. The time window used (what the LSTM sees

at each step) is a window of 100 words. The hidden vectors of the LSTM are

merged with a weighted average implemented with the following attention

1https://aws.amazon.com/transcribe/

https://aws.amazon.com/transcribe/
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module as in Yang et al. (2016):

𝑧𝑖 = 𝑤𝑎ℎ𝑖 + 𝑏𝑎

𝛼𝑖 =
𝑒𝑧𝑖∑𝑁
𝑗=1 𝑒

𝑧 𝑗

𝑠 =

𝑁∑︁
𝑗=1

𝛼 𝑗ℎ 𝑗

where ℎ𝑖 ∈ R𝑑 is the hidden representation of the LSTM corresponding to the

𝑖th word, with 𝑁 the total number of words in the window. The weight vector

𝑤𝑎 ∈ R𝑑 and bias term 𝑏𝑎 ∈ R map this hidden representation to a value

that reflects the importance of this state for final valence. The values 𝑧1, ..., 𝑧𝑛

are then normalized using a softmax function, yielding the attention weights

𝛼𝑖. The word sequence representation 𝑠 (at each time frame) is defined as a

weighted average of the vectors ℎ𝑖.

For each input also the listener subject information is given in the input

to the network, since the story transcript can be very similar across videos,

but the labeling can be highly different depending on the subject. The subject

feature is implemented as a trainable vector of size two (one vector for each

of the 10 subjects).

Finally, vector 𝑠, computed with the attention module, is concatenated

with the subject vector, and a final analogous transformation is used to shrink

the concatenated vector to one dimension (the final valence prediction of the

model). This module achieves an average CCC of 0.32 across the validation

set.

3.2.3 Vision Model

The visual model includes features extracted from the subjects who were lis-

tening to the story. Visual features are extracted from the face only, in order

to capture facial expressions, but also from the whole body, in order to model
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the subject body reactions to the story (i.e. posture and gestures). This leads

to three modules for vision as follows.

(A) Raw face. (B) Landmarks.

(C) Full body.

FIGURE 3.2: Vision data examples.

Raw Face

This module is dedicated to the prediction of valence from the subject’s fa-

cial expression. It takes into account both the temporal evolution of the data

and a subject feature vector. The cropped face images are obtained using the

preprocessing script provided on the competition repository2, using a tem-

poral resolution of 10 frames for the face detection algorithm (Figure 3.2a).

The obtained crops are subsequently turned to grey-scale, downsampled to

a resolution of 48x48 pixels and normalized to have zero mean and unit stan-

dard deviation. The images are further organized with a 10 frame sliding

window to obtain samples of shape 10x48x48. Each sample is matched with

the valence label corresponding to the 10th frame. To predict valence from

sequences of faces we use a neural network architecture composed of one 3

dimensional convolutional block of output shape 32 (two 3D convolutional

2https://github.com/knowledgetechnologyuhh/OMGEmpathyChallenge

https://github.com/knowledgetechnologyuhh/OMGEmpathyChallenge
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layers with kernel size 3x3x3 and ReLU activation followed by a max-pooling

layer and batch normalization) followed by a second 3D convolutional block

of output shape 64. In addition we provide a subject feature vector encoding

information about the subject and implemented as a trainable vector of size

three (one vector for each of the 10 subjects), as in the text model. The con-

catenated layer is finally mapped to a fully connected ReLU layer of size 128,

followed by a fully connected ReLU layer of size 32 and a single unit with

linear activation. The network is trained with a batch size of 64 samples, us-

ing the ADAM optimizer. This module achieves a mean CCC of 0.14 on the

validation set.

Face Landmarks

This module is dedicated to the prediction of valence from features extracted

from image data, taking into account their temporal evolution. The data

preprocessing consists of a facial landmark detection, performed frame-by-

frame using the dlib library (King, 2009). We detect 68 landmarks points per

frame on the subjects face, as shown in Figure 3.2b. Each point is defined

by its (𝑥, 𝑦) coordinates. This characterizes each video with 136 time series

describing the temporal evolution of the landmarks points. Each time series

is subsequently processed to have zero mean and unit standard deviation.

The time series are further organized into 25 frames sliding sequences so to

obtain samples of shape 25x136. Each sample is matched with the valence

label corresponding to the 25th frame. For the first 25 frames, we perform

constant-value padding. To predict valence, we use the 25-sample-long time

series as inputs for a 1D Convolutional Neural Network architecture, com-

posed of a first convolutional layer with 100 kernels, followed by a batch

normalization layer and a convolutional block of three convolutional layers

with 100, 160, and 160 kernels respectively. A 1D global average pooling is

then applied, followed by a Fully Connected layer of size 32 that is mapped
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to a single unit with linear activation. All the layers - except for the output

layer - have ReLU activation functions, and a kernel size of 4. The network

is trained with a batch size of 512 samples, using the ADAM optimizer. This

module achieves a 0.12 CCC on the validation set.

Full-Body

This module is dedicated to predicting valence ratings out of full body sub-

ject images and it takes into account the sequential nature of the dataset.

The full-body crop images are obtained using a preprocessing script that ap-

plies a cropping box manually selected to capture the position of the subject.

An example is shown in Figure 3.2c. The obtained crops are then turned to

grey-scale, downsampled to a resolution of 128x128 pixels and normalized

by subtracting the mean and dividing by the standard deviation. Further the

images are organized into 16 frame sliding windows so to obtain samples

of shape 16x128x128 and each sample matched with the label correspond-

ing to the 16th frame. Note that in the final setup the video sequences and

respective labels are downsampled by a factor of 5 in order to expand the

temporal window to approx. 3 seconds while maintaining a fixed sample

shape. To predict valence ratings from full body video snippets we use a

neural network architecture based on a version of the ResNet 16 (He et al.,

2016) architecture adapted to 3-dimensional data 3. This architecture was

further modified for regression by replacing the last 3 fully connected ReLU

layers with a 512 unit layer connected to a 32 unit layer followed by a single

unit output. The network is trained with a batch size of 128 samples, us-

ing the ADAM optimizer. This module achieves a mean CCC of 0.31 on the

validation set.
3https://github.com/JihongJu/keras-resnet3d

https://github.com/JihongJu/keras-resnet3d
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3.2.4 Postprocessing & Multimodal Integration

The predictions from each module are post-processed using a first order But-

terworth low-pass filter and different cutoff frequencies adjusted for each

individual module, ranging from 0.004 to 0.01 Hz. The filtered predictions 𝑥

are then re-centered and re-scaled so that they match the training set in terms

of per-subject means and standard deviations. This is a relatively ad-hoc pro-

cedure designed to optimize CCCs, under the assumption that the mean and

standard deviations of the ground truth valences in the training set provide

an approximation of those in the testing and validation sets.

Our best final predictions were obtained with a weighted average of the

post-processed predictions of the single models. We set the weights approx-

imately proportional to the CCC validation score of each modality. Audio,

Text and Fullbody have similar performances, hence same weights (0.29),

while the weights of Landmarks and Rawface are respectively 0.1 and 0.03.

The average predictions are then filtered using a Butterworth low-pass filter

of order 1 and cutoff frequency 0.01 Hz.

3.3 Results and Discussion

Figure 3.3 plots the predictions of the five different input streams and final

integrated signal for Story #2 (validation) for Subjects 7 and 3 (the worst

and best performing, respectively). In addition to this, we included a tran-

scription of Story #2 and a link to its recorded video in Appendix A We ob-

served that accurate predictions are associated with low disagreement across

modules. Some models performed in average better than others, but the

weighting scheme roughly proportional to the prediction accuracy of each

input stream provided optimal results. This simple multimodal integration

method performed less effectively in situations of perceptual ambiguity, where

different modules predicted different, sometimes opposite, estimations.



3.3. Results and Discussion 45

In the final evaluation results, our model’s performance varied substan-

tially across subjects and stories as is shown in Table 3.1. Performance was

very good on Stories #3 and #6, but very poor on Story #7. Similarly, for two

out of ten subjects the average CCC is negative, while for the rest the average

CCC ranges from 0.09 up to 0.34.

As we indicated in the introduction, our system should be taken as a first

approximation to a multimodal integration system. Although we have spent

considerable time and effort in optimizing the valence predictions from the

individual input streams, we believe there is yet much space for improving

the method of integrating the predictions across modalities and modules. For

instance, the weighted average we have used, could probably be improved

upon by more sophisticated machine learning models (although our initial

experiments failed to achieve this). Nevertheless, our work on this system

has provided us with some valuable insights.

The first of this concerns the nature of the ground truth data themselves.

As we have been training systems to try to match exactly the ground truth

(and therefore optimize the CCC), we noticed that these data contain a large

amount of high-frequency components The values oscillate between positive

and negative several times within a few hundred milliseconds, which we

suspect to be not solely reflective of emotional responses from the user, but

caused by the input method. A more rigorous way of addressing this effect

may help to estimate emotions better and may make the machine learning

more effective.

Our second conclusion concerns the overall shape of the curves. We

found that when the training data have similar overall shapes and the neu-

ral networks do worse when that shape changes. This suggest that time-

warping procedures for training data enrichment might be useful to ensure

that the systems generalize better.
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Overall, the results show that the prediction of emphatic emotional reac-

tions is still a challenging task that deserves further investigation.

(A) Story #2, subject 7 (lowest CCC results).

(B) Story #2, subject 3 (highest CCC result).

FIGURE 3.3: Example predictions: speech is for the audio mod-
ule, lexicons for the language module, gt for the ground truth

data and average for the overall prediction.

3.3.1 Additional Results

Our ensemble model provides a test CCC of 0.17 for both sub-tasks, sur-

passing the other participants by 0.03. We consequently won this challenge4.

Table 3.2 shows the full challenge results with the average CCC obtained by

all teams for the two challenge tracks, nevertheless not all teams submitted a

4Results are published at this link: https://www2.informatik.uni-hamburg.de/wtm/
omgchallenges/omg_empathy2018_results2018.html

https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_empathy2018_results2018.html
https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_empathy2018_results2018.html
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Subject Story Subj. Avg3 6 7
1 0.43 0.62 -0.03 0.34
2 0.28 0.22 0.00 0.17
3 0.18 0.57 0.09 0.28
4 -0.11 0.62 0.04 0.18
5 0.09 0.86 -0.05 0.30
6 0.09 0.47 0.09 0.22
7 0.11 0.36 -0.21 0.09
8 0.16 -0.22 -0.01 -0.02
9 -0.11 0.11 -0.22 -0.07

10 0.08 0.66 0.09 0.27
Story Avg 0.12 0.43 0.02 0.17

TABLE 3.1: Experimental results on the test set. Final results of
Personalized and Generalized track are both 0.17 as the model

submitted to the two tasks was the same.

model for both. The challenge results provide valuable insights into the per-

formance of different teams, showing the efficacy of their chosen approaches

in relation to the utilized modalities. Notably, our team (Alpha-City), "USTC-

AC," and "A*STAR AI" achieved competitive 0.17 scores in "Pers. Gen." by

integrating audio, image, and text data, highlighting the potency of multi-

modal fusion. Team "Rosie" secured a score of 0.08, showcasing the potential

of audio, image, and semantic modalities. Both "Baseline" and "EIHW" teams

garnered scores of 0.06 through audio and image approaches, emphasizing

multi-modal benefits. The "Affective Bulls" team’s scores of 0.02 and 0.03 un-

derscore the complexities of emotion recognition in audio and image. Col-

lectively, these results accentuate the role of modality integration in refining

emotion recognition outcomes and the inner difficulty of predicting human

emotional behavior in a continuous time-varying setup.

We also separately computed 19 test CCC given by the sole audio model,

obtaining an average of 0.08. The CCC we obtained is overall noticeably low,
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TABLE 3.2: OMG-Empathy 2018 Challenge results. The Per-
sonalized (Pers.) and Generalized (Gen.) tracks show the test
CCC results obtained by the best model submitted by each team
(listed in the first column). The last column indicates the modal-

ities used by the models to produce the results

Team Track Modalities
Pers. Gen.

Alpha-City 0.17 0.17 Audio+Images+Text
USTC-AC 0.14 0.14 Audio+Image+Time
A*STAR AI 0.14 0.14 Audio+Image+Text
Rosie 0.08 0.08 Audio+Image+Semantic
Baseline 0.06 0.06 Audio+Image
EIHW - 0.06 Audio+Image
Affective Bulls 0.02 0.03 Audio+Image

confirming the difficulty of Deep Learning models to generalize to new con-

texts for datasets recorded in a non-scripted (or semi-scripted) fashion. Fur-

thermore it points out the difference of human and a SOTA Deep Learning

performance in a continuous and highly detailed emotion estimation task.

3.4 Further Developments with the Audio Model

After the OMG-Empathy Prediction Challenge 2018 submission we continued

experimenting on the same dataset and tasks, but taking in consideration

only the audio information extracted from the videos. We tried several vari-

ants of our GRU-based approach. The most significant ones are:

• Simplifying the network’s task, splitting it in 3 distinct models. One

model identifies the macro trend of the valence (positive, neutral or

negative), another model predicts the slope of the valence trend and a

third model combines the outcomes of the other 2 to obtain the final

prediction.

• Optimizing the input features. We tried PCA whitening and a LSTM

based autoencoder trained on samples of the training set. These models

reduced the features dimension of the input data from 129 to 50.
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TABLE 3.3: Architecture of our best CNN model

Layer Type Depth Filter size Activation function
Convolution 20 16x12 tanh
Pooling n/a 2x2 n/a
Convolution 28 8x12 tanh
Pooling n/a 2x2 n/a
Convolution 40 5x7 tanh
Pooling n/a 2x2 n/a
Dropout at 30% n/a n/a n/a
Fully Connected 200 n/a tanh

• Concatenating handcrafted features to the input spectrograms spectro-

grams: pitch estimation, pitch salience, high frequency content, spectral

centroid.

• Concatenating the predictions of the audio model and the above men-

tioned audio features and using this new feature set as input of another

GRU-based model.

None of these variants improves the test CCC result.

After this stage, we moved to a different network design, which is a

sequence-to-sequence Convolutional Neural Network. Table 3.3 depicts the

design of this architecture. The Filter Size column is shown in the form time

x frequency. The filter dimensions in the first convolution layer are 10 ms per

unit in the time axis and 62 Hz per unit in the frequency axis. We trained and

evaluated this model in the same conditions of the audio model described

above: train / validation / test split of the dataset, pre/post-processing, and

training parameters. We obtained a test CCC of 0.16, which is 0.01 inferior

than the result we obtained with the multimodal ensemble model and 0.08

superior than the isolated GRU-based audio model.

Next, we pretrained the same CNN model on the OMG-Emotion Behavior

Dataset (Barros et al., 2018). This dataset was developed for a previous OMG

challenge and it is very similar to the one used in this work. For details,

please refer to Barros et al. (2018). From this dataset we keep only the valence



50 Chapter 3. Preliminary Study on a Context-Independent Scenario

annotations, discarding any other type of emotional information. Further-

more, we extract only the audio information from the videos and we apply

the same preprocessing described of our submission. With this dataset we

obtained a test CCC of 0.005. We expected this result to be very low, since we

did not optimize the model for this specific dataset. After this stage, we re-

trained the CNN architecture on the OMG-Empathy dataset, initializing the

model weights with the same weights of the pretrained model. In the end we

obtained a test CCC of 0.17. Therefore, with this sequence-to-sequence CNN

architecture pretrained on the OMG-Emotion Behavior dataset, we obtained

a state of the art test CCC using only audio information, comparable with the

CCC obtained with the multimodal model that our team submitted for the

challenge.

As described in the previous section, we tried to include the pitch in-

formation as input of the models, but this procedure did non improve the

test CCC of our model. Nevertheless, we believe that a certain correlation

between valence and pitch exists. Figure 3.4 shows a plot of the pitch estima-

tion versus the valence for 3 audio segments taken from the same recorded

session. We selected the fragments in order to show a possible correlation

between pitch and valence in 3 windows with a different average valence

measure. Figure 3.4a has a mean valence around 0, Figure 3.4b has a positive

mean valence and Figure 3.4c has a negative mean valence.

In these figures a certain degree of correlation is visible. First, the global

pitch trend moves towards the same direction on the valence measure. In

fact, in the neutral sample the mean valence is -0.13 and the mean pitch is

186.3 Hz, in the positive sample the mean valence is 0.43 and the mean pitch

is 230.9 Hz and in the negative sample the mean valence is -0.39 and the

mean pitch is 177.9. In these examples a positive valence is associated to a

higher pitch on average compared to a neutral state, while a negative valence

is associated to a lower pitch on average. Furthermore, in certain regions of
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valence transition a certain degree of analogy with the pitch trend is visible.

In particular:

• Neutral sample: increasing between frames 300 and 400 and decreasing

between frames 550 and 700.

• Negative sample: decreasing between frames 3900 and 400, increasing

between frames 4050 and 4100 .

• Positive sample: decreasing between frames 6150 and 6230, increasing

around frame 6250.

These examples suggest that the use of pitch information may have a poten-

tially positive impact in the performance of SER classifiers.

(A) Neutral valence (B) Negative valence

(C) Positive valence

FIGURE 3.4: Plot of pitch vs. valence in audio segments of the
same recording session
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3.5 Conclusions and remarks

In this Chapter we introduced a preliminary study on a context-independent

SER scenario, presenting a solution to the OMG-Empathy Prediction Challenge

2018. We opted for a multimodal approach that processes independently

audio, image and language information extracted from the original videos.

Our solution ranked first, obtaining a CCC of 0.17.

As concerns audio-based SER, in this preliminary research stage we have

not developed a novel technique. During the development of our solution,

we experimented with standard deep learning architectures, focusing on try-

ing different combinations of networks and fine tuning them to obtain the

best possible results. However, this work has been fundamental to under-

stand that context and speaker independence, as well as the generally high

resource demand of models, are fundamental problems of SER. This encour-

aged us to further explore this field, aiming at finding novel ways to address

the aforementioned problems and consequently defining the research ques-

tions of this dissertation.

Since the continuous valence prediction over time is not a common ap-

proach to SER, from here onward we decided to move to non-continuous

SER classification problems. This permits to take advantage of different and

more commonly used datasets, to compare our outcomes with existing works

and results and to have more data to train and test our models.
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Chapter 4

Improving Speaker-Independence:

Multi-Time-Scale Modelling

This Chapter includes an adapted version of Conference Paper 3 (see sec-

tion 1.5) and extends it with additional results and discussions.

In this stage, we focus on a speaker-independent SER scenario. Here mod-

els are expected to develop a certain degree of invariance to the speech style

of speakers and generalize towards persons unseen in the training and vali-

dations set. We propose an approach that is based on a simple idea: the same

words and sentences can be pronounced at different speeds, according to the

speech style of a person, their cultural background and the context. Nev-

ertheless, it is intuitive that also the emotion can depend to some extent on

the speed of speech, for instance a calm utterance is likely to be pronounced

slower, compared to the same utterance in an angry context. We hypothe-

size that resilience to a limited amount of speed fluctuations can help models

generalize to unseen speakers, making the learnt features more robust to lo-

cal dilation and compression on the time axis that can be due to the specific

speech style of a person, rather than to the expressed emotion.

This Chapter, together with Chapter 3 addresses the second Research

Question of this dissertation.
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4.1 Introduction

To address the above-mentioned task and potentially other problems we in-

troduce a Multiple-Time-Scale (MTS) Convolutional Neural Network archi-

tecture to create flexibility towards temporal variations when analyzing time-

frequency representations of audio data, without augmenting the number of

trainable parameters compared to standard convolution layers.

Convolutional Neural Networks (CNNs) have been extremely successful

in recent years in a number of audio processing tasks, such as source separa-

tion, audio denoising, speech enhancement, speech and music transcription

(Chandna et al., 2017; Jansson et al., 2017; Fu, Tsao, and Lu, 2016; Palaz,

Collobert, et al., 2015; Zhao et al., 2015; Bittner et al., 2017). CNNs have also

been extensively adopted for speech emotion recognition (SER) (Huang et al.,

2014; Badshah et al., 2017; Mao et al., 2014; Trigeorgis et al., 2016; Lim, Jang,

and Lee, 2016). Convolutional networks benefit from translation invariance

of the processing on the time and frequency axis of a spectrogram or other

time-frequency representations. However, in speech there are also variations

in the speed of articulation between speakers and even of the same speaker in

different situations. Therefore, allowing for matching the same kernel in mul-

tiple versions that are scaled differently on the time axis is the main idea in

this work. We implement this in a self-contained layer architecture, the multi-

time-scale (MTS) convolution layer, which increases the temporal flexibility

in our networks compared to standard CNNs without increasing the number

of model parameters. Separate treatment of dimensions is useful for speech

processing with time-frequency representations, as opposed to image pro-

cessing, where scaling is normally applied to both dimensions. MTS can be

therefore considered as form of Dynamic Time Warping (DTW), even though

the latter techniques are usually employed for sequence to sequence align-

ment tasks (Permanasari, Harahap, and Ali, 2019; Putri and Lestari, 2015;
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Choi et al., 2020) and we test MTS only for sequence classification.

4.2 Method

Our approach is similar to Kanazawa, Sharma, and Jacobs (2014), as intro-

duced in Section 2.2.1, but specifically adapted to the audio domain, where

we analyse 2D magnitude spectrograms of speech audio. Since the time and

frequency dimensions are of different nature in this representation, we treat

them independently. Here, we focus on SER and address only time-scaling,

while image processing techniques apply re-scaling to both dimensions with

the same factor.

The core of our architecture is the multi-time-scale convolution layer (MTS),

a custom 2D-convolution layer that can replace a standard convolution layer

in a CNN design. The main feature of MTS is that it uses multiple versions of

the learned kernel that are re-sampled on the time axis and performs parallel

convolutions with them. This method enables the network to detect patterns

at multiple time scales.

Figure 4.1 shows the architecture of one MTS layer with 3 parallel branches.

In this example, the 2D spectrogram input, is convolved in parallel with the

original kernel (in the center) and 2 time-stretched versions of the kernel (on

both sides). The latter are generated by re-sampling the original kernel, ap-

plying linear interpolation. It is possible to independently apply different

scaling factors for the 2 dimensions. These parallel convolutions produce 3

different feature maps, matching the feature of the original kernel at 3 dif-

ferent time scales. After this stage, the scaled feature maps are re-sampled

again (applying linear interpolation) to match the shape of the original fea-

ture map. Then, a 3D max-pooling function is applied to merge the feature

maps, selecting the scale with the maximal result in every time-frequency

point. Therefore, the pooled feature map maintains the same dimension of
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FIGURE 4.1: Example architecture of a Multi-Time-Scale convo-
lution layer with 3 scale factors.

the feature map generated by the original kernel. During the training we

average the weights of the original kernel and its scaled versions after each

update. There is no constraint by design on the number of parallel branches

that can be added to a MTS layer and MTS layers with different numbers of

branches can be placed at various positions in the network. It is possible to

fine-tune the scaling factors layer-by-layer. This approach provides a high

degree of flexibility in the network design and enables scale invariance with-

out increasing the number of free parameters. We have implemented this

method in PyTorch and made it available as open source1.

