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Abstract

The generalised linear model is a flexible predictive model for observational data that is widely

used in practice as it extends linear regression models to non-Gaussian data. In this paper, we

introduce the concept of a properly defined generalised linear model by requiring the conditional

mean of the response variable to be properly mapped through the chosen link function and the

log-likelihood function to be concave. We provide a comprehensive classification of proper

generalised linear models for the Tweedie family and its popular subclasses under different

link function specifications. Our main theoretical findings show that most Tweedie generalised

linear models are not proper for canonical and log link functions, and identify a rich class

of proper Tweedie generalised linear models with power link functions. We provide a novel

interpretability methodology for power link functions that is mathematically sound and very

simple, which could help the adoption of such a link function that has not been used much in

practice for its lack of interpretability. Using self-concordant log-likelihoods and linearisation

techniques, we provide novel algorithms for estimating several special cases of proper and not

proper Tweedie generalised linear models with power link functions. The effectiveness of our

methods is determined through an extensive numerical comparison of our estimates and those

obtained using three built-in packages, MATLAB fitglm, R glm2 and Python sm.GLM

libraries, which are all implemented based on the standard Iteratively Reweighted Least Squares

method. Overall, we find that our algorithms consistently outperform these benchmarks in

terms of both accuracy and efficiency, the largest improvements being documented for high-

dimensional settings. This is concluded for both simulated data and real data, which shows that

our optimisation-based GLM implementation is a good alternative to the standard Iteratively

Reweighted Least Squares implementations available in well-known software.
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self-concordance.

JEL classification: C13, C35, C44

1. Introduction

1.1. Literature Review and Main Goals

Generalised linear modelling (GLM) is a predictive model for observational data which creates a

bridge between statistics and machine/statistical learning. That is, GLM provides not only sta-

tistical goodness of fit evidence (Nelder and Wedderburn, 1972; McCullagh et al., 1989; Bickel

and Doksum, 2015) but also machine/statistical learning evidence such as feature/variable se-

lection (Kuo and Mallick, 1998; Hastie et al., 2001).

GLMs have been successfully implemented in different research fields, and it is vastly used

in insurance risk modelling; see e.g., (Debón et al., 2008) for mortality modelling, (Eling and

Wirfs, 2019) for cyber risk modelling, (Delong et al., 2021) for insurance pricing, etc. Most

of these applications assume independent observations, but insurance applications may require

non-independent data, and one example is longitudinal data, and this setting is investigated in

Antonio and Beirlant (2007).

The basic GLM requires assumptions about two key quantities, the underlying parametric

distribution and the choice of link function (LF). The estimation procedure is based on an op-

timisation algorithm if the most common estimation method is chosen, i.e. maximum likelihood

estimation (MLE). The asymptotic theory of M-estimators requires a concave log-likelihood

function, which is the ideal setting so that efficient and stable estimates are obtained; the ex-

istence and uniqueness of the MLE estimator is an essential assumption that requires some

regularity conditions (Wedderburn, 1976; Mäkeläinen et al., 1981). Consequently, we introduce

the concept of a proper GLM which requires the conditional mean of the response variable

to be properly mapped through the chosen LF and for the log-likelihood function to be well-

defined and concave. Since the GLM literature typically relies on exponential dispersion models

(Jørgensen, 1987), our first main goal is to provide a classification of proper GLMs under this

modelling assumption for different LF specifications. This allows the modeller to reduce the

numerical issues and understand which combination of the parametric family and LF would

provide the best possible setting for implementation purposes. The most common LFs belong

to the class of log or power functions, see e.g. McCullagh et al. (1989) and Bickel and Doksum

(2015), and thus the main focus will be on these choices.

The most popular algorithms for fitting exponential dispersion GLMs are Iteratively Reweighted

Least Squares (IRLS), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Limited-memory BFGS

(L-BFGS). IRLS is the standard algorithm which is reasonably scalable when the number of

covariates/features is smaller than the sample size. However, IRLS requires inverting the Hessian

matrix at every step, which is computationally challenging in non-sparse problems when either

the number of features/covariates or the sample size is small. A remedy for this is given by

either BFGS or L-BFGS, where the inverse of the Hessian is approximated so that it is feasible

to solve higher-dimensional GLM Regressions. The second main goal of the paper is to identify

viable alternative estimation algorithms to IRLS. Given that the underlying distribution of the

response variable is parametrised according to an exponential dispersion family, the MLE could
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also be obtained via the vanilla Newton’s method, which by design is the same as IRLS if

the canonical LF is in place; the application of Newton’s method is also known as the Fisher

Scoring method in the GLM literature. Our aim is to improve this estimation method for both

proper and not proper GLM settings, by making use of the mathematical properties of power

LFs. For convex problems, Newton’s algorithm can be further refined if the objective function

is in addition self concordant (SC), i.e. a convex function whose third derivative is bounded

relative to the second derivative in the interior of its domain.1 This property allows defining

an augmented Newton’s method which requires a fewer number of iterations for convergence

to the optimal solution, see e.g. Boyd and Vandenberghe (2004) or Nesterov (2004) for further

details on SC and their fast convergence iterative methods. Since the log-likelihood associated

to special cases of Tweedie GLMs (e.g. Poisson and Gamma) equipped with some particular

power LF specifications is an SC function, we rely on this method for implementing them.2

For non-convex problems, which is typically the case for many exponential dispersion GLMs

(e.g. Inverse Gaussian with power LFs), the use of standard IRLS-type algorithms leads to

significant computational problems, as illustrated in the next subsection. In such cases, one

could either construct bespoke optimisation algorithms designed to tackle a specific problem

or rely on mainstream optimisation tools (e.g. generic interior-point methods) if the former is

not available. In this paper, we also aim to identify tractable solutions for non-convex GLM

instances by exploring linearisation techniques, see e.g. Boyd et al. (2011).

Finally, we would like to reiterate that the IRLS methodology approximates the MLE estimates,

though IRLS is a very general method that is implemented in various forms in all well-known

software. The differences between various implementations are given by bespoke solutions to

overcome the lack of convergence that is not guaranteed by IRLS, and therefore, software

engineers came up with different solutions; this explains why R/Python/MATLAB usually

lead (if convergence is achieved) to different estimates even if the starting values and all other

settings are the same.3 Our numerical examples from Sections 5 and 6 show that the lack of

convergence is not a negligible issue in GLM deployment for both simulated and real data.

1.2. Motivation and Contributions

The impact of using standard IRLS-based built-in packages on fitting not proper exponential

dispersion GLMs is illustrated in the following motivational example. Specifically, using syn-

thetic data, we compare the estimates of an Inverse Gaussian GLM based on the log LF, which

1In a GLM context, a modified version of the SC property with a different control of the third derivative has
been used by Bach (2010) for analysing the statistical properties of Logistic Regressions.

2We should note that the augmented Newton’s method for SC objective functions still requires the inverse
of the Hessian matrix, but in a much lower number of iterations, which reduces the computational time. If the
size of the GLM is large, then one may need compromises like those given by BFGS and L-BFGS algorithms
where the inverse of the Hessian is efficiently computed, although we do not recommend this choice unless the
augmented Newton’s method is overwhelmed by the size of the problem. In conclusion, the SC objective functions
are expected to bring an improvement to IRLS, and large sized problems could be combined with the Hessian
inverse approximations brought by L-BFGS or BFGS.

3The IRLS lack of convergence led the developers of MATLAB fitglm and R glm2 to provide bespoke
solutions for this problem by adding step-halving arguments that are convergence enablers. For example, the
earlier version of R glm was modified for this reason, and R glm2 has an enhanced step-halving implementation
that is a step ahead, but it does not resolve the issue in its totality; for details, see Marschner (2011) or the R
glm2 documentation.
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is an example of a not proper GLM due to the non-concavity of its log-likelihood function, ob-

tained with either MATLAB’s fitglm library or the non-linear optimisation solver provided by

MATLAB’s fmincon function. Figure 1 displays box plots of the ratio between the L1 distance

(from the true value) of the estimates obtained with the latter method and those computed using

MATLAB’s fitglm values. The results suggest that the fmincon-based estimation significantly

outperforms the fitglm counterpart, especially for large size problems, which indicates that IRLS

is not designed to perform well for not proper GLM settings.

To summarise, for any GLM implementation, one should not only consider a proper framework

but also construct bespoke algorithms to deal with the optimisation problem when possible.

Our contributions address these fundamental issues. First, we provide a comprehensive charac-

terisation of proper MLE-based GLMs for a variety of exponential dispersion models, including

the Tweedie family and its well-known special cases, under various LF specifications. Our main

theoretical findings indicate that most of Tweedie generalised linear models are not proper for

canonical and log link functions, and identify a rich class of proper Tweedie generalised linear

models with power link functions. Consequently, using the Tweedie family for GLM implemen-

tation needs a careful approach, since, despite its very flexible parametrisation, the non-standard

(Tweedie) models may lead to serious computational issues. Second, for a few standard Tweedie

GLMs equipped with special cases of power LFs, we introduce efficient and accurate bespoke al-

gorithms for solving high-dimensional problems which cannot be properly tackled with standard

IRLS-type methods. Specifically, we propose the Newton’s method for Self-Concordant problems

(NSC) for solving Poisson and Gamma Regressions and the Alternating Linearisation Methods

(ALM) algorithm for Inverse Gaussian Regressions. We provide a comprehensive comparison

between these algorithms and those available in the standard built-in GLM libraries from vari-

ous software, such as MATLAB fitglm, R glm2 and Python statsmodels sm.GLM . We find

that our methods outperform these benchmarks in terms of both accuracy and efficiency, the

largest improvements being documented for high-dimensional problems. Third, we propose a

novel interpretability methodology for power LFs – which are omnipresent in this paper – that

is simple and mathematically sound, which could further support the adoption of such an LF

that has not been used much in practice because of its lack of interpretability; for details, see

Section 2.2. The flexibility of GLM modelling is definitely enhanced if the user has access to

more LFs for which the pros and cons are well-understood. A similar objective is achieved in

Delong et al. (2021), although the GLM model flexibility is obtained by varying the Tweedie’s

parameter, and one can do the same by varying the power LF parameter, so that data with

complex structures could be handled by such GLM models.

The remainder of the paper is organised as follows. Section 2 introduces the notion of proper

GLMs for exponential dispersion models and reviews the LF candidates. Section 3 provides a

comprehensive classification of proper Tweedie GLMs and its subclasses. Section 4 introduces

the NSC and ALM algorithms for solving Poisson and Gamma, and Inverse Gaussian Re-

gressions, respectively. The numerical comparison between these algorithms and the standard

built-in libraries from MATLAB, R and Python is illustrated in Section 5 for simulated data,

while vast real data analysis is provided in Section 6 for two well-known insurance datasets; both

sections show ample evidence for our optimisation-based implementation that is an alternative
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GLM implementation to the usual IRLS implementation. Section 7 concludes the paper.
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Figure 1: Box plots of MATLAB fmincon vs fitglm for Inverse Gaussian GLM
Notes: This figure shows the box plots of the ratio between the L1 distance (from the true value) of the
MLE-based GLM solutions obtained with MATLAB’s fmincon function and the IRLS-based GLM solution
obtained with MATLAB’s fitglm library. Each box plot is constructed based on N = 500 simulations
according to the DGP scheme outlined in Appendix C, for different specifications for the number of
observations and the number of covariates. All GLMs are fitted with log LFs, i.e. a non-proper GLM.

