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Abstract
In the actuarial literature, frailty is defined to be the unobserved variable which encom-
passes all the factors affecting human mortality other than gender and age. Heterogeneity 
in individual frailty can play a significant role in population mortality dynamics. In the 
present paper, we identify the main latent factors that explain the frailty component, in 
order to clarify its role in mortality projections. We show, using longitudinal survey data, 
that frailty is mainly due to co-morbidities that impact on the process of deterioration in 
terms of the human body’s physiological capacity. Accordingly, we provide frailty-based 
stochastic models for projecting mortality based on the Lee–Carter family of models. We 
propose several versions that consider frailty both as an age-dependent and a time-depend-
ent factor and also combining the interaction effects of age and time in comparison with 
the general level of mortality, and compare the resulting mortality projections using data 
from England.

Keywords Frailty · Mortality modelling · Mortality heterogeneity · Lee–Carter family 
model · Random forest
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1 Introduction

Some interesting papers in the actuarial literature highlight the importance of embedding 
frailty in the estimation and forecasting of mortality trends (Haberman 2002; Butt and 
Haberman 2004; Carannante et  al. 2023; Olivieri 2006; Vaupel et  al. 1979), in order to 
avoid a material bias in mortality projections. Also in Meyricke and Sherris (2013), the 
impact of heterogeneity and frailty on the actuarial values of both standard life annuities 
and underwritten life annuities (i.e., “special rate” life annuities) is investigated. Sherris 
and Wei (2020) especially focus on the impact of heterogeneity on tail risk and solvency 
requirements. In Olivieri and Pitacco (2016), the authors suggest adopting a frailty model 
for risk classification, where the different levels of mortality of the various groups are 
based on the conditional probability distributions of frailty. To avoid some biases related 
to adverse selection, a better understanding of heterogeneity is required as in Onchere et al. 
(2019).

Nevertheless, there is no universal consensus on the definition of frailty, with different 
knowledge domains using different frailty definitions. In particular, it is noteworthy that, in 
the actuarial field, frailty represents an unobserved factor including all the sources affect-
ing human mortality other than age. According to the actuarial literature, a cohort consists 
of a group of heterogeneous individuals in respect of their mortality experience, due to the 
above-mentioned unobservable factors. The effect of heterogeneity is represented by a pos-
itive real number that is frailty level (Pitacco 2019). In the medical field, it is defined as a 
state of increased vulnerability and reduced ability to recover homeostasis after a stressful 
event, thereby leading to adverse outcomes, such as falls, disability, delirium, and mortal-
ity. Thus, frailty typically results from accumulated impairments in multiple physiological 
systems and it is suggested in the geriatrics, gerontology and the broader medical literature 
to be a predictor of functional deterioration and mortality (Strulik 2015; Lacas and Rock-
wood 2012). Other interesting researches on the concept of frailty applicable also in the 
actuarial domain represented by the flexible semi-parametric additive frailty hazard model 
under clustered failure time data, where frailty is assumed to have an additive effect on the 
hazard function (Liu et al. 2021). The frailty status of an individual, as a process of accu-
mulation of health deficits where ageing is “a consequence of the depletion of redundancy 
in the human body” (Olshansky et al. 1992), has been well documented in observational 
studies that reflect real-world clinical practice.

In the present paper, we try to identify the main latent factors explaining the frailty com-
ponent, in order to clarify its role in the analysis of population mortality trends and projec-
tions. We use longitudinal mortality data, to study the effects of the demographic structure 
and economic aspects on the frailty component that determines the heterogeneity in mor-
tality (Carannante et al. 2023).

Our findings are based on a Random Forest classification algorithm (herein RF) of 
a longitudinal study of ageing and these lead to an interesting convergence between the 
actuarial and medical perspectives. We use the metric of variable importance to measure 
the impact of a predictor variable on predicting the response and this demonstrates that 
the latent variable frailty is mainly affected by co-morbidities. In other words, the main 
unspecified factors explaining the frailty (Carannante et  al. 2023) consist of the co-mor-
bidities that cause the intrinsic, cumulative, progressive, and deleterious loss of function 
that eventually culminates in death (Arking 2006). From a mathematical point of view, 
this result encourages us to introduce the observable component of co-morbidity as a pre-
dictor of frailty in a stochastic model for mortality dynamics. In this paper, we propose a 



Frailty-based Lee–Carter family of stochastic mortality models  

1 3

frailty-based stochastic model for modelling mortality trends and for projecting mortality 
in the setting of the seminal Lee–Carter (herein LCA) mortality model. The different mod-
els that we investigate encompass time-dependent, and age-dependent frailty factors, forms 
of interactions of the frailty with the general level of mortality, and finally decomposing 
the frailty effect across time and by age. We compare these different models, in order to 
identify the main features, their advantages and shortcomings and to capture the best model 
choice for including frailty in the estimation of mortality trends. In the context of insurance 
applications, we consider the risk of relying on too conservative forecasts based on regula-
tory mortality models (Coulomb et al. 2020).

A comparison of models shows that, although all of the models allow realistic mortality 
predictions to be made, considering a frailty parameter that includes both the age and time 
effects leads to improved predictions in comparison with both a basic LCA model and the 
frailty-based models that consider only one of these effects.