Our method is different from Kanazawa, Sharma, and Jacobs (2014) in
1https://github.com/ericguizzo/multi_time_scale

https://github.com/ericguizzo/multi_time_scale
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that it re-scales only one dimension and that we re-sample the kernels. Al-

though re-sampling the data or kernel is equivalent in terms of results up

to numerical variations, our method is somewhat more efficient. Moreover,

Kanazawa, Sharma, and Jacobs (2014) augment test data by re-scaling. At

least for SER tasks, we believe that this practice would not give a good esti-

mate of the generalization capabilities of the models and thus we test without

augmentation.

4.3 Evaluation

We have evaluated the performance of MTS on 4 benchmark datasets for

speech emotion recognition:

1. EmoDb, a database of German emotional speech (Burkhardt et al., 2005).

10 speakers, German language, 535 utterances, 25 min of audio, 7 emo-

tion labels: angry, bored, disgusted, anxious/fearful, happy, sad. Ac-

tors pronounce 10 different sentences which could be used in everyday

communication.

2. RAVDESS, the Ryerson Audio Visual Database of Emotional Speech

and Song (Livingstone and Russo, 2018b). 24 speakers, English lan-

guage, 2542 utterances, 2:47 hours of audio, 8 emotion labels: happy,

sad, angry, fearful, surprised, disgusted, calm, neutral. Actors pro-

nounce 2 sentences: “Kids are talking by the door” and “Dogs are sit-

ting by the door”.

3. TESS, the Toronto Emotional Speech Set (Dupuis and Pichora-Fuller,

2010). 2 speakers, English language, 2800 utterances, 1:36 hours of au-

dio, 7 emotion labels: happy, sad, angry, disgusted, neutral, pleasant

surprise, fearful. Actors say “Say the word ...” followed by 200 differ-

ent words.
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4. IEMOCAP, the Interactive Emotional Dyadic Motion Capture Database

(Busso et al., 2008). 5 speakers, English language, 7529 utterances, 9:32

hours of audio, 10 emotion labels: neutral, angry, happy, excited, sad,

frustrated, fearful, surprised, disgusted, other. Actors perform impro-

visations or scripted scenarios on defined topics.

For each dataset we keep only the audio information and the emotion la-

bels, discarding any other types of data. We also discard the “song” data

from RAVDESS. IEMOCAP is the only highly inbalanced dataset, therefore

we removed the rarest labels from it, keeping only neutral, angry, happy and

sad samples. Every sound file is pre-processed in 3 consecutive stages: re-

sampling to 16 kHz, Short-Time Fourier Transform and normalization. For

EmoDb, RAVDESS and TESS datasets every file is zero-padded to obtain

equally-sized data. Since the IEMOCAP dataset contains longer recordings

we segmented them into 4-second frames with 2-second overlap. The STFT

is computed using 20 ms sliding windows with 10 ms overlap. Then, we

normalize the magnitude spectra to zero mean and unit standard deviation.

TABLE 4.1: Accuracy results for all datasets. N ist the number
of audio recordings per dataset. A1-4 are the network architec-
tures.The best results per dataset are highlighted in bold font.

Dataset N Type A1 A2 A3 A4
EmoDb 0.5k Stand. 64.3 66.26 66.91 62.75

0.5k MTS 66.5 70.97 70.68 66.28
RAVDESS 1.4k Stand. 42.09 39,84 42.56 47.41

1.4k MTS 47.85 44.95 51.32 55.85
TESS 2.8k Stand. 47.45 49.6 50.61 40.78

2.8k MTS 51.76 48.75 53.05 51.71
IEMOCAP 5.5k Stand. 48.93 50.48 49.0 54.96

5.5k MTS 49.0 50.84 49.86 55.01

We divide every dataset using approximately 70% of the data as training,

20% for validation and 10% as test set. Furthermore, we perform every exper-

iment with 4-fold cross-validation. We make sure that samples from the same

speaker appear only in the same set, in order to get a meaningful measure of
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TABLE 4.2: Best scale factors used per each dataset. Usage fac-
tors of the parallel branches (last column) relate to scaling fac-

tors in the same row.

Dataset Best scale factors Use of parallel branches
EmoDb n/a n/a

0.7, 1, 1.428 0.47, 0.05, 0.48
RAVDESS n/a n/a

0.5, 1, 2 0.45, 0.06, 0.49
TESS n/a n/a

0.5, 0.7, 1, 1.428, 2. 0.41, 0.04, 0.05, 0.07, 0.43
IEMOCAP n/a n/a

0.5, 0.7, 1, 1.428, 2 0.39, 0.04, 0.04, 0.05, 0.48

the models’ capability to generalize to new speakers, because new speakers

are likely to produce patterns at different speeds. For this reason, our results

are not directly comparable to most published results on the same datasets

computed with randomly-split training, validation and test sets as, for exam-

ple Zeng et al. (2019) and Verma and Mukhopadhyay (2016). Furthermore,

many published results rely on different preprocessing types (Shegokar and

Sircar, 2016; Schuller et al., 2005; Wang et al., 2015), other use multi-modal

features rather than only audio (Schuller et al., 2005; Cho et al., 2018; Tripathi

and Beigi, 2018) and other use different architectures (Shegokar and Sircar,

2016; Tripathi and Beigi, 2018; Cho et al., 2018; Verma and Mukhopadhyay,

2016; Schuller et al., 2005; Wang et al., 2015). For the same reason, we do not

apply any kind of augmentation to the input data.

Rather than aiming at a state-of-art classification accuracy for these datasets,

we focus on evaluating the performance of MTS layers compared to standard

convolution with the same number of channels, i.e. without increasing the

number of trainable variables. Therefore, we arranged our experiments in

order to obtain consistent results within our set-up, with the same conditions

for all datasets. We perform this comparison for 4 different CNN architec-

tures with different capacity:
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1. Convolution (1 channel, [10,5] kernel) - fully connected (200 neurons) -

fully connected output layer.

2. Convolution (10 channels, [10,5] kernel) - fully connected (200 neurons)

- fully connected output layer.

3. Convolution (10 channels, [10,5] kernel) - max pooling ([2,2] kernel) -

convolution (10 channels, [10,5] kernel - fully connected (200 neurons)

- fully connected output layer.

4. AlexNet: 5 convolutions and max pooling, 2 fully connected layers. See

Krizhevsky, Sutskever, and Hinton (2012) for a detailed description.

The kernel dimensions above are in the form [time,frequency]. The activation

function is ReLU for hidden and softmax for output units. In all experiments

we use the ADAM optimizer with L2 regularization and Cross Entropy loss.

We perform a grid search to find the best regularization parameter. We train

for a maximum of 500 epochs, applying early stopping with 10 epochs pa-

tience for validation loss improvement. In architectures A1, A2 and A3, MTS

is applied to all convolutional layers, while in A4 only the first 2 layers are

augmented with MTS. We tested MTS with 3, 5 and 7 parallel branches, using

logarithmically spaced scale factors in these combinations: (0.25, 1, 4), (0.5,

1, 2), (0.7, 1, 1.428), (0.8, 1, 1.25), (0.9, 1, 1.111), (0.95, 1, 1.053), (0.25, 0.5, 1,

2, 4), (0.5, 0.7, 1, 1.428, 2), (0.8, 0.9, 1, 1.111, 1.25), (0.25, 0.5, 0.7, 1, 1.428, 2,

4), (0.7, 0.8, 0.9, 1, 1.111, 1.25, 1.428). In each experiment, we apply the same

combination of stretch factors to all MTS-enabled layers.

Table 4.1 shows the results we obtained for all datasets and all architec-

tures. The first 3 columns show the dataset, total number of data points and

the type of convolution layer(s). Columns A1-A4 show the mean test accu-

racy across folds obtained with each architecture (as listed above). Table 4.2

instead shows the best scale factors used for each dataset (second column)
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and their average percentage of usage (last column). These values refer to

the MTS model with the best accuracy in Table 4.1. The latter values are

obtained computing how many pixels of each parallel feature map pass the

Max Pooling layer, and thus go into the output feature map.

The results clearly show that MTS consistently improves the generaliza-

tion for all datasets. We reach a maximum improvement of 8.04 percentage

points (RAVDESS) and with an average of 3.78 with a standard deviation of

3.45 across all datasets and architectures. For all model/architecture combi-

nations except one (A2 with TESS), MTS outperforms standard convolution.

We performed a two-sided Wilcoxon signed-rank test comparing the stan-

dard and MTS results, which shows statistical significance with 𝑝 < 0.001.

The mean improvement is higher for the smaller datasets, which confirms

that enabling pattern recognition at different time scales with MTS improves

generalisation. Considering the general scarcity of emotion-labelled speech

data, this is a desirable feature for SER applications.

The best-performing models on different datasets used different combi-

nations of scaling factors. In particular, for the smaller datasets applying

only 3 factors gives the best results. Architectures with 5 parallel branches

perform better for the larger datasets. MTS models tend to use mostly 2 scale

factors (see last column of table 4.2). In every case, at least 2 parallel branches

give a high contribution, confirming that MTS is actually matching patterns

at multiple time-scales.

We found that MTS is more effective at larger kernel sizes. In an experi-

ment with an MTS version of ResNet18, where most kernels are very small

(3x3), we achieved no improvement with MTS.

Training a MTS-enabled network generally takes longer than a standard

CNN. In a test with architecture A2, it took on average 1.3 times longer per

epoch to train MTS models with 3 branches and 1.52 times longer for MTS

models 5 branches. Moreover, MTS networks need on average more epochs
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to converge (27.85 vs 32.26 epochs for CNN vs MTS average overall).

We also tested modified variants of MTS:

• Applying a penalty to the re-sampled feature maps, to give the model

a preference for the unscaled kernel.

• Performing the training using standard convolution layers and substi-

tute them with MTS layers with shared weights only at inference time.

• Concatenating the used scaling factor for each time-frequency point to

the output feature map of an MTS layer.

Each of these modifications reduced the performance of MTS models. There-

fore, we kept the simplest variant described above.

4.4 Additional Results

We performed further experiments on MTS. In particular:

• We tested the performance of MTS augmenting a ResNet18 architecture

(He et al., 2016)

• We tested MTS for a Speech Classification task, with 2 datasets of dif-

ferent size.

• We tested MTS for an image recognition task, with 2 popular datasets.

Testing MTS on ResNet18

In addition to the 4 architectures included in Table 4.1 as A1, A2, A3 and A4,

we built a MTS version of a standard ResNet18 architecture, as described in

He et al. (2016). In order to make our data compatible with the input dimen-

sion of ResNet18 we applied 2 additional steps to our preprocessing pipeline.

First we re-sampled all spectra to a dimension of 256x256, applying linear in-

terpolation. Then, we concatenated in the channels dimension 3 identical
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versions of the reshaped spectra. We applied MTS to all convolution lay-

ers of ResNet18. For the rest, the experiments are conducted under the same

conditions. Table 4.3 shows the results we obtained comparing standard con-

volution and MTS on ResNet18 for all datasets.

TABLE 4.3: Accuracy results with ResNet, for all datasets. N
ist the number of audio recordings per dataset. Test accuracy
refers to the best model in our grid search. The usage factors
relate to scaling factors in the same row. The best results per

dataset are highlighted in bold font.

D.set N Type Test acc. Scale factors Use of parall.
EmoDb 0.5k Stand. 69.26 n/a n/a

0.5k MTS 52.5 0.7, 1, 1.428 0.47, 0.04, 0.49
RAVDESS 1.4k Stand. 46.64 n/a n/a

1.4k MTS 41.78 0.5, 1, 2 0.47, 0.05, 0.48
TESS 2.8k Stand. 46.45 n/a n/a

2.8k MTS 36.98 0.5, 1, 2. 0.46, 0.07, 0.47
IEMOCAP 5.5k Stand. 52.01 n/a n/a

5.5k MTS 50.6 0.5, 1, 2 0.47, 0.05, 0.48

In this case, the standard convolution layer always outperforms MTS,

with a maximum improvement of 16.76 percentage points for the EmoDb

dataset and 7.37 percentage points on average. Furthermore, it is evident

a generally inverse trend between the dataset size and the improvement of

standard convolution over MTS. In particular, the improvement is the high-

est for the smallest dataset (16.76 for EmoDb), is lower and similar for the

2 middle-sized datasets (respectively 4.86 and 6.67 for RAVDESS and TESS)

and is the lowest for the biggest dataset (1.41 for IEMOCAP). However, the

best accuracy with ResNet for all dataset is always lower than the best ac-

curacy we reported with the A1, A2, A3 and A4 architectures. As discussed

above, with these 4 architectures, MTS has shown an inverse trend compared

to ResNet18, providing an improvement over standard convolution that is

bigger for the smaller datasets.

We believe that this drop of performance of MTS with ResNet18 is due

to the small size of the kernels in the convolution layers of ResNet18 (3x3
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and 5x5). Since the implementation of MTS is based on the resampling of the

kernels, it is possible that such small dimensions cause strong approxima-

tion when re-sampling, consequently lowering the resolution of the learned

features. This suggests that a different implementation based on resampling

of the input data of an MTS layer instead of resampling the convolution ker-

nels could provide more high-resolution features. This approach has been

used by Kanazawa, Sharma, and Jacobs (2014) with positive results on image

recognition tasks.

Testing MTS on a Speech Recognition Task

Besides Speech Emotion Recognition, we tested the performance of MTS also

on a Speech Recognition task. We used 2 datasets of different size:

• Google Speech Commands (GSC) (Warden, 2018). 2618 speakers. English

language. 105829 utterances. Approximately 29 hours of audio. Each

datapoint contains only one spoken word and is exactly 1-second long.

There are 35 different words in the dataset.

• Free Spoken Digits Dataset (FSDD) (Jackson et al., 2018). 4 speakers. En-

glish language. 2000 utterances. Each datapoint contains only one spo-

ken word (digits from 0 to 9) and is exactly 1-second long.

We performed this experiment in the same above-described conditions,

but using only architectures A1, A2 and A3. The only difference lies in the

kernel dimensions we adopted for the convolution layers. While for Emo-

tion Recognition we used [10,5] kernels (in the form time x frequency) in all

layers and architectures, for Speech Recognition we downsized them to a di-

mension of [5,5]. This choice was made because for Speech Recognition the

smaller kernels provided higher accuracy on average. Table 4.4 shows the

results we obtained in this experiment.
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TABLE 4.4: Accuracy results for Speech Recognition tasks, for
GSC and FSDD datasets. N is the number of audio recordings
per dataset. A1-A3 are the architectures we tested. The us-
age factors of parallel branches (last column) relate to scaling
factors in the same row. The best results per dataset are high-

lighted in bold font.

D.set N Type A1 A2 A3 Scale factors Use of parall.
FSDD 2k Stand. 62.24 59.33 59.23 n/a n/a

2k MTS 58.33 60.09 57.42 0.7, 1, 1.428 0.62, 0.02, 0.36
GSC 105k Stand. 71.73 67.76 75.94 n/a n/a

105k MTS 60.9 57.8 68.8 0.7, 1, 1.428 0.45, 0.11, 0.44

In all cases but one (FSDD dataset with architecture A2) the standard

convolution provides a higher accuracy compared to MTS. The overall ac-

curacy is higher with normal convolution, for both datasets. The highest

improvement of standard convolution over MTS is for architecture A1 with

the GSC dataset: 10.83 percentage points, while the average improvement

is 5.48 among all dataset/architecture combinations. On average, taking

into account all architectures for a dataset, the improvement is higher for

the biggest dataset GSC, being 7.14 percentage points, while for the smallest

dataset (FSDD) the improvement is 2.15 percentage points.

Also in this case, MTS was applied to relatively small kernels ([5,5]), there-

fore the same considerations exposed in the previous section do apply. Fur-

thermore, the amount of scale invariance in the GSC and FSDD dataset is

smaller with respect to the emotion-labelled datasets. In fact, these 2 datasets

contain only 1-second samples with only one spoken word, while the other

datasets contain more varied scenarios and generally longer recordings, in

which there was not the restriction of fitting their utterances in a predefined

length. In this circumstance the actors were more free to express their own

speech style, consequently augmenting possible differences between record-

ings of different subjects.
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Testing MTS on a Image Recognition Task

In order to asses the effectiveness of MTS also in a domain different from au-

dio, we tested our approach on an image recognition task. We used popular

datasets for this purpose:

• MNIST: 70 000 28x28 images in total, containing handwritten digits.

• CIFAR10: 60 000 32x32 colour images in total, containing 10 different

classes of objects.

In this case, the preprocessing is different from what we applied for audio

data. We first converted all images to gray-scale (1 single channel), then we

normalized to 0 mean and unit standard deviation. For the rest, this experi-

ments are performed in the same conditions, with the same architectures A1,

A2 and A3. Table 4.5 shows the results we obtained.

TABLE 4.5: Accuracy results for Image Recognition tasks, for
CIFAR10 and MNIST datasets. N is the number of images per
dataset. A1-A3 are the architectures we tested. The usage fac-
tors of parallel branches (last column) relate to scaling factors
in the same row. The best results per dataset are highlighted in

bold font.

Dataset N Type A1 A2 A3 Scale factors Use of parall.
CIFAR10 60k Stand. 20.37 34.01 23.91 n/a n/a

60k MTS 22.26 34.28 26.24 0.7, 1, 1.428 0.47, 0.06, 0.47
MNIST 70k Stand. 68.87 89.15 78.26 n/a n/a

70k MTS 66.55 90.74 75.15 0.7, 1, 1.428 0.45, 0.13, 0.42

In this experiment the overall accuracy per dataset is higher when MTS

is applied to the networks. In particular, the improvement of MST over stan-

dard convolution is 0.27 percentage points for CIFAR10 and 1.59 for MNIST,

0.93 on average for both. The average improvement in all dataset/architecture

combinations is 0.1. On all cases but 2 (MNIST with A1 architecture and

MNIST with A3 architecture) MST provides superior performance with re-

spect to standard convolution.
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This experiment demonstrated that MTS has a positive impact also on

tasks related to the visual domain. Nevertheless, on image recognition the

average improvement is inferior than the improvement given for Emotion

Recognition from speech. This encourages further developments in this di-

rection, in particular using architectures fine tuned for the visual domain and

applying our method to more challenging datasets.

4.5 Conclusions and remarks

In this chapter, we propose multi-time-scale convolution layer (MTS) for

CNNs applied to audio analysis, specifically emotion recognition from speech.

The MTS performs parallel 2D-convolutions using a standard kernel and its

re-sampled versions to match patterns at different time scales. This method

enables the network to learn to some extent time-invariant features with-

out increasing its number of trainable parameters or the number of training

examples. We evaluated our approach on speech emotion recognition with

unknown speakers, using 4 different datasets and applying it to networks

of different size and structure. We found a consistent and statistically sig-

nificant improvement in test accuracy across all datasets and models, up to

8.04 percentage points for RAVDESS and on average 3.78 across all datasets

and architectures. MTS is particularly effective on smaller datasets, which

makes MTS well suited for Speech Emotion Recognition where labelled data

is scarce.

Despite the positive results that MTS provides on this scenario, it has

also important drawbacks. The first and most critical is that its effective-

ness is limited to networks that employ large convolution kernels, as shown

in Chapter 4.4. This discourages the use of MTS with most popular and

powerful architectures that are based on small convolution kernels, as the
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ResNet and VGG network families. Another limitation is that the indepen-

dence to speed fluctuations, and consequently to a speaker’s speech style,

that MTS achieves comes at the cost of increasing the resource demand. In

fact, as exposed in Chapter 4.3, training with MTS layers take on average 1.3

times longer compared to the correspondent standard CNN, due to the ad-

ditional convolutions operations (without increasing the number of trainable

parameters). For these reasons, in the following Chapters of this dissertation

we discontinued the use of MTS. Instead, we based our following research

approaches on larger architectures based on small kernels, which generally

provide better results and are more conveniently comparable with existing

research and results.
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Chapter 5

A Supervised Method for

Task-Specific Invariance:

Anti-Transfer Learning

This Chapter includes an adapted version of Journal Paper 2 (see Section 1.5).

In this stage of our research work we focus on a supervised approach to

achieve invariance to a desired feature, when the latter can be extracted by a

pretrained network. This is achieved through a novel training paradigm that

we call anti-transfer learning. We apply this strategy to SER tasks, demon-

strating that it can successfully improve speaker and context independence

of SER models, consequently enhancing the models’ performance. Moreover,

we test anti-transfer learning also on word recognition and sound goodness

estimation, demonstrating that this approach can successfully generalize to

tasks and domains different from SER.

This Chapter addresses the third Research Question of this dissertation.

5.1 Introduction

In recent years, transfer learning has become a popular method in speech

and audio processing to make use of existing deep learning models that have

been trained on large datasets. The assumption underlying transfer learning



70
Chapter 5. A Supervised Method for Task-Specific Invariance:

Anti-Transfer Learning

is that the internal representations learned to solve one task will be relevant

for another task. This can improve the performance of a model in terms of

training time and overall accuracy even across tasks and domains, and has

been proven to be particularly useful in cases when data availability for the

target task is limited (Oord, Dieleman, and Schrauwen, 2014; Bansal et al.,

2019; Dieleman, Brakel, and Schrauwen, 2011; Wang et al., 2019c).

We introduce here the concept of anti-transfer learning, which is based

on the idea that if a neural network can be used to teach another network

what to do, it may also be used to teach what not to do. Based on the obser-

vation that some tasks may be irrelevant and confounding or undesirable to

influence the target task, we try to avoid representations learned for one task

when learning to solve another. We call the task which should not influence

the predictions an orthogonal task, as our intention is that the predictions of

our target should be independent of it. What constitutes an orthogonal task

depends on the nature of the tasks and the intention of the user. We see two

main application scenarios: first, improving generalization by discouraging

reliance on spurious associations, e.g., word recognition and speaker iden-

tity, and second, discouraging undesirable bias, e.g. that gender or ethnicity

should not influence financial decisions.

In this chapter we focus on the first scenario, and particularly on audio

applications. Spurious correlations occur frequently in real-world data and

are sometimes unavoidable. E.g., we expect the word ‘joy’ to be associated

with a happy expression in natural speech. This association may be useful

to resolve ambiguities, but a model overly reliant on this may not general-

ize in cases where the association does not hold, e.g. the word ’joy’ pro-

nounced with a sad expression. Similarly, the frequency of word use is not

equally distributed between different speakers, genders or cultures, but we

would prefer our models not to depend on these features when they recog-

nize words, both in the interest of generalization and in avoidance of bias
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or stereotyping. This problem could be addressed by creating or collecting

more data, that contains all variants of emotional expressions for all words,

or all words uttered by all speakers but this not practical in general. How-

ever, with anti-transfer we can discourage the use of emotional features for

word recognition, or speaker identity for emotion recognition, respectively,

and thus avoid that dependency and improve generalization from limited

datasets.