2. Proper GLM and interpretability for exponential dispersion models

A univariate GLM setting assumes that the response variable Y , defined on Y ⊆ ℜ, is explained
by covariates/features XXX defined on X ⊆ ℜd. Let {Pθ,ϕ : θ ∈ Θ ⊆ ℜ, ϕ ∈ Φ ⊆ ℜ} be the

parametric set of distributions for Y , which is assumed to be an exponential dispersion model

characterised by the following probability density/mass function:4

log (fY (y; θ, ϕ)) =
θy − b(θ)

a(ϕ)
+ c(y, ϕ). (2.1)

Here, a(·), b(·) and c(·, ·) are real-valued functions defined on Φ, Θ and Y × Φ, respectively,

and ϕ is the dispersion parameter. When ϕ is fixed, (2.1) resembles an exponential family with

canonical parameter θ. Under standard regularity conditions, the mean and variance of Y are

E [Y ] = b′(θ) and Var [Y ] = a(ϕ)b′′(θ). (2.2)

The GLM consists of n independent r.v.’s (observations) Y1, · · · , Yn with Yi distributed accord-

ing to (2.1) with parameters θi and ϕ, and functions ai (ϕ) , b (θi) and c (yi, ϕ), and conditional

mean linked through a linear predictor ηi = xxx⊤i βββ via a real-valued function h, so that

E [Yi |XXXi = xxxi] = h
(
xxx⊤i βββ

)
. (2.3)

Here, xxxi is a d-dimensional vector of realised features/covariates for any i = 1, . . . , n.5

4Although the univariate assumption for the response variable Y is not essential, it simplifies the exposition.
5Note that although the linear predictor suggests observing d covariates/features (since X ⊆ ℜd), in fact we
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The inverse function of h, provided that it exists, is known as the link function (LF) and it is

denoted by g = h−1. The standard GLM literature differentiates the GLMs by the parametric

choice made in (2.1) and the preferred LF g. However, from the maximum likelihood estimation

(MLE) perspective, the function h is more relevant than g, and thus, the remaining results

are described in terms of the former. If the dispersion parameter ϕ is known (otherwise it is

estimated through the variance function from (2.2)), the MLE associated with the GLM defined

in Equations (2.1) and (2.3) is obtained by solving the following non-linear optimisation problem

β̂ββ = argmax
βββ∈ℜd

ℓ (βββ) =
n∑

i=1

θiyi − b (θi)

ai (ϕ)
with θi =

(
b′−1 ◦ h

) (
xxx⊤i βββ

)
. (2.4)

Without loss of generality, we let ai (ϕ) = a (ϕ).6 The above optimisation problem is well-defined

and admits a (unique) solution if the functions a, b and h satisfy certain regularity conditions.

These constraints formalise the concept of a proper GLM and are summarised below.

Definition 2.1. The GLM defined in Equations (2.1) and (2.3) is said to be proper if the

following two conditions are satisfied:

C1. The conditional mean relationship from (2.3) is properly mapped, i.e. h : ℜ → b′ (Θ) ⊆
Conv (Y) with b′ : Θ → b′ (Θ) an injective function.7

C2. Assume that the likelihood function is well-defined in (2.4). The individual likelihood

contribution is a (strictly) concave function, i.e.{
sgn (a (ϕ)) ·

(
y ·
(
b′−1 ◦ h

)
(η)−

(
b ◦ b′−1 ◦ h

)
(η)
)
is (strictly) concave

in η on ℜ for any given y ∈ Y,

where sgn is the signum function.

Condition C1 ensures that the GLM estimation is well-defined. More specifically, we require the

function b′ to be injective, so that it admits an inverse.8 ConditionC2 implies that the likelihood

function ℓ defined in (2.4) is a concave function in η ∈ ℜ, since the composition of a concave

function with an affine mapping is concave and the sum of concave functions is also concave; in

other words, (2.4) is a concave programming instance. Consequently, under the constraints from

Definition 2.1, the optimisation problem in (2.4) leads to solutions which are global maximum

(see e.g. Boyd and Vandenberghe (2004)). Note that the asymptotic distribution of β̂ββ – like

only assume d− 1 covariates as we impose xi,0 = 1 for any i = 1, . . . , n almost surely. This convention simplifies
the notation, so that the linear predictor becomes ηi = xxx⊤

i βββ = β0 + β1xi,1 + . . .+ βd−1xi,d−1.
6A popular choice in the GLM literature is to consider ai (ϕ) = a (ϕ) /wi with a (ϕ) = ϕ and wi non-negative

fixed weights for all i = 1, . . . , n. Under this assumption, the non-linear optimisation from Equation (2.4) is
equivalent to solving a weighted MLE for a GLM where the response variable follows a canonical one-parameter
exponential family distribution. While this could simplify the estimation of βββ, and some bespoke model adequacy
is typically available to check whether the predefined weights wi are acceptable, in reality, this is more like a trial
error approach which is often resolved by relying on domain knowledge.

7Note that Conv is the convex-hull of a set. In addition, Conv
(
Y
)
should be read as Y when Y is continuously

distributed, while the convex hull operator makes a difference when Y is a discrete random variable (see e.g.
Bernoulli and Poisson families).

8The function b′ is automatically surjective since the codomain coincides with its image b′ (Θ).
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any M-estimator – requires Equation (2.4) to have a unique solution, which is not always

guaranteed. However, this condition is always satisfied if the function from Condition C2 is

strictly concave. The technical conditions for the existence and uniqueness of the MLE estimate

are well-known (see e.g. Wedderburn (1976) and Mäkeläinen et al. (1981)), and are standard in

the literature, i.e. the log-likelihood function is strictly concave and some boundary conditions

are satisfied. The MLE solutions could be on the boundary of the parameter space, which makes

the estimation quite problematic, but we exclude such extreme cases from our analysis.

2.1. Link function candidates for proper GLMs

The standard choice for solving (2.4) is to assume the function h satisfies

h (η) = b′ (η) , η ∈ ℜ. (2.5)

Under the specification from (2.5), its equivalent LF g is known as the canonical LF. The

sufficient conditions for a proper canonical LF -based GLM are summarised in the lemma below.

Lemma 2.2. Let a GLM be equipped with its canonical LF. The MLE-based GLM is proper if

Θ = ℜ and b is strictly convex (concave) on Θ provided that a (ϕ) > 0 (a (ϕ) < 0) for all ϕ ∈ Φ.

Although the canonical LF has useful mathematical/statistical properties, it does not always

satisfy the conditions from Lemma 2.2, and therefore leads to not proper GLMs. Below, we

briefly introduce two of the most popular alternative choices in the literature, namely the log

and power classes of LFs.9 The log LF is defined by taking

h(η) = eη, η ∈ ℜ. (2.6)

Similar to the previous case, this choice may fail to produce a proper GLM in certain situations,

but a general classification as in Lemma 2.2 for such models is not available. Moreover, log LFs

have been further associated to computationally unstable MLE procedures, which leads us to

considering the following family of LFs which could address some of these issues due to their

appealing mathematical properties.10 The power LF is defined via the following expression

h (η) = ηγ , η ∈ ℜ and γ ∈ ℜ∗. (2.7)

Popular cases of power LFs used in numerical applications are the identity, square and square-

root functions which are obtained by taking γ = 1, 1/2 and 2 in (2.7), respectively. Furthermore,

the reciprocal versions of these cases (i.e reciprocal identity, reciprocal square and reciprocal

square-root) are obtained by letting γ = −1,−1/2 and −2, respectively.

9Note that both these functions are also canonical LFs for certain GLM cases. A detailed characterisation of
these LFs within the context of a proper GLM is provided in Section 3 for several well-known cases of exponential
dispersion models. Other classes of LFs such as probit and complementary log-log are introduced and discussed
in Appendix B.3 for Logistic Regressions.

10Generally speaking, power LFs are useful for constructing convex optimisation algorithms for estimating
GLMs in an accurate and efficient way. Examples of such algorithms are provided in Section 4.
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Lemma 2.3 provides the sufficient conditions for C1 to be satisfied under the choice from (2.7).11

Lemma 2.3. Let a GLM with a power LF be chosen. Condition C1 in Definition 2.1 is satisfied

if either of the following conditions are satisfied:

(i) γ is a non-zero even integer and b′(Θ) = ℜ+ ⊆ Conv
(
Y
)
such that b′ : Θ → ℜ+ is an

injective mapping.

(ii) γ is an odd integer and b′ (Θ) = Conv
(
Y
)
= ℜ such that b′ : Θ → ℜ is an injective

mapping.

The above result helps us identify when a GLM is not proper due to Condition C1 violation.

For example, a direct consequence of Lemma 2.3 is that power LFs are not appropriate choices

for GLMs where the function b′ has a bounded image; this is the case of Logistic Regression

(see Appendix B.2 for more details).

One way to tackle the not proper GLM issue for power LFs is to consider restrictions and/or

modifications to these functions. For this purpose, we first introduce the class of half-power

LFs which corresponds to taking

h (η) =

{
ηγ , η > 0,

+∞, η ≤ 0,
(2.8)

with γ ∈ ℜ∗.12 Finally, one can consider the negative versions of the power/half-power functions,

called negative power/negative half-power, respectively, which are obtained by multiplying h

from (2.7)/(2.8) by −1.

2.2. Interpretability of GLM model outputs

Interpretability of (machine learning and statistical) model outputs is an emerging field that

has been developing in recent years as it is crucial for building and ensuring trustworthy algo-

rithms deployed in statistical and machine learning predictive modelling. Generally speaking,

standard methods of global interpretation methods (e.g., the Partial Dependence Plot and Ac-

cumulated Local Effect Plots; for details, see Friedman (2001) and Apley and Zhu (2020)) make

many prediction models (including GLM) more interpretable than these models were before.

Such global interpretation methods describe average behaviour and become very useful when

the modeller would like to understand the embedded data structure (e.g., whether linear or

transformations of linear models are suitable for the specific dataset) or to improve the baseline

model. Specifically, GLM modelling is known for its simplicity and is arguably preferred to

Generalised Additive Model (GAM) and Generalised Linear Mixed Models (GLMM), but all of

them are interpretable based on the new and continuing discovery in this emergent, exciting

11Note that a general characterisation for Condition C2 cannot be provided for the power LF. The proofs of
Lemmas 2.2 and 2.3 follow immediately from Definition 2.1.

12Note that the special cases for γ that we considered for the standard power LFs are defined in the same way
for the half-power scenarios, e.g. we use the term reciprocal half-square-root for h following Equation (2.8) with
γ = −2.
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and fast-growing interpretability of predictive (analytics) models. Therefore, such global inter-

pretation methods apply very well to any GLM methodology, including our augmented IRLS,

which could be used to interpret GLM model outputs.

As mentioned before, ensuring trustworthy algorithms is a priority to practitioners and aca-

demics with a keen interest on creating highly adoptable prediction models. Our algorithms

ensure this and actually proper GLM ensures GLM trustworthiness by requiring the GLM model

predictions to be as the end-user would expect to be, which is reflected in Definition 2.1 and

motivated this work. It is well-known that GLM is widely used in insurance pricing and the om-

nipresent numerical solution is based on IRLS that is an approximation of the actual problem,

i.e., maximising the data-driven MLE problem as given in (2.4). However, our proper GLM so-

lutions enable using convex optimisation instead of using approximation methods such as IRLS;

note that convex optimisation is computationally more reliable than general (non-convex) opti-

misation, and IRLS could lead to suboptimal solutions, and thus, proper GLM opens up a new

strand of research of solving GLM in a more efficient way, and Algorithm 1 is an example of this

kind. Note that the Logistic regression is a proper GLM, and no R or Python GLM solution

is scalable if using IRLS, and thus, such packages use convex optimisation; the seminal paper

(Boyd et al., 2011) is an illustration of this point, while multiple implementations are available

(e.g., CVX in MATLAB, CVXPY in Python, and CVXR in R, which could be retrieved

from this link).13 Thus, we may conclude that Algorithm 1 is a trustworthy algorithm.

Besides these off-the-shelf global interpretation methodologies that are mainly available and

implemented in R and Python, modern bespoke models have their very own interpretability

methodologies that help with enhancing the adoption of the model; for example, Zhang et al.

(2023) illustrates this point for an actuarial application, namely, for their bespoke cause-of-death

mortality model. In this section, we provide some simple and practical interpretable methods of

GLM predictions for power link LFs, which are different than the global interpretation methods.