The paper is organized as follows. Section 2 is devoted to a review of the actuarial lit-
erature on frailty. Section 3 sets up the mortality models in the Lee–Carter framework by 
including the frailty component. Section 4 shows the main findings of the empirical inves-
tigations that we perform. The final section concludes.

2  Frailty in the actuarial domain

Mortality models are affected by mortality heterogeneity due to observable or non-observ-
able factors. Discrepancies due to the misspecification of the mortality model are known as 
model risk (Pitacco et al. 2009). Model risk includes shocks caused by period effects that 
temporarily change the observed mortality.

Frailty is the set of unobservable factors that determines the heterogeneity in mortality. 
In the actuarial literature, frailty is assumed to be distributed as a non-negative real random 
variable which represents the individual deviations in mortality from the average behaviour 
estimated by the model, as analysed by Beard (1971, 2008) and Vaupel et al. (1979).

Let Zx be the continuous random frailty at age x, with a probability density function, 
�x(z) be the conditional force of mortality for an individual in a population group at age x 
and with a frailty level z

where Tx being the remaining lifetime. Note that Zx is invariant concerning t. Vaupel et al. 
(1979) define frailty as a multiplicative factor operating on the force of mortality

The survival function of an individual at age 0 taking into account the frailty is defined as 
follows

With H(x) being the cumulative standard force of mortality in the interval (0, x).
Improvements in longevity lead to increased mortality heterogeneity due to the onset of 

co-morbidities (Xu et al. 2019). In much of the actuarial literature, co-morbidities, frailty and 
disability are often used interchangeably in the identification of the vulnerable elderly (Fried 

(1)�x(z) = lim
t→0

[
P(Tx ≤ t|Zx = z)

t

]

(2)�x(z) = �x ⋅ z

(3)S(x, z) = e− ∫ x

0
�t(Z)dt = e−zH(x)
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et al. 2001; Jones et al. 2004). The concept of frailty as the onset of a state of health-related 
vulnerability to mortality is inconsistent with the idea that frailty is invariant over time, as 
defined in most existing models (i.e., Butt and Haberman 2004; Su and Sherris 2012).

An important milestone in the literature is the paper of Vaupel et al. (1979), which stressed 
the need to introduce a frailty parameter within mortality models. Frailty was considered diffi-
cult to quantify, as it is a latent variable that includes several unspecified factors. This can lead 
to poor specification of the models, with consequent underestimation or overestimation of the 
mortality trends.

We propose that the frailty parameter be included in the LCA model, thanks to its desir-
able properties which include its track record of goodness of fit to historic mortality trends; 
the ease of interpretation of the key parameters: and the need for a limited number of a priori 
assumptions. The basic idea of the invariance of frailty over time lies in its definition as an 
idiosyncratic factor of discrepancy with the general mortality trend. The introduction of an 
observable and quantifiable frailty parameter pushes us to define it as a latent variable whose 
value varies over time. For this reason, in the simplest definition of the model, showed in For-
mula (5), we introduce a time-varying frailty parameter. In other words, considering one or 
more covariates as significant factors of mortality trends, and no longer a random set of indi-
vidual and unobservable factors, allows us to build the co-movements of the phenomena over 
time to explain how they can influence the general trends of mortality.

2.1  The Frailty‑based Lee–Carter family models

Let �x,t the force of mortality at age x and time t. A Lee–Carter mortality model (LCA) (Lee 
and Carter 1992) is defined as follows

We define the force of mortality conditional on frailty �x,t and the relative model

where zt is a time-dependent multiplicative coefficient of the force of mortality.
We can express the ordinal least squares optimization for estimating parameters as mini-

mizing the squared sum of errors

so that the objective function is minimised by equating to 0 the first derivatives with 
respect to ax, bx, kt, zt.

The updating for the parameters can also be obtained recursively using a normal equation. 
The required parameters will be obtained numerically according to the following set of equa-
tions which can be solved recursively as proposed by Renshaw and Haberman (2003)

(4)yx,t = log(�x,t) = ax + bxkt + �xt

(5)yx,t = log(�x,t) = ax + bxkt + zt + �xt

(6)min
ax ,bx ,kt ,zt

∑
x,t

(
yx,t,z −

(
ax + bxkt + zt

))2
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As the original LC model, the estimation of ax, bx, kt, zt is performed in two stages. The 
first stage determines the values of the parameters and the second stage involves a re-esti-
mation and matching of the deaths by age x and time t. In this sense, the re-estimation of 
Dxt at the second stage, could be interpreted as matching observed and modelled deaths 
allowing for frailty.

To estimate zt the definition of a measurable variable of frailty is required. To do this, we 
perform a RF and we consider the variable importance to determine the main features that 
affects frailty. On the basis of the results, we build a co-morbidity index (ci) that assigns a 
frailty score of an individual.

The LCA family of models are based on aggregated data (not individual data) so that we 
arrange the vector of individual co-morbidity scores in a matrix by age, which we call the 
Co-morbidity (Aggregated) Matrix CI, in which the rows are the scores for each individual at 
age x and the columns represent the co-morbidity scores by age from the first observed in the 
sample, namely 50, to the maximum age �.

where ci is the score of co-morbidity for an individual at age x, each row collects co-mor-
bidity scores of n individuals of a certain age x from 50 to � . Being a matrix that collects 
respondents by age and time, it does not necessarily have the same number of columns per 
each row. This aspect is not a problem because the matrix representation is only a way to 
represent the data to be synthesized. Since the co-morbidity score is computed for more 
than one time according to the waves of a panel survey (see Sect. 3 for a discussion of the 
data sources), we have CI1,… ,CIT co-morbidity matrices that correspond to the calendar 
years being analysed.