Anti-transfer can be used to address open research problems in speech

and audio processing, such as speaker or context invariance in word or emo-

tion recognition (Kitza, Schlüter, and Ney, 2018; Milde and Biemann, 2018;

Liu et al., 2019b; Jalal, Moore, and Hain, 2019; Rybka and Janicki, 2013b;

Bhaykar, Yadav, and Rao, 2013). In our experiments, we compare anti-transfer

learning to regular transfer learning and learning from scratch on speech and

music audio tasks. A common approach for transfer learning with deep

learning models is to use a pretrained network as starting point through

weight initialization, i.e. re-training a pretrained network or part of it (Tan

et al., 2018b). Support for this approach is built into popular machine learn-

ing libraries, such as Tensorflow1 and PyTorch2, along with models pretrained

on disparate tasks. In anti-transfer learning, we penalize instead the use of

features that have been learned for the orthogonal task when training for the

target task. Our results show that this leads to greater invariance to the target

predictions from the orthogonal task and improves the generalization of the

models.

5.1.1 Differences from Similar Techniques

The approach presented in this chapter is inspired by the work of Gatys,

Ecker, and Bethge (2016) on style transfer on images and re-uses elements of

1https://www.tensorflow.org/
2https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/
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that work, in particular, the use of deep feature losses. However, our main

idea to perform the opposite. That is: discouraging specific deep representa-

tions that have been particularly useful for a task that is irrelevant for a target

task and should thus be avoided when training for the target task, in order

to not develop spurious correlations.

We actually address similar problems with a similar approach as Beck-

mann et al. (2019) and Kegler, Beckmann, and Cernak (2019) but while they

maximize the similarity with representation of a pretrained network, our aim

is to minimize it. There are also substantial differences in the implementation

as we use Gram aggregation and a different similarity measure, as explained

in Section 5.2. When viewing orthogonal tasks as domains, we can compare

domain adaptation (Wang, Liu, and Wang, 2019) to anti-transfer. Although,

this is different from our approach in terms of applications, as we are training

to transfer between tasks, within or between domains.

Moreover, there is a parallelism between anti-transfer and Domain Ad-

versarial Training (Ganin et al., 2016; Motiian et al., 2017; Tzeng et al., 2017;

Drossos, Magron, and Virtanen, 2019). However, there are two notable dif-

ferences between these approaches and ours: first, we directly compare the

feature activations in our loss function as opposed to propagating gradients

derived from domain labels, and second, most of these approaches require

labeled data from the source domain (analog to our orthogonal task), while

anti-transfer only requires a pretrained model, which does not have to be

trained on the same dataset.

Finally, a connection can be observed between anti-transfer learning and

Invariant Risk Minimization, being both aimed at obtaining a certain degree

of independence of predictions from the data domain (referred as environ-

ment for IRL). As DAT, IRL benefits from a unified training stage that directly

solves the final task obtaining domain invariance predictions. Nevertheless,

this is only possible under the assumption that multiple domains are present
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in the training data (even though domain labelling is not strictly required

for IRL). On the other hand, as specified specified above, since anti-transfer

requires only a pretrained model, it enables to obtain domain invariant pre-

dictions even using a dataset collected on a single domain.

5.2 Method

The main idea of anti-transfer learning is to encourage dissimilarity of a

model’s deep representations with respect to another model with the same

architecture but pretrained on an orthogonal task. We focus here on CNNs

which have been immensely popular in recent years and achieve state of the

art results on many audio tasks, e.g. Jansson et al. (2017), Neumann and Vu

(2017), and Salamon and Bello (2017b).

5.2.1 Approach

We achieve anti-transfer learning through the introduction of an anti-transfer

loss term during training, that is a deep feature loss (Dosovitskiy and Brox,

2016). The anti-transfer loss measures the similarity between the deep rep-

resentations that the network is learning and a pretrained network with the

same architecture. By adding this term as a penalty to the loss function we

encourage the trained network to develop deep representations that are dif-

ferent from the pretrained network. In other words, we encourage the net-

work being trained to develop feature representations that are good for its

target task but different from those developed to solve the orthogonal task

in the pretrained network. This reduces the trained network’s dependency

on the orthogonal task’s classes, e.g. the dependency of word recognition on

speaker identity.

Figure 5.1 depicts a block diagram of a generic CNN with anti-transfer

learning applied. As the diagram shows, this architecture has two parallel
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FIGURE 5.1: Block diagram of a CNN network with anti-
transfer learning applied to a classification task. We use spec-
trograms of audio signals as the input, but anti-transfer is not
specific to the audio domain or spectrogram representations.

networks: a pretrained feature extractor (in the upper part), which is the con-

volutional part of the pretrained network, with non-trainable weights and

the CNN classifier that is currently being trained (in the lower part).

Our implementation is based on the VGG16 Architecture (Simonyan and

Zisserman, 2015), a deep CNN, with details shown in Table 5.1. We selected

this architecture since it has been proven to be effective in computing a deep

feature loss in the audio domain (Beckmann et al., 2019). Nevertheless, the

same concept and implementation can be translated to any other CNN de-

sign.

5.2.2 Anti-Transfer Loss

The anti-transfer loss is computed in the forward pass. The input data, a

spectrogram in our experiments, is forward propagated in parallel through

both networks. The feature maps of the 𝑛𝑡ℎ convolution layer in both net-

works are extracted and aggregated in the channel-wise Gram matrix 𝐺,

which is computed for each network, similarly to the approach used by Gatys,

Ecker, and Bethge (2016) to compute the style matrix of an image. The Gram
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TABLE 5.1: The VGG16 architecture. In this example config-
uration the network has an input dimension of 244x244x1 and

1000 output classes.

Layer Channels Size Kernel Stride Activation
Input 1 244x244 - - -
2x Convolution 64 224x224 3x3 1 relu
Max Pooling 64 128x128 3x3 2 relu
2x Convolution 128 224x224 3x3 1 relu
Max Pooling 128 56x56 3x3 2 relu
2x Convolution 256 56x56 3x3 1 relu
Max Pooling 256 28x28 3x3 2 relu
3x Convolution 512 28x28 3x3 1 relu
Max Pooling 512 14x14 3x3 2 relu
3x Convolution 512 14x14 3x3 1 relu
Max Pooling 512 7x7 3x3 2 relu
Fully Connected - 25088 - - relu
Fully Connected - 4096 - - relu
Fully Connected - 4096 - - relu
Output - 1000 - - softmax

matrix is computed as the inner product between the vectorized feature maps

𝐹 for each pair of channels:

𝐺𝑖 𝑗 = 𝐹𝑖 · 𝐹𝑗 . (5.1)

where 𝑖, 𝑗 are the channel numbers. The Gram matrix correlates the informa-

tion of each channel pair over all points 𝑥, 𝑦, consequently reducing the di-

mensionality of a feature map from 3 dimensions, (𝑐, 𝑥, 𝑦), to 2, (𝑐, 𝑐), where

𝑐, 𝑥, 𝑦 are the number of channels, rows and columns, respectively. We then

calculate the anti-transfer (AT) loss 𝐿𝐴𝑇 as a scalar coefficient 𝛽 multiplied

by the squared cosine similarity of the vectorized Gram matrices 𝐺 𝑝 (for the

pretrained net) and 𝐺 𝑡 (for the net being trained):

𝐿𝐴𝑇 = 𝛽

(
𝐺 𝑝 ·𝐺 𝑡

| |𝐺 𝑝 | | | |𝐺 𝑡 | |

)2

. (5.2)

The aggregation with the Gram matrix serves to compare all possible chan-

nel combinations at once, using a limited amount of memory. This is essential



76
Chapter 5. A Supervised Method for Task-Specific Invariance:

Anti-Transfer Learning

for consistently measuring the similarity of the feature maps, where permu-

tations can occur along the channel dimension. We choose the squared cosine

similarity since it is naturally limited in the interval [0,1] and therefore it can

have only a limited impact in the overall loss function. Moreover, we square

it to apply a stronger penalty when the similarity is high and we re-scale by

the coefficient 𝛽 as an hyperparameter to fine-tune the performance of AT

learning.

The diagram in Figure 5.1 shows the AT loss calculated on the last con-

volution layer, but it is possible to apply the the AT loss to any of the convo-

lution layers. Furthermore, it is possible to combine the AT loss of multiple

layers in the same training, summing their AT loss values. The total AT loss is

added to the standard loss function during the training of the network (cross

entropy in our case, but AT can be used with any loss function).

The complete objective function we minimize per datapoint is therefore:

𝐿𝑇𝑂𝑇 = −
𝑛∑︁
𝑖=1

𝑡𝑖 log(𝑝𝑖) +
∑︁
𝑠∈𝑆𝐴𝑇

𝐿𝐴𝑇𝑠 (5.3)

where 𝑛 is the number of classes, 𝑡𝑖 is 1 if 𝑖 is the true class and 0 otherwise,

𝑝𝑥 is the predicted probability of class 𝑖, 𝑆𝐴𝑇 is the set of convolution layers

where anti-transfer is computed, and 𝐿𝐴𝑇𝑠 is the anti-transfer loss computed

for convolution layer 𝑠.

5.2.3 Variations

As we present in Section 5.4, we test several aggregation strategies and simi-

larity measures. The best combination is Gram matrix aggregation and squared

cosine similarity, which is detailed above. Different aggregation and similar-

ity functions can be used by adapting equations (5.1) and (5.2).

Moreover, we combine two orthogonal tasks in dual AT loss. To achieve

this, we first train a model with anti-transfer for one orthogonal task. We use
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FIGURE 5.2: Block diagram of our training strategies. The color
coding reflects 3 consecutive temporal stages. Stage 1: pretrain-
ing of the orthogonal models (yellow and, only for dual AT,
orange). Stage 2: only for dual AT, training of the intermedi-
ate model applying AT (green). Stage 3: training of the final
models (blue) applying different transfer learning strategies: no
transfer (baseline), weigh-initialization of the convolution lay-
ers, anti-transfer and dual anti-transfer. Different information
flows are represented with differently colored arrows: the data
flow is shown in black, the weight-initialization flow in red and

the AT loss flow in magenta.

the result of that training to initialize the weights of a new model, which is

then trained with anti-transfer on the second orthogonal task. It is worth not-

ing that we apply the weight initialization to all convolution layers at once,

while we apply anti-transfer to only one convolution layer per experiment.
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5.3 Experimental Set-up and Results

We test anti-transfer learning on several audio classification tasks with 20

different combinations of training and pretraining tasks in order to evaluate

the behavior of anti-transfer learning in a variety of set-ups. We have three

main classification tasks: word recognition (WR), speech emotion recognition

(SER) and sound goodness estimation (SGE) (i.e. how well musical notes are

played by musicians (Romani Picas et al., 2017)).

SER and SGE tasks are evaluated with two types of splitting the dataset

into training, validation and test set: random split and class split by speaker

or instrument. The class split types provide a more challenging task than the

random split. This is because these (orthogonal) classes reflect different data

distributions in the random split the training, validation and test set distri-

butions are the same. On the other hand, splitting by speaker or instrument

presents a more realistic task for many applications. The class-split is based

on labels used in the orthogonal tasks (see Section 5.3.1). This enables us to

assess more directly the AT trained networks’ invariance to the orthogonal

task classes as discussed in Section 5.4.8. For WR, we use only random split,

but we added different types of background noise to the audio samples to

create more challenging classification tasks. We test 3 scenarios: noise-free,

low noise and high noise (see below for details).

Our experiments are set up to test the effectiveness of anti-transfer learn-

ing, comparing it to the most common transfer learning method of weight

initialization (WI) and to a baseline method without any transfer learning.

In this way we can compare anti-transfer to regular transfer learning in the

specific case of pretraining on orthogonal tasks. In addition, we perform two

further experiments (presented in Section 5.4.1). In the first one we freeze the

convolution layers in the WI modality up to the same layer where we apply
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the AT loss. This avoid possible dissipation of prior knowledge when train-

ing. In the second experiment we invert 𝛽 in the AT loss, so that similarity of

feature activations is encouraged instead of dissimilarity, i.e. performing the

opposite of regular AT. Figure 5.2 shows a diagram of the different training

strategies we compared. We perform 3 consecutive training stages. First, we

pretrain the models on the orthogonal tasks. Then, only for dual AT, we ap-

ply AT to train an intermediate model on the final task. The weights of the

intermediate model are then used to initialize the final model. Finally, we

train our final models, applying the different transfer learning strategies.

5.3.1 Datasets

We use six different datasets overall. For our experiments, we extract subsets

from larger datasets to reduce training times and adjust class imbalances.

While this limits comparability to published results, it enabled us to perform

a much broader range of experiments as reported in this and the following

section.

1. Google Speech Commands: A Dataset for Limited-Vocabulary Speech Recog-

nition V2 (GSC) (Warden, 2018). Task: Single-word speech recognition.

2.7 hours of audio. 10 different words (digits) recorded by more that

2000 non-professional speakers in various acoustic environments.

2. MS-SNSD: The Microsoft Scalable Noisy Speech Dataset. A dataset and

online subjective test framework (Reddy et al., 2019). Approximately 20

hours of audio. Task: background noise type recognition. 11 different

types of noise mixed with speech audio signals at volumes between -20

and -40 dBfs.

3. Librispeech: An ASR corpus based on public domain audio books (Panay-

otov et al., 2015). Task: Single-word speech recognition. 100 hours of
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audio, 40 speakers, 1000 single-word labels. One-word excerpts from

audio book recordings.

4. IEMOCAP: The Interactive Emotional Dyadic Motion Capture Database

(Busso et al., 2008). Tasks: speech emotion recognition, speaker recog-

nition. 7:30 hours of audio, 5 speakers, 4 emotion labels: neutral, angry,

happy, sad. Actors perform semi-improvised or scripted scenarios on

defined topics.

5. Nsynth: A large-scale, high-quality dataset of annotated musical sounds.

(Engel et al., 2017). Task: instrument recognition. 66 hours of audio. 11

different instrument macro-categories. One-note recordings of musical

instruments.

6. Good-Sounds: A dataset to explore the quality of instrumental sounds

(GS) (Romani Picas et al., 2017). Tasks: sound goodness estimation, in-

strument recognition. 14 hours of audio. 12 different instruments, 5

different goodness rates. One-note recordings of acoustic musical in-

struments, played by professional musicians.

The above descriptions refer to the subsets we extracted (or generated, for

MS-SNSD), not to the original size and arrangement of these datasets. Please

refer to the references above for the original specifications.

For each target task, we pretrain on two different tasks for transfer and

anti-transfer learning. For word recognition we train on GSC and we pretrain

on speech emotion recognition (IEMOCAP) and on background noise type

recognition (MS-SNSD). For speech emotion recognition we train on IEMO-

CAP and we pretrain on speaker recognition with the same training dataset

(IEMOCAP) and on word recognition with a larger dataset (Librispeech). For

sound goodness estimation we train on Good-Sounds, we pretrain on instru-

ment recognition with the same training dataset (Good-Sounds) and with a

larger dataset (Nsynth).
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5.3.2 Processing Stages, Training Parameters and Training Strate-

gies

We paid particular attention to performing all experiments (trainings and

pretrainings) in the same conditions, in order to isolate the influence of anti-

transfer and weight initialization in the results. All experiments are per-

formed in a Python and PyTorch environment, using the VGG16 network

architecture (Simonyan and Zisserman, 2015) (in the implementation from

the torchvision library3).

We apply two architectural modifications to the standard implementa-

tion: we reduce the channel number of the very first layer to 1 (since we use

single-channel magnitude spectrograms) and we vary the number of output

neurons to match the classes to the task.

We apply the same preprocessing to all datasets:

1. We first down-sample all audio data to 16kHz sampling rate.

2. Then we zero-pad/segment all sounds in order to have data-vectors of

the same length for each task. We segment the audio as follows:

• In the word recognition target task, we use 1-second sound sam-

ples as provided in the GSC. For the orthogonal noise classifica-

tion task, we first generate approximately 20 hours of noisy speech

from MS-SNSD and then we extract 1-second fragments with no

overlap. For emotion recognition, we extract 1-seconds fragments

from IEMOCAP.

• In the speech emotion recognition target task, we use 4-seconds

sound samples from IEMOCAP. For the orthogonal task of word

recognition, we extract segments containing only one word4 from

Librispeech and then zero-pad them to 4-seconds.
3https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py
4We use https://github.com/bepierre/SpeechVGG for this.

https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/bepierre/SpeechVGG
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• In the sound goodness recognition target and the orthogonal in-

strument recognition task, we use 6-second sounds, applying zero-

padding to both Nsynth and Good-Sounds sounds.

3. Only for GSC, we add noise to the segmented speech sounds at 3 dif-

ferent levels: no noise, low noise (-40 to -20 dBfs) and high noise (-10

to 0 dBfs). The noise sounds are from the MS-SNSD datasets. Like for

MS-SNSD we use the MS-SNSD code5 to perform this operation.

4. Next we compute the Short-Time-Fourier-Transform (STFT) using 16

ms sliding windows with 50% overlap, applying a Hamming window

and discarding the phase information.

5. Finally, we normalize the magnitude spectra of each dataset to zero

mean and unit standard deviation, based on the training set’s mean

and standard deviation.

We perform all neural network trainings and pretrainings with the same

hyperparameters. We use a learning rate of 0.0005, a batch size of 13 and the

ADAM optimizer (Kingma and Ba, 2014). We apply dropout at 50% but nei-

ther 𝐿1 nor 𝐿2 regularization. We randomly initialize the weights of all net-

works, except in the case of weight initialization from a pretrained network

(for WI and dual AT). We train for a maximum of 50 epochs and apply early

stopping by testing at the validation loss improvement with a patience of 5

epochs. We divide every dataset using subsets of approximately 70% of the

data for training, 20% for validation and 10% for the test set. All of the above

settings are kept constant for all datasets in all configurations: non-transfer,

transfer, anti-transfer/dual anti-transfer and also for all pretrainings.

These experiments are not designed to produce state of the art results on

these datasets, because we want to focus on the impact of anti-transfer learn-

ing. Therefore we used specific subsets and we did not optimise network
5https://github.com/microsoft/MS-SNSD

https://github.com/microsoft/MS-SNSD
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TABLE 5.2: Results of the pretraining in terms of classification
accuracy. Classes is the number of different class labels. Hours
describes the amount of recorded material in the subset that we
used. The Train and Test columns contain the accuracy on the

train and test sets.

Dataset Task (Recognition) Classes Hours Accuracy
Train Test

Librispeech Speech 1000 100 97.6 91.8
IEMOCAP (1 sec) Speech Emotion 4 7.3 85.6 51.9
IEMOCAP (4 sec) Speaker 5 7.3 99.8 96.5
Good-Sounds Instrument 12 14 100.0 100.0
Nsynth Instrument 11 66 98.1 69.9
MS-SNSD Noise Type 11 20 100.0 99.8

TABLE 5.3: Accuracy results for the word recognition (WR)
target task on the Google Speech Commands (GSC) dataset
with 3 levels of background noise added: None, Low and
High. We pretrain on noise type recognition (Nse) with MS-
SNDS dataset (MSS) and speech emotion recognition (Emo)
with IEMOCAP dataset (IEC). We compare between no transfer
learning (None), regular transfer learning by weight initializa-
tion (WI), anti-transfer (AT) and dual anti-transfer (Dual AT,
using two pretraining tasks). The order of the pretraining tasks
is shown in the second column. The best results per column are

highlighted in bold font.

Transfer Pretraining
Train accuracy
Noise level

Test accuracy
Noise level

Type Task Data None Low High None Low High
None n/a n/a 98.45 97.94 97.23 95.32 93.67 90.44
WI Noise MSS 98.33 97.85 96.34 94.83 93.97 90.51
WI Emo IEC 98.67 97.69 97.36 95.40 93.51 90.35
AT Noise MSS 99.57 99.11 98.42 95.70 94.81 90.99
AT Emo IEC 99.02 99.09 98.36 95.57 94.91 91.38

Dual AT
Emo +
Nse

IEC +
MSS 99.84 99.49 98.29 96.60 94.91 90.98

Dual AT
Nse +
Emo

MSS +
IEC 99.31 99.17 98.89 95.64 95.20 90.67

architectures and hyperparameters to the individual datasets in order to ex-

clude any other sources of performance variation.
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TABLE 5.4: Accuracy results for the speech emotion recogni-
tion (SER) target task on the IEMOCAP dataset. Comparison
between no transfer learning (None), weight initialization (WI)
and anti-transfer (AT) with pretraining on different datasets. In
particular, we compared anti-transfer with pretraining on the
same dataset (IEMOCAP) but on an orthogonal task (speaker
recognition) and on a bigger dataset (Librispeech) on a dif-
ferent orthogonal task (word recognition). We test 2 different
train/ validation/ test split: random (Rand) and speaker-wise
(Speaker). The best results per column are highlighted in bold

font.

Transfer pretraining
Train accuracy
Split Type

Test accuracy
Split Type

Type Task Dataset Rand Speaker Rand Speaker
None n/a n/a 69.0 67.8 63.7 57.2
WI Word Librispeech 66.9 66.9 63.4 59.2
WI Speaker IEMOCAP 70.7 66.9 64.8 58.5
AT Word Librispeech 72.0 68.6 66.9 61.1
AT Speaker IEMOCAP 75.5 74.5 66.5 61.3

5.3.3 Classification Results

Table 5.2 shows the results of the pretraining in terms of classification accu-

racy. There is wide variation in performance on the different tasks, with the

Good-Sounds and MS-SNSD saturating or almost saturating on the train and

test set for instrument and background noise type recognition.

Tables 5.3, 5.4 and 5.5 show the results obtained on the target tasks of

word recognition, speech emotion recognition and sound goodness estima-

tion, respectively. These tables contain the baseline results without transfer

learning (None), with standard transfer learning using weight initialization

(WI) and with anti-transfer learning (AT) on 20 pre-task/actual-task com-

binations in total. While for SER and SGE we test only anti-transfer with

one orthogonal task at a time, for WR we additionally test dual anti-transfer

(Dual AT), applying two orthogonal tasks as described in Section 5.2.

We applied anti-transfer to one layer of the VGG16 network with each

of the 13 convolution layers for each task. The reported anti-transfer test

accuracy results reflect the choice of layer that reached the best validation
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TABLE 5.5: Accuracy results for sound goodness estimation
(SGE). For the target task we use the Good-Sounds dataset.
We compare no transfer learning (None), weight initializa-
tion (WI) and anti-transfer (AT). In particular, we compare
anti-transfer with pretraining on the same dataset (Good-
Sounds) and on a bigger dataset (Nsynth). We test 2 different
train/validation/test splits: random (Rand) and instrument-
wise (Instr). The best results per column are highlighted in bold

font.