First, note that the log and power LFs defined in (2.6) and (2.7), respectively, play an essential

role in our paper. The log LF is well-known for its interpretability, which explains why it is

preferred by actuaries for insurance pricing models. Specifically, we have the following interpre-

tation for an insured characterised by their observed or engineered xxx = (x1, . . . , xd)
⊤ covariates

with a pure premium computed via the log LF and model estimates β̂ββ

∂eη

∂xk
=

∂exxx
⊤βββ

∂xk

∣∣∣
βββ=β̂ββ

= β̂k for all 2 ≤ k ≤ d, (2.9)

which is a very neat interpretation of this insurance pricing model that it also has an obvious

sensitivity interpretation connotation. Note that k ̸= 1 in (2.9) since x1 = 1 always holds in the

GLM model and thus, the intercept cannot be interpreted in this way, but practitioners adjust

the intercept so that the observed expected claim amount does not deviate too much from the

average GLM predicted claim amount.

Following a similar approach, we now provide a novel interpretability for power LFs. As before,

we assume an insured characterised by their observed or engineered xxx = (x1, . . . , xd)
⊤ covariates

13Available at: https://stanford.edu/~boyd/software.html
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with a pure premium computed via the power LF and model estimates βββ, i.e., the pure premium

estimate is ŷ =
(
xxx⊤β̂ββ

)γ
. We then have the following interpretation for such pure premium

computed via a generic power LF

ŷ =
d∑

k=1

βk
γ

∂ŷ

∂βk

∣∣∣
βββ=β̂ββ

:=
d∑

k=1

PCk(β̂ββ;xxx), PCk(βββ;xxx) :=
βk
γ

∂ŷ

∂βk

∣∣∣
βββ=β̂ββ

for all 1 ≤ k ≤ d. (2.10)

The validity of (2.10) is ensured by the Euler’s Homogeneous Function Theorem and similar

arguments have been widely used in capital allocation (Denault, 2001; Asimit et al., 2019) and

in portfolio theory (Asimit et al., 2024; Cetingoz et al., 2024). The interpretation of PCk is very

natural and represents the pure premium contribution of the kth covariate to the pure premium

ŷ. This interpretation is more general than the one used in (2.9), since the latter does not hold

for a non-continuous covariate such as categorical/nominal covariate or ordinal covariate (e.g.,

on a Likert scale). On the contrary, our interpretability model in (2.10) does not exhibit such

a drawback though the formulation in (2.10) would need a slight modification. That is, if the

kth observed covariate requires one-hot-encoding, then the PC corresponding to the original

observed covariate (e.g., the kth one) should be replaced by the sum of PC’s corresponding to

the one-hot-encoded covariates; that is, if the original covariate is an ordinal covariate with

three possible outcomes (e.g., “low”, “medium” and “high”), then the contribution of the kth

covariate to the pure premium is the sum of the three PCs corresponding to the one-hot-encoded

covariates (corresponding to “low”, “medium” and “high”). According to our knowledge, the

novel interpretability of power LFs in (2.10) has not been discussed in the literature, and we

believe that the practitioners would appreciate such very simple and natural interpretation of

these GLM outputs. It might be more meaningful to report the percentage contribution vector

as follows (
PC1(β̂ββ;xxx)

ŷ
, . . . ,

PCd(β̂ββ;xxx)

ŷ

)⊤

, (2.11)

although a word of caution is that some of these percentages may be negative even though they

sum up to 100%. An application of this interpretability is illustrated in our real data analyses

from Section 6, and in particular in Section 6.1 for the health insurance dataset.

3. Special examples of GLMs and main results

This section provides a classification of proper MLE-based GLM for a variety of exponential

dispersion models and discusses the potential issues associated with the use of the different LFs

introduced in Section 2. Specifically, we focus on the more general Tweedie family, together

with three of its most popular special cases, namely the Poisson, Gamma and Inverse Gaussian

distributions.14 A summary of proper GLMs is provided at the end of the section.

14In addition, the Linear and Logistic Regression models are also illustrated in Section Appendix B though
we mention that only the Linear Regression is a special case of the Tweedie Regression.

10



3.1. Poisson Regression – Poisson family

We assume Y ∼ Poisson(θ) with probability mass function given by

log (fY (y; θ, ϕ)) = θy − eθ − log (y!) , (y, θ, ϕ) ∈ N×ℜ× {1}.

The above expression is obtained as a special case of (2.1) by taking

a (ϕ) = ϕ = 1, b (θ) = eθ, c (y, ϕ) = − log (y!) .

In addition, b′ (Θ) = ℜ∗
+ and b′

−1
(µ) = log (µ). Proposition 3.1 provides a characterisation of a

proper Poisson Regression model according to our Definition 2.1.

Proposition 3.1. Assume that Y ∼ Poisson(θ). The Poisson GLM is proper if and only if

h : ℜ → ℜ∗
+, and

−y log (h (η)) + h (η) is convex in η on ℜ for any given y ∈ N. (3.1)

The Poisson canonical LF is the log function and this choice leads to a proper GLM due to

either Lemma 2.2 or Proposition 3.1. The power LF does not satisfy the conditions from

Proposition 3.1 unless γ = 2k with k ∈ N∗; specifically, Condition C1 does not hold unless γ

is a non-zero even integer, while Condition C2 requires γ ≥ 1. The half-power LF satisfies the

conditions stated in Proposition 3.1 for any γ ∈ [1,∞). Thus, the simplified Poisson regression

(i.e. ϕ = 1) with a proper half-power LF, obtained by taking any γ ≥ 1 in (2.8), leads to solving

β̂ββ = argmax
βββ∈ℜd

ℓ (βββ) =
n∑

i=1

(
γ yi log

(
xxx⊤i βββ

)
−
(
xxx⊤i βββ

)γ)
. (3.2)

While these half-power LFs lead to proper GLMs that could be solved via a general convex

programming algorithm, the half-identity and half-square-root cases can be solved via a compu-

tationally efficient algorithm, as outlined in Section 4.1. Finally, note that the half-square-root

and the standard square-root LFs are closely related, but the latter does not satisfy (3.1) because

Condition C2 does not hold in this case. Essentially, the half-square-root case optimises the

strictly concave instance in (3.2) on the ℜd cone such that xxx⊤i βββ > 0 for all i = 1, . . . , n, while the

square-root solves a similar problem to (3.2) (where log
(
xxx⊤i βββ

)
is replaced by log

∣∣xxx⊤i βββ∣∣) on ℜd,

but its objective function is not concave on the entire feasibility set, namely ℜd. An analogous

differentiation between the half-identity and identity LFs can be formulated as well. Finally,

Condition C1 is not satisfied for any negative power LF or negative half-power LF, which are

not proper for Poisson GLM.

3.2. Gamma Regression – Gamma family

We assume Y ∼ Gamma(θ, ϕ) with probability distribution function given by

log (fY (y; θ, ϕ))=
θy+log (−θ)

ϕ
+

1−ϕ

ϕ
log (y)−log

(
ϕ

1
ϕΓ

(
1

ϕ

))
, (y, θ, ϕ) ∈ ℜ∗

+×ℜ∗
−×ℜ∗

+.

11



The above expression is obtained as a special case of (2.1) by taking

a (ϕ) = ϕ, b (θ) = − log (−θ) , c (y, ϕ) =
1− ϕ

ϕ
log (y)− log

(
ϕ

1
ϕΓ

(
1

ϕ

))
.

In addition, b′ (Θ) = ℜ∗
+ and b′

−1
(µ) = −µ−1. Proposition 3.2 provides a characterisation of a

proper Gamma Regression model according to our Definition 2.1.

Proposition 3.2. Assume that Y ∼ Gamma(θ, ϕ). The Gamma GLM is proper if and only if

h : ℜ → ℜ∗
+, and

y

h(η)
+ log (h(η)) is convex in η on ℜ for any given y ∈ ℜ∗

+. (3.3)

The canonical LF associated with the Gamma GLM is the reciprocal identity function. This

function does not satisfy the conditions stated in Lemma 2.2 or Proposition 3.2, since Condition

C1 does not hold, and therefore, unlike in the Poisson case, the canonical GLM is not proper.

A popular alternative for Gamma GLM is represented by the log LF; this choice satisfies the

conditions stated in Proposition 3.2 and is thus appropriate for Gamma GLM. As in Section 3.1,

we now discuss the impact of using power/half-power LFs in Gamma GLM. First, a power LF

does not satisfy the conditions from Proposition 3.2 unless γ = −2k, with k ∈ N∗; specifically,

Condition C1 does not hold unless γ is a non-zero even integer, while Condition C2 requires

γ ≤ −1. Second, one could find that half-power LFs always satisfy Condition C1, but Condition

C2 holds if and only if γ ≤ −1, leading to proper Gamma GLM in this case. Note that the

simplified Gamma GLM (i.e. ϕ = 1) with such proper half-power LF is equivalent to solving

β̂ββ = argmax
βββ∈ℜd

ℓ (βββ) =
n∑

i=1

(
−γ log

(
xxx⊤i βββ

)
− yi

(
xxx⊤i βββ

)−γ
)
, (3.4)

where γ ≤ −1. While half-power LFs with γ ≤ −1 lead to proper GLMs that could be solved via

a general convex programming algorithm, the half-reciprocal identity and half-reciprocal-square-

root cases could be solved via a computationally efficient algorithm, as outlined in Section 4.1.

Finally, Condition C1 is not satisfied for any negative power LF or negative half-power LF,

which are not proper for Poisson GLM.

3.3. Inverse Gaussian Regression – Inverse Gaussian (IG) family

We assume Y ∼ IG(θ, ϕ) with probability distribution function given by

log (fY (y; θ, ϕ)) =
θy −

√
2θ

−1/ϕ
+

1

2

(
log

(
ϕ

2πy3

)
− ϕ

y

)
, (y, θ, ϕ) ∈ ℜ∗

+ ×ℜ∗
+ ×ℜ∗

+.

The above function is also a special case of (2.1) where

a (ϕ) = − 1

ϕ
, b (θ) =

√
2θ, c (y, ϕ) =

1

2

(
log

(
ϕ

2πy3

)
− ϕ

y

)
.

In addition, b′ (Θ) = ℜ∗
+ and b′

−1
(µ) =

1

2
µ−2. Proposition 3.3 provides the characterisation of

a proper Inverse Gaussian Regression model according to our Definition 2.1.
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Proposition 3.3. Assume that Y ∼ IG(θ, ϕ). The Inverse Gaussian GLM is proper if and

only if h : ℜ → ℜ∗
+, and

y

2h2(η)
− 1

h(η)
is convex in η on ℜ for any given y ∈ ℜ∗

+ (3.5)

The canonical LF for the GLM-based on the IG distribution is the reciprocal square function.

Similar to the Gamma scenario, this function does not satisfy the conditions stated in Lemma 2.2

or Proposition 3.3, namely Condition C1, and therefore, it is not a proper GLM. Under the

log LF assumption Condition C1 is satisfied, but Condition C2 is violated since (3.5) does not

hold. The effect of non-convexity is depicted in our motivational example from Figure 1.

As before, we also investigate the power and half-power LFs in the context of an IG GLM.

First, we notice that there is no power LF that satisfies the conditions in Proposition 3.3;

specifically, Condition C1 does not hold unless γ is a non-zero even integer, while Condition

C2 is satisfied if and only if γ ∈ [−1,−1/2]. Second, one could find that half-power LFs always

satisfy Condition C1, but Condition C2 holds if and only if γ ∈ [−1,−1/2], concluding that

half-power LF leads to a proper GLM only in this case. Given the previous findings, running

IG Regressions with power or half-power LFs would require a compromise. That is, the power

LF with γ = 2k, k ∈ Z∗ is the best possible choice so that constrained programming is avoided

(for proper IG GLM with half-power LFs such that γ ∈ [−1,−1/2] for which n linear inequality

constraints are needed), which is computationally undesirable for large samples. Such choice

require an efficient algorithm to solve the non-concave log-likelihood function optimisation. We

show how to achieve this in Section 4.2 for the reciprocal-square-root LF.