The model is estimated following a similar procedure to the LCA model, which is effec-
tively the application of a singular value decomposition to the matrix of deviances from the ax 
and zt parameters.

Let log(mx,t) the matrix of the log rates by age and time, ax the row vector of average age-
specific mortality rates and zt the column vector of frailty varying by time. We define the 
matrix Axt as follows:

Axt is the matrix to be factored in to estimate the parameters bx and kt:

(7)

ax =

∑
t
Dxt

�
yx,t,z − b̂xk̂t − ẑt

�
∑

t
Dxt

bx =

∑
t
Dxtk̂t

�
yx,t,z − âx − ẑt

�
∑

t
Dxtk̂

2
t

kt =

∑
t
Dxtb̂x

�
yx,t,z − âx − ẑt

�
∑

t
Dxtb̂

2
x

zt =

∑
t
Dxt

�
yx,t,z − âx − b̂xk̂t

�
∑

t
Dxt

(8)CIt =

⎛
⎜⎜⎜⎝

ci50,1 ci50,2 ⋯ ci50,n
ci51,1 ci51,2 ⋯ ci51,n
⋮ ⋮ ⋱ ⋮

ci�1 ci�2 ⋯ ci�n

⎞⎟⎟⎟⎠

(9)Axt = log(mxt) − ax − zt
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To do this, it is necessary to arrange the co-morbidity matrices CIt in a unique matrix age 
by time. To obtain the input matrix for the models, each co-morbidity matrix CIt is aggre-
gated by row, resulting in a series of column vectors representing the average age score 
for each time t. We consider three measures to aggregate the matrix: the first measure is 
the average number of co- morbidities. Letting k be a generic individual with age x at time 
t and cij be a co-morbidity index, that is the number co-morbidities of an individual j, we 
define the aggregated vectors of the average number of co-morbidities as follows

The second measure is the average difference of co-morbidities between age x + 1 and age 
x at time t. Let cij the average co-morbidity score for individuals with age x at time t and cij′ 
the average co-morbidity score for individuals with age x + 1 at time t, we define the aggre-
gated vectors of increase of co-morbidity as follows

And the third measure is the ratio between the deviation from the mean of the co-morbidity 
score at age x and time t and its mean. Let cij be the average co-morbidity score for indi-
viduals with age x at time t, we define the aggregated vectors as follows

The indexes in Eqs. (11)–(13) are obtained by fixing time t and aggregating the co-morbid-
ity scores by age x.

The input frailty matrix, namely Z, is obtained by merging the Ct vectors, choosing the best 
method of aggregation among the three proposed. The time- varying frailty column vector zt 
can be seen as the average values by age of Z matrix

where �x are the rows of the Z matrix.
From Equation (5), we define the force of mortality conditional on frailty �x,t . The frailty 

parameter z is included in the different functional forms that we propose for yx,t = log(�x,t) , on 
the basis of the different characteristics being highlighted.

In addition to the model defined by Equation (5), called the Frailty LCA (FLCA) model, 
we define the Age-dependent Frailty LCA (AFLCA) model, in which a frailty-based average 
of log-specific mortality rates, zx is used as a substitute for the ax parameter

The idea of this formulation is that frailty is an age-dependent factor that affects the age-
specific mortality rate, and represents the mortality effects that the LCA model fails to cap-
ture. This aspect is highlighted by the high correlation between ax and zx.

(10)Axt = bxkt

(11)Cave,t =
1

J

J∑
j=1

cij, t = 1, ...,T

(12)Cinc,t =
1

J

∑
j�≠j

(
cij� − cij

)
, t = 1, ...,T

(13)Crel,t =
cij − cij

cij

, t = 1,… , T

(14)zt =
1

�

�∑
x=1

�x

(15)yx,t,z = log(�x,t,z) = bxkt + zx + �xt
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The third model, called the Age and Time Interaction Frailty LCA (IFLCA) model, is 
formulated to take into account an interaction effect between ax and zt . This model is based 
on the idea of identifying an effect for both age and time for frailty. However, it has not 
been possible to use a single parameter zx,t , that is the combined age and time dependent 
frailty, due to problems related to model convergence.

In this formulation, frailty zt is a time-varying factor that modifies age- specific mortal-
ity rates according to a temporal ageing trend. The fourth model is a generalization of the 
LCA model proposed by Niu and Melenberg (2014), called the Age-specific and Temporal 
Frailty LCA (ATFLCA) model, that includes an exogenous trend that affects the mortality 
trend kt . In this formulation, zt is estimated as a time-varying variable as in Equations (5) 
and (16), but adding an age-specific coefficient of frailty to be estimated

In this formulation, frailty zt is a time-varying factor, independent of the average age- spe-
cific mortality rates ax , but with an age-specific frailty factor gx to estimate in combination 
with zt.