Transfer pretraining
Train accuracy
Split Type

Test accuracy
Split Type

Type Task Dataset Rand Instr Rand Instr
None n/a n/a 91.8 42.2 83.8 22.8
WI Instrument Nsynth 93.4 40.5 84.7 29.6
WI Instrument Good-Sounds 93.3 42.3 84.9 23.9
AT Instrument Nsynth 96.8 41.0 86.3 30.0
AT Instrument Good-Sounds 93.9 36.4 85.7 34.3

accuracy. In all experiments, the coefficient 𝛽 is fixed to 1 since, as further

analyzed in Section 5.4.6, this provides the best accuracy results.

The results (Tables 5.3, 5.4 and 5.5) show that anti-transfer improves the

test accuracy in all cases and interestingly improves also the training accu-

racy in all cases but one (sound goodness estimation with instrument-wise

split dataset, Table 5.5), compared to both the baseline and weight initializa-

tion. We have a maximum improvement in the test accuracy of 11.5 percent-

age points (pp) (for sound goodness estimation with instrument-wise split

dataset, Table 5.5) and a maximum improvement in the training accuracy of

6.7 pp (for speech emotion recognition with speaker-wise split dataset, Table

5.4). The overall average improvement is of 4.11 pp for the test accuracy and

of 2.35 pp for the training accuracy.

We performed a two-sided Wilcoxon signed-rank test comparing the base-

line results obtained without AT and transfer learning by weight initializa-

tion and the results obtained with AT applied, which shows statistical signif-

icance with 𝑝 < 0.001.

Figure 5.3 shows the average gain achieved by anti-transfer learning in
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FIGURE 5.3: Average improvement by applying anti-transfer
learning on different applications and different settings com-
pared to the baseline (no transfer learning). The overall and
the task-specific measures (word recognition, speech emotion
recognition, sound goodness estimation, in green) show the
average over the best improvements on each task/split or
task/noise level configuration. The other measures show the
average improvement over all experiments of a modality. The
pretraining on bigger/same dataset modality (orange lines)
is computed for Good-Sounds pretrained on NSynth and it-
self and for IEMOCAP pretrained on Librispeech and itself.
The single/dual AT modality (blue lines) is computed for the
Google Speech Commands dataset pretrained on MS-SNSD

and IEMOCAP.

the test accuracy for different tasks and settings. It has practical relevance

that the improvement in the networks’ generalization is higher when anti-

transfer is applied with a feature extractor trained on an orthogonal task with

the same dataset as opposed to a different but larger dataset (we tested this

property only on SER and SGE: IEMOCAP pretrained on speaker recognition

vs IEMOCAP trained on speech emotion recognition and Good-Sounds pre-

trained on instrument recognition vs Good-Sounds trained on sound good-

ness estimation).

Another interesting aspect is that using dual anti-transfer provides a higher
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accuracy boost compared to anti-transfer on a single orthogonal task (we

tested this only on WR: GSC pretrained on speech emotion recognition and

background noise type recognition). This suggests that the task invariance

effect of anti-transfer learning can be cumulative, opening the possibility of

pretraining on multiple orthogonal tasks.

5.4 Analysis and Discussion

The results in the previous section show a robust improvement resulting

from the use of anti-transfer learning. Here we investigate various aspects

of the method for understanding and optimizing its performance.

5.4.1 Ablation Study: Encouraging Similarity vs. Dissimilar-

ity

As an ablation study, we performed additional experiments where we en-

courage the models to develop representations that are similar instead of dis-

similar to the models pretrained on orthogonal tasks. The results are shown

in Figure 5.4. We tested two methods for encouraging feature similarity. The

first consists of inverting the sign of the 𝛽 hyperparameter to encourage sim-

ilarity instead of dissimilarity through the AT loss. This operation can be

considered as the opposite of the regular AT (in line with Beckmann et al.

(2019)). The second consists of weight initialization and freezing (i.e. setting

as not trainable) all convolution layers from the input layer of the network

up to the layer where we apply AT. This test is complementary to the com-

parison between AT and WI, since in regular WI the knowledge transferred

from the pretrained model may completely disappear during the training be-

cause of the catastrophic forgetting phenomenon (Parisi et al., 2019). This ex-

periment shows the model’s performance when we avoid this phenomenon
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FIGURE 5.4: Comparison of regular AT (encouraging fea-
ture dissimilarity with the orthogonal task, green columns),
inverse-beta AT (encouraging feature similarity, orange
columns) and weight initialization with frozen convolution
layers (until the same layer where we apply AT, blue columns)
on all target tasks: word recognition, speech emotion recogni-
tion and sound goodness estimation. The improvement in the
test accuracy (percentage points) is shown, comparing to the
baseline results (no AT nor WI applied, black segmented line:
95.3% for word recognition, 63.7% for speech emotion recogni-

tion, 83.8% for sound goodness estimation).

by freezing the initial layers. We performed these two experiments using

the task/orthogonal-task/AT-layer combination that yielded the best perfor-

mance in each case, which are:

• Word recognition: GSC with no further noise added, background noise

type recognition pretraining (MS-SNSD), layer 5.

• Speech emotion recognition: IEMOCAP random split, word recogni-

tion pretraining (Librispeech), layer 5.

• Sound goodness estimation: GS random split, instrument recognition

pretraining (NSynth), layer 6.

The results show that both inverse-Beta-AT and freeze-WI configurations
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FIGURE 5.5: Grad-CAM convolutional feature activations of
different models for the same input datapoint from the test set
of the GSC with low noise added (word recognition target task).
The activations have been computed in the last (13th) convolu-
tion layer, where we applied anti-transfer for this experiment.
In all plots, the magnitude spectra are shown in black. The top
row shows: the activation of the model trained for the first or-
thogonal task (noise type recognition, left), the activation of the
model trained for the second orthogonal task (emotion recogni-
tion, right). The bottom row shows: the activation of the base-
line model (no transfer or anti-transfer, left), the activation of
the dual anti-transfer model (pretrained on noise type and emo-

tion recognition, right)

lead to a decreased performance compared to regular AT and to the base-

line (no transfer learning). These results support the motivating idea of anti-

transfer learning: given a suitable choice of orthogonal tasks, avoiding sim-

ilar representations can improve learning and generalization on the target

task. Conversely, while transfer learning has proven efficient and effective in

many settings, for orthogonal tasks like in our experiments it can actually be

detrimental.
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5.4.2 Convolutional Feature Activations

In order to support a visual interpretation of the deep representations gener-

ated with anti-transfer learning, we applied the Grad-CAM technique (Sel-

varaju et al., 2020) to our trained models.6 In a CNN, Grad-CAM produces

class-discriminative localization maps of a convolution layer using the gra-

dient of the classification score with respect to the convolutional features

present in that layer. This produces a heatmap of the same dimension as

the input data, showing which parts of the input matrix are most important

for classification. An in-depth description of this technique can be found in

Selvaraju et al. (2020).

For this visualization we used the GSC dataset with low noise added,

where we apply dual AT. We selected this specific case to better assess the ef-

fectiveness of our approach in moving away from unwanted features, show-

ing the behavior of AT with 2 simultaneous orthogonal tasks. Figure 5.5

shows the Grad-CAM activations obtained for a datapoint of the test set, con-

taining a male voice saying the world “eight" with added “office-like" back-

ground noises at low volume. The voice appears as a column in the center

of the lower half of the spectrogram (approximately from 0.4 until 0.7 secs),

while the background noise appears mainly as vertical spikes outside of the

center (approximately at 0.12, 0.22, 0.38, 0.8 secs). The activations shown are

obtained for the two models trained on the orthogonal tasks (background

noise recognition and emotion recognition), the baseline model (no transfer

learning) and the dual AT model with AT applied on the last convolution

layer (pretrained first on background noise recognition and then on emotion

recognition). As expected, the background noise type recognition model fo-

cuses mostly on pixels outside the center, in particular on the spike at 0.8

secs. The emotion recognition model focuses instead mostly on the lower

6We used a modified version of https://github.com/jacobgil/pytorch-grad-cam .

https://github.com/jacobgil/pytorch-grad-cam
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frequencies in the spectrum (approximately below 800 Hz), which is the nor-

mal range for the fundamental frequency of the human voice. The baseline

model successfully focused on the speech signal in the center, although it

slightly expands also towards the noise spike at 0.8 secs and it has a high

activation in the low-frequency region where emotion information is more

present (according both to our orthogonal model and our research experi-

ence). Similarly, the dual AT model is focused on the speech signal center, but

it adjusted its attention towards the mid frequencies, where most format and

consonant information is present, decreasing its activation on both the low-

frequency area (emotion) and the spike at 0.8 secs (background noise). This

example confirms that the dual AT model developed a certain degree of in-

variance to both orthogonal tasks (noise type and emotion recognition) when

predicting the between the target task (word recognition), which underpins

the observed effectiveness of anti-transfer learning in our experiments.

5.4.3 Layer Selection

We tested all layers in all task/orthogonal task combinations and Figure 5.6

shows the average per-layer improvement in both train and test accuracy that

we obtained in the speech emotion recognition task. In this case, computing

the anti-transfer loss with layer 5 provides the best performance, although

layers 7 and 13 yield comparable results. Moreover, in both training and

test, layer 9 yields the lowest performance and it is the only one that leads to

a slight training accuracy decrease. However, most other layers also lead to

improvements and the situation may vary when using different architectures

or datasets. Also for word recognition layer 5 yields the best results, but for

sound goodness estimation we obtained the best performance with layer 6.

In summary, there is no overall unequivocal best choice for the layer to

use for the anti-transfer loss. Our intuitive expectation was the last layers
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FIGURE 5.6: Mean per-layer improvement on speech emotion
recognition (IEMOCAP random split) with pretraining on word
recognition (Librispeech). The improvement refers to the base-

line with no weight initialization.

would be most effective, as they should be most task-specific according to

Yosinski et al. (2014). It is interesting to observe that these results are not

reflected in our layer-wise evaluation, but we do not currently have an ex-

planation for this.

Based on these results, we experimented with training using the anti-

transfer loss on multiple layers at the same time. We tried to use three layers

at once in three configurations: the first convolution layers, the last ones,

the best ones according to the results above. These configurations yielded

worse results than the baseline setting (non-transfer learning). However, this

may be because we did not perform hyperparameter optimization on this

approach, therefore further exploration could potentially lead to positive re-

sults.
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FIGURE 5.7: Evolution of the train and validation cross-entropy
loss and train and validation anti-transfer loss during the train-
ing. This example refers to training on speech emotion recog-
nition as target task (IEMOCAP random-split) and pretraining
on word recognition (Librispeech) and anti-transfer applied to

the 5th convolution layer.

5.4.4 Learning Dynamics

Figure 5.7 shows the development of the classification loss (cross-entropy)

and the anti-transfer loss during training for speech emotion recognition

(IEMOCAP random-split), with pretraining on word recognition (Librispeech)

and anti-transfer applied to the 5th convolution layer. Here it is evident that

the network is actually learning to differentiate its deep representations from

the pretrained ones, as the anti-transfer loss is substantially reduced. More-

over, as we expected, the anti-transfer loss is already low from the first epoch

because the randomly initialized feature maps start mostly uncorrelated to

the ones of the pretrained network. The relatively low magnitude of the anti-

transfer loss with respect to the cross-entropy loss indicates that anti-transfer

plays a “preventive” role during training, keeping the deep representations

from becoming correlated.
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TABLE 5.6: Accuracy results for different channel aggrega-
tion methods and different similarity functions. All results are
computed for speech emotion recognition as target task (IEMO-
CAP random-split) with pretraining on word recognition (Lib-
rispeech) and anti-transfer on the 5th convolution layer. The
best training, validation and test accuracy results overall are

highlighted in bold font.

Sigmoid MSE Similarity Squared Cos Similarity
Aggregation Train Val Test Train Val Test
Mean 68.2 68.3 63.9 68.7 66.1 60.0
Sum 68.4 68.2 63.8 69.5 66.0 60.0
Comp Mul 71.0 67.5 63.9 70.4 67.0 63.1
Max 68.3 66.3 65.0 76.7 66.2 66.7
Gram Matrix 76.3 65.9 65.8 72.5 68.7 66.9

5.4.5 Aggregation and Distance Functions

Table 5.6 shows the results of experiments performed to select the best chan-

nel aggregation and similarity function to compute the anti-transfer loss. All

aggregation types refer to a function applied pixel-by-pixel along the channel

dimension. Comp Mul stands for compressed multiplication (feature activa-

tion values raised to the power of 0.001 and then multiplied along the chan-

nel dimension). The compression is necessary when multiplying pixel-by-

pixel to avoid rounding to 0 during the multiplication of many small num-

bers.

As an alternative to Squared Cosine Similarity we used Sigmoid MSE Sim-

ilarity, which we define as the negative standard Mean Squared Error with

a sigmoid function applied to avoid excessive loss values. Without the sig-

moid, the training led to very high absolute values in the feature maps, which

minimizes the AT loss, but also drastically decreased the accuracy. We also

tried several approaches to compute the similarity for all possible channel

combinations without using any aggregation method, but all of them were

too expensive in terms of computation or memory. We find that to aggregate

the channel information using the Gram matrix and to compute the matrix

similarity with squared cosine similarity gives the best results, which is why
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FIGURE 5.8: Variation of the test accuracy for different 𝜷 pa-
rameters (weight of the AT loss) using Gram aggregation with
the squared cosine similarity (solid line) and the sigmoid MSE
(dash-dotted line). This example refers to training on speech
emotion recognition as target task (IEMOCAP random-split),
with pretraining on word recognition (Librispeech) and anti-
transfer applied to the 5th convolution layer (the one yielding

the best result).

we used this combination in the experiments in the previous Section 5.3.

5.4.6 AT Loss Weight

The 𝛽 hyperparameter that determines the weight of the anti-transfer loss has

a clear impact on the performance. As shown in Figure 5.8 for emotion recog-

nition (IEMOCAP with random splitting) with pretraining on Librispeech

and anti-transfer applied to the 5th convolution layer, we get the best result

using the squared cosine similarity with a 𝛽 value of 1, obtaining a perfor-

mance gain of approximately 3 percentage points. The performance gain is

smaller for all other values and there is no improvement with a very high

(20) 𝛽. For sigmoid MSE the performance gain is smaller, but less dependent
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on the 𝛽 value. For practical purposes, 𝛽 = 1 with cosine similarity seems to

be a good default choice.

5.4.7 Computation and Memory Costs

The improved accuracy comes at a cost of increased computational and mem-

ory demands at training time. The following considerations refer to our spe-

cific implementation and different strategies may have different trade-offs.

For instance, it is possible to precompute all needed Gram matrices in ad-

vance and avoid loading the pretrained feature extractor into the GPU RAM.

This would lead to lower memory demand and computation time during

training, but it would be incompatible with in-place data augmentation and

other online approaches.

With reference to our implementation, regarding computational time, train-

ing a network with anti-transfer learning takes on average approximately 2.8

times longer compared to the same network with standard training. This

refers only to the training with anti-transfer applied, not including any time

needed to pre-train the feature extractor on the orthogonal task. Moreover,

learning with AT loss requires more memory than standard training, since

it requires fitting into memory the trained network, the pretrained feature

extractor, the feature maps and the Gram matrices to be compared. The size

of these depends on the chosen architecture, the input data dimension and

the the number of channels of the convolution layer(s) used to compute the

anti-transfer loss. The additional memory 𝑀𝑡 required to compute the anti-

transfer loss using a network pretrained on an orthogonal task 𝑡 can be cal-

culated as:

𝑀𝑡 = 𝐸𝑡 +
∑︁
𝑙∈𝐿

2(#𝐺 𝑙 + #𝐹𝑙) × 𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑛𝑢𝑚𝑏𝑒𝑟 (5.4)

where 𝐸𝑡 is the size of convolutional part of the pretrained network, 𝐿 is

the set of layers used for anti-transfer, #𝐺 𝑙 is the size of the Gram matrix
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computed on the layer 𝑙 , #𝐹𝑙 is the size of the feature map of layer 𝑙. The

term inside the summation is multiplied by 2 because we compute the above-

described matrices both for the currently-trained and the pretrained network.

The term #𝐺 𝑙 is determined by 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 × 𝑛𝑢𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠2, while #𝐹𝑙 depends

on all dimensions of the input data, on the network’s architecture and on the

layer parameters. The 𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑛𝑢𝑚𝑏𝑒𝑟 is 4 in our case. In our specific test

case with the VGG16 network, the whole network occupies ∼1620 MB, while

the feature extractor 𝐸𝑡 requires additional ∼1150 MB, The dimension of one

batch with one single GSC data point preprocessed as described above is

[1, 1, 126, 129]. With this configuration the term 𝐺 𝑙 + 𝐹𝑙 is ∼62 MB when anti-

transfer is computed only on the first layer (shape [1,64,126,129]) and is ∼714

MB when computed on the last layer (shape [1,512,7,8]).

5.4.8 Discussion

Results Anti-transfer leads to a robust improvement in test results in all our

experiments. The learning dynamics, data splits and the visualization show

that the similarity between the pretrained and the new network’s representa-

tions is effectively reduced. It seems that avoiding features from orthogonal

tasks is generally helpful. The improvement with anti-transfer is generally

greater when the baseline accuracy is lower.

Training results are also improved in most cases. This is unexpected, as

we assumed that learning from scratch would find a good fit for the train-

ing set and that anti-transfer would act as a regularizer that only benefits

generalization. However, it seems that for suitably chosen orthogonal tasks

avoiding the representation of the pretrained network not only avoids fitting

to confounding aspects of the data, but even leads to a better fit to the target

task during training. This contravenes the common assumption that end-to-

end learning with deep learning leads to a near-optimal fit to the training
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data. Instead it shows that the use of prior knowledge, here in the form of an

orthogonal task, can help not just to improve generalization.

In some cases, the train/test split was separating classes that the network

was aiming to recognise in the orthogonal pretraining task (speaker-wise

split for emotion recognition vs speaker recognition, Table 5.4, and instrument-

wise split for sound goodness estimation vs instrument recognition, Table

5.5). When the orthogonal task was speaker or instrument recognition, we

observed a significantly improved generalization to unseen speakers in the

speaker-wise split and to new musical instruments in the instrument-wise

split, respectively. This indicates that the models are actually developing a

degree of invariance to the orthogonal tasks, which is also illustrated in the

visualization example (Figure 5.5).

The results show that pretraining on the same dataset provides higher im-

provement on average, compared to pretraining on a different dataset, even a

much bigger one (Figure 5.3). It is surprising that the larger dataset does not

have a more positive effect. We hypothesize that a more specific separation

of representations can be developed for the specific dataset with orthogonal

task labels on the same dataset by more directly modelling the interactions

between different tasks. Thus, anti-transfer is a well-suited approach to ex-

ploit datasets provided with multiple labels, but the use of models pretrained

on different data is still effective and both can also be combined.

Related Work As mentioned in Section 5.1, when pretraining with an or-

thogonal label of the same dataset, AT is similar to Domain Adversarial

Training (DAT) (Ganin et al., 2016) if we consider an orthogonal task class

as a domain. As mentioned, AT has the practical advantage of only need-

ing a pretrained model rather than requiring labeled data from the source

domain. This makes it possible to use models pretrained by third parties,



5.4. Analysis and Discussion 99

which can be beneficial in the case of models pretrained on very large or pri-

vate datasets. Even though in our test cases AT with models pretrained on

the same dataset provided the best improvement, models pretrained on big-

ger and different datasets (which is not possible with DAT) still provided a

good improvement over the baseline.

As mentioned in Section 5.1, the idea of anti-transfer is related to Speech-

VGG (Beckmann et al., 2019), which applies a deep feature loss to encourage

similarity of deep representations, instead of dissimilarity as in anti-transfer.

The experiments by Beckmann et al. (2019) are comparable with our inverse-

Beta experiment in Section 5.4.1, where we show that encouraging similarity

causes a drop in performance for orthogonal tasks. However, Beckmann et

al. (2019) obtain a performance improvement with their approach applied to

related target/pretrained task combinations: word recognition vs. speech in-

painting, language identification and speech/music classification. This con-

firms that the selection of orthogonal tasks for anti-transfer is important. The

cosine similarity of the labels for target and orthogonal task on the same

dataset could be a test for the degree of task orthogonality. In our exam-

ples, the labels of the orthogonal task on the same dataset were completely

orthogonal because of the nature of the dataset, but it may be wort testing

this more systematically in future work.

As we introduce in Section 5.1, anti-transfer falls into the broad category

of disentanglement. Our method does not directly enable pinpointing spe-

cific disentangled components in the data, e.g. as in source separation, but

in effect it leads to separate deep representations for different tasks, as visu-

alized in Figure 5.5. An advantage of anti-transfer is that it is a supervised

training approach, which tends to be more efficient than adversarial or VAE

methods.
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Limitations Limitations of anti-transfer apply to: resources, orthogonal tasks,

models and data availability, pretrained model accuracy.

Anti-transfer needs additional memory and computation resources at train-

ing time. Invariance to simple transformations can sometimes be achieved

with simpler models, e.g. Guizzo, Weyde, and Leveson (2020), Wang et al.

(2019b), and Marchand and Peeters (2016b), but complex tasks, like speaker

recognition justifies in our view the increased resources used. Memory de-

mands can have an impact in practice as GPU memory is often a bottleneck.

Since earlier layers are similarly effective as later layers, but use less mem-

ory, using them can offer a better ratio of cost to performance gain. To make

anti-transfer more practical on GPUs with limited memory, other ways of

reducing memory demand can be investigated.

A practical limitation when using pretrained networks, is that the target

task network needs to have the same structure (up to the AT layer) as the

orthogonal task network. This can be a limitation if the network structure is

not well suited for the target task.

Anti-transfer training is sensitive to the weight on the AT loss in our ex-

periments, especially using the cosine similarity, although a value of 𝛽 = 1

worked well in all our experiments. Still, some effort should be made to tune

this hyperparameter when using anti-transfer learning.

A more conceptual limitation is the need for an orthogonal task. How-

ever, identifying the orthogonal task is often straightforward, as the elements

that cause model performance to decrease are known, e.g. speaker identity,

text, emotion, recording equipment, acoustical conditions. Finding or cre-

ating orthogonal task labels on the same or a similar dataset, or a model

pretrained on an orthogonal task, can be a limitation, depending on the ap-

plication.