3.4. Main results on Tweedie Regression – Tweedie family

In this section, we focus our analysis on a more general class of GLMs based on the Tweedie

family, which includes the previous distributions as special/limiting cases. As before, our main

goal is to investigate if the Tweedie distribution leads to proper GLMs. Assume that Y ∼
Tweedie(θ, ϕ) with probability distribution function defined below

log (fY (y; θ, ϕ))) =
θy −Kp(θ)

ϕ
+ log

(
µ′
ϕ ((−∞, y])

)
, (y, θ, ϕ) ∈ Y ×Θ×ℜ∗

+, (3.6)

where Θ ⊆ ℜ, µϕ is a Radon measure on Y ⊆ ℜ and the function Kp is given by

Kp (θ) :=


α− 1

α

(
θ

α− 1

)α

, p ∈ (−∞, 0] ∪ (1,∞) \ {2},

eθ, p = 1,

− log (−θ) , p = 2,

with α =
p− 2

p− 1
. The expression from (3.6) is obtained as a special case of (2.1) by taking

a (ϕ) = ϕ, b (θ) = Kp (θ) , c (y, ϕ) = log
(
µ′
ϕ ((−∞, y])

)
.

Moreover, the Poisson, Gamma and Inverse Gaussian families are obtained as special cases by

taking p = 1 with Y = N and Θ = ℜ, p = 2 with Y = ℜ∗
+ and Θ = ℜ∗

−, and p = 3 with Y = ℜ∗
+

13



and Θ = ℜ∗
−, respectively.

15

Without loss of generality, we henceforth assume that p ̸= {1, 2}, since these two cases have

already been investigated in Sections 3.1 and 3.2. Note that one should carefully choose Θ,Y and

p so that Kp(·) is well-defined on Θ. In this section, we assume that Θ ∈ {ℜ,ℜ∗,ℜ∗
+,ℜ∗

−}, and
thus, the function b′ is well-defined and bijective on Θ only under the three settings considered

in the theorem below. Extensions to subsets of these sets are obtainable at the expense of the

exposition, and for this reason, we proceed with this simplification.

We now provide a characterisation of proper Tweedie GLMs, where we exclude the previous

cases investigated in Sections 3.1 and 3.2 and Appendix B.1. First, we identify in Theorem 3.4

all possible settings under which Condition C1 from Definition 2.1 is satisfied.

Theorem 3.4. Let Y ∼ Tweedie(θ, ϕ) parameterised as in (3.6) with p ∈ (−∞, 0) ∪ (1, 2) ∪
(2,∞) (or equivalently, α ∈ (−∞, 2)\{0, 1}) such that Y,Θ ∈ {ℜ,ℜ∗,ℜ∗

+,ℜ∗
−}. Then, Condition

C1 is only satisfied for the following settings:

a) Θ = b′ (Θ) = ℜ∗
+ (or ℜ+), Y ∈ {ℜ∗

+,ℜ} (or Y ∈ {ℜ+,ℜ} ) and 1 < α < 2 (which is

equivalent to p < 0), with h : ℜ → ℜ∗
+ (or h : ℜ → ℜ+);

b) Θ = ℜ∗
−, b

′ (Θ) = ℜ∗
+, Y ∈ {ℜ∗

+,ℜ+,ℜ} and α ∈ (−∞, 1) \ {0} (which is equivalent to

p ∈ (1,∞) \ {2}), with h : ℜ → ℜ∗
+;

c) Θ = ℜ, b′ (Θ) = ℜ∗
+, Y ∈ {ℜ∗

+,ℜ+,ℜ∗}, α ∈ {−2l + 1 : l ∈ N∗}, with h : ℜ → ℜ∗
+.

d) Θ = ℜ, b′ (Θ) = ℜ∗, Y ∈ {ℜ∗,ℜ}, α ∈ {−2l : l ∈ N∗}, with h : ℜ → ℜ∗.

Setting a) includes a pedantic reference on whether the response variable could or could not

include y = 0, and thus, we made a difference between the cases Θ = ℜ∗
+ and Θ = ℜ+. Note

that the generic Condition C1 in Definition 2.1 requires the range of E [Y ], namely b′(Θ), to be

a subset of Conv(Y), though a more practical condition would be b′(Θ) = Conv(Y), which we

assume henceforth. Setting c) is a subcase of setting b) from the implementation point of view,

since the modeller chooses the Tweedie models so that Y matches the data range of values.

However, our classification in Theorem 3.4 has to differentiate between models with different

parameter sets Θ. The next results focus on the validity of Condition C2 from Definition 2.1 for

the above Tweedie GLM settings under the LF specifications introduced in Section 2. The power

LF class, together with its restrictions/modifications, is investigated in Theorem 3.5 below.

Theorem 3.5. Let Y ∼ Tweedie(θ, ϕ) parameterised as in (3.6) with b′(Θ) = Y, for which

condition C1 is satisfied. Then, Condition C2 is not satisfied by settings a)–d), for any

(i) power LF, except for the following cases:

– setting b) with 0 < α < 1 and γ = −2k, for any k ∈ N∗, with (1− γ)α ≤ 1,

– setting b) with α < 0 and γ = 2k, for any k ∈ Z∗,

– setting c) and γ = 2k, for any k ∈ Z∗.

(ii) half-power LF, except for the following cases:

15Other notable examples are Gaussian (p = 0 with Y = Θ = ℜ), Compound Poisson-Gamma (1 < p < 2 with
Y = Θ = ℜ+) and Positive stable (p > 2 with Y = Θ = ℜ+).
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– setting a) with 1 < α < 2 and α−1
α ≤ γ ≤ α− 1,

– setting b) with 0 < α < 1 and α−1
α ≤ γ ≤ α− 1,

– setting b) with α < 0 and γ ≤ α− 1 or α−1
α ≤ γ,

– setting c) with α ∈ {−2l + 1 : l ∈ N∗} and γ ≤ α− 1 or α−1
α ≤ γ.

(iii) negative power or negative half-power LF.

We notice that the above results are in agreement with our previous findings. For example, one

could recover our discussion from Section 3.3 on proper IG GLMs, which is a special case of

Theorem 3.5 if we take p = 3 (or equivalently α = 1/2), where we found that proper IG GLMs

with half-power LF are achieved if and only if γ ∈ [−1,−1/2]. In addition, Theorem 3.5 provides

necessary and sufficient conditions for proper GLMs under other distributional assumptions.

For example, Tweedie GLMs based on Positive stable distributions (i.e. p > 2 or equivalently

0 < α < 1) are proper only for power LFs with γ = −2k, k ∈ N∗, with (1 − γ)α ≤ 1 and

half-power LFs with α−1
α ≤ γ ≤ α − 1. Similarly, the Compund Poisson-Gamma GLM (i.e.

1 < p < 2 or equivalently α < 0) is proper only for power LFs with γ = 2k, k ∈ Z∗ or half-

power LFs with γ ≤ α − 1 or α−1
α ≤ γ. A complete summary of proper Tweedie GLMs is

illustrated in Table 1 of Section 3.5.

Note that if p ∈ (−∞, 0] ∪ (1,∞) \ {2}, which is equivalent to α ∈ (−∞, 2] \ {0, 1}, then the

simplified Tweedie regression (i.e. ϕ = 1) with LF h is equivalent to solving

β̂ββ = argmax
βββ∈ℜd

ℓ (βββ) =
n∑

i=1

(
yi(α− 1)

(
h
(
xxx⊤i βββ

)) 1
α−1 − α− 1

α

(
h
(
xxx⊤i βββ

)) α
α−1

)
. (3.7)

A few comments on (3.7) would help understanding the issues with deploying Tweedie GLMs.

First , one may discard Condition C2 at the expense of losing all useful properties of the M-

estimators (MLE is only a special case), such as the asymptotic distribution, which questions

the asymptotic bias and variance of these estimators. If that is the case, one can only hope

for the numerical optimisation to behave well, but this is possible from case to case, and one

would need to perform extensive numerical implementations to check whether the optimisation

algorithm shows a reasonable performance for specific choices of (α,Y, h). Such compromise is

done in Algorithm 2 for solving (4.5), where α = 1
2 as p = 3, Y = ℜ+, and reciprocal square-root

LF; one could recover (4.5) from (3.7) for this particular choice of (α,Y, h). Second , there

are other parametrisations other than the one in Algorithm 2 for which Condition C2 is not

satisfied while all other regularity conditions in Definition 2.1 hold. In these instances, one

has to rely on non-convex optimisation, but more importantly, one has to accept that some

(possibly all) statistical properties of the MLE estimator may not hold. The modeller needs to

identify stable computational methods (as in Algorithm 2) instead of assuming that the general

purpose GLM solvers are indeed computationally stable. Finally, we notice that the proper

GLMs identified in Theorem 3.5 (ii) require solving a constrained optimisation problem on the

convex cone
{
βββ ∈ ℜd : xxx⊤i βββ ≥ 0, i = 1, . . . , n

}
. Unfortunately, this is computationally expensive

for large values of n, which is a negative attribute. These optimisations could be solved via

convex programming and not via off-the-shelf GLM packages that rely on IRLS which cannot

be adapted when such constraints are needed.
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The classification of proper Tweedie GLMs based on canonical and log LF is illustrated below.

Theorem 3.6. Let Y ∼ Tweedie(θ, ϕ) parameterised as in (3.6) with b′(Θ) = Y, for which

condition C1 is satisfied. Then, Condition C2 is not satisfied by settings a)–d), for any

(i) canonical LF.

(ii) log LF, except for setting b) with α < 0 or setting c).

Thereom 3.6 shows that there are no proper Tweedie GLMs if the canonical LF is chosen. In

addition, we notice that the Compound Poisson-Gamma GLM is proper for any log LF.

3.5. Summary results

Table 1: Summary of proper GLMs and violations of Conditions C1 and C2

Regression model LF Predictor
(
ŷ = h

(
xxx⊤β̂ββ

))
Violations

Gaussian/Linear identity (canonical) xxx⊤β̂ββ No

logit (canonical)
(
1 + exp

(
−xxx⊤β̂ββ

))−1
No

Logistic probit Φ
(
xxx⊤β̂ββ

)
No

complementary log-log 1− exp
(
− exp

(
−xxx⊤β̂ββ

))
No

log (canonical) exp
(
xxx⊤β̂ββ

)
No

Poisson power
(
xxx⊤β̂ββ

)γ
No, if γ = 2k, k ∈ N∗

half-power
(
xxx⊤β̂ββ

)γ
· I{xxx⊤β̂ββ>0} No, if γ ≥ 1

reciprocal identity (canonical)
(
xxx⊤β̂ββ

)−1
C1

log exp
(
xxx⊤β̂ββ

)
No

Gamma power
(
xxx⊤β̂ββ

)γ
No, if γ = −2k, k ∈ N∗

half-power
(
xxx⊤β̂ββ

)γ
· I{xxx⊤β̂ββ>0} No, if γ ≤ −1

reciprocal square (canonical)
(
xxx⊤β̂ββ

)−1/2
C1

log exp
(
xxx⊤β̂ββ

)
C2

Inverse Gaussian power
(
xxx⊤β̂ββ

)γ
C1, if γ ̸= 2k, k ∈ Z∗, and

C2, if γ /∈ [−1,−1/2]

half-power
(
xxx⊤β̂ββ

)γ
· I{xxx⊤β̂ββ>0} No, if γ ∈ [−1,−1/2]

Tweedie (except of canonical
(
(1− p) · xxx⊤β̂ββ

)1/(1−p)
see Theorem 3.6

some of the above log exp
(
xxx⊤β̂ββ

)
see Theorem 3.6

special cases: power or negative power
(
xxx⊤β̂ββ

)γ
or −

(
xxx⊤β̂ββ

)γ
, γ ∈ ℜ∗ see Theorem 3.5

Gaussian, Poisson half-power
(
xxx⊤β̂ββ

)γ
· I{xxx⊤β̂ββ>0}, γ ∈ ℜ∗ see Theorem 3.5

and Gamma) negative half-power −
(
xxx⊤β̂ββ

)γ
· I{xxx⊤β̂ββ>0}, γ ∈ ℜ∗ see Theorem 3.5

Notes: This table presents a summary of proper GLMs equipped with the LFs discussed in Section 3 and
Appendix B, and the potential violations of Conditions C1 and C2 from Definition 2.1 associated with these
regressions. Φ stands for the N (0, 1) cumulative distribution functionand IA represents the indicator function
for set A.