Table  1 summarises the characteristics of the models proposed in Equations  (5) 
and (15)–(17)

To identify what are the variables that can affect mortality using individual-based 
data, a Random Forest (RF) algorithm based on classification trees is used. The RF algo-
rithm was introduced by Breiman (2001) and consists of many independent trees grown 
by recursively performing binary splits on the dataset. Let 

[(
x1, y1

)
,… ,

(
xn, yn

)]
 the 

training set. The algorithm predicts the response Y by estimating the regression function 
m(x) = �[Y|X = x] . The mean-squared generalized error for any numerical predictor h(x) 
is defined as in the following

where the random forest predictor is the average over k = 1,… , n trees (Breiman 2001). 
Breiman (1996) defines bagging as the algorithm to synthesize many trees together gener-
ating many bootstrap samples and averaging the predictors. The estimator of the target var-
iable ŷRj

 is the function of the regression tree estimator

1{.} being the indicator function and (Rj)j∈J the region of the predictor space which is 
divided into J distinct and non-overlapping R1,R2,… ,RJ and obtained by minimizing the 
Residual Sum of Squares.

3  Numerical application

3.1  Data description and pre‑processing

For our analysis, we refer to two sources of datasets: the Human Mortality Database, used 
in the mortality model estimation, and the English Longitudinal Study on Ageing (ELSA), 

(16)yx,t,z = log(�x,t,z) = axzt + bxkt + �xt

(17)yx,t,z = log(�x,t,z) = ax + gxzt + bxkt + �xt

(18)�X,Y = (Y − h(X))2

(19)f̂ tree(X) =
∑
j∈J

ŷRj
1{X∈Rj}
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used for the detection of determinant factors of frailty and the estimation of the zx and zt 
parameters in Eqs. (5) and (15)–(17).

ELSA is a longitudinal household survey dataset for the study of health, economic posi-
tion, and quality of life among the elderly in England, based on the Health and Retirement 
Study (HRS) collected in the United States, to facilitate comparisons between the countries 
(Banks et al. 2021). The dataset is composed of 9 waves from 2002 to 2019, where each 
wave is a survey carried out every two years in which the same individuals participate 
until their death and new individuals are introduced to maintain the representativity as the 
sample ages. The starting sample included 11,050 respondents aged 50 and over on March 
1, 2002. The sample is refreshed every two waves, including individuals aged 50 years and 
over and their partners. The dataset includes any individual interviewed at least once, for a 
total of 19,802 respondents. Respondents are individuals who were age-eligible at the time 
of their first interview, while the unit of observations is: the individual, the couple, collect-
ing data relating to the respondent’s partner, and the household.

To perform the Random Forest, we consider only the variable relating to the respondent. 
To do this, we perform data pre-processing on the original harmonised dataset provided 
by ELSA. The original dataset is in the form of a cross-sectional data matrix, with the 
respondent i on the rows and the variables xi on the columns, replicating the variables for 
each wave t. We obtain a panel data matrix, with the respondent and waves on the rows 
i, t and the variables xi,t on the columns. To do this, we take the following steps for each 
respondent i: We detect the first and the last wave in which the respondent participated; 
We exclude from the dataset those waves where an interviewee’s row is empty because the 
individual did not enter or left the sample; We find out if the individual responded to all the 
waves consecutively or skipped some of the waves.

The variables with missing data due to non-response are imputed using the median of 
the response of the individual in the other waves. Otherwise, missing data are imputed 
using the median of the respondents. Missing data represent only about 1 % of the sample.

3.2  Descriptive statistics and variable importance

In both the medical and actuarial literature, frailty is a latent variable linked to popula-
tion deterioration. To be included in a model, one or more observable features could be 
identified to find a quantifiable variable that measures frailty. In this sense, we perform a 
RF to identify the variables relevant to the frailty of individuals. Considering the size of 
the original matrix, it is necessary to make a qualitative selection of the variables before 
implementing the model. The target variable is frailty, measured on a scale ranging from 1, 
indicating excellent status, to 5, indicating poor status.

The feature variables are selected from the following sections of the questionnaire: A: 
demographics, identifiers, and weights; B: health; C: insurance; F: income and consump-
tion; H: employment history; I: retirement and expectations; L: assistance and care giving; 
O: end of life planning—which leads to a total of 35 variables.

In particular, features are selected according to the link with frailty and mortality of 
the individuals. With regard to co-morbidity status, we look for the simultaneous pres-
ence of one or more diseases that affect mortality according to the literature, following the 
approach of the Charlson Co-Morbidity Index (Charlson et al. 1987).

Tables 2, 3, 4, and 5 show the summary statistics of the variables, grouped by theme
As can be seen from Table 2, more than half of the sample is made up of women, 

half have a secondary school qualification and only 16% have tertiary qualifications. In 
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addition, only 5% of the sample has never had a partner, 91% are UK citizens and the 
average year of birth is 1945.

Table  3 shows that the most common pathologies are hypertension, arthritis, heart 
disease, cataracts, asthma, and diabetes. The other diseases considered are present in 
less than 10% of the sample. For this reason, we construct a co-morbidity score, in a 
similar way to the Activities of Daily Living (ADL), a variable of the number of co-
morbidities affecting an individual. More than half of the sample has good or very good 
quality of sight or hearing.

As Table 4 shows, more than 60% of the sample claims to have a good or very good 
state of health. More than 80% have an ADL score of 0 and only about 2% have a score 
greater than or equal to 5. Regarding mobility limitations, 47% of the sample have a 
score of 0 and about 10% have a score greater than or equal to 5. Much of the sam-
ple performs physical activity more than once a week, smokes and drinks, while only 
30% have active social participation. Less than 1% need care, and the average subjective 
probability of survival over 10 years is 0.6.