In addition to this, benefits of AT can only be expected if the pretrained

model is effective and even then there may be relevant representations that
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the pretrained model has not learned. However, perfect avoidance of the

representation learnt for the orthogonal task or perfect invariance to the or-

thogonal task is not required to improve performance and generalization, as

our experiments have shown. The situation would be different for undesir-

able labels, where invariance to the orthogonal task in itself is an important

target. Our measurement of this invariance has mainly been indirect through

performance. Our visualization example was encouraging but to guarantee

algorithmic fairness, more stringent measurements would be required.

Applications Anti-transfer is in principle applicable in all situations where

suitable datasets are available, in particular when invariance to a specific task

is desired. Even though we implemented AT for VGG16, it can be applied to

other CNN designs. Also, it is directly applicable to feed-forward and to re-

current networks and it can be adapted to attention-based models. We have

only tested classification tasks, but there is nothing in general to prevent the

application of this method to regression, or more complex tasks (e.g. auto-

matic speech recognition) or other domains (e.g. computer vision).

As mentioned, AT can have applications in areas such as algorithmic fair-

ness, where model outputs should be independent of sensitive variables, e.g.

financial decisions should not depend on gender or ethnicity. The variable is

not necessarily explicit in the input data, e.g. the gender of a person could

be not mentioned in their financial data, but models could estimate it and

use that estimate as the basis for a decision. With more direct measurements

of the degree of invariance to the sensitive variable, AT could be suitable to

improve algorithmic fairness.

There are many pretrained models available for many tasks, particularly

in computer vision and natural language processing. These models can be

used for anti-transfer in many tasks, with the limitation that the orthogonal

task must be known to be independent of the target and the the network
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architecture must have sufficient overlap, i.e. the structure of the networks

must be the same from the input up to the the layer(s) used in anti-transfer.

5.5 Conclusions and Remarks

In this study, we introduced anti-transfer learning for speech processing with

neural networks, a novel method improving generalization by instilling in-

variance to an orthogonal task when training a network on a target task.

When applying anti-transfer, we use a pretrained network with the same

structure as the target network. In training the target network we apply a

deep feature loss that discourages similarity between convolutional layers in

the pretrained and target network to encourage the development of an in-

ternal representation that is independent of the orthogonal task. Our exper-

iments with several classification tasks on speech and music audio in differ-

ent configurations show improved results for all tasks. We observe a robust

improvement over the learning form scratch and over transfer learning by

weight initialization.

Our analysis provides evidence that anti-transfer achieves a degree of in-

variance to the orthogonal tasks, e.g. speaker identity, when the network is

applied to the target task, e.g. speech emotion recognition. While there is a

cost of pretraining and of the anti-transfer learning itself, the improved gen-

eralization may often be worth it. Readily available trained models remove

the cost of pretraining and there may be further optimizations possible to

address memory and computation costs.

With the increasing availability of public datasets and pretrained models

chances grow that a suitable dataset or model can be found, but the selec-

tion of the orthogonal task needs careful consideration. Transfer learning is

generally seen as a straightforward way to improve the performance of deep

neural networks by using additional data. Our results show that taking into
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account the nature of the pretraining tasks is important and that treating re-

lated and orthogonal tasks differently can boost generalization significantly.

Applications can benefit from improved generalization in many domains

where there are natural changes to a signal that are independent of the tar-

get task, such as room acoustics, ambient noise, degradation through trans-

mission, etc., as in the tasks we addressed in our experiments. A potential

application of anti-transfer is to avoid the use of specific signal properties in

areas such as algorithmic fairness, where being invariant to gender or eth-

nicity is a socially important goal. This will need further work on measuring

and controlling the level of invariance as well as a discussion of the specific

goals.

Despite the useful properties of anti-transfer, one of its major bottlenecks

is the increase of computational resource demand that it introduces, as dis-

cussed in Chapter 5.4.7. The next Chapter of this dissertation presents a gen-

eral solution to optimize the resource demand of SER models that is based

on quaternion information processing. Subsequently, in Chapter 7, and as a

final stage of this dissertation, we propose a solution to exploit the properties

of anti-transfer while limiting the resource demand. Here we merge the two

approaches presented in this Chapter and in Chapter 6 applying anti-transfer

to quaternion-valued network. We also extend the evaluation of anti-transfer

to new datasets and network architectures.
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Chapter 6

Improving efficiency: Speech

Emotion Representations in the

Quaternion Domain

This Chapter includes an adapted version of Journal Paper 1 (see Section 1.5).

This research was in part developed when I was Research Fellow at La Sapienza

University, during my PhD suspension in 2021. That project was refined, im-

proved and submitted to “IEEE Transactions on Speech Audio and Language

Processing” after my resumption to studies at City in 2022.

In this study we propose a solution for a common issue in SER: high

resource-demanding models. Broadly speaking, we propose to map speech

signals into a compact multi-channel latent representation that permits hav-

ing different “emotional viewpoints” of the signal, which are signal repre-

sentations individually related to different components of human emotion,

namely: valence arousal and dominance. This enables the use of quaternion-

valued neural networks with real-valued signals as input. We show that our

approach improves the performance of SER models, while drastically reduc-

ing their resources demand. Moreover, the improvement is consistent also in

cases where data is very scarce, which is a common scenario in the SER field.

This Chapter addresses the final research question of this work.
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6.1 Introduction

Our approach is based on quaternion information processing, which is a

well-established strategy to minimize models’ resource demand without re-

ducing their performance, as we discuss in detail in Section 2.4.3 and Ap-

pendix A.

The proposed model, named Real to Emotional H-Space (RH-emo), is a

hybrid real-quaternion autoencoder-classifier architecture that is trained in a

semi-supervised fashion in order to optimize each axis of the embedding di-

mension to different emotional characteristics: the first channel is optimized

for discrete emotion recognition and the 3 other channels are individually

optimized for the classification of the valence, arousal and dominance (as

shown in Figure 6.1). As will be further explored from Section 6.3 onward,

when used as a feature extractor that feeds into quaternion neural networks

(QNNs), RH-emo improves the performance in SER tasks while consideably

reducing the number of trainable parameters and computing resources, com-

pared to equivalent real-valued models processing plain spectrograms.

This approach has two advantages: it improves the performance of SER

models even in situations where data is scarce and it drastically reduces

the number of network parameters, consequently reducing the resource de-

mand. We extend the approach of the quaternion autoencoder in Parcol-

let et al. (2019) by specializing the learned quaternion representation for our

specific task (SER), where the different axes are optimized for the detection

of different emotional characteristics that are coherent with the most used

criteria of emotion classification. Moreover, we implement it with a more

complex architecture (deep convolutional autoencoder) and we apply it to a

different domain: emotion recognition from speech audio.
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6.2 The Proposed RH-emo Model

6.2.1 Approach

The main aim of RH-emo is to map real-valued spectrograms to the quat-

ernion domain, building compact emotion-related quaternion embeddings

where each axis is optimized for a different emotional characteristic. In the

embedded dimension, the real axis of the quaternion is optimized for the

discrete classification of 4 emotions: neutrality, anger, happiness, sadness and

the 3 complex axes are optimized for the prediction of emotion in a valence,

arousal and dominance 3D space. This representation exploits the natural pre-

disposition of quaternion algebra to process data where a 4 or 3-channels

representation is meaningful. Nevertheless, in most machine learning appli-

cations of quaternion algebra, the input data is naturally organized with a

meaningful shape, as happens for instance with RGB/RGBA images (where

the color/alpha channels are treated as different quaternion axes) and first-

order Ambisonics audio signals (where the 4 spatial channels are considered

as the quaternion axes). In our case, instead, such quaternion representation

is created through a semi-supervised learning procedure, where the different

axes are forced to contain information related to different complementary

emotion characteristics. Therefore, in a certain sense, the axes of this embed-

ded dimension can be thought of as different “emotional points of view" of

an audio signal.

RH-emo is intended to be used as a pretrained feature extractor to en-

able the use of quaternion-valued neural networks for SER tasks applied to

monoaural audio signals. On the one hand, the emotion-related disentan-

glement among channels helps to enhance the performance of SER models.

Whereas, on the other hand, the reduced dimensionality together with the

enabled possibility to classify the data with quaternion-valued networks per-

mits to spare a large number of network parameters, consequently lowering
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the resource demand and speeding up the training.

6.2.2 RH-emo Architecture

RH-emo is a hybrid real/quaternion autoencoder network. Its structure is

similar to R2Hae Parcollet et al. (2019), nevertheless, RH-emo is based on a

convolutional design and it embraces multiple classification branches, as op-

posed to R2Hae. We used a public PyTorch implementation of quaternion

convolution layers and operators1. As Figure 6.1 shows, our RH-emo is com-

posed of three components: an encoder 𝐸 (𝑋) acting on the (real-valued) in-

put spectrogram, producing an embedded vector. The output of the encoder

is then fed separately to a (quaternion-valued) decoder 𝐷 (𝑍) to reconstruct

the original spectrogram, and to a classification head 𝐶 (𝑍) for performing

emotion recognition. The classifier outputs four separate predictions 𝑦𝐷 , 𝑦𝑣,

𝑦𝑎 and 𝑦𝑑 which are, respectively, a discrete and a continuous (in the va-

lence, arousal, dominance space) categorization of the emotional content of

the spectrogram. The specific architecture for each of these blocks, as well as

the loss function we optimize and the training strategy we adopt is described

more in detail in the following paragraphs.

Encoder

The input data, a magnitudes-only real-valued spectrogram in our case, is

forward propagated through a real-valued autoencoder made up of 3 con-

volution blocks. Each block contains a 2D convolution layer (ReLU activa-

tions, 3x3 kernels, single-pixel stride, increasing channels number: 1, 2, 4),

followed by max-pooling layers of dimension [2x2], [2x1], [2x1]. Moreover,

only between the first and the second block, a batch normalization layer is

1https://github.com/Orkis-Research/Pytorch-Quaternion-Neural-Networks
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present. The encoder produces an embedded vector that presents a dimen-

sionality reduced by a factor of 0.25 compared to the input. In our experi-

ments, we use input spectrograms with a shape of 1x512x128 (channels, time-

steps, frequency-bins) and the embedded dimension created by the encoder

has a shape of 4x64x64. The embedded vector is then forward propagated in

parallel into four distinct real-valued classifiers and also into a quaternion-

valued decoder. It is therefore important that the embedded vector contains

a number of elements that is multiple of four, in order to be properly treated

as a quaternion by the decoder section of the network.

Classifiers

Each classifier consists of a sequence of 3 real-valued fully connected layers,

where the first 2 contain 4096 neurons and are followed by a dropout layer. In

the first classifier, the output layer contains 4 output neurons (the number of

emotional classes to be classified) and softmax activation. Instead, the other

3 classifiers are identical and have one single output neuron with sigmoid

activation, as they are individually aimed at a binary classification task: the

prediction of “high” or “low” valence, arousal, and dominance, respectively.

Decoder

The decoder mirrors the encoder’s structure, but uses quaternion-valued 2D

transposed convolutions with a stride that mirrors the pooling dimensions of

the encoder, instead of the sequence of 2D real-valued convolutions and 2x2

max-pooling and a quaternion-valued batch normalization layer instead of

its real-valued counterpart. The output of the decoder is therefore a matrix

with the same dimensions as the input, but with 4 channels instead of a single

one.
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FIGURE 6.1: RH-emo Block Diagram. An input magnitudes-
only spectrogram is first propagated into a real-valued convo-
lutional encoder that generates embeddings with a [4x64x64]
shape. The network is then split into two branches: a com-
pletely unsupervised quaternion-valued decoder that recon-
structs the input spectrogram projecting it in a four-channel
quaternion space and a set of 4 parallel real-valued supervised
classifiers, each connected to one of the four channels of the
embeddings and separately classifying different emotion char-
acteristics: discrete emotion, valence, arousal, and dominance.

6.2.3 Loss Function

The loss function we minimize during the training of RH-emo is a weighted

sum of the binary crossentropy reconstruction loss between the input spec-

trogram and the decoder’s output, the categorical crossentropy classification

loss of the emotion labels predicted by the supervised classifier in the middle

of the network (discrete, valence and arousal).
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The objective function we minimize is therefore:

L = BCE(𝑋 ,𝑌𝑟) + 𝛽 · {CE(𝑝, 𝑡)

+ 𝛼 · [BCE(𝑣𝑝, 𝑣𝑡) + BCE(𝑎𝑝, 𝑎𝑡) + BCE(𝑑𝑝, 𝑑𝑡)]}
(6.1)

where 𝐵𝐶𝐸 is the binary crossentropy loss, 𝐶𝐸 is the categorical crossen-

tropy loss, 𝛽 and 𝛼 are scalar weight factors, 𝑋 is the input spectrogram, 𝑌𝑟

is the decoder’s output re-mapped to the real domain through the split ac-

tivation function (as discussed below), 𝑝 and 𝑡 are respectively the discrete

emotion prediction and truth label, 𝑣𝑝/𝑣𝑡 , 𝑎𝑝/𝑎𝑡 and 𝑑𝑝/𝑑𝑡 are respectively

the valence, arousal and dominance prediction and truth labels.

For the reconstruction loss computation it is necessary to map the quaternion-

valued decoder output back to the real domain, in order to have the same

shape as the input vector. For this purpose we use a stratagem similar to

the “split activation” described in Parcollet et al. (2019) and Ujang, Took,

and Mandic (2011): we perform an element-wise mean across the channel

dimension of the quaternion output, bringing back the 4-channels vector to a

single-channel shape. During the training, this forces the model to not weigh

the intra-channel correlations among the quaternion axes in the reconstruc-

tion term of the loss (the leftmost term of eq. (6.1)). Our expectation is that

this leaves room for the emotion recognition term of the loss (the rightmost

term of eq. (6.1)) for tuning these correlations, making them related to the

emotional information.

6.2.4 Training Strategy

For the RH-emo training, we use the Interactive Emotional Dyadic Motion

Capture Database (IEMOCAP) dataset (Busso et al., 2008), which includes: 5

speakers, 7529 utterances, 9:32 hours of audio, 10 emotion labels and it is in
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the English language. We selected this specific dataset for the following rea-

sons: it is one of the most popular SER datasets, it contains a large number of

datapoints, it is not limited to a restricted set of sentences, emotions are ex-

pressed by actors with a natural feeling rather than being over-emphasized

(Busso et al., 2008) and it is labelled both in the discrete and continuous (va-

lence, arousal, dominance) emotional domains.

We apply 4 preprocessing stages to the raw data: we first extract 4-seconds

non-overlapped fragments (or zero-pad if a datapoint is shorter that this du-

ration). Then, we compute the short-time Fourier transform (STFT) using 16

ms sliding windows with 50% overlap, applying a Hamming window and

discarding the phase information. After this point, we normalize the whole

dataset between 0 and 1 and, in the end, we zero-pad the spectrograms to

match a shape of 512 (time-steps) x 128 (frequency-bins).

To permit proper convergence, we perform the training in 2 consecutive

stages: we first train the network until convergence with the 𝛽 weight set to

0. This removes the rightmost term from eq. (6.1), consequently eliminating

the emotion classification part of the loss. Doing so, we train the network in

a completely unsupervised way only to perform a quaternion projection of

the real input spectrogram, without taking into account any emotion-related

information. After this stage, we re-train the network adding also the clas-

sification term in the loss in order to specialize the learnt representations to

the emotion recognition task, but also maintaining the embedded vector in a

quaternion-compatible shape that is meaningful for the decoder part of the

network. For this stage we performed a grid search to find the best combi-

nation of the emotion classification weights 𝛽 and 𝛼 and we ended up using

𝛽 = 0.01 and 𝛼 = 100. This means that overall we weight more the recon-

struction error in the loss function (thanks to the low 𝛽), and we weight more

the dimensional emotion classification compared to the discrete classification

(thanks to the high 𝛼).
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TABLE 6.1: CNNs pretraining results for IEMOCAP

Arch. Method Params Train acc. Test acc.
RH-emo / 1.3 × 108 80.34 60.7

VGG16 Real 1.6 × 108 74.88 62.87
RH-emo+Quat 1 × 107 72.25 71.10

AlexNet Real 5.7 × 107 71.02 63.33
RH-emo+Quat 1 × 107 71.81 70.31

ResNet Real 2.3 × 107 61.05 57.20
RH-emo+Quat 4.9 × 106 73.03 71.20

While for the first, completely unsupervised, training stage we use all

data available with IEMOCAP, in the second supervised stage we use only

a subset of the dataset, including only the datapoints related to 4 emotions

(angry, happy, neutral, sad) and we merge the classes happy and excited as one

single emotion class happy. This is a standard procedure with IEMOCAP,

as the other labels contained in the dataset are highly imbalanced. For both

training stages, we use subsets of approximately 70% of the data for training,

20% for validation, and 10% for the test set. We use a learning rate of 0.001

in the first stage and of 0.000001 in the second one, a batch size of 20 and

the Adam optimizer (Kingma and Ba, 2014). We use dropout at 50% in the

classification branches for the second training stage. We apply early stopping

by testing at the validation loss improvement with a patience of 100 epochs

in the first stage and of 30 epochs for the second one.

After these 2 training stages, we obtain a test reconstruction loss (the iso-

lated leftmost term of eq. (6.1)) of 0.00413 and competitive test classification

accuracy: 60.7% for the discrete classification and respectively 65.4%, 75.3%

and 70.2% for the valence, arousal, and dominance dimensions.
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6.3 Evaluation

In order to test the capabilities and properties of RH-emo, we compare the

classification accuracy for SER tasks obtained with real-valued CNN net-

works and equivalent quaternion-valued versions of them (QCNNs). For the

quaternion versions we keep the same architecture of the real CNNs, but we

use quaternion-valued convolution and quaternion-valued fully connected

layers instead of the canonical real-valued ones, with the exception of the

final layer of the networks, which are real-valued also in the QCNNs. For

the real networks, we use the magnitudes-only spectra as input, while for

the quaternion networks we use the embeddings generated with RH-emo

pretrained on IEMOCAP. Moreover, we compare and combine our approach

with a standard transfer learning method performed on the same dataset

(IEMOCAP): pretraining with weight initialization. Therefore we have two

distinct types of pretraining: the pretraining of the RH-emo network, which

we use to compute the emotional embeddings, and the pretraining of the

CNNs that we use to perform the actual SER task. Both pretrainings are per-

formed on the IEMOCAP dataset. To avoid confusion, from here on we will

refer to the first as RH-emo pretraining and to the latter as CNN’s pretrain-

ing.

Figure 6.2 depicts all cases we include in our experimental setup. The

color coding of Figure 6.2 shows the 3 consecutive stages of our experiments:

first we pretrain RH-emo (yellow), then we pretrain the CNNs (orange) on

IEMOCAP and finally we train or retrain the CNNs on other datasets. We

have two types of baseline: the first one, shown in the upper row of Fig-

ure 6.2, is a standard real-valued CNN with randomly-initialized weights.

As a further baseline, as depicted in the second row of Figure 6.2, we test

a standard transfer learning approach applied to the real-valued CNNs: we

pretrain on IEMOCAP (the same dataset used to train RH-emo) and we then
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initialize all weights of the SER CNNs but the ones of the final classification

layer. The last two rows of Figure 6.2, instead, show our approach, where

we use RH-emo as a feature extractor to feed quaternion-valued CNNs. In

the third row, only RH-emo pretraining happens, while in the last row both

RH-emo and CNNs pretraining are performed. In the latter case, we first

pretrain RH-emo, then we pretrain the CNN on IEMOCAP, and finally, we

re-train the same CNN on different datasets.

6.3.1 Experimental Setup

We evaluate RH-emo with 3 benchmark SER datasets:

1. RAVDESS, the Ryerson Audio Visual Database of Emotional Speech

and Song (Livingstone and Russo, 2018a). 24 speakers, English lan-

guage, 2542 utterances, 2:47 hours of audio, 8 emotion labels.

2. EmoDb, a Database of German Emotional Speech (Burkhardt et al.,

2005). 10 speakers, German language, 535 utterances, 25 min of audio,

7 emotion labels.

3. TESS, the Toronto Emotional Speech Set (Dupuis and Pichora-Fuller,

2011). 2 speakers, English language, 2800 utterances, 1:36 hours of au-

dio, 7 emotion labels.

The preprocessing pipeline for these datasets is identical to the one we

applied to IEMOCAP, as described in Section 6.2, except for the final normal-

ization step. For the quaternion-valued networks we normalize data between

0 and 1 (as required by RH-emo) and for the real-valued network we normal-

ize to 0 mean and unity standard deviation to permit proper convergence.

We apply this approach to 3 popular CNN architectures with increasing

capacity: VGG16 (Simonyan and Zisserman, 2015), AlexNet (Krizhevsky,

Sutskever, and Hinton, 2012) and ResNet-50 (He et al., 2016), based on the
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FIGURE 6.2: Block diagram of our experimental setup. The
yellow-to-blue color coding reflects 3 consecutive training
stages. There are 2 separate pretraining stages: RH-emo pre-
training (yellow) and CNNs pretraining (green). The straight
arrows indicate the data flow, while the dotted arrows, accom-
panied by the word WI, show where the weights of a pre-
trained network are used to initialize the initial weights of an
identical network (transfer learning). The real-valued base-
line is a regular CNN with random weight initialization, up-
per row. The pretrained real-valued baseline is the same net-
work, but its weights are initialized with the ones of an iden-
tical network pretrained on IEMOCAP (the same dataset used
to train RH-emo), second row. The quaternion-valued network
is a quaternion-valued version of the real-valued baselines, in
which (4 channel) input is generated by forward propagating
the input spectrogram in RH-emo’s encoder, third row. The pre-
trained quaternion-valued network is identical to the latter, but
the weights of the CNN are initialized with the ones of an iden-

tical network pretrained on IEMOCAP, last row.



6.3. Evaluation 117

TABLE 6.2: Results for RAVDESS

Arch. Method Params Train acc. Test acc.

VGG16

Real 1.6 × 108 47.10 41.06
RH-emo+Quat 1 × 107 55.50 49.85

Real-Pre 1.6 × 108 67.86 45.30
RH-emo+Quat-Pre 1 × 107 67.08 53.79

AlexNet

Real 5.7 × 107 54.55 46.36
RH-emo+Quat 1 × 107 50.62 43.94

Real-Pre 5.7 × 107 83.54 51.06
RH-emo+Quat-Pre 1.4 × 107 63.16 47.58

ResNet

Real 2.3 × 107 72.84 43.48
RH-emo+Quat 4.9 × 106 91.29 55.15

Real-Pre 2.3 × 107 22.16 18.79
RH-emo+Quat-Pre 4.9 × 106 89.54 52.42

TABLE 6.3: Results for EmoDb

Arch. Method Params Train acc. Test acc.