Table 1 summarises our findings discussed in Section 3 and Appendix B. First, we recall that the

canonical LFs, which are the standard choices in all built-in GLM implementations (available

in MATLAB, Python, R, etc.), lead to not proper Tweedie GLMs, except for the Gaussian

and Poisson cases. Second, log LFs tend to have the similar limitations to canonical LFs for

Tweedie modelling. Third, the power and half-power LFs allow more flexibility than log LFs to

GLM modelling when proper GLM are sought.
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4. Alternative algorithms for GLMs with power LFs

The goal of this section is to not only provide efficient methods for solving high-dimensional

problems while addressing the potential numerical issues in the optimisation stage, but to also

create tractable models for dealing with non-convex instances, which cannot be tackled with

standard built-in GLM algorithms. In this sense, we introduce the Newton’s method for Self-

Concordant problems (NSC) for Poisson and Gamma regressions equipped with some bespoke

half-power LFs, and the Alternating Linearisation Method (ALM) for solving Inverse Gaussian

regressions based on the reciprocal-square-root LF.16

4.1. The NSC algorithm for Poisson and Gamma Regressions

The explicit structure of such self-concordant functions allows for defining a refined Newton’s

method which is generally more efficient due to a reduced number of iterations.17 First, we

introduce the definition of a self-concordant function, which was first provided by Nesterov

(2004), although a simplified version is provided in Boyd and Vandenberghe (2004), which we

follow in this paper.

Definition 4.1. Let f : Ω → ℜ be a closed convex function18 where Ω = dom (f) is an

open set in ℜd and f ∈ C3 (dom (f)). The function f is self-concordant on Ω if the function

g (t) := f (uuu+ tvvv) satisfies |g′′′ (t)| ≤ 2 (g′′ (t))3/2 for any t ∈ dom (g) ⊆ ℜ, uuu ∈ dom (f), and

vvv ∈ ℜd such that uuu+ tvvv ∈ dom (f).

Note that the constant 2 in Definition 4.1, see |g′′′ (t)| ≤ 2 (g′′ (t))3/2, is chosen for convenience

and helps to identify an explicit upper bound for the total number of iterations required by the

Newton’s method for SC functions. If constant 2 is replaced by M , i.e. |g′′′ (t)| ≤ M (g′′ (t))3/2,

then we say that its equivalent function f is SC with constant M ; e.g., if f is SC with constant

M , then it is not difficult to show that f̃ (·) := M2

4 f (·) is SC with constant 2.

We explore the Poisson and Gamma Regressions based on some special choices of half-power

LFs by solving (3.2) and (3.4), since the associated negative log-likelihoods are not only convex

(actually strictly convex in those two cases), but also self-concordant. This is illustrated in

Theorem 4.2 below, where the half-identity and half-square-root LFs for Poisson Regression are

explored in Theorem 4.2 a), while the half-reciprocal identity and half-reciprocal-square-root LFs

for Gamma Regression are explored in Theorem 4.2 b).

Theorem 4.2. Let {(yi,xxxi) : 1 ≤ i ≤ n} be a sample of size n drawn from (Y,XXX), where

XXX = (X1, X2, . . . , Xd) with d ≥ 1 and define Ω :=
n⋃

i=1

{
βββ ∈ ℜd : xxx⊤i βββ > 0

}
. The following

statements hold:

16This is also known as inverse-square-root LF, but we avoid referring to ‘inverse’ since the GLM uses the
inverse of a function to identify the functional estimator h with the LF g.

17For further details on SC problems and their fast convergence iterative methods, see Boyd and Vandenberghe
(2004); Nesterov (2004).

18A function f : A ⊆ ℜd → B is closed convex if f is convex and closed on A, where f is closed if for any
α ∈ ℜ, {xxx ∈ dom(f) : f (xxx) ≤ α} is a closed set.
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a) The MLE-based Poisson GLM equipped with the half-power LF from (2.8) with either

γ = 2 (and γ = 1) is self-concordant, and it leads to an optimisation problem with a

self-concordant objective function fP (f̌P ) on Ω, where

min
βββ∈Ω

fP (βββ) :=

n∑
i=1

(
1

2

(
xxx⊤i βββ

)2
− yi log

(
xxx⊤i βββ

))
, (4.1)

min
βββ∈Ω

f̌P (βββ) :=
n∑

i=1

(
xxx⊤i βββ − yi log

(
xxx⊤i βββ

))
. (4.2)

b) The MLE-based Gamma GLM equipped with the half-power LF from (2.8) with γ = −2

(and γ = −1) is self-concordant, and it leads to an optimisation problem with a self-

concordant objective function fG (f̌G) on Ω, where

min
βββ∈Ω

fG (βββ) :=
n∑

i=1

(
yi
2

(
xxx⊤i βββ

)2
− log

(
xxx⊤i βββ

))
, (4.3)

min
βββ∈Ω

f̌G (βββ) :=

n∑
i=1

(
yi · xxx⊤i βββ − log

(
xxx⊤i βββ

))
. (4.4)

As previously mentioned, the constant of an SC function does not have any impact on the actual

iterative algorithm, and could change only the upper bound of the total number of steps (that

is in an explicit form for SC functions; for details, see the Newton’s step in Algorithm 1). One

may show that a tighter bound could be obtained for (4.1) and (4.2), i.e. the objective function

is SC with constant MP and M̌P , respectively, where

MP = M̌P := 2 max
1≤i≤n

{
y
−1/2
i I{yi>0} + I{yi=0}

}
,

which satisfies MP ≤ 2. However, no tighter bound (tighter than 2) is possible for the Gamma

GLMs in either (4.3) and (4.4).

Theorem 4.2 allows us to use the standard SC algorithm which is detailed in (Nesterov, 2004;

Boyd and Vandenberghe, 2004), and is provided here as Algorithm 1.

This algorithm can be viewed as a modification of the Newton’s method and consists of two

phases that help reduce the number of iterations. More specifically, Step 1, called the damped

phase, guarantees that f
(
zzz(k)

)
− f

(
zzz(k+1)

)
≥ ω (λ∗) and in turn, the number of iterations in

Step 1, denoted by NDP , is bounded with

NDP ≤
f
(
zzz(0)

)
− f (zzz∗)

ω(λ∗)
, where ω(λ) := λ− log (1 + λ) on ℜ+.

This represents the advantage of Algorithm 1 as compared to relying only on the Newton’s

method, see Theorem 4.1.10 of Nesterov (2004) or Section 9.6.4 of Boyd and Vandenberghe

(2004) for further details on this issue.19 The total number of iterations in Step 2 is log2 log2 (1/ϵ)

19More formal convergence measures for Step 1 that are compared to the equivalent convergence measures of
the standard Newton’s method are available in Theorems 4.1.11 and 4.1.12 of Nesterov (2004).
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Algorithm 1: Standard SC algorithm for solving (4.1) and (4.3)

Result: zzz(k
∗) which approximates zzz∗, the global optimum of min

zzz∈Ω
f(zzz) with f (·) being

SC on Ω, where k∗ is the termination step.

Choose zzz(0) ∈ dom (f), ϵ > 0, and λ∗ ∈
(
0, λ̃
)
where λ̃ = 3−

√
5

2 ;

Let ∇f (·) and ∇2f (·) be the gradient and Hessian, respectively, of f on Ω;

Define the step/search direction function ∆ (·) :=
[
∇2f (·)

]−1∇f (·) on Ω;

Define λf (·) :=
(
∇f (·)⊤

[
∇2f (·)

]−1∇f (·)
)1/2

on Ω;

Step 1: Damped phase

(i) If λf

(
zzz(0)

)
< λ∗ go to Step 2;

(ii) While λf

(
zzz(k)

)
≥ λ∗ do zzz(k+1) = zzz(k) − 1

1 + λf

(
zzz(k)

)∆ (zzz(k)) for all k ≥ 0;

Step 2: Newton (or quadratically convergence) phase
While λf

(
zzz(k)

)
> ϵ do zzz(k+1) = zzz(k) −∆

(
zzz(k)

)
for all k ≥ k∗DP , where k∗DP is the

termination step in Step 1.

if an accuracy of f
(
zzz(k

∗)
)
− f (zzz∗) ≤ ϵ is sought. The latter bound is very small, e.g., 4.32 and

5.82 for ϵ = 10−6 and ϵ = 10−17, respectively. Note that ϵ = 10−17 is the MATLAB machine

epsilon, which is the top end tolerance level benchmark in MATLAB.

Remark 4.3. Inverting the Hessian is often challenging, and an alternative solution to com-

puting the step/search direction, i.e computing ∆(zzz) :=
[
∇2f (zzz)

]−1∇f (zzz) for a given zzz, is to

solve ∇2f (zzz) ttt = ∇f (zzz) in ttt, which is a linear system of equations. If we denote by t∗f (zzz) the

latter solution, we have ∆
(
zzz(k)

)
= t∗f

(
zzz(k)

)
and

λf

(
zzz(k)

)
=

√
∇f

(
zzz(k)

)⊤ [∇2f
(
zzz(k)

)]−1∇f
(
zzz(k)

)
=

√
∇f

(
zzz(k)

)⊤
t∗f
(
zzz(k)

)
.

4.2. The ALM algorithm for the Inverse Gaussian Regression

We showed in Section 3.3 that the Inverse Gaussian Regression model is not proper for any

power LF. However, it is still possible to create a tractable model for this parametric family

for a particular power LF. Indeed, we assume a reciprocal-square-root LF (i.e. power LF from

(2.7) with γ = −2) which satisfies Condition C1 but not Condition C2 of Definition 2.1. This

choice leads to solving the following (non-linear) optimisation problem:

min
βββ∈Ω

fIG (βββ) =

n∑
i=1

(
yi
2

(
xxx⊤i βββ

)4
−
(
xxx⊤i βββ

)2)
. (4.5)

The advantage of using the reciprocal-square-root LF is that (4.5) has a tractable solution via

the Alternating Linearisation Method (ALM), see e.g. Boyd et al. (2011) for further details.

More specifically, the variable β can be split into two variables, so that the ALM reformulation

of (4.5) is given by:
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min
(zzz,ttt)∈ℜd×ℜd

G (zzz, ttt) =
n∑

i=1

(
yi
2

(
xxx⊤i zzz

)2 (
xxx⊤i ttt

)2
−
(
xxx⊤i zzz

)(
xxx⊤i ttt

))
so that zzz = ttt. (4.6)

The iterative algorithm that efficiently solves (4.6) is given as Algorithm 2 and is an Alternating

Linearisation Method with backtracking (ALM-bktr), i.e. a bespoke ALM algorithm. This algo-

rithm provides an approximation for βββ∗, which denotes a local optimum of (4.5), by generating

two sequences {zzzs : s ≥ 0} and {ttts : s ≥ 0} such that zzzs → βββ∗ and/or ttts → βββ∗. The main idea is

to solve a two-block variant of (4.6), which is a convex quadratic programming (QP) instance in

zzz for any given ttt that could be efficiently solved, and the same holds if zzz and ttt are interchanged.

The ALM algorithm relies on replacing the function G by their linearisation and an additional

regularisation factor in order to obtain an approximation to the initial objective function fIG

from (4.5). Thus, we define the following functions

H1 (zzz, ttt;µ) := G (zzz, ttt) + ⟨G2 (ttt, ttt) , zzz − ttt⟩+ 1

2µ
∥zzz − ttt∥22,

H2 (zzz, ttt;µ) := G (zzz, ttt) + ⟨G1 (zzz,zzz) , ttt− zzz⟩+ 1

2µ
∥zzz − ttt∥22,

where ∥·∥2 is the L2 norm on ℜd, µ is a positive constant, and G1 and G2 are the partial

derivatives of G given below:

G1 (zzz, ttt) :=
∂G

∂zzz
=

n∑
i=1

(
yi

(
xxx⊤i zzz

)(
xxx⊤i ttt

)2
−
(
xxx⊤i ttt

))
xxxi,

G2 (zzz, ttt) :=
∂G

∂ttt
=

n∑
i=1

(
yi

(
xxx⊤i zzz

)2 (
xxx⊤i ttt

)
−
(
xxx⊤i zzz

))
xxxi.