As Table 5 shows, more than the half of the sample is retired and more than a quarter 
is employed, only the 13% of the sample has a health insurance policy and only the 34% 
a life insurance policy.

Variables in Tables 2, 3, 4, and 5 are the feature values used in the RF algorithm, 
with a categorical variable indicating the death of an individual at the time of inter-
view as the target variable. For this reason, we perform a classification tree RF, with 
300 nodes each. The training set is 0.7 of the total dataset. The accuracy of the model, 

Table 2  Summary statistics for 
socio-demographical variables

*Indicates summary statistics are proportions of categorical variables

Variable Category Summary

Gender* Male 0.443
Female 0.557

Race* White 0.964
Non-white 0.036

Education* Less than upper secondary 0.313
Upper secondary and vocational trading 0.527
Tertiary 0.160

Partner* Married or civil partnership 0.670
Partnered 0.041
Separated 0.012
Divorced 0.080
Widowed 0.148
Never married 0.049

Birthplace* UK 0.912
Other 0.088

Birth year min 1908
q1 1936
median 1945
q3 1951
max 1988
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obtained by the average between sensitivity and specificity, is 0.97 in the training set 
and 0.63 in the test set, with sensitivity of 0.94 and 0.29 and specificity of 0.99 and 
0.96 respectively.

Figure  1 shows the variable importance of RF using the mean decrease accuracy 
and the mean decrease in the Gini coefficient. The Gini coefficient measures the node 
impurity, that is the probability to be classified incorrectly when selected randomly 
according to a selected feature. The model is estimated without considering the year of 
birth, in order to avoid trivial solutions, since the Lee–Carter family of models already 
consider the calendar year and age.

As shown in Fig.  1, for accuracy the most important variable is the co-morbidity 
score, followed by the mobility score, sight, subjective survival probability, labour and 
hearing. For the Gini coefficient, the most important variable is income, followed by 
subjective survival probability, co-morbidity, mobility, hearing and labour. For both 
criteria, the most important variables concern aspects of self-sufficiency and survival.

Now that we have established that co-morbidity is an aspect that can significantly 
affect mortality, we will build an indicator that can best represents the phenomenon of 
frailty, representing the deterioration of the population as it ages.

Table 3  Summary statistics for co-morbidity variables

*Indicates summary statistics are proportions of categorical variables

Variable Category Summary Variable Category Summary

Hypertension* No 0.590 Hipfracture* No 0.984
Yes 0.410 Yes 0.016

Diabetes* No 0.899 Angina* No 0.922
Yes 0.101 Yes 0.078

Cancer* No 0.907 Heartattack* No 0.948
Yes 0.093 Yes 0.052

Lung* No 0.940 Rhythm* No 0.905
Yes 0.060 Yes 0.095

Heart* No 0.808 Osteoporosis* No 0.933
Yes 0.192 Yes 0.067

Stroke* No 0.954 Sight* Excellent 0.146
Yes 0.046 Very good 0.333

Psyche* No 0.904 Good 0.381
Yes 0.096 Fair 0.105

Arthritis* No 0.643 Poor 0.031
Yes 0.357 Blind 0.004

Asthmae* No 0.871 Hearing* Excellent 0.188
Yes 0.129 Very good 0.276

Cataracts* No 0.791 Good 0.322
Yes 0.209 Fair 0.164

Parkinson* No 0.993 Poor 0.049
Yes 0.007
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Table 4  Summary statistics for healthy status and habit variables

* Indicates summary statistics are proportions of categorical variables

Variable Category Summary Variable Category Summary

Health status* Excellent 0.134 Physical activity* More than once a week 0.772
Very good 0.304 Once a week 0.094
Good 0.318 One to three times a month 0.032
Fair 0.176 Hardly ever or never 0.102
Poor 0.068 Drink* No 0.131

adl* 0 0.815 Yes 0.869
1 0.090 Smoke* No 0.377
2 0.042 Yes 0.623
3 0.023 Social participation* No 0.701
4 0.014 Yes 0.299
5 0.010 Informal care* No 0.952
6 0.008 Yes 0.048

Mobility* 0 0.470 Formal care* No 0.949
1 0.165 Yes 0.051
2 0.114 Professional care* No 0.949
3 0.083 Yes 0.051
4 0.066 Survival probability min 0
5 0.053 q1 50
6 0.034 median 60
7 0.015 q3 80

max 100

Table 5  Summary statistics for 
economical variables

*Indicates summary statistics are proportions of categorical variables

Variable Category Summary

Labour force status* Employed 0.263
Self-employed 0.063
Unemployed 0.011
Partly retired 0.006
Retired 0.539
Disabled 0.051
Looking after home or 

family
0.067

Household income min -81,174
q1 12,285
median 20,229
q3 32,111
max 879,211

Health insurance* No 0.866
Yes 0.134

Life insurance* No 0.657
Yes 0.343
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3.3  Scores of frailty

Figures 2, 3 and 4 show the results relating to the different measures of frailty Cave,t , Cinc,t , 
and Crel,t defined by Equations (11)–(13). Comparing these measures, we can choose how 
to aggregate as reliably as possible the CIt matrices to obtain the Z matrix to estimate the 
Lee–Carter family models proposed in the Eqs. (5) and (15)–(17).