VGG16

Real 1.6 × 108 72.74 70.00
RH-emo+Quat 1 × 107 79.54 50.00

Real-Pre 1.6 × 108 78.16 52.00
RH-emo+Quat-Pre 1 × 107 75.00 47.00

AlexNet

Real 5.7 × 107 63.1 47.00
RH-emo+Quat 1 × 107 82.3 49.00

Real-Pre 5.7 × 107 71.45 67.00
RH-emo+Quat-Pre 1.4 × 107 77.63 71.00

ResNet

Real 2.3 × 107 99.47 48.00
RH-emo+Quat 4.9 × 106 99.73 73.00

Real-Pre 2.3 × 107 100.00 72.00
RH-emo+Quat-Pre 4.9 × 106 99.73 46.00

Torchvision implementations2. These implementations present an adaptive

average pooling layer between the convolution-based feature extractor and

the fully-connected classifier. This permits to obtain an identical output shape

from the feature extractor for any input dimension. We removed this layer

from the only VGG16, in order to test the behavior of our approach also in

this situation. Doing this, in fact, the feature extractor presents a reduced

output dimensionality when the networks are fed with the quaternion em-

beddings (75% smaller than using the real spectrograms), enabling to spare a

2https://pytorch.org/vision/stable/_modules/torchvision.html

https://pytorch.org/vision/stable/_modules/torchvision.html


118 Chapter 6. Speech Emotion Representations in the Quaternion Domain

TABLE 6.4: Results for TESS

Arch. Method Params Train acc. Test acc.

VGG16

Real 1.6 × 108 99.54 97.62
RH-emo+Quat 1 × 107 98.87 97.62

Real-Pre 1.6 × 108 99.95 99.52
RH-emo+Quat-Pre 1 × 107 98.72 97.85

AlexNet

Real 5.7 × 107 99.18 98.01
RH-emo+Quat 1 × 107 99.54 98.56

Real-Pre 5.7 × 107 100.00 98.01
RH-emo+Quat-Pre 1.4 × 107 99.75 98.81

ResNet

Real 2.3 × 107 100.00 97.38
RH-emo+Quat 4.9 × 106 100.00 99.76

Real-Pre 2.3 × 107 59.88 57.53
RH-emo+Quat-Pre 4.9 × 106 100.00 99.28

TABLE 6.5: Test Accuracy Results

Dataset Average improvement Best
No pret. Pret. Overall improvement

IEMOCAP 9.74 / / 7.87
RAVDESS 6.01 12.88 9.45 4.09

EmoDb 2.34 -9.00 -3.34 1.00
TESS 0.97 13.63 7.30 0.24

major number of network parameters.

For all experiments we used a learning rate of 0.00001, ADAM optimizer,

and a batch size of 20 samples, we apply early stopping with the patience of

20 epochs on the validation loss and we split the training, validation, and test

sub-sets with approximately 70%, 20% and 10% of the data, respectively.

The main aim of this research is to provide a valid comparison between

the proposed approach (quaternion-valued CNNs fed with RH-emo embed-

dings) and standard equivalent real-valued architectures, isolating as much

as possible the pure difference between them. We configured our experimen-

tal setup in order to show the performance difference between real and corre-

sponding quaternion CNNs fed with the emotional quaternion embeddings.
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Therefore, we paid attention to performing each experiment in as-close-as-

possible conditions, rather than optimizing each architecture for each dif-

ferent dataset, in order to highlight the properties of our approach. State-

of-the-art results for SER tasks usually involve more complex solutions, as

explained in Section 2. Moreover, the state-of-the-art approach can be radi-

cally different for each dataset, and therefore using the best method for each

dataset would not permit having the same configuration for all possible as-

pects in both RH-Emo experiments and the baselines. This would add much

more complexity to the setup, consequently making it less straightforward to

isolate and understand the properties of our approach. Because of these rea-

sons and the fact that many existing studies are based on different methods

to compute the scores, different data splits and may use multiple data do-

mains, our results can not be directly compared to the current state-of-the-art

accuracy for these datasets, which, to the best of our knowledge are 75.60%

for IEMOCAP (Kakouros et al., 2022), 87.5% for RAVDESS (Bouali, Ahmed,

and Mazouzi, 2022), 88.47% for EmoDb (Pham, Dang, and Nguyen, 2021)

and 99.6% for TESS (Jothimani and Premalatha, 2022).

6.3.2 Experimental Results

Table 6.1 shows the CNNs pretraining results we obtained on IEMOCAP,

while Table 6.3, 6.2, and 6.4 expose the results on RAVDESS, EmoDb and

TESS, respectively. Table 6.5, shows the average and best test accuracy im-

provement provided by our approach, among all CNN architectures for each

dataset. Here, average improvement refers to the difference between the

average test accuracy among all real-valued and the equivalent quaternion-

valued outcomes, whereas the best improvement is the difference between

the best real-valued and the best quaternion-valued accuracy we obtained.

The results clearly show that our approach enhances or maintains the
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model’s performance while improving its efficiency. For all datasets, the

quaternion CNNs fed with RH-emo embeddings provide the best test ac-

curacy overall, with an average accuracy improvement of 6.01 percentage

points (pp) for RAVDESS, 2.34 pp for EmoDb, and 0.97 for TESS in the case

we do not apply CNNs pretraining. The only case where our approach does

not improve the test accuracy is with the EmoDb dataset, applying CNNs

pretraining, where we have a performance drop of 9 pp. In the other cases

where we applied CNNs pretraining, our approach provides a strong aver-

age improvement of 12.88 and 13.63 pp, respectively for RAVDESS and TESS.

The results computed on IEMOCAP (Table 6.1 and first row of Table 6.5) de-

pict a limit case, where knowledge is not transferred to different data because

the same dataset is used for the RH-emo pretraining and for SER. Therefore

here we did not apply any CNNs pretraining. Also in this special case is

evident that models benefit from the use of quaternion-valued SER CNNs

fed with emotional embeddings, with an average improvement of 9.74 pp

among all CNN designs we tested.

We performed a two-sided Wilcoxon signed-rank test comparing the best

real-valued results and the best quaternion-valued results for all dataset and

networks, which results in a 𝑝 value of 0.15. Although the 𝑝 value is higher

than the typical significance level of 0.05, it is worth noting that the sample

size is very limited in this setup and there is still some indication of a poten-

tial difference between the groups. Moreover, it is essential to consider that,

despite the significance results, the use of RH-emo plus quaternion-valued

networks substantially reduces the network parameters, thus saving a con-

siderable amount of resources.
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FIGURE 6.3: Ablation study results. The x axis shows the
average drop in test accuracy (among the quaternion-valued
VGG16, AlexNet and ResNet-50 for all corpora) obtained with
different variants of RH-emo. Each row refers to a variant
of RH-emo where we removed a specific component, namely:
a completely real-valued network, only reconstruction, only
emotion recognition, no valence-arousal-dominance (vad) es-

timation, and no discrete emotion classification.

6.4 Ablation Studies

In order to further explore the properties of our approach and to support its

foundations, we performed additional experiments and ablation studies. For

these studies we applied the same experimental setup presented in Section

6.3, altering only specific details, as described below.

6.4.1 Removing RH-emo Components

In this study, we alter the RH-emo structure and test the emotion recogni-

tion accuracy using the embeddings generated from the modified RH-emo
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networks. We compared the full RH-emo, as described in Section 6.2, to the

following altered versions:

• Real: identical to the regular network, but the decoder part is real-

valued and no split activation is applied to the reconstructed output

in the loss function.

• Reconstruction only: we removed the supervised classification branch,

resulting in a completely unsupervised real-quaternion hybrid autoen-

coder.

• Emotion only: we removed the unsupervised reconstruction branch

from the network, obtaining a completely supervised and real-valued

emotion classification CNN. In this configuration, there are still 4 tar-

get outputs, each with a dedicated classifier (discrete emotion, valence,

arousal, dominance).

• Discrete emotion only: we removed the valence, arousal and domi-

nance classifiers, keeping only the discrete emotion classification branch.

The rest of the network is unaltered.

• Valence-arousal-dominance only: we removed the discrete emotion recog-

nition branch, keeping only the branches for valence, arousal and dom-

inance. The rest of the network is unaltered.

Figure 6.3 exposes the results of this ablation study. In the figure, we

show the mean test accuracy improvement obtained for all corpora with

the quaternion-valued VGG16, AlexNet, and ResNet-50 over the real-valued

baselines. Each row shows the results obtained feeding the quaternion-valued

networks with the embeddings created with the above-described variants

of RH-emo. These results consistently confirm the foundation of our ap-

proach. The performance of all variants is inferior to the full RH-emo. The

results point out that the unsupervised branch of RH-emo is fundamental
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to obtain useful embeddings, in fact, the emotion-only version, where the

decoder part of RH-emo is removed, provides the most severe drop in per-

formance compared to all variants and also the baseline. As we expected,

the quaternion-valued decoder of the actual RH-emo outperforms the com-

pletely real-valued version (by 2.8pp). This supports our hypothesis that

a quaternion-value decoder is able to create embeddings that present more

suitable intra-channel correlations for the quaternion-valued CNNs. More-

over, also here, the quaternion approach leads to faster (pre)training and less

memory demand due to the lower amount of parameters. The completely

unsupervised variant (recognition-only) is conceptually similar to R2Hae (Par-

collet et al., 2019), but it relies on a convolutional design and it is applied to

a different domain. This ablation study shows that the addition of a classifi-

cation branch to R2Hae provides an improvement in performance (by 0.3 pp

in our case) and therefore the semi-supervision can be considered a valuable

extension to R2Hae. This ablation study also shows that the classification

of emotion in the valence-arousal-dominance space is more influential in the

creation of stronger embeddings. In fact, the RH-emo variant without dis-

crete classification provides superior accuracy compared to the discrete-only

version (by 0.5 pp) This is further supported by the fact that, as a result of

an extensive grid search, we apply a stronger weight to the valence-arousal-

dominance term of the loss function (the 𝛼 term in eq. (6.1)).

6.4.2 Removing RH-emo Pretraining and Backpropagation

We performed an additional ablation study where we alter how the RH-emo

weights are initialized and backpropagated during the SER training. Figure

6.4 depicts the results of this study, showing the average difference in test ac-

curacy per-dataset among all CNN designs. On the one hand, we initialized
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the weights of RH-emo with random values while we regularly backprop-

agate the gradients of the RH-emo’s encoder layers (blue rows). By doing

this, we completely ignore the RH-emo pretraining and we force the QCNN

network to perform an end-to-end training, directly learning how to map the

real-valued input spectrograms into quaternion-compatible representations

to feed the QCNNs. This approach is conceptually similar to (R2He) (Parcol-

let et al., 2019). On the other hand, we regularly initialize the weights of RH-

emo with the pretrained RH-emo network, but we don’t backpropagate the

RH-emo layers (orange rows). The results of this experiment strongly sup-

port the foundation of our approach. The removal of RH-emo pretraining

causes a consistent and substantial decrease in the QCNNs test performance,

of 29.4, 3.25, and 6.97 pp for RAVDESS, EmoDb, and TESS, respectively. This

confirms the importance of the prior training of the RH-emo encoder, as pre-

sented in Section 6.2, for the development of adequate quaternion emotional

embeddings. On the contrary, the lack of backpropagation of the RH-emo

layers does not provide a consistent performance drop. While the perfor-

mance decreases for EmoDb (25 pp ) and for TESS (0.22 pp), a narrow ac-

curacy boost is evident for RAVDESS (0.91 pp). Moreover, the performance

difference is averagely inferior compared to the no-pretraining case.

6.4.3 Reducing Training Data

As a further study, we re-trained all CNNs and QCNNs, progressively de-

creasing the amount of training and validation data. The size of the test set,

instead, is kept unaltered, in order to have a consistent performance measure

that can be compared with the other results presented in this paper. Fig-

ure 6.5 shows the outcomes of this experiment. Each line shows the trend

of the average test accuracy among all CNN architectures, at different reduc-

tion rates of the data. Specifically, we trained on 100%, 75%, 50%, 25%, 10%,
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FIGURE 6.4: Ablation study results. The x axis shows the aver-
age difference in test accuracy (among the quaternion-valued
VGG16, AlexNet and ResNet-50) obtained by removing the
RH-emo pretraining (blue lines) and backpropagation (orange

lines).

5% and 1% of the available data. The yellow and red lines are the baselines,

respectively with and without CNNs pretraining on IEMOCAP. Instead, the

green and blue lines show the trend for the QCNNs + RH-emo, respectively

with and without CNNs pretraining.

The results of this ablation study clearly point out that our method can

provide consistent performance improvement even in conditions with less

data. In all cases but one (5% of training data) our pretrained approach

surpasses both real-valued baselines. This is a convenient property for SER

tasks, considering the general scarcity of emotion-labelled speech audio data.
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FIGURE 6.5: Ablation study results. The y axis shows the test
accuracy drop of each model, compared to the baselines that
use 100% of the training data. Each point in the line shows the
average performance among the real-valued (red, yellow) and
quaternion-valued (blue, green) VGG16, AlexNet, and ResNet-
50 architectures for all corpora. The x axis shows the percentage
of available training and validation data used. The data reduc-
tion rates shown in the x axis are a discrete set: we trained only
on the data percentage values that are shown and not on inter-
mediate values. We use the full test set in all cases, in order to

have a consistent performance measure.

6.5 Discussion

6.5.1 Resource Savings

RH-emo permits to spare a considerable amount of parameters. Compared

to the real counterparts, the quaternion VGG16 uses the ∼6% of the param-

eters, while the quaternion AlexNet and ResNet-50 use the ∼25%. The dif-

ference between the VGG16 and the others is due to the lack of adaptive

average pooling (as described above). Therefore, on the one hand, the use
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of quaternion-valued layers instead of real-valued ones permits to drop the

number of parameters by a factor of 0.25, while, on the other hand, the

smaller feature dimensionality obtained with the embeddings further cuts

down the number of parameters by a factor of 0.25. This in turn permits the

reduction of the model’s memory requirements and training time. In our im-

plementation, the embeddings computation happens during the training for

every batch and, therefore, both the main network and the RH-emo feature

extractor are loaded into the memory. This simulates a plausible application

scenario of RH-emo, where the embeddings need to be computed in real-

time. Although it is possible to pre-compute the embeddings as part of the

preprocessing pipeline, further reducing the memory demand and compu-

tation time. As regards the memory demand, in our setup the quaternion

networks require on average the 84.2% of memory, compared to their real-

valued equivalents. For the VGG16 (where we don’t apply average pooling)

the memory demand is approximately the 70%, for AlexNet the 89% and

for ResNet-50 the 93%. Regarding the training time, the epoch duration of

our quaternion networks compared to the real networks is approximately

the 15.9% for VGG16, 88.1% for AlexNet and 162.6% for ResNet-50. These

outcomes show that the maximum efficiency in terms of both memory de-

mand and computation time is obtained for VGG16, where we take advan-

tage of the reduced dimensionality of the embeddings. On the other hand,

the accuracy improvement for ResNet-50 comes at the cost of an increased

computation time with respect to the real networks, but still reducing the

model’s memory demand.

6.5.2 Reconstruction Properties

Figure 6.6 shows an example of the decoder’s output of the pretrained RH-

emo model. The Input subplot is the input magnitudes-only spectrogram
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Decoder output matrices

FIGURE 6.6: Example of RH-emo quaternion reconstruction of
a speech spectrogram. Input is the magnitudes-only input spec-
trogram, Output: real, 𝚤, 𝚥, 𝜅 are the four output matrices of RH-
emo, respectively reconstructed from the discrete emotion, va-
lence, arousal and dominance axes of the embeddings, Output:
mean is the pixel-wise average of Output: real, 𝚤, 𝚥, 𝜅 and is the

matrix that is compared to the input in the loss function.

and the Output: mean is the element-wise mean of the quaternion separate

axes and, therefore, the actual matrix that is compared to the input in the

loss function. The sub-plots labelled as Output: real, 𝚤, 𝚥, 𝜅 depict the separate

quaternion axes, which are generated from the emotional embeddings: real

from the discrete emotion classification matrix, and 𝚤, 𝚥, 𝜅 from the valence,

arousal and dominance channels, respectively.

By comparing the Input and the Output: mean plots, it is evident that the

reconstruction is not perfect. While the time-wise articulation of the speech

seems to be accurately reproduced, the model is not able to reconstruct in de-

tail the most feeble harmonics of the signal. Although it is interesting the way

the different quaternion axes are differentiated. In the real axis the model
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seems to perform an operation similar to amplitude compression (obtain-

able, for instance, computing the square root of the matrix), bringing up the

signal’s quietest portions around the speech region. Instead, in the 3 com-

plex axes (𝚤, 𝚥, 𝜅) different aspects of the signal are highlighted, focusing on

different harmonics and/or temporal areas. Our intuition is that these rep-

resentations may represent different “emotional points of view" of the input

speech signal.

6.5.3 Limitations

Besides the numerous advantages that our approach provides, there are also

some intrinsic limitations. The main constraint of our approach is that a pre-

trained RH-emo network can be used for only a fixed time scale. In this work

we considered a temporal window of 4 seconds, which is well suited for most

SER tasks and datasets. If a different time scale is needed, then a specific RH-

emo has to be trained on purpose. Another limitation is that training with

an end-to-end fashion is not possible, as a pretrained RH-emo is needed and

the omission of the RH-emo pretraining stage leads to a drastic decrease of

model’s performance, as shown in Section 6.4.2.

6.5.4 Applications

The advantages provided by the combination of RH-emo and quaternion-

valued networks suggest several application scenarios. Due to the substan-

tial saving of trainable parameters, memory and training time, our approach

is particularly suited for situations where limited resources are available and

performance can not be sacrificed. Another useful property of RH-emo is that

while the embeddings carry the necessary information to perform SER tasks

(as proven by our experimental results), they also provide speaker anonymity,
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as it is not possible to reconstruct the input spectrogram without the RH-

emo pretrained weights. This could be exploited in situations where sensible

speech data must me used for SER tasks.

6.6 Conclusions and Remarks

In this chapter we presented RH-emo, a semi-supervised approach to ob-

tain quaternion emotional embeddings from real speech spectrograms. This

method enables to perform speech emotion recognition tasks with quaternion-

valued convolutional neural networks, using real-valued magnitudes spec-

trograms as input. We use RH-emo pretrained on IEMOCAM to extract quat-

ernion embeddings from speech spectrograms, where the individual axes

are optimized for the classification of different emotional characteristics: va-

lence, arousal, dominance, and overall discrete emotion.

We compare the performance on SER tasks of real-valued CNNs fed with

regular spectrograms and quaternion-valued CNNs fed with RH-emo em-

beddings. We evaluate our approach on a variety of cases, using 4 popu-

lar SER datasets (IEMOCAP, RAVDESS, EmoDb, TESS) and with 3 widely-

used CNN designs of increasing capacity (ResNet-50, AlexNet and VGG16).

Our approach provides a consistent improvement in the test accuracy for all

datasets, while using a considerably lower amount of resources. We obtained

an average improvement of 6.01 pp for RAVDESS, 2.34 pp for EmoDb, and

0.97 pp for TESS and we spared up to 94% of the trainable parameters, up

to the 30% of GPU memory and up to 84.1% of training time. Moreover,

we performed additional experiments and ablations studies that confirm the

properties and foundations of our approach. The results show that the com-

bination of RH-emo and QCNNs is a suitable strategy to circumvent the high

resource demand of SER models and that our approach provides consistent
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performance improvement also in scenarios where the available training data

is scarce.

In the next Chapter of this dissertation we merge the approach presented

on this Chapter and anti-transfer learning. This enables to exploit the se-

lectable disentanglement properties of the latter, while reducing the resource

demand of models and maintaining their performance.
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Chapter 7

Anti-Transfer Learning in the

Quaternion Domain

In this final study of this dissertation we aimed at improving our anti-transfer

learning approach by solving one of its major issues: its high resources de-

mand. This chapter contains an extension of the work presented in Confer-

ence Paper 1, merging and further expanding the approaches presented in

Chapter 5 and 6.

7.1 Introduction

As introduced in Chapter 5, anti-transfer Learning is a suitable approach to

selectively promote task invariance through the introduction of a deep fea-

ture loss term, the anti-transfer loss. When properly minimized, this enhances

the divergence of the features developed in a specific layer of a CNN with the

features developed by an identical network trained on an orthogonal task.

We demonstrate that anti-transfer learning can improve the performance of

models in different domains and tasks. In particular, we show that it can im-

prove the independence of SER models to the context (specific uttered words

that can bias the result) and characteristics of the speaker’s voice.

Nevertheless, the improved accuracy comes at a cost of increased com-

putational and memory demands at training time. On the one hand, the
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increased memory demand of anti-transfer is mainly due to the fact that the

gram matrices and the pre-trained classifier network need to be kept in mem-

ory on top of the input data and the main network. On the other hand, the

increased computational resources are mainly related to the additional for-

ward propagation of the input data to both the main and the parallel net-

works and the computation of the gram matrices and the distance function.

As discussed in Chapter 5, this leads to an increase in computation time,

with an average epoch requiring 2.8 times longer to train than without anti-

transfer.

In order to reduce the impact of anti-transfer on the resource demand,

we propose to exploit the properties of quaternion information processing.

In particular, we apply anti-transfer learning to quaternion-valued CNNs

fed with embeddings generated with RH-emo (as described in Chapter 6).

We have shown that this technique is able to improve or maintain the per-

formance of SER models, while substantially reducing the number of train-

able parameters, and thus resources. Therefore, we expect that combining

anti-transfer and Rh-Emo QCNNs will maintain or enhance the properties

of anti-transfer learning, but reducing the model’s demand for memory and

computation time.

In this study we expand the work of Chapter 5 by using more networks

(adding AlexNet and ResNet50 to the already present VGG16), by applying

anti-transfer also to quaternion versions of these networks and by applying

dual anti-transfer for SER tasks. Moreover, we expand Chapter 6 by apply-

ing anti-transfer to Rh-Emo QCNNs and evaluating model performance on

a new setup where we test on speakers and/or contexts unseen during the

training.
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7.2 Method

The anti-transfer loss is defined as a scalar coefficient 𝛽 multiplied by the

squared cosine similarity of the vectorized Gram matrices computed on the

feature maps of 2 identical layers, where one is pretrained on an orthogo-

nal task and one is being trained, as explained in Chapter 5. Equation 5.2

formally shows this principle.

While we originally tested this approach only on real-valued CNNs, the

objective of this additional research is to apply the same anti-transfer learn-

ing principle to quaternion-valued CNNs.