Algorithm 2 for solving (4.5), and therefore (4.6), is described below.20

5. Simulation study

This section presents several numerical experiments to determine the efficiency and accuracy

of the proposed algorithms and investigates to what extent they can improve the standard

built-in GLM libraries from various software. Specifically, we implement the NSC Algorithm 1

introduced in Section 4.1 for the Poisson (with half-square-root LF) and Gamma Regressions

(with half-reciprocal-square-root LF), and the ALM Algorithm 2 introduced in Section 4.2 for

solving Inverse Gaussian Regressions (with reciprocal-square-root LF).

Before discussing our numerical analyses, we would like to mention that the performance of

our NSC Algorithm 1 is compared to standard IRLS implementations in MATLAB, R and

Python, i.e., built-in functions for non-penalised GLM, since prediction through GLM is the

main aim of this paper. Moreover, we also illustrate that it is worth considering our NSC

Algorithm 1 as an alternative to IRLS to perform GLM modelling. It is well-known that

20The algorithm stops whenever
∑ |zzzs+1−ttts+1|

|zzzs+1|
reaches the user’s defined value (e.g. the default value in our

numerical examples is taken to be 10−4 to balance the speed and precision with other benchmark algorithms).
Once the process is stopped, we use zzzs+1 (or ttts+1) if H1 is smaller (or larger) than H2.
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Algorithm 2: Standard ALM algorithm for solving (4.5)

Result: (zzzs∗ , ttts∗) that approximates βββ∗, a local optimum of (4.5), where s∗ is the
termination step.

Choose µ1,0 = µ2,0 = µ0 > 0, b ∈ (0, 1), and zzz0 = ttt0 ∈ ℜd;
for s ∈ {0, 1, . . .} do

zzzs+1 := argmin
zzz∈ℜd

H1(zzz, ttts;µ1,s);

if fIG (zzzs+1) ≤ H1 (zzzs+1, ttts;µ1,s) then
choose µ1,s+1 ≥ µ1,s;

else
find the lowest n1,s ≥ 1 such that fIG (uuu1,s) ≤ H1

(
uuu1,s, ttts;µ

∗
1,s

)
, where

µ∗
1,s = µ1,sb

n1,s and uuu1,s := argmin
zzz∈ℜd

H1

(
zzz, ttts;µ

∗
1,s

)
;

µ1,s+1 := µ∗
1,s/b and zzzs+1 := uuu1,s;

end
ttts+1 := argmin

ttt∈ℜd

H2 (zzzs+1, ttt;µ2,s);

if fIG (ttts+1) ≤ H2 (zzzs+1, ttts+1;µ2,s) then
choose µ2,s+1 ≥ µ2,s;

else
find the lowest n2,s ≥ 1 such that fIG (uuu2,s) ≤ H2

(
zzzs+1,uuu2,s;µ

∗
2,s

)
, where

µ∗
2,s = µ2,sb

n2,s and uuu2,s := argmin
ttt∈ℜd

H2

(
zzzs+1, ttt;µ

∗
2,s

)
;

µ2,s+1 := µ∗
2,s/b and ttts+1 := uuu2,s;

end

end

predictive models benefit from adding penalisations to the objective function in order to improve

the prediction error, and many off-the-shelf pieces of software offer such an option. We have

not included a comparison with penalised GLM models since the penalisation functions are SC

functions, and thus, the augmented objective function would be SC as well and Theorem 4.2

holds whenever such penalisation is added. Specifically, the objective functions in (4.1)–(4.4)

are SC functions if such penalisations are added, and our theoretical results would hold. In

addition, since the efficiency of a penalised predictive model heavily depends upon the range of

values for the penalisation parameters, it would be more informative to focus on comparing our

NSC Algorithm 1 to IRLS in settings without penalisations and raise awareness that advanced

optimisation techniques could enhance the standard IRLS deployment for GLM estimation,

which is the main message of our numerical implementation.

For each specification of the number of observations n and number of covariates d, we synthet-

ically construct N data generating processes (henceforth called DGP) and perform the above

GLM estimations using both algorithms.21 The effectiveness of our methods is determined by

comparing our estimates with the “true” regression coefficients βββk, for any k = 1, . . . , N , ob-

21Note that unlike in the theoretical presentation, d represents here the number of covariates excluding the
trivial one corresponding to the intercept β0, so that the full matrix of explanatory variables is obtained by
adding the n-dimensional unit vector to XXX. Details on the DGP simulation are illustrated in Appendix C.
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tained by using three standard built-in packages: MATLAB fitglm, R glm2 and Python

statsmodels sm.GLM libraries.22 To assess the accuracy of Algorithms 1 and 2 relative to

these benchmarks we consider two performance indicators. First, we compute the Absolute

Error Ratio (AER) and its mean (MAER), defined as:

MAER =
1

N

N∑
k=1

AERk with AERk =
AE

(
β̂ββ
alg

k

)
AE

(
β̂ββ
benchmark

k

) , k = 1, . . . , N, (5.1)

Here, the Absolute Error (AE) associated with each estimator β̂ββk is defined by the L1-norm:

AE
(
β̂ββk

)
=

d∑
j=1

|β̂k,j − βtrue
k,j |, (5.2)

where βtrue
k,j is the jth component of the kth simulated “true” regression coefficient according

to the DGP scheme outlined in Appendix C, and β̂alg
k,j and β̂benchmark

k,j are their corresponding

estimated values obtained with Algorithms 1 and 2, and the three software benchmark pack-

ages, respectively. The performance of our approach is further evaluated by computing the

log-likelihood ratio statistics, which compare the GLM with the saturated model. Thus, we

introduce below the Deviance Ratio (DR) and its mean (MDR):

MDR =
1

N

N∑
k=1

DRk with DRk =
D
(
β̂ββ
alg

k

)
D
(
β̂ββ
benchmark

k

) , k = 1, . . . , N. (5.3)

Here, the Deviance (D) of each GLM is defined by:

D
(
β̂ββk

)
= −2ϕ

(
ℓ
(
β̂ββk

)
− ℓs

)
, (5.4)

where ℓ
(
β̂ββk

)
is the log-likelihood function corresponding to the fitted GLM for the kth simulated

DGP scenario, while ℓs is the maximum value of the log-likelihood of the saturated model that

is computed using the same function as in (2.4) with θi = b′−1 (yi). Explicit expressions for the

deviance of all GLMs considered in our numerical experiments are provided in Appendix D.

Note that anMAER orMDR value smaller than 1 indicates that our approach is more accurate

on average than the benchmark with respect to the corresponding performance measure.

The efficiency of our algorithms relative to their benchmarks is also investigated by reporting

the Mean Computational Time Ratio (MCTR) introduced as:

MCTR =
1

N

N∑
k=1

CTRk with CTRk =
CT

(
β̂ββ
alg

k

)
CT

(
β̂ββ
benchmark

k

) , k = 1, . . . , N. (5.5)

22We remark that all three software rely on the IRLS method to estimate the regression coefficients. Generally
speaking, R glm2 provides an improvement over the standard R glm package by using the step-halving approach
in order to improve the convergence properties of IRLS (see e.g. Marschner (2011)).
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Here, CT
(
β̂ββ
alg1

k

)
and CT

(
β̂ββ
benchmark

k

)
are the Algorithm 1 and benchmark computational

times recorded for the kth simulated DGP scenario, respectively. It follows that our algorithms

are faster on average whenever MCTR < 1.23 For a consistent and fair comparison of the

computational time efficiency, all benchmarks have been implemented using their corresponding

default starting values.and the same specifications in the optimisation procedure, i.e. maximum

number of iterations = 10, 000 and tolerance level = 10−6. Since Algorithms 1 and 2 are coded

in MATLAB, we use the MATLAB fitglm starting values for our estimations.

The performance indicators MAER and MDR (both in bold), and MCTR are computed

based on N = 500 replicates. Note that Algorithms 1 and 2 always converge within a very

reasonable number of iterations, which is not the case for the three benchmarks. Therefore, the

number of replicates (out of 500 simulations) for which the optimisation problem (associated

with the benchmarks) does not converge within the allocated maximum number of iterations is

illustrated as #NaN in our tables. Consequently, these cases are discarded from the computation

of our performance indicators so that the benchmarks’ performance is computed in the most

advantageous possible to those benchmarks.

Table 2 presents the results for the Poisson GLM regression. We first notice that in terms of ac-

curacy, Algorithm 1 consistently outperforms both MATLAB fitglm and Python sm.GLM

libraries for all cases considered. The improvements are relative to Python sm.GLM is quite

significant with respect to both MAER and MDR with the largest augmentations being no-

ticed for larger scale settings when the ratio between the sample size and the number of covari-

ates/features decreases; for example, when n/d = 5, the improvements for both indicators are

on average of around 15%, 37% and 53% for n = 100, 500 and 1, 000, respectively. The MAER

and MDR for the MATLAB fitglm benchmark are closer to 1, but unlike in the previous

case, there are many scenarios when the fitglm MLE does not converge. This typically happens

for the bigger scale problems, as it is the case when n = 1, 000 and d = 200 (our largest setting)

where convergence was not achieved in half of the cases. Unlike the MATLAB and Python

libraries, R glm2 seems to perform very similarly to our Algorithm 1 for the Poisson GLM,

the MAER/MDR values being typically slightly above/below 1. The MCTR values indicate

that Algorithm 1 is always more efficient than both Python sm.GLM and MATLAB fitglm,

with the largest improvements observed for small dimension settings. The smallest differences

in runtime happen when n = 1, 000 and d = 50, when our algorithm is five and seven times

faster then the aforementioned benchmarks, respectively. However, while R glm2 is also slower

when n = 100 than our Algorithm 1, it becomes more efficient for larger values of n.

The Gamma GLM results are illustrated in Table 3. First, we notice that Algorithm 1 con-

sistently outperforms all benchmarks in terms of both accuracy and efficiency. Unlike in the

Poisson case, our method performs significantly better than R glm2 with respect to both ac-

curacy indicators, with an average improvement ranging from 40% − 77% and 40% − 68% for

MAER and MDR, respectively, when n = 1, 000. We further notice a reverse situation re-

garding the MATLAB fitglm and Python sm.glm GLM libraries when compared to the

results from Table 2. Specifically, on the one hand, the MLE procedure from Python sm.glm

23Note that for streamline purposes we only report the MCTR values for Algorithm 1.
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Table 2: MAER, MCTR and MDR for Poisson GLM

n = 100 n = 500 n = 1,000

d = 5 d = 10 d = 20 d = 25 d = 50 d = 100 d = 50 d = 100 d = 200

MATLAB MAER 0.9730 0.9620 0.9523 0.9685 0.9721 0.9713 0.9758 0.9782 0.9816
fitglm MDR 0.9947 0.9935 0.9883 0.9977 0.9986 0.9970 0.9998 1.0002 1.0021

MCTR 0.0134 0.0169 0.0272 0.0630 0.0625 0.0762 0.1446 0.1012 0.1069

#NaN 16 32 58 37 67 182 46 87 256

Python MAER 0.9393 0.8998 0.8431 0.9002 0.8463 0.6227 0.8838 0.8131 0.4723
sm.GLM MDR 0.9177 0.8972 0.8518 0.9093 0.8553 0.6268 0.8915 0.8166 0.4721

MCTR 0.0065 0.0082 0.0129 0.0551 0.0531 0.0340 0.2016 0.1022 0.0531

#NaN 0 0 0 0 0 0 0 0 0

R MAER 0.9999 0.9967 1.0014 1.0082 1.0085 1.0161 1.0087 1.0168 1.0376
glm2 MDR 0.9579 0.9708 0.9858 0.9832 0.9882 0.9950 0.9870 0.9911 1.0057

MCTR 0.2553 0.2815 0.5043 1.5819 1.5695 1.0513 3.3093 2.0093 1.3328

#NaN 0 0 0 0 0 0 0 0 0

Notes: This table reports the Mean Absolute Error Ratio (MAER), Mean Deviance Ratio (MDR)
and Mean Computational Time Ratio (MCTR) of Algorithm 1 from Section 4.1 relative to its benchmarks,
MATLAB fitglm, Python sm.GLM and R glm2, for the Poisson GLM equipped with the half-power LF from
(2.8) with γ = 2. These indicators are computed based on the MLE values obtained from N = 500 simulations
according to the DGP scheme outlined in Appendix C, for different specifications for the number of observations
n and number of covariates d. The number of replicates (out of 500 simulations) that the benchmarks cannot
converge is shown as #NaN. All benchmarks are implemented using the same starting values with a maximum
of 10, 000 iterations and 10−6 tolerance level.

does not converge in many instances, but when it converges, the estimates are very close to

those obtained via Algorithm 1. On the other hand, despite always converging, the MATLAB

fitglm optimisation produces MAER and MDR values which are significantly lower than 1,

with the lowest values recorded when n = 1, 000. The reported average computational times

favour again our methodology; only MCTR values greater than 1 are spotted for the larger

scale settings for R glm2, which provided inaccurate estimates in all these cases.