Figure  2 shows that the average number of co-morbidities Cave,t increases as the age 
increases for all the years considered. Comparing different years, we can observe that the 
slope of Cave,t ’s trend is lower for the less recent years and then increases. This suggests 
that the difference between co-morbidities at the youngest and oldest ages considered 
becomes more acute over time. Therefore, the incidence of co-morbidities is not constant 

Fig. 1  RF Variable Importance

Fig. 2  Score of frailty as the average number of co-morbidities by age and time ( Cave,t)
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over time, and moreover the way in which it varies by age tends to be different if we con-
sider its evolution over time.

Figure  3 shows that the increase in co-morbidity Cinc,t is oscillating with age, with a 
slightly increasing trend for older ages. Similarly to Cave,t , different behaviours by time are 
observed. In particular, we can observe that, for less recent years, the differences between 
one age and the next tend to be more marked, while in more recent years this phenomenon 
becomes smaller.

Fig. 3  Score of frailty as the increase of co-morbidities between age x and x + 1 ( Cinc,t)

Fig. 4  Score of frailty as the relative score of co-morbity by age and time ( Crel,t)
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As shown in Fig. 4, the relative score Crel,t fluctuates, decreasing with age for the earlier 
years and slightly increasing with age for other years. Comparing the results by years, we 
can observe that relative score is higher for the less recent years and than decrease. Note 
that the increase in co-morbidity and relative score also have zero or negative values.

In order to be able to estimate the LCA-based model, we use an exponential trans-
formation of the data that, being a monotonous transformation, does not cause loss of 
information.

Once we have determined the measures of frailty, we have estimated the FLCA model, 
as defined by Eq. (5), using the different scores of frailty and comparing with the LCA esti-
mation. Models are estimated using the Human Mortality Database for England and Wales 
for the mortality rates and the exposures to risk, and the ELSA dataset for the frailty index. 
To harmonise the available data between the 2 data sources, we consider the ages from 50 
to 90 years and the years 2003, 2005, … , 2017, and 2019.

Figures 5, 6, 7 and 8 show the parameters estimates
ax parameter shown in Fig. 5 represents the average of log-specific mortality rates. Since 

they do not depend on frailty, they are the same for all the models considered.
bx is the mortality effect due to age. We can observe from Fig.  6 that the parameter 

changes as the frailty indicator changes. In particular, for the relative score indicator, we 
observe an inverted functional shape relative to the LCA model, that is an inverted parab-
ola, with lower values for the central ages and higher values for the extreme ages. The 
increment score indicator has a functional shape similar to the LCA model, with a parabola 
with slightly lower values at extreme ages and higher values for central ages. Finally, for 
the average score indicator, the function is similar to LCA but with very small values.

kt is the general trend of mortality. Figure 7 shows that the parameters are very similar 
across the indicators, and these results are consistent with the general improvement in mor-
tality, which does not depend on frailty, but it is a contributing factor to the secular trends 
in mortality by age.

zt is the frailty over time. Figure 8 shows that the trend depending on the frailty indicator 
that is used. With the average indicator Cave,t , the values are higher and have a slightly decreas-
ing trend with age. With the relative indicator Crel,t , the values are decreasing by age, and, 

Fig. 5  ax parameter comparison for frailty measures
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finally with the increase indicator Cinc,t , the values are around zero and increasing slightly with 
age.

As shown by Figs. 5, 6, 7 and 8, the use of the frailty parameter zt allows us to obtain reli-
able and unbiased parameter estimates, compared to the LCA model, except for bx parameter 
using the relative Crel,t score, which we exclude as frailty measure for this reason. Between 
average Cave,t and increase Cinc,t measures, we prefer to use the former as it is easier to inter-
pret and to implement in the models.

Fig. 6  bx parameter comparison for frailty measures

Fig. 7  kt parameter comparison for frailty measures
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3.4  Model comparison

Figures 9, 10, 11, 12 and 13 shows the results in terms of parameter estimates for the dif-
ferent models

Figure 9 shows that ax is equal for LCA, FLCA, ATFLCA and IFLCA parameters, while 
for AFLCA the trend is similar, but with a different scale, with only positive values. For 
all models except ATFLCA, ax is calculated in the same way, so the average mortality 
rates by age are equal. For the model AFLCA, we have replaced the death rates matrix 
with frailty matrix for calculate the parameter, with consequent different values we have 
replaced the matrix of mortality rates with the matrix of frailty scores in order to calculate 
the parameter.

Fig. 8  zt parameter comparison for frailty measures

Fig. 9  ax parameter comparison for models
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Figure 10 shows that bx has a similar age trend for LCA and ATFLCA, with a peak 
in the mid 70 s. The main difference is that ATFLCA shows lower values in the middle 
of the age range and higher values for the very old ages. Since bx is an age modulating 
factor which represents the response of an age to the time trend term kt , so the ATFLCA 
model is more optimistic for mortality rates at ages over 80 when kt is negative. In con-
trast, AFLCA and IFLCA have bx values which show a decreasing trend by age, that 
seems an unreliable hypothesis. The age-specific death rate decreases with age. This 
age pattern is very unusual, compared to the characteristic profile for the LCA model, 
and implies that mortality would be more responsive to a negative kt and a downward 
time trend at younger ages compared to older ages. We believe that the result is strongly 
influenced by the measure of the frailty matrix, as these are the two models in which the 
frailty matrix has greater importance: in the first case, it is used in substitution for the 

Fig. 10  bx parameter comparison for models

Fig. 11  kt parameter comparison for models
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average mortality rates, and in the second case it appears as a product with the the aver-
age mortality rates. In these cases, it seems that the models reflect more the age-specific 
rates of frailty and not age specific mortality rates. The FLCA model shows a similar 
trend for the parameters to LCA and ATFLCA, but with very small values. We believe 
that this is a multiplicative effect of frailty that is reflected in the observed values. How-
ever, again, the values do not seem to be reliable.