We left the original anti-transfer loss definition unchanged, as it is already

compatible with feature maps that are generated by quaternion-valued con-

volution layers for the following reasons. In the first instance, the output of

quaternion convolution layers has the same output shape as corresponding

real-valued convolution layers. However, in quaternion convolution layers,

consecutive kernels are aggregated in groups of 4, where each group uses 1/4

of the sub-matrices (channels) to build its kernels. For instance, a real-valued

convolution layer that has 4 channels as input and 4 channels as output con-

tains 4 kernels shaped as 4 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠× 𝑡𝑖𝑚𝑒 𝑑𝑖𝑚 × 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑑𝑖𝑚, i.e., it contains

a total of 16 sub-matrices shaped as 𝑡𝑖𝑚𝑒 𝑑𝑖𝑚 × 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑑𝑖𝑚. An equivalent

quaternion-valued convolution layer contains only 4 different sub-matrices

in total, because the same 4 are permuted and reused to build all different

kernels. Therefore, all kernels are made with the same sub-matrices, but

in each kernel, they have a different ordering along the channel dimension

Grassucci, Zhang, and Comminiello, 2022. This behavior causes the output

feature maps to encode in quadral structures, since consecutive groups of

4 output channels are generated with kernels that re-use the same shifted

sub-matrices. Despite their quadral organization, the output matrices of a

quaternion convolution layer can be treated as real-valued matrices, because
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FIGURE 7.1: Block diagram of a QCNN network with anti-
transfer learning applied to a SER classification task. The in-
put spectrogram is first propagated to RH-emo, which gener-
ates quaternion emotional embeddings that feed the QCNNs.
Anti-transfer is applied to the feature maps generated by se-

lected quaternion convolution blocks.

each channel contains unique information.

We use the Gram matrix as a feature aggregation strategy in order to com-

pare all possible channel combinations at once in the ATL, using a limited

amount of memory and limiting the impact of possible channel permuta-

tions. For this, we calculate the Gram matrix on the quaternion components

as real numbers. By doing this, we treat correlations within the quaternion

axes in the same way as correlations between components of different quat-

ernion which is justified by the unique information contained on each axis.

Figure 7.1 depicts a block diagram of a QCNN with anti-transfer learn-

ing applied. An input spectrogram is first forward propagated through a

pretrained RH-emo network. The latter generates quaternion emotional em-

beddings that feed both the pretrained feature extractor and the network be-

ing currently trained. The anti-transfer loss is then computed exactly as for

real-valued CNNs, as described above.
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TABLE 7.1: Results of the pretraining in terms of classification
accuracy. The Train and Test columns contain the accuracy on

the train and test sets.

Network Type Task Accuracy
Train Test

VGG16

Real Speaker 99.8 96.5
Real Word 99.8 99.5
Quat Speaker 99.24 89.47
Quat Word 99.85 99.64

AlexNet

Real Speaker 99.88 99.88
Real Word 99.68 99.65
Quat Speaker 93.28 75.81
Quat Word 98.25 96.44

ResNet

Real Speaker 91.93 91.78
Real Word 99.88 99.87
Quat Speaker 90.67 78.77
Quat Word 94.02 93.25

7.3 Evaluation

We evaluate the potentialities and properties of anti-transfer learning applied

to QCNNs for SER tasks, with an experimental setup similar to the one de-

scribed in Chapter 6. In the following Section we report the most important

details.

7.3.1 Experimental Setup

Our objective is to compare AT performed in the real and quaternion domain

to each other and to the same real and quaternion networks without any AT

strategy applied. In this study we used the same datasets as in Chapter 6:

1. IEMOCAP, Interactive Emotional Dyadic Motion Capture Database (Busso

et al., 2008),

2. RAVDESS, the Ryerson Audio Visual Database of Emotional Speech

and Song (Livingstone and Russo, 2018a).
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3. EmoDb, a Database of German Emotional Speech (Burkhardt et al.,

2005).

4. TESS, the Toronto Emotional Speech Set (Dupuis and Pichora-Fuller,

2011).

We apply the same preprocessing stages: we cut signals into 4-seconds

non-overlapping frames, we compute the STFT and discard the phase infor-

mation and we zero-pad all matrices to a shape of 512 x 128. In addition to

this, we normalize the magnitudes to a 0 to 1 range for the quaternion val-

ued networks (as required by RH-emo) and to 0 mean and unity standard

deviation for real-valued networks, which helps convergence.

For the quaternion networks we keep the same architecture as for the real

CNNs, but we use quaternion-valued convolution and quaternion-valued

fully connected layers instead of the canonical real-valued ones. There is

an exception in the final layer of the networks, which are real-valued also

in the QCNNs. For the real-valued networks, we use the magnitudes-only

spectra as input, while for the quaternion networks we use the embeddings

generated with RH-emo pretrained on IEMOCAP.

We use the same implementation of VGG16 (Simonyan and Zisserman,

2015), AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) and ResNet-50

(He et al., 2016) mentioned in Chapter 6. Note that we removed the adap-

tive average pooling layer between the convolutional feature extractor and

the dense classifier section on the VGG16 networks. This layer serves to re-

duce the feature extractor output shape to a fixed input shape of the classifier.

When the RH-emo embeddings are used as input, however, the feature map

is smaller than the classifier input. Removing the adaptive pooling layer

and reducing the classifier input thus prevents the generation of redundant

output in the adaptive layer and saves a significant number of network pa-

rameters.
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As performed in Chapter 6, for all experiments we used a learning rate of

0.00001, the ADAM optimizer, and a batch size of 20 samples, we apply early

stopping with a patience of 20 epochs on the validation loss and we split the

training, validation, and test sub-sets with approximately 70%, 20% and 10%

of the data, respectively.

We configured the experimental setup in order to show the difference of

using AT on real and quaternion valued CNNs, as well as the difference of

using or removing AT for the same networks. To this extent, we have paid

attention to perform all experiments with the exact same configuration in or-

der to isolate at best the features we want to highlight. This makes our results

incompatible with published state-of-the-art results for the same datasets, as

the latter are obtained with more complex setups that are different for each

dataset and recreating them would make it more difficult to isolate and un-

derstand the properties of our approach, as further explained in Section 6.3.

We perform AT with 2 orthogonal tasks: Word Recognition and Speaker

Recognition, as in the SER experiments of Chapter 5. For the first orthogonal

task we pretrained our networks on the Librispeech (Panayotov et al., 2015)

dataset, where we extracted single word segments of 1000 different classes.

For the latter, instead, we used IEMOCAP. Table 7.1 shows the pretraining

accuracy results for all network architectures.

7.3.2 Experimental Results

Tables 7.2, 7.3, 7.4 and 7.5 show the experimental results we obtained for

IEMOCAP, RAVDESS, EmoDb and TESS, respectively. Here we compare the

performance achieved by real and quaternion-valued baselines without AT

applied to the same networks with AT applied in different ways:

• Single AT on speaker recognition (Single S)

• Single AT on word recognition (Single W)
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TABLE 7.2: Results for IEMOCAP

Arch. Method AT Type Params AT Layers Rnd-s acc. Act-s acc.

VGG16

Real / 1.6 × 108 / 62.87 58.29
Real-AT Single S 1.6 × 108 11,10 72.86 59.27
Real-AT Single W 1.6 × 108 1,11 70.09 59.35
Real-AT Dual SW 1.6 × 108 11,9 73.04 60.41
Real-AT Dual WS 1.6 × 108 8,8 71.07 59.67

Quat / 1 × 107 / 71.1 57.8
Quat-AT Single S 1 × 107 11,12 72.23 58.37
Quat-AT Single W 1 × 107 2,13 73.57 57.97
Quat-AT Dual SW 1 × 107 5,12 71.25 58.46
Quat-AT Dual WS 1 × 107 4,9 72.14 58.62

AlexNet

Real / 5.7 × 107 / 63.33 55.85
Real-AT Single S 5.7 × 107 2,2 73.3 59.11
Real-AT Single W 5.7 × 107 2,2 73.57 57.07
Real-AT Dual SW 5.7 × 107 2,2 74.11 58.7
Real-AT Dual WS 5.7 × 107 2,2 73.57 58.13

Quat / 1.4 × 107 / 70.31 54.98
Quat-AT Single S 1.4 × 107 2,2 70.45 58.62
Quat-AT Single W 1 × 107 2,2 70.45 56.38
Quat-AT Dual SW 1.4 × 107 1,2 68.66 58.29
Quat-AT Dual WS 1.4 × 107 2,2 70.8 56.24

ResNet

Real / 2.3 × 107 / 57.2 42.6
Real-AT Single S 2.3 × 107 5,3 70.89 48.46
Real-AT Single W 2.3 × 107 5,5 71.79 54.07
Real-AT Dual SW 2.3 × 107 2,5 70.8 53.58
Real-AT Dual WS 2.3 × 107 1,2 70.45 57.15

Quat / 4.9 × 106 / 71.2 56.65
Quat-AT Single S 4.9 × 106 5,5 71.43 57.325
Quat-AT Single W 1 × 107 4,1 71.43 56.59
Quat-AT Dual SW 4.9 × 106 5,1 72.14 57.48
Quat-AT Dual WS 4.9 × 106 1,4 73.04 58.04

• Dual AT, first on speaker and then on word recognition (Dual SW)

• Dual AT, first on word and then on speaker recognition (Dual WS)

We recall that dual AT is achieved by training a model with anti-transfer

for one orthogonal task and using the result of that training to initialize the

weights of a new model, which is then trained with anti-transfer on the sec-

ond orthogonal task, as introduced in Section 5.2. In this study we use the
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same AT layer on both orthogonal tasks when we perform dual AT. The ta-

bles show the test accuracy obtained by splitting the training, validation and

test set randomly (Rnd-s acc. column) and actor-wise (Act-s acc. column).

While in the first split setting the samples recorded from all actors appear in

all sets, in the latter setting the models are tested on speakers totally unseen

during the training stage, and therefore better show the model’s generaliza-

tion capabilities. On each case, we select the AT layer that gives the best

validation accuracy (even though we report the test accuracy). Column "AT

Layers" lists the layers that respectively provide the exposed Rnd-s acc. and

Act-s acc. results.

7.3.3 Discussion

In general, the experimental results we obtained demonstrate that AT can be

successfully applied to quaternion-valued neural networks, even though the

average accuracy performance improvement is higher for real-valued ones.

Moreover, the outcomes show that AT is compatible with multiple CNNs de-

signs, even though its impact is different for different networks. This further

supports the foundation of AT, showing that it is not restricted to the real-

valued VGG16 network, as by our first study on AT presented in Chapter 5.

Table 7.6 shows the performance difference that we have obtained isolat-

ing AT applied in different setups AT provides a consistent improvement

both for real and quaternion-valued networks. For all datasets, the best test

accuracy result is provided by a network where AT is applied for the random

split configuration. Whereas, in the actor-wise split arrangement there is one

only case where the real network without AT gives the best result: TESS with

ResNet architecture. AT provides an average improvement of 3.2 percentage

points (pp) for real-valued networks and of 1.51 pp for quaternion-valued

networks. Nevertheless, for the cases considered in this study, there is not
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TABLE 7.3: Results for RAVDESS

Arch. Method AT Type Params AT Layers Rnd-s acc. Act-s acc.

VGG16

Real / 1.6 × 108 / 41.06 45.0
Real-AT Single S 1.6 × 108 2,9 49.56 46.67
Real-AT Single W 1.6 × 108 9,1 42.89 41.67
Real-AT Dual SW 1.6 × 108 2,2 45.56 40.62
Real-AT Dual WS 1.6 × 108 1,9 46.22 43.75

Quat / 1 × 107 / 49.85 36.67
Quat-AT Single S 1 × 107 2,2 57.11 51.67
Quat-AT Single W 1 × 107 12,13 55.11 48.33
Quat-AT Dual SW 1 × 107 3,2 57.78 55.0
Quat-AT Dual WS 1 × 107 11,2 60.44 46.67

AlexNet

Real / 5.7 × 107 / 46.36 45.0
Real-AT Single S 5.7 × 107 1,2 47.78 53.33
Real-AT Single W 5.7 × 107 2,1 44.22 50.0
Real-AT Dual SW 5.7 × 107 2,2 47.56 53.33
Real-AT Dual WS 5.7 × 107 2,2 46.89 48.33

Quat / 1.4 × 107 / 43.94 38.33
Quat-AT Single S 1.4 × 107 2,3 50.22 35.0
Quat-AT Single W 1 × 107 2,4 49.56 36.67
Quat-AT Dual SW 1.4 × 107 2,1 53.78 43.33
Quat-AT Dual WS 1.4 × 107 2,4 50.89 40.0

ResNet

Real / 2.3 × 107 / 43.48 48.33
Real-AT Single S 2.3 × 107 3,3 50.67 53.33
Real-AT Single W 2.3 × 107 4,4 44.44 55.0
Real-AT Dual SW 2.3 × 107 5,1 51.11 50.0
Real-AT Dual WS 2.3 × 107 1,5 47.11 53.33

Quat / 4.9 × 106 / 55.15 48.33
Quat-AT Single S 4.9 × 106 2,2 57.78 56.67
Quat-AT Single W 1 × 107 3,5 59.78 58.33
Quat-AT Dual SW 4.9 × 106 3,2 56.44 55.
Quat-AT Dual WS 4.9 × 106 3,3 56.89 58.33

a significantly best approach overall. In the random split configuration, for

RAVDESS and EmoDb the quaternion-valued approach gives the best result,

real and quaternion networks equally saturate the test accuracy for TESS,

and the real-valued approach provides the best performance for IEMOCAP.

Instead, in the actor-wise split arrangement, for IEMOCAP and TESS the

real-valued method gives the best test accuracy, for EmoDb real and quat-

ernion networks achieve the same absolute best result and for RAVDESS the

quaternion approach provides the highest accuracy. Single AT achieves an
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TABLE 7.4: Results for EmoDb

Arch. Method AT Type Params AT Layers Rnd-s acc. Act-s acc.

VGG16

Real / 5.7 × 107 / 70.0 50.0
Real-AT Single S 5.7 × 107 3,2 59.17 48.75
Real-AT Single W 5.7 × 107 11,12 58.33 52.5
Real-AT Dual SW 5.7 × 107 12,4 60.0 50.0
Real-AT Dual WS 5.7 × 107 11,3 55.0 48.75

Quat / 1.4 × 107 / 50.0 43.75
Quat-AT Single S 1.4 × 107 2,2 43.33 50.0
Quat-AT Single W 1 × 107 2,10 55.0 47.5
Quat-AT Dual SW 1.4 × 107 3,2 50.83 50.0
Quat-AT Dual WS 1.4 × 107 2,10 50.83 46.25

AlexNet

Real / 2.3 × 107 / 47.0 43.75
Real-AT Single S 2.3 × 107 2,2 59.17 45.0
Real-AT Single W 2.3 × 107 2,1 59.17 43.75
Real-AT Dual SW 2.3 × 107 2,2 57.5 45.0
Real-AT Dual WS 2.3 × 107 2,2 60.83 45.0

Quat / 4.9 × 106 / 49.0 52.5
Quat-AT Single S 4.9 × 106 1,1 51.67 50.0
Quat-AT Single W 1 × 107 1,1 52.5 50.0
Quat-AT Dual SW 4.9 × 106 1,1 50.0 50.0
Quat-AT Dual WS 4.9 × 106 5,1 51.67 50.0

ResNet

Real / 1.6 × 108 / 48.0 51.25
Real-AT Single S 1.6 × 108 3,5 57.5 52.5
Real-AT Single W 1.6 × 108 4,4 58.33 52.5
Real-AT Dual SW 1.6 × 108 5,5 54.17 53.75
Real-AT Dual WS 1.6 × 108 4,3 56.67 50.0

Quat / 1 × 107 / 73.0 47.5
Quat-AT Single S 1 × 107 3,2 73.33 55.0
Quat-AT Single W 1 × 107 4,4 63.33 51.25
Quat-AT Dual SW 1 × 107 4,3 66.67 53.75
Quat-AT Dual WS 1 × 107 4,4 66.67 51.25

average improvement of 1.97 pp, whereas the improvement for dual AT is of

2.75 pp. In the random split configuration the average improvement is of 2.71

pp, instead on the actor-wise split setup it is limited to 2 pp. AT has a dif-

ferent impact on each network architecture, with an average improvement

of 1.89 pp for VGG16, 2.65 pp for AlexNet and 2.52 for ResNet50. It has a

different effect also on each individual dataset, providing an average perfor-

mance boost of 4.37 pp, 3.64 pp, 0.7 pp and 0.71 pp for IEMOCAP, RAVDESS,

EmoDb and TESS, respectively. Furthermore, also the 2 different orthogonal
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TABLE 7.5: Results for TESS

Arch. Method AT Type Params AT Layers Rnd-s acc. Act-s acc.

VGG16

Real / 1.6 × 108 / 97.62 14.29
Real-AT Single S 1.6 × 108 3,4 99.64 13.29
Real-AT Single W 1.6 × 108 3,4 99.64 26.43
Real-AT Dual SW 1.6 × 108 3,2 100.0 21.0
Real-AT Dual WS 1.6 × 108 3,6 100.0 25.57

Quat / 1 × 107 / 97.62 13.86
Quat-AT Single S 1 × 107 1,11 97.86 19.43
Quat-AT Single W 1 × 107 11,4 98.57 18.29
Quat-AT Dual SW 1 × 107 2,11 98.93 19.0
Quat-AT Dual WS 1 × 107 9,3 97.86 18.29

AlexNet

Real / 5.7 × 107 / 98.01 14.43
Real-AT Single S 5.7 × 107 3,3 99.29 14.43
Real-AT Single W 5.7 × 107 3,3 99.29 14.29
Real-AT Dual SW 5.7 × 107 3,3 99.29 16.14
Real-AT Dual WS 5.7 × 107 3,3 99.29 14.86

Quat / 1.4 × 107 / 98.56 21.57
Quat-AT Single S 1.4 × 107 4,1 98.57 23.0
Quat-AT Single W 1 × 107 2,4 98.57 23.29
Quat-AT Dual SW 1.4 × 107 2,1 98.57 21.86
Quat-AT Dual WS 1.4 × 107 3,1 98.93 20.0

ResNet

Real / 2.3 × 107 / 97.38 40.0
Real-AT Single S 2.3 × 107 4,3 99.29 17.0
Real-AT Single W 2.3 × 107 3,1 98.57 16.14
Real-AT Dual SW 2.3 × 107 4,2 98.93 18.57
Real-AT Dual WS 2.3 × 107 4,4 99.29 18.0

Quat / 4.9 × 106 / 99.76 19.71
Quat-AT Single S 4.9 × 106 5,5 99.64 20.0
Quat-AT Single W 1 × 107 4,2 99.29 20.0
Quat-AT Dual SW 4.9 × 106 4,3 99.64 20.57
Quat-AT Dual WS 4.9 × 106 1,2 100.0 19.71

tasks used to pretrain the AT classifiers have a distinct impact on the model’s

performance: speaker recognition boosts the average test accuracy by 2.5 pp

and word recognition by 2.21 pp.

To substantiate the most pertinent claims inferred from the results we per-

formed a two-sided Wilcoxon signed-rank test comparing the best baseline

results without AT applied and the best results with AT applied, revealing

statistical significance with 𝑝 < 0.001. This confirms the significance results

we obtained in Chapter 5 in a broader setup and strongly supports the claim
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TABLE 7.6: Test accuracy performance gain by applying anti-
transfer learning in multiple setups

Comparison setup Test acc. improvement
real / quat 3.2 / 1.51
singleAT / dualAT 1.97 / 2.75
randSplit / actorSplit 2.71 / 2
speaker / word 2.5 / 2.21
VGG16 / AlexNet / ResNet-50 1.89 / 2.65 / 2.52

that AT can be successfully applied in the quaternion domain and with mul-

tiple CNN network designs.

7.3.4 Per-layer AT performance

Figures 7.2, 7.3, 7.4 and 7.5 show the average test accuracy obtained for

each convolution block of our networks, with different modalities: single AT

quaternion-valued, dual AT quaternion-valued, single AT real-valued and

dual AT real-valued, respectively. While for Tables 7.2, 7.3, 7.4 and 7.5 we

have selected the best layers according to the validation accuracy score, in

order to simulate a real use case, in this Section we show the per-layer test

accuracy performance, in order to show how each layer performs on data

completely unseen during the training. On each Figure, 5 colored lines are

present, indicating the combination of orthogonal task and train/test split

types adopted. Each point in these lines shows the average test accuracy ob-

tained for a specific convolution layer among all corpora. Due to resources

restrictions, for the ResNet50, we tested AT only on blocks of 10 convolu-

tion layers and not for each individual one. On all graphs, the green dotted

line draws the mean value among all visible lines, indicating therefore the

average behavior of AT among all setups, per AT layer.

The Figures show that the impact of AT is widely different on the architec-

tures we adopted. Moreover, AT does not provide a performance improve-

ment for all cases, confirming the importance of the AT layer selection, as
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FIGURE 7.2: Average test accuracy for quaternion-valued single
AT for each AT layer in different modalities.

discussed in Chapter 5. For the VGG16 network, there is a consistent per-

formance drop for the middle layers. AlexNet shows an overall decreasing

trend, with the first layers providing an average higher accuracy compared

to the latter. For ResNet50, instead, the trend is flatter, with an average peak

on the middle layers and lower performance on the extremes. In general,

the graphs show that the performance of single AT is generally closer to

the performance of dual AT for quaternion-valued networks, whereas dual

AT provides a higher performance gain for real-valued ones, especially for

AlexNet. For VGG16 and ResNet50 the highest improvement is given on the

actor-wise split configuration for quaternion networks and on the random

split configuration this applies for the real networks. Instead, the improve-

ment on AlexNet is consistently higher for the random split configuration for

both quaternion and real networks.
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FIGURE 7.3: Average test accuracy for quaternion-valued dual
AT for each AT layer in different modalities.

7.3.5 Resurce demand

Figure 7.6 and 7.7 respectively show the memory demand and training time

difference for real and quaternion-valued networks and for each AT layer.

We recall that on the AlexNet and ResNet50 architectures an adaptive av-

erage pooling layer is present between the convolutional feature extractor

and the fully-connected classifier, while we removed this layer from the only

VGG16, enabling to spare a major number of network parameters (as ex-

plained in Section 6.3.1). In addition to this, we recall that RH-emo can be

used both as a pure pretrained feature extractor with no trainable parame-

ters, and as a re-trainable part of a quaternion-valued network. As exposed

in Section 6.4.2, the first case comes at the cost of a reduced average perfor-

mance of models, however, on the other hand, it enables the computation of

the quaternion embeddings before the training stage. This significantly re-

duces the memory demand at training time, as it eliminates the need to keep
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FIGURE 7.4: Average test accuracy for real-valued single AT for
each AT layer in different modalities.

the RH-emo network in RAM.

In general, the best resource saving are provided by the VGG16 network

with pre-computed embeddings, which saves 79.77% of the training time and

77.6% of the memory, on average among all AT layers.

It is evident that the deeper is the AT layer, the higher are the average

training time and memory demand of models, both for real and quaternion-

valued networks. This is mainly related to the fact that in the specific ar-

chitectures we adopted, the number of convolution channels is increasingly

larger from the first to the last feature extractor layer, resulting in larger Gram

matrices to compare. Moreover, adding layers to a network naturally in-

creases the number of operations required for the forward propagation.