In summary, based on our DGP for Poisson and Gamma GLMs, we can argue that overall, our

Algorithm 1 provides the most accurate and efficient estimation approach relative to the three

benchmarks, while R glm2 is the second best, generally speaking being more stable than the

Python sm.GLM and MATLAB fitglm counterparts.24

We next turn our attention to the implementation results of the ALM Algorithm 2 for solving

Inverse Gaussian Regressions based on the reciprocal-square-root LF. The benchmark chosen

in our analysis is the MATLAB fitglm package and we only focus on the accuracy of our

methodology. Figure 2 illustrates the box plots of the MATLAB fitglm-based AER and DR

for the same values of n and d as in the previous tables. First, we notice (in all nine cases)

that the AER indicators are more or less symmetrically distributed around 1, with a median

value smaller (but closer) to 1, suggesting that our Algorithm 2 slightly outperforms MATLAB

24Note that these conclusions are drawn solely based on our DGP and a limited number of experiments, so
further implementations may be needed to further investigate this problem.
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Table 3: MAER, MCTR and MDR for Gamma GLM

n = 100 n = 500 n = 1,000

d = 5 d = 10 d = 20 d = 25 d = 50 d = 100 d = 50 d = 100 d = 200

MATLAB MAER 0.9216 0.9449 0.9722 0.6554 0.7141 0.8469 0.5547 0.5734 0.7167
fitglm MDR 0.9534 0.9511 0.9687 0.6713 0.6753 0.8061 0.5065 0.4424 0.6202

MCTR 0.0579 0.0270 0.0404 0.2549 0.1142 0.0995 0.5530 0.1991 0.1954

#NaN 0 0 0 0 0 0 0 0 0

Python MAER 0.9831 0.9930 0.9989 0.9962 0.9999 1.0000 0.9932 1.0000 1.0000
sm.GLM MDR 0.9953 0.9980 1.0000 0.9998 1.0000 1.0000 0.9997 1.0000 1.0000

MCTR 0.0700 0.2049 0.2314 1.6705 0.9847 0.5505 3.7401 2.0635 0.8492

#NaN 78 55 21 406 268 124 471 373 206

R MAER 0.9450 0.9608 0.9850 0.5843 0.7216 0.8928 0.4018 0.5434 0.7679
glm2 MDR 0.9496 0.9621 0.9878 0.5887 0.6859 0.8585 0.3944 0.4643 0.6840

MCTR 0.2945 0.5550 0.5101 6.5451 3.4493 1.6073 12.2574 5.1892 1.5737

#NaN 0 0 0 0 0 0 0 0 0

Notes: This table reports the Mean Absolute Error Ratio (MAER), Mean Deviance Ratio (MDR)
and Mean Computational Time Ratio (MCTR) of Algorithm 1 from Section 4.1 relative to its benchmarks,
MATLAB fitglm, Python sm.GLM and R glm2, for the Gamma GLM equipped with the half-power LF
from (2.8) with γ = −2. These indicators are computed based on the MLE values obtained from N = 500
simulations according to the DGP scheme outlined in Appendix C, for different specifications for the number
of observations n and number of covariates d. The number of replicates (out of 500 simulations) that the
benchmarks cannot converge is shown as #NaN. All benchmarks are implemented using the same starting values
with a maximum of 10, 000 iterations and 10−6 tolerance level.

fitglm relative to this performance measure. However, our method performs much better in

terms of the deviance measure, as almost all DR values are below 1, with the most significant

differences being documented for larger dimension problems and the smallest n/d ratio (i.e.

n/d = 5). Furthermore, for each value of n, we notice a decreasing trend in the median of

DRs as the number of covariates increases. These observations are consistent with the previous

findings on Algorithm 1 regarding the significant improvements in accuracy for bigger datasets.

6. Real data analyses

This section replicates some of the numerical illustrations in Section 5 for two insurance datasets:

i) health insurance and ii) flood insurance. The statistical description of these two datasets and

their preprocessing steps are detailed in Appendix E. Specifically, we compare the out-of-sample

performances of Algorithm 1 (from Section 4.1) against benchmark GLM implementations in

MATLAB fitglm, Python sm.GLM , and R glm2.

For the health insurance dataset, Algorithm 1 is applied to a Poisson GLM with the half-power

LF defined in (2.8) with γ = 2. Benchmarks are implemented using Poisson GLMs with either

the half-power LF in (2.8) with γ = 2 or the log LF. For the flood insurance dataset, Algorithm 1

is applied to a Gamma GLM with the half-power LF in (2.8) with γ = −2, while the benchmarks

use Gamma GLMs with either the half-power LF defined in (2.8) with γ = −2 or the log LF.

Results referring to GLM benchmarks with the log LF are labelled, for example, as “R glm2

Log”, and those with the half-power LF are labelled as “MATLAB fitglm Hp”.
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Figure 2: Absolute Error Ratio (AER) and Deviance Ratio (DR) for Inverse Gaussian
GLM based on MATLAB fitglm.
Notes: This figure shows the box plots of Absolute Error Ratio (AER) in the left panel and Deviance Ratio
(DR) in the right panel of Algorithm 2 from Section 4.2 relative to the MATLAB fitglm benchmark for
the Inverse Gaussian GLM based on the reciprocal-square-root LF. Each box plot is constructed using AERs
and DRs computed based on MLE values obtained from N = 500 simulations according to the DGP scheme
outlined in Appendix C, for different specifications for the number of observations n and the number of
covariates d. All implementations use the same starting value with a maximum of 10, 000 iterations and
10−6 tolerance level.

For both datasets, we compute ratios of the mean squared error (MSE) of Algorithm 1 predic-

tions and those corresponding to the six benchmarks considered. An MSE ratio less than one

indicates that Algorithm 1 outperforms the benchmark, with smaller values signifying better

performance. For the health insurance dataset, the data is split into 70% training and 30%

testing sets, and this process is repeated 100 times. The training data is used to estimate model

parameters, and predictions are made on the testing data to evaluate the MSE ratios. For the

flood insurance dataset, we analyse claims from three US states, including Florida, Texas, and

Louisiana, which are prone to severe flooding. In this case, we use the previous year’s data (e.g.,

2010) as the training set to predict claims for the next year (e.g., 2011), repeating this process

annually from 2011 to 2023.
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6.1. U.S. Health Insurance dataset

The results for the first U.S. health insurance dataset are summarised in Table 4. Among 100

data splits, Algorithm 1 consistently outperformed the other two GLM benchmark methods

(Log LF and half-power LF) across all software platforms. From Panel A of Table 4, we notice

that Algorithm 1 achieved the lowest MSE in 77 scenarios for both MATLAB fitglm and

R glm2, and in all 100 cases for Python sm.GLM . The “wins” counts further highlight

that Algorithm 1 achieved lower MSEs than GLMs with Log LF and half-power LF in 86 and

82 cases, respectively, for both MATLAB fitglm and R glm2, and in all 100 scenarios for

Python sm.GLM .

Panel B of Table 4 provides the average MSE ratios and quantiles for the benchmark methods

relative to Algorithm 1. The average MSE ratios for GLMs with Log LF and half-power LF for

both MATLAB fitglm and R glm2 are slightly above 0.98 (0.9829 and 0.9882, respectively),

indicating a limited improvement of around 1.7% and 1.2% for Algorithm 1. In contrast, the

average MSE ratios in Python sm.GLM are much smaller (0.0578 for Log LF and 0.2180 for

half-power LF), demonstrating a more significant improvement for this software. This trend is

consistent across all quantiles (25%, 50%, and 75%) for Python sm.GLM , highlighting that

Algorithm 1 is particularly effective in reducing errors when compared to these benchmarks.

Table 4: Poisson GLM for Health data

MATLAB fitglm Python sm.GLM R glm2

Alg 1 Log Hp Alg 1 Log Hp Alg 1 Log Hp

Panel A: Model Counts

“Best” Model Counts 77 16 7 100 0 0 77 7 16
Alg 1 “Wins” Counts - 86 82 - 100 100 - 86 82

Panel B: MSE Ratios

Average - 0.9829 0.9882 - 0.0578 0.2180 - 0.9829 0.9882
25% quantile - 0.9735 0.9781 - 0.0544 0.2064 - 0.9735 0.9785
50% quantile - 0.9826 0.9886 - 0.0577 0.2162 - 0.9826 0.9886
75% quantile - 0.9938 0.9961 - 0.0619 0.2301 - 0.9936 0.9961

Notes: Panel A: Model Counts summarises the results of 100 data splits for GLM implementations of Algorithm 1
from Section 4.1, which uses the half-power LF with γ = 2, compared to six benchmarks that use both the half-
power LF with γ = 2 and the log LF, across MATLAB, Python, and R. The first row (“Best” Model Counts)
shows how many times each model achieved the lowest MSE in each software. The second row (Alg 1 “Wins”
Counts) indicates how many times Algorithm 1 (Alg 1) achieved a lower MSE compared to the Log LF and
half-power LF models. Panel B: MSE Ratios presents the average MSE ratios along with the 25%, 50%, and 75%
quantiles, calculated across 100 data splits for each method. All methods used default starting values provided
by the software packages, with a maximum of 10,000 iterations and a tolerance level of 10−6. For Algorithm 1,
the starting values were taken from the first iteration in each respective software package.

In addition to the out-of-sample performance summarised in Table 4, while Table 5 illustrates

the interpretability of Algorithm 1 through the percentage contribution vectors in (2.11) for

three selected examples from the U.S. health insurance dataset. The three examples correspond

to three insureds that were chosen to capture diverse characteristics of the data. The first part of

the table reports the original data information for each example, such as age, sex, BMI, number

of children, smoker status, and region. The second part presents the percentage contributions

of each covariate to the predicted premium, calculated based on the interpretability framework

introduced in Section 2.2.
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The results emphasise the varying influence of covariates across individuals, showing that some

contributions are substantial (e.g., BMI and smoking status), while others may be negligible

or even negative (e.g., sex and region). For example, the negative contribution of the Re-

gion feature for Insured 3 shows that, given this individual’s age (higher than the average age

amongst the cohort) and high BMI, the Southeast region might slightly lower the predicted

premium. This could be because age and BMI have a much stronger impact, while the effect

of the region is relatively smaller and interacts differently with the other factors. Additionally,

the minimal contribution of gender indicates that Algorithm 1 is not highly sensitive to this

factor, demonstrating its robustness and fairness in the context of insurance pricing. The age

column highlights a clear trend where the percentage contribution increases as the individual

gets older. For instance, the percentage contribution of age is 0.98% for the youngest individual

(18 years old), 11.28% for the middle-aged individual (55 years old), and 24.82% for the oldest

individual (61 years old). This progression is consistent with the expected influence of age on

health insurance premiums, as older individuals are generally associated with higher risks and,

therefore, higher premiums. These patterns align with the theoretical model, in which all con-

tributions sum to 100%, although some contributions are negative. This table shows that the

Algorithm 1 not only improves predictive performance but also provides a clear and practical

interpretation on the role of individual covariates in insurance pricing.