Figure 11 shows that each model shows a similar feature of a downward trend for kt , 
with the scale being different for AFLCA. The flattening of curve in 2011–2014 period 
is a theme studied in actuarial literature (see for instance Djeundje et  al. 2022). We 
believe this aspect is particularly important because it suggests a possible cause-effect 
relationship between co-morbidity and longevity that the standard Lee–Carter model 
could not grasp.

Fig. 12  zt parameter comparison for models

Fig. 13  gx parameter for ATFLCA model
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Figure 12 shows that the zt trend of the variable for the three models is similar, but 
the values are different, between 0 and 1 for FLCA and IFLCA and between 2.9 and 
2.75 for ATFLCA.

Figure 13 shows that the gx parameter, which is estimated for ATFLCA model only. 
As can be seen, gx has a parabolic trend by age, with a maximum value around 75 years 
and with very low values for ages over 84 years. gx represents the age-specific response 
to the trend in frailty values, the main results are that from 50 years to 75 years the sen-
sitivity to the trend in frailty increases and then decreases and for extreme age frailty is 
lowest and, for extreme ages, the sensitivity to the frailty trend is the lowest.

Table 6 shows the deviance test of frailty models vs LCA model and the information 
criteria based on deviance. We consider the Akaike Information Criterion (AIC), small-
sample corrected AIC (AICc) and Bayesian Information Criterion (BIC)

As shown in Table 6, all of the models have a higher deviance with respect to the 
LCA model. Deviance tests show that the differences, relative to the LCA model, of all 
models are significant, although marginally for ATFLCA. All the frailty-based models 
contribute more significantly to the explanation of mortality trend than the LCA model. 
In addition, the information criteria are lower for all the frailty-based models than for 
the LCA model. Thus, while ATFLCA is not the best model in terms of goodness-of-fit 
and computational cost, it still performs better than the LCA model.

Table 7 shows the error measures of the models estimated. We consider Mean abso-
lute error (ME), Mean Square Error (MSE), Mean percentage error (MPE) and Mean 
absolute percentage error (MAPE)

As shown in Table  7, FLCA, IFLCA and AFLCA, show a lower fitting error with 
respect to LCA only for some measures, in particular MPE and MAPE for FLCA, ME, 
MSE and MPE for IFLCA and MSE and MPE for AFLCA. ATFLCA shows a lower fit-
ting error for all of the indeces with respect to LCA and also the other models.

Table 6  Model information criteria

Model Deviance Test vs LCA p value AIC AICc BIC

LCA 20.443 – – −241.447 −240.799 −236.307
FLCA 27.509 14.131 0.00017 −263.789 −262.678 −256.935
AFLCA 26.178 11.469 0.00071 −261.722 −261.073 −256.581
IFLCA 27.304 13.721 0.00021 −263.176 −262.065 −256.322
ATFLCA 23.395 5.903 0.05227 −248.505 −246.791 −239.938

Table 7  Error measures Model ME MSE MPE MAPE

LCA 1.59E−04 5.55E−06 1.97E−03 0.01628
FLCA 0.00077 0.00078 −0.00019 0.00649
AFLCA −3.00E−05 0.00E+00 8.20E−04 0.02939
IFLCA 0.00E+00 0.00E+00 1.32E−03 0.02645
ATFLCA −6.16E−06 1.24E−06 −4.39E−05 0.01390
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3.5  Forecasting

The five models considered (LCA, FLCA, AFLCA, IFLCA and ATFLCA) were projected 
for 20 steps ahead, that is 40 years. In order to project the mortality rates, assumptions need 
to be made about the stochastic processes followed by the time indexes ( kt in all the models 
considered, zt in the FLCA, IFLCA and ATFLCA models), while the parameters ax , bx , gx 
and zx are assumed constant over time. For kt we have assumed a random walk with drift, 
as usually adopted in the standard Lee–Carter model, while for zt we have adopted the Box-
Jenkins method to find the best fitting ARIMA model, also in this case being the random 
walk with drift. Once we have obtained the ARIMA forecasts, the final projections are 
computed by adding or multiplying the values of age-dependent parameters, namely ax , bx 
and, where it is allowed, zx and gx , according to the respective functional forms defined in 
Eqs. (5) and (15)–(17).

Figure 14 shows the results
Observing Fig. 14, we notice that the mortality forecasts of FLCA, IFLCA and AFLCA 

differ from the LCA model, showing a smoother age trend of mortality rates. We also 
notice, for the IFLCA and AFLCA models only, a greater longevity improvement (in terms 
of lower mortality rates) for the younger ages than the older ages. In contrast, the ATFLCA 
model shows mortality forecasts very similar to the LCA model.