As regards the training times, the VGG16 is the only architecture where

the use of quaternion processing enhances the performance, with an average

reduction of 29.98 seconds per epoch. This points out that the removal of

the adaptive average pooling layer is fundamental to take advantage of the
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FIGURE 7.5: Average test accuracy for real-valued dual AT for
each AT layer in different modalities.

resource optimization capabilities of quaternion information processing with

the network architectures we tested. On the other hand, for the AlexNet and

ResNet50 the quaternion domain processing comes at a cost of an average

training time increasing of 0.19 and 22.57 seconds respectively.

Figure 7.7 shows the total amount of VRAM used during the training of

our models, using a batch size of 10. VGG16 is the only architecture that

provides a lower memory requirement for all AT layers when RH-emo em-

beddings are computed for each batch during training, with an average im-

provements of 4620 Mb. Again, this shows that the removal of the adaptive

average pooling layer is fundamental in scenarios with limited resources.

For AlexNet, the memory occupied by the QCNN + RH-emo is consistently

higher for all convolution blocks (1388 Mb), while for ResNet50 real-valued

networks occupy a lower amount of memory in the first 25 layers, whereas

the quaternion-valued networks perform better on the last 25 layers, with

an average difference of 83 Mb. On the other hand, if RH-emo is used as a
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pure pretrained features extractor, and therefore it is not fit in RAM at train-

ing time, quaternion-valued networks always require less memory resources

compared to real ones, with an average decrease of 6677, 669 and 1973 Mb

for VGG16, AlexNet and ResNet50, respectively.

7.3.6 Limitations

Despite the benefits provided by performing AT on quaternion-valued net-

works, there are important limitations. First, while it is possible to reduce the

training time with AT applied on quaternion-valued networks, this requires

to remove the adaptive average pooling layer from the standard implemen-

tations. This procedure is fundamental also to save memory during train-

ing. The best memory performance is given when the RH-emo embeddings

are pre-computed and therefore RH-emo is not fit in the RAM alongside the

other models and data at training time. Nevertheless, we have shown in
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Chapter 6 that this procedure can harm models’ accuracy performance. Fur-

thermore, the effectiveness of AT is strictly related to the choice of AT layer.

According to our experiments there is no universal best choice for different

architectures and datasets and choosing the best layer on each occasion may

require to run computationally expensive and time consuming grid search

experiments.

7.4 Conclusions and Remarks

In this Chapter we have presented a novel approach to exploit the benefits

of QCNNs with RH-emo embeddings to reduce the impact of anti-transfer

learning on resource demand, merging the approaches presented in Chapter

5 and 6.

This method retains most of anti-transfer benefits, while requiring a frac-

tion of memory and computation time. We have not modified the original
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AT implementation, as the output feature maps of quaternion convolution

layers can be treated as matrices generated from equivalent real-valued con-

volution layers, and are therefore compatible with the computation of the AT

loss.

The experimental results demonstrate that AT can be successfully applied

to RH-emo QCNNs and to different convolutional designs (VGG16, AlexNet

and ResNet50), obtaining a significant improvement in the test accuracy per-

formance for SER tasks: 3.2 pp and 1.5 pp on average for real and quaternion-

valued networks, respectively. Moreover, the average improvement is con-

sistent in all different configurations we have tested (random split vs. ac-

tor split, real vs. quaternion-valued network, with pretraining on speaker

vs. word recognition, single vs. dual AT) and with four different datasets:

IEMOCAP, RAVDESS, EmoDb and TESS. The combination of AT and QC-

NNs fed with RH-emo embeddings permits to save a significant amount of

resources: up to 79.77% of the training time (VGG16) and up to 77.6% of

memory (VGG16 with pre-computed embeddings), making this approach a

relevant option to exploit the disentanglement properties of AT in scenarios

with restricted resources.
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Chapter 8

Conclusions and Future Work

Human emotional expression is manifested with different nuances, which

are related to personal characteristics and experience. This makes speech

emotion recognition a challenging and ambiguous task even for humans.

This project started from the empirical observation that neural network

models aimed at emotion recognition from speech audio signals consistently

exhibit difficulties to generalize to unseen context and speakers. The main

reason is that the features learned by a network can be overly specialized

to the specific words or to the speech style of a person present in the train-

ing set. Moreover, since emotional information in speech involves long-term

temporal dependencies, models need to analyze large temporal windows.

This aspect, connected with the complexity of learning representation from

audio signals, leads to SER models that need large amounts of memory and

computation. In this thesis, we propose solutions to these issues in SER with

neural networks and demonstrate their effectiveness.

As a preliminary study, we have applied standard neural network designs

to address context dependency on an SER task, determining the need for

specific solutions to disentangle the learnt representations from misleading

features, in order to enhance the generalization of SER models.

We have initially focused on multi-time-scale modelling to enhance the

independence of features learnt by CNNs to possible speed fluctuations of

uttered words, addressing a speaker independent scenario. To this end, we
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have developed a Multi-Time Scale convolution layer that learns features

at different time scales at the same time, without increasing the number of

trainable parameters. We have shown that invariance to a limited amount of

speed fluctuations can help models generalize to unseen speakers. It makes

the learnt features more robust to local dilation and compression on the time

axis that can be due to the specific speech style of a person, rather than to

the expressed emotion. Moreover, the improvement we obtain by apply-

ing Multi-Time Scale to CNN architectures is higher for smaller datasets,

which confirms that enabling pattern recognition at different time scales with

Multi-Time-Scale improves generalisation. Considering the general scarcity

of emotion-labelled speech data, this is a desirable feature for SER applica-

tions. Nevertheless, despite the useful properties of Multi-Time Scale, its

most critical limitation is that its effectiveness is limited to networks that

employ large convolution kernels. This makes it incompatible with popular

and powerful CNN architectures that are based on small convolution kernels,

such as the ResNet and VGG network families.

In a second stage of our work, we have developed a general and su-

pervised approach to achieve invariance towards a specific signal property,

when that property can be extracted by a pretrained network. This approach

goes beyond the specificity of Multi-Time-Scale to speed fluctuation, and

therefore speaker invariance, and avoids its restriction to large-kernel CNNs.

We achieve this disentanglement through the novel paradigm of anti-transfer

learning, where we use a deep feature loss to maximize the dissimilarity of

the features that are being learnt by a network to the features of another iden-

tical network that has been pretrained on an orthogonal task (the detection of

the irrelevant property). Among other audio-related tasks, we have shown

that anti-transfer learning can enhance the generalization capabilities of SER

models, when performing anti-transfer with orthogonal networks pretrained
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on word and speaker recognition. With the increasing availability of pub-

lic datasets and pretrained models, chances grow that a suitable dataset or

model can be found, but the selection of the orthogonal task needs careful

consideration. Transfer learning is generally seen as a straightforward way

to improve the performance of deep neural networks by indirectly using ad-

ditional data. Our results show that taking into account the nature of the

pretraining tasks is important. Treating related and orthogonal tasks differ-

ently can boost generalization significantly. On the other hand, despite the

supervised disentanglement properties of anti-transfer, its main limitation is

that it increases the demand for memory and training time. Nevertheless,

the improved generalization may often be worth the effort, especially when

pretrained models are available for orthogonal tasks.

In the third stage of this PhD, we have explored the application of quat-

ernion information processing to CNN models for SER, aiming to reduce the

high resource demand. In general, quaternion-valued networks can achieve

comparable or better performance than real-valued networks, while reduc-

ing the number of network parameters and consequently lowering their re-

source demand. A drawback of quaternion-valued networks is that they

need to be fed with data organized into quadral representation, where an

intra-channel correlations must exist. In order to enable the use of QCNNs

with monophonic audio signals we have developed RH-emo, a pretrained

feature extractor that creates emotion-optimized embeddings that can be treat-

ed as a quaternion entity, and therefore can be used as input to a quaternion-

valued network. We show that the combination of QCNNs and RH-emo

embeddings enhances the performance of SER models, while cutting 3/4 of

the network parameters, and consequently lowering the memory demand

and training time of models. Due to the substantial saving of trainable pa-

rameters, memory and training time, our approach is particularly suited for

situations where limited resources are available and performance can not be
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sacrificed.

As a final study of this thesis, we have merged anti-transfer learning and

quaternion information processing in order to take advantage of the disen-

tanglement that anti-transfer provides, but limiting its high demand of re-

sources. We show that anti-transfer can be effectively applied to QCNNs

fed with RH-emo embeddings without modifying the AT loss algorithm and

obtaining comparable results while saving a substantial amount of parame-

ters and thus memory and training time. The generalization improvement

we obtained with AT is consistent in all setups, making the combination of

anti-transfer and RH-emo QCNNs suitable for SER scenarios with limited

resources and where context and speaker independence are needed.

While our primary focus has been on understanding and enhancing the

recognition of emotional cues in audio speech signals, the approaches we

presented in this dissertation show potential implications and applications

in diverse areas of speech processing and also to domains different from au-

dio. On the one hand, anti-transfer can be considered as a versatile strategy

for selectively introducing invariance to specific features. Although we have

tested it across various audio-related tasks, its implementation is not specifc

to audio or emotion recognition and offers potential utility in a broader spec-

trum of deep neural network-based tasks Moreover, its reliance on latent rep-

resentation comparisons makes it adaptable to network architectures beyond

CNNs, including recurrent and transformer networks. On the other hand,

the implementation of RH-Emo can be potentially generalized to any prob-

lem where direct inference of a quadral representation from input data poses

a challenge. While in our experiments we have fine-tuned RH-Emo quat-

ernion axes for emotion-related features, this fundamental concept readily

extends its applicability to various problem domains by integrating distinct

classifiers or regressors into the RH-Emo training pipeline. Furthermore, it’s

worth highlighting that this approach is not constrained to the utilization of
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CNNs, underscoring its flexibility.

8.1 Ethical, Legal, and Social Implications

The field of Speech Emotion Recognition is intertwined with pressing Ethical,

Legal, and Social Implications (ELSI) due to the sensitive nature of speech

data and human emotional behavior. ELSI considerations are paramount

to ensure that SER technology aligns with ethical principles, legal frame-

works, and societal values. Moreover, the ethical implications of resource-

saving techniques must be considered as these techniques, while optimiz-

ing efficiency, raise concerns about potential compromises in fairness and

equity. The work presented in this dissertation aligns with ELSI princi-

ples, encompassing means to ensure fairness and equitable outcomes from

SER models. In the first instance, we have shown that anti-transfer learning

can be adopted to introduce invariance towards specific features and when

the latter are selected to be sensible characteristics as, for instance, gender

and ethnicity, our approach can be used to obtain algorithmic fairness and to

avoiding bias amplification. Therefore, by disentangling undesirable associa-

tions, anti-transfer learning can serve to promote equity, aligning with ethical

principles of non-discrimination and inclusivity. Moreover, we have demon-

strated that this technique can be successfully combined with resource sav-

ing techniques as quaternion-valued neural network. This aspect has impor-

tant ethical implications, ensuring that resource conservation and efficiency,

which are central components of sustainable practices aimed at reducing the

environmental impact of human activities, can be obtained without amplify-

ing existing biases or lead to exclusion.
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8.2 Future work

The positive results obtained in this PhD thesis project encourage further

investigation.

An immediate research objective is identifying more application areas for

anti-transfer learning and studying it on larger datasets in different domains,

which will enable a better understanding of the performance and comparison

to standard benchmarks. Potential quantification of orthogonality of labels

and its relationship to anti-transfer learning should be also addressed in fu-

ture work. Further general goals for longer term research are a deeper under-

standing of how to measure invariance or achieve it across multiple tasks be-

yond dual anti-transfer and it will be interesting to apply anti-transfer learn-

ing to different neural network architectures, including non-convolutional

ones. Moreover, we intend to further investigate the application of anti-

transfer in the quaternion domain by devising similarity measures in the AT

loss that directly exploit the quaternion structure of the feature maps, for

example using quaternion distance metrics instead of the real-valued cosine

distance. This could further reduce the resource demand when applying AT

to quaternion-valued networks.

Another future research objective is to test RH-emo with different datasets

and architectures, with multiple time scales and to different tasks. Moreover,

we intend to apply the basis principle of RH-emo to different tasks where a

quadral representation of input data can not be directly inferred from data, as

for speech emotion. This means adapting the supervised part RH-emo to the

nature of different tasks, for instance music genre recognition, where the em-

bedded dimensions of the autoencoder are optimized for tempo, harmonic

key, spoken words and instrument type recognition.
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8.3 Concluding remarks

Despite the positive results we have obtained in this PhD thesis, many chal-

lenges remain open in the field of emotion recognition from speech audio

signals. To date, the performance of neural networks for SER is far from

matching the state-of-the-art for more popular tasks, such as medical im-

age classification, behavioral data analysis or weather forecasting, in terms

of evaluation metrics that are currently achieved. This situation calls for

research into obtaining more accurate models and the creation of more ex-

tensive emotion labelled data collections. Moreover, due to the high degree

of subjectivity of how emotion is perceived and expressed, novel and less bi-

ased methods for labelling data with emotional characteristics could help the

design of improved SER models.

This line of work has raised an fundamental question: is it possible to

learn a universal representation of human emotion that is completely disen-

tangled from any personal or cultural bias? And if such representation exists,

what could it tell us about the very nature of emotions? At the moment, the

available emotion-labelled data is clearly not sufficient to get even close to

answer these questions, but the methods presented in this PhD thesis can be

a starting point to research towards this direction.
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Appendix A

Quaternion Convolutional Neural

Networks

Operations between quaternion numbers are defined in the quaternions alge-

bra H. A quaternion Q is a four-dimensional extension of a complex number,

defined as q = 𝑞0 + 𝑞1𝚤 + 𝑞2 𝚥 + 𝑞3𝜅 = 𝑞0 + 𝑞, where, 𝑞0, 𝑞1, 𝑞2, 𝑞3 are real num-

bers, and 𝚤, 𝚥 and 𝜅 are the quaternion unit basis. In this representation 𝑞0 is

the real part and 𝑞1𝚤 + 𝑞2 𝚥 + 𝑞3𝜅 is the imaginary part, where 𝚤2 = 𝚥2 = 𝜅2 = −1

and 𝚤 𝚥 = − 𝚥𝚤. From the latter assumption follows that the quaternion vector

multiplication is not commutative. A quaternion can also be represented as

a matrix of real numbers as:

q =



𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0


(A.1)

Analogously to real and complex numbers, a set of operations can be de-

fined in the quaternion space:

• Addition: q + p = (𝑞0 + 𝑝0) + (𝑞1 + 𝑝1)𝚤 + (𝑞2 + 𝑝2) 𝚥 + (𝑞3 + 𝑝3)𝜅

• Conjugation: q∗ = 𝑞0 − 𝑞1𝚤 − 𝑞2 𝚥 − 𝑞3𝜅

• Scalar multiplication: 𝜆q = 𝜆𝑞0 + 𝜆𝑞1𝚤 + 𝜆𝑞2 𝚥 + 𝜆𝑞3𝜅
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• Element multiplication (or Hamilton product):

q ⊗ p = (𝑞0 + 𝑞1𝚤 + 𝑞2 𝚥 + 𝑞3𝜅) (𝑝0 + 𝑝1𝚤 + 𝑝2 𝚥 + 𝑝3𝜅)

= (𝑞0𝑝0 − 𝑞1𝑝1 − 𝑞2𝑝2 − 𝑞3𝑝3)

+ (𝑞0𝑝1 + 𝑞1𝑝0 + 𝑞2𝑝3 − 𝑞3𝑝2) 𝚤

+ (𝑞0𝑝2 − 𝑞1𝑝3 + 𝑞2𝑝0 + 𝑞3𝑝1) 𝚥

+ (𝑞0𝑝3 + 𝑞1𝑝2 − 𝑞2𝑝1 + 𝑞3𝑝0) 𝜅.

(A.2)

The quaternion convolutional neural network (QCNN) is an extension of

the real-valued convolutional neural network to the quaternion domain. For

each input vector of a quaternion layer the dimensions are split into four

parts to compose a quaternion representation. In a quaternion-valued fully-

connected layer, the parameters matrices are treated as a single quaternion

entity with four components, although they are manipulated as matrices of

real numbers (Gaudet and Maida, 2018).

In a quaternion layer, the dot product operations used in real layers are

replaced with the Hamilton product (Equation A.2) between the input vector

and a quaternion-represented weight matrix. This allows to process all in-

put channels together as a single entity maintaining original intra-channels

dependencies, because the weights submatrices are shared among the input

channels. Consequently, quaternion layers permit to spare the 75% of free

parameters compared to their real-valued equivalents because, as shown in

Equation A.2, the same components are re-used to build the output matrix.

In a QCNN, the convolution of a quaternion filter matrix with a quater-

nion vector is performed as the Hamilton product between the real-valued

matrices representation of the input vector and filters. A quaternion convo-

lution between a quaternion input vector x = 𝑥0 + 𝑥1𝚤 + 𝑥2 𝚥 + 𝑥3𝜅 and a quater-

nion filter 𝑊 = 𝑊0 +𝑊1𝚤 +𝑊2 𝚥 +𝑊3𝜅 can be defined as:
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𝑊 ∗ 𝑥 =



𝑊0 −𝑊1 −𝑊2 −𝑊3

𝑊1 𝑊0 −𝑊3 𝑊2

𝑊2 𝑊3 𝑊0 −𝑊1

𝑊3 −𝑊2 𝑊1 𝑊0


∗



𝑥0

𝑥1

𝑥2

𝑥3


=



𝑦′0

𝑦′1𝚤

𝑦′2 𝚥

𝑦′3𝜅
′


(A.3)

The optimization of quaternion-valued networks is identical to the one of

a real network and can be achieved through regular backpropagation. This

is possible because of the use of split activation and loss functions, as in-

troduced in (Parcollet et al., 2019; Ujang, Took, and Mandic, 2011). These

functions map a quaternion-like entity back to the real domain, consequently

enabling the use of standard loss functions for the network training.
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Appendix B

Example Conversation from the

OMG Empathy Dataset

The official OMG Empathy Challenge page 1 offers a web player where the

reader can interactively audition the recorded video of Story #2 "How I started

a band". The following text is the transcription of this conversation obtained

with the Amazon Transcribe service 2.

ACTOR: So we meet again.

LISTENER: Yeah, I meet you again.

ACTOR: How are you?

LISTENER: Yeah, I’m great.

ACTOR: Had a good week so far?

LISTENER: Yes.

ACTOR: Fantastic. Yeah, so today I’m going to tell you a bit more about

myself. You got to hear a bit about more, or you got to hear a bit

about me before, but now you’re going to get to know a bit more.

Do you know that I’m in the band?

LISTENER: Yes, I know.

ACTOR: You did know that I’m in the band?
1https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_empathy_

description_19.html
2https://aws.amazon.com/transcribe/

https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_empathy_description_19.html
https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_empathy_description_19.html
https://aws.amazon.com/transcribe/


166 Appendix B. Example Conversation from the OMG Empathy Dataset

LISTENER: Yeah.

ACTOR: Impressive. So I’m actually a big fan of music. Do you like

music?

LISTENER: Yeah, I like music.

ACTOR: Because I actually do like music quite a lot. And actually, after

I moved to Sweden, I really got into it, kind of. I really got into

this whole. Aesthetic line of stuff, kind of. And I did actually

nag my parents, like, I want to get a guitar, kind of. They said it

was just a phase and it would go over, but I never really gave up,

kind of. I kept trying to convince them to get me things. The best I

could do, kind of is that eventually when we were going to choose

kind of upper high school, then wanted to go to this music school,

kind of. So I nagged them and eventually they said, that okay,

fine, sure, you can go to this music school as long as you can read

all these other subjects, kind of. Eventually they essentially did

kind of give up on this point. I got what I wanted, so I was really

excited to go to the school, kind of. And the school was amazing.

I learned a lot while I was there. The only problem I had really

was with the classical theory, classical, like music theory, which

is like learning different kind of how to play different things and

how the history of music also was a big part of that. So I had a

lot of trouble with that mostly because of the teacher. And the

teacher was really like I was pretty sure she was a demon in the

shape of a person, kind of. She was just an awful human being.

She was really bad. I did manage to make friends because of that,

though, because what happened was that I met four other guys

who kind of also hated we kind of developed a friendship over

hating her together, kind of, which was great.

LISTENER: Yeah.
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ACTOR: So that went on and I went on really enjoying learning how

to play music and learning a lot about musical theory, as well as

doing the other courses while still hating this one teacher because

she was really an awful human being, kind of. And yeah, so that

kept going on. And eventually, at some point in time, what hap-

pened was that we had to give this presentation in classical musi-

cal theory. And I was like and it was supposed to be a presenta-

tion front of the entire class. And I was really stressing out about

this. I studied a lot. I was very nervous because partially because

I wanted to do good and do well, right? But then also because

I was so scared of this teacher and what she would say, because

she would obviously judge me. So I went up and I gave my pre-

sentation. And for a moment I thought I’d done a really good job.

People applauded. But then she really tore into my work. Ev-

erything presented. She said that this was wrong. Why did you

say this? You need to speak up more. You didn’t do well. And

criticism was really harsh and mean. It was really, like, bitter crit-

icism. So I really couldn’t handle I really started to cry a bit when

she started to be so cruel to me. And then I got home, I cried a lot.

I talked to my parents and I said, look, this isn’t going to work. I

can’t go to a school where I have to be with this teacher. And she’s

really just an awful person because we talked to the school about

this teacher before and really they said that basically she’s there to

stay, kind of, so we couldn’t do anything about it. So eventually I

had to just swap schools, kind of, because I couldn’t stay there. I

needed that class to pass. What happened was, because the school

shared some courses with the main school, I could swap over to

the main school, kind of, and continue my education there. And

that kind of worked. It was okay. I would have preferred to stay
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at the main where I was the musical, but with that teacher, it really

just didn’t work. So time goes on, kind of. I go to college and then

I meet these kind of four people I was friends with during the

school, music school, because I didn’t keep in contact with that

much with them after that, which is cooler. I got to meet them

again, but it was good to meet them again. And we just talked

a bit and they were still really into music. And I was still, like

I was still into music. I hadn’t played or done anything serious

with music for a while. But we eventually decided, like, yeah,

we should start a band. Well, they suggested to me that I should

join the band, kind of, because they were really playing with each

other a bit, right? So I joined as the vocalist and they kind of all

were they were on drums, bass, guitar, guitar, stuff like that. Yeah.

So actually, we played a bit and then eventually we had our first

show and it was really amazing. Like, when we were performing,

I felt so happy, kind of. It was really a great experience, and it was

really nice I could meet these guys and do that stuff with them.

So I do have a bad recluse in a bad. That’s how it happened.
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