Table 5: Original Data and Percentage Contributions for Selected Examples

Rows Charges
Original Data Information Percentage Contributions (%)

Age Sex BMI Children Smoker Region Age Sex BMI Children Smoker Region

Insured 1 12,829.46 18 M 17.29 2 Yes NE 0.98 -0.37 58.22 2.46 38.71 0.00
Insured 2 42,303.69 55 M 30.69 0 Yes NE 11.28 -0.31 57.30 0.00 31.72 0.00
Insured 3 36,580.28 61 F 33.33 4 No SE 24.82 0.00 74.67 3.85 0.00 -3.34

Notes: This table presents the results for three selected examples from the U.S. health insurance dataset.
The first part (Original Data Information) includes the characteristics of each selected individual, such as age
(18-64), sex (Male or Female), BMI (15.96-53.13), number of children (0-5), smoker status (Yes or No), and
region (NE for Northeast, NW for Northwest, SE for Southeast, and SW for Southwest). The second part
(Percentage Contributions (%)) reports the percentage contribution of each covariate to the predicted premium.
The contributions are calculated based on the estimated coefficients obtained from Algorithm 1 with a power
LF (γ = 2). The contributions for one-hot encoded variables such as Region and Age are summed for all
corresponding categories. Some contributions may appear negative due to the interpretability model formulation,
but they are consistent with the theoretical results in the Section 2.2. The negative percentage contributions for
some covariates (i.e. Sex and Region) for a given insured indicate that these covariates are in fact decreasing
the overall value of the corresponding predicted premium (when combining with other available covariates). A
relevant domain knowledge or a further detailed investigation would help researchers to understand better about
these covariates and their contributions.

6.2. Flood Insurance dataset

The results for the second flood insurance dataset are summarised in Table 6, which compares

the performance of Algorithm 1 relative to the six benchmark methods across 13 years of out-

of-sample predictions for Florida, Texas, and Louisiana in the U.S. Algorithm 1 demonstrates

strong performance in most cases. For instance, in the Panel B of Table 6, Algorithm 1 achieves

23 wins with the log LF and 29 wins with the half-power LF inMATLAB fitglm. Additionally,

Algorithm 1 has the highest number of times achieving the best performance across all methods

in MATLAB fitglm, with 19 cases for the log LF and 39 cases for the half-power LF in
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Python sm.GLM . This highlights the algorithm’s consistent ability to deliver optimal results

in these software environments. However, its performance in R glm2 is mixed. While the

log LF achieves the best results in 18 cases, Algorithm 1 still outperforms the half-power LF,

which is similar in formulation, in 12 instances. These results indicate that while Algorithm 1

is generally effective, the log LF can perform better under specific conditions. Nevertheless,

Algorithm 1 achieves notable success in delivering the best results across a significant portion

of the tests.

Panel A of Table 6 provides additional insights into the relative performance of the methods.

For the log LF, Algorithm 1 has an average MSE ratio of 4.02 in MATLAB fitglm and 3.31

in R glm2, indicating that the benchmark methods perform better for certain years. However,

for the half-power LF, Algorithm 1 achieves an average MSE ratio of 0.87 in MATLAB fitglm

and 1.02 in R glm2, showing comparable or better performance. These results suggest that

the half-power LF is better aligned with the properties of Algorithm 1, leading to improved

predictions in many scenarios.

One key advantage of Algorithm 1 is its stability. As shown in the first three panels in Table 6,

convergence failures occur frequently for the log LF in Python sm.GLM , resulting in missing

values “NaN”). In contrast, Algorithm 1 converges successfully in all cases, demonstrating its

robustness across different datasets and link functions. This reliability makes it a better candi-

date for practical predictive modelling, particularly when convergence is a concern. Therefore,

Algorithm 1 performs well overall, particularly with the half-power LF, and offers consistent

convergence in all cases. While it does not always achieve the lowest MSE, especially when

compared with the log LF in certain years, its stability and competitive performance make it a

reliable option for modelling flood insurance claims.

Focusing on extreme events recorded by the National Center for Environmental Information

(NCEI)25, several significant flooding disasters impacted Texas, Louisiana, and Florida during

the study period. In 2015, 2016, 2017, and 2019, extreme rainfall and subsequent flooding

caused billions of dollars in losses in Texas and Louisiana. Notably, the 2016 Louisiana flood, a

historic event, destroyed over 50,000 homes. Additionally, Hurricanes Laura and Delta in 2021

brought widespread damage to homes in Texas and Louisiana. These events provide context

for interpreting the results in Table 6.

For Texas, Algorithm 1 generally performs well during years affected by extreme events, showing

better overall predictability compared to the log and half-power LFs. However, exceptions exist.

For instance, in MATLAB fitglm and R glm2, the log LF achieves the best performance for

the predicted years 2015 and 2016, and the half-power LF performs better in 2016 and 2021.

For Louisiana, the results reflect mixed performance during extreme events, with Algorithm 1

showing comparable predictive ability to other methods across many years. For Florida, NCEI

records highlight events such as Hurricane Ian in 2022 and historical rainfall with flash flooding

in 2023. In these years, Algorithm 1 outperforms all other methods in the predicted year

2022 and remains a strong choice for 2023 across most scenarios. These findings suggest that

Algorithm 1 can adapt well to extreme conditions, particularly in Florida while maintaining

25Available at: https://www.ncei.noaa.gov/access/billions/
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competitive performance in Texas and Louisiana. Overall, the results indicate that Algorithm 1

is a reliable choice for predictive modelling, particularly in years with extreme flooding events.

7. Conclusions

This paper makes two important contributions to the GLM literature. First, we provide a

general characterisation of proper GLMs for various exponential dispersion models, including

the Tweedie family. The main finding is that although most Tweedie GLMs are not proper for

canonical and log LFs, a rich class of proper Tweedie GLMs can be identified for power LFs.

Second, we propose specialised optimisation algorithms for implementing several instances of

Tweedie GLMs under power LFs. These algorithms outperform standard methods in terms of

accuracy and efficiency, particularly in high-dimensional scenarios, as demonstrated via a thor-

ough comparison with existing libraries like MATLAB fitglm, R glm2, and Python sm.GLM.
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Table 6: Gamma GLM for Flood data

Training Year Predicted Year
MATLAB fitglm Python sm.GLM R glm2

Log Hp Log Hp Log Hp

Florida (FL)

2010 2011 24.6196 1.0144 0.0142 0.0142 24.6136 1.0144
2011 2012 31.5413 1.0675 0.0151 0.0150 6.9684 0.9777
2012 2013 3.0440 1.0176 0.0039 0.0039 3.0432 1.0178
2013 2014 14.6594 0.9948 0.0540 0.0538 14.6575 0.9946
2014 2015 3.8898 0.9993 0.0048 0.0048 3.8897 0.9993
2015 2016 0.0146 0.9982 NaN 0.0146 0.3764 0.9985
2016 2017 0.0528 0.6760 NaN 0.0068 0.2913 1.0588
2017 2018 0.1236 0.3160 NaN 0.0233 0.2364 1.1073
2018 2019 0.0194 0.5719 0.0199 0.0199 0.4000 0.9852
2019 2020 0.0537 0.9486 0.0531 0.0529 5.6086 0.9487
2020 2021 0.0106 0.9769 NaN 0.0106 0.1947 0.9773
2021 2022 0.1697 0.9718 0.1678 0.1679 0.7980 0.9741
2022 2023 0.8357 1.0013 0.0857 0.0857 0.8351 1.0015

Texas (TX)

2010 2011 5.8798 1.0557 0.0022 0.0022 5.8782 1.0556
2011 2012 6.9224 0.6053 0.0249 0.0248 6.9144 0.6054
2012 2013 8.5670 0.9641 0.0239 0.0239 8.5657 0.9638
2013 2014 3.3014 0.9643 0.0023 0.0023 3.3009 0.9643
2014 2015 4.7864 0.9913 0.0479 0.0477 4.7857 0.9911
2015 2016 18.5862 0.9181 0.0110 0.0110 4.5940 1.0097
2016 2017 0.0291 0.9522 0.0272 0.0270 0.3640 0.9882
2017 2018 0.0488 0.8019 NaN 0.0301 0.4833 1.9563
2018 2019 0.1961 0.6751 0.0541 0.0543 0.3690 0.9855
2019 2020 0.0046 0.9463 NaN 0.0046 0.1951 0.9462
2020 2021 0.0179 0.7292 0.0112 0.0112 0.5730 1.0259
2021 2022 0.8210 0.9790 0.0510 0.0510 0.7251 0.9812
2022 2023 0.7062 1.0305 0.0642 0.0642 0.7320 1.0312

Louisiana (LA)

2010 2011 3.0166 0.9570 0.0364 0.0364 3.0166 0.9569
2011 2012 0.0100 0.5317 0.0120 0.0119 0.2573 0.9533
2012 2013 10.2523 1.3220 0.0137 0.0137 10.2518 1.3224
2013 2014 2.0511 0.8257 0.0100 0.0101 2.0509 0.8257
2014 2015 7.5954 1.0932 0.0118 0.0118 7.5945 1.0933
2015 2016 3.9441 0.7310 0.0686 0.0682 3.9542 0.7311
2016 2017 0.0471 0.9164 NaN 0.0062 0.2124 1.1408
2017 2018 0.0096 1.0854 0.0095 0.0095 0.2488 1.0863
2018 2019 0.0445 0.5151 0.0307 0.0311 0.5027 0.9928
2019 2020 0.0600 0.3827 0.0103 0.0103 0.2688 0.9917
2020 2021 0.0157 1.0746 0.0157 0.0157 0.2491 1.0746
2021 2022 0.0115 0.9746 0.0115 0.0115 0.3276 0.9760
2022 2023 0.6846 0.4587 0.0374 0.0374 0.6143 0.9206

Panel A: Statistics Summary (FL, TX, LA)

2011-2023

Average 4.0165 0.8727 0.0314 0.0282 3.3062 1.0160
25% quantile 0.0368 0.7301 0.0112 0.0105 0.3458 0.9692
50% quantile 0.6846 0.9641 0.0178 0.0150 0.7320 0.9917
75% quantile 4.3652 1.0003 0.0487 0.0369 4.6898 1.0286

Panel B: Counts Summary (FL, TX, LA)

2011-2023

Alg 1 “wins” 23 29 39 39 22 24
Alg 1 “best” 19 39 12
Log “best” 16 0 18
Hp “best” 4 0 9

Notes: This table compares the MSE values for Gamma GLM implementations of Algorithm 1 (Alg 1) from Section 4.1
using the half-power LF from (2.8) with γ = −2 to six benchmark methods. The benchmarks use both the half-power LF
from (2.8) with γ = −2 and the log LF. All implementations rely on default starting values provided by the respective
software packages, with a maximum of 10, 000 iterations and a tolerance level of 10−6. For Algorithm 1, the starting values
are initialised from the first iteration results in MATLAB, Python, and R. The first three panels present the results of 13
out-of-sample evaluations (2011 to 2023) for three states (FL, TX, and LA) with the most frequent flood claims. Failures to
converge are marked as “NaN” in the Python sm.GLM Log column, while Algorithm 1 successfully converges in all cases.
Panel A displays the average and the 25%, 50%, and 75% quantiles of the 39 ratios computed for each column. Panel B
shows the number of times Algorithm 1 outperforms the other methods in all settings and shows the best implementation
of each method within each respective software.
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Appendix A. Proofs

Appendix A.1. Proof of Propositions 3.1-3.3

The proofs follow easily by verifying the conditions in Definition 2.1 for the Poisson, Gamma

and Inverse Gaussian families, respectively.
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Appendix A.2. Proof of Theorem 3.4

The identification of the three classes of Tweedie GLM that are well-defined is not difficult, and

thus, we only outline some arguments without