Table 8 shows life expectancies at 50 years, obtained by the different models for four 
selected calendar years

Table 8 shows that the values obtained with the IFLCA model are very similar to those 
obtained with the traditional Lee–Carter model. The values obtained with the AFLCA and 
ATFLCA models are slightly higher than those of the LCA model (by less than one year in 
2059). Finally, the life expectancies of the FLCA model are significantly higher than that 
of the LCA model (by more than two years in 2059).

The life expectancy results allow us to appreciate how frailty influences the evolution of 
mortality in the four models that include it. When frailty is considered a time-varying fac-
tor, its reduction leads to a decrease in mortality and thus to an increase in life expectancy. 
In the FLCA model, where an age-specific frailty response coefficient is not included, the 

Fig. 14  Forecasting for 20 steps ahead of models
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effect on mortality of reducing frailty over time is greatest. In models in which an age-
specific frailty response coefficient is included, as in the IFLCA and ATFLCA models, 
the effect on mortality of the decreasing trend in frailty is dampened by the response coef-
ficient. In the AFLCA model, in which frailty is entered as an age dependent factor, the 
evolution of mortality over time is not influenced by frailty, which only enters the model to 
represent the age profile of the death probabilities. In this case, the reduction in mortality 
is only determined by the interaction of the kt and bx factors. The higher life expectancy 
obtained with the AFLCA model compared to the LCA model is therefore a consequence 
of the different age profile of bx.

Starting from the forecasted models, applying the simulated function, we have produced 
fan charts showing prediction intervals for mortality rates at ages 50, 70 and 90 for each of 
the five models considered.

Figure  15 shows the results. Shading in the fan represents prediction intervals at the 
50%, 80% and 95% level

Figure 15 represents the uncertainty associated with a model forecast. It can be seen that 
the LCA model has the narrowest prediction intervals. The introduction of fraity therefore 
leads to greater volatility in the projections. On the other hand, the greatest uncertainty is 
observed in those models where frailty is associated with an age dependent response factor 
(IFLCA and ATFLCA).

The results shown in Table 8 and Fig. 15 are interesting in terms of an actuarial perspec-
tive of longevity risk. Actuaries and financial regulators involved in managing pensions 
and annuities may be interested in a more optimistic assessment of long term trends in life 
expectancy when fixing prices and capital requirements.

Table 8  Life expectancy 
projections at age 50

Model 2029 2039 2049 2059

LCA 35.46 37.25 39.06 40.90
FLCA 35.73 37.93 40.38 43.15
AFLCA 35.63 37.59 39.62 41.76
IFLCA 35.53 37.30 39.03 40.76
ATFLCA 35.27 37.28 39.33 41.43
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4  Concluding remarks

Forecasting the future mortality trends for a human population is a difficult problems and 
depends on many factors, for instance, the goodness of the fit to observed data, the robust-
ness of forecasts relative to the sample period used to fit the model and many others factors 
such as the biological reasonableness of individual stochastic components of the forecast-
ing model (Cairns et al. 2011). The numerous imaginative ‘explanations’ of the functional 
structures and parameters (Willemse and Kaas 2007) of the mortality models proposed in 
the literature rely on different hypotheses. In this paper, we try to identify the main latent 
factors explaining the frailty component, in order to clarify its role in modelling mortality 
trends and in mortality projections. Our findings based on a machine learning classification 
of a longitudinal study of ageing lead to recognising co-morbidity as the most important 
variable determining frailty.

In other words, the main unspecified factors that explain frailty (from a determination 
of the heterogeneity in mortality outcomes) consist of the co-morbidities that cause the 
intrinsic, cumulative, progressive, and deleterious loss of function that eventually culmi-
nates in death (Arking 2006). From a mathematical point of view, this result encourages 
the theoretical assumption of embedding, in a stochastic mortality model, the observable 
component of co-morbidity as a predictor of frailty, to avoid systematic bias in the projec-
tions (Vaupel et al. 1979).

In this paper, due to its desirable properties, we propose a frailty-based stochastic model 
for projecting mortality in the setting of the Lee–Carter family of mortality models. To 
the best of our knowledge, this is the first proposal to introduce into a mortality model 
the observable component of co-morbidity as a predictor of frailty. We propose different 
approaches to including the frailty component into the mortality model by passing from 
time-dependent, and age-dependent frailty factors and forms of interactions of the frailty 
with the general level of mortality, leading to decomposing the frailty effect across time 
and by age. We compare the models that we have developed, and note that each has a good 
forecasting performance. The analysis of different forms of dependence of mortality on 
frailty has allowed us to identify the model that seems to capture the phenomenon best. 
In terms of goodness of fit to the observed data, the model obtaining the best values has 
turned out to be the ATFLCA, i.e. the model in which frailty is represented by a time-
varying factor and an age-specific frailty response coefficient is included. Moreover, our 
research has pointed out that modelling the observable component of co-morbidity as a 
predictor of frailty that varies across age and time leads to a superior adjustment to the 
mortality rate for an individual.

In the projections, the models show how the evolution of frailty contributes to the 
increase in life expectancy, although in the best performing models this increase is not 
large (about one year after 40 years of projections). It is also observed that models that 
include an age-specific frailty response coefficient are characterised by a larger prediction 
interval.

Further researches will be devoted to the analyses of different datasets in order to verify 
whether our main numerical findings are specific to the England and Wells experience or 
have a more general validity. A possible research development could be to investigate the 
implications of using a model including frailty in the valuation of pension or annuity prod-
ucts and thus measuring the longevity risk faced by an insurance company or pension fund.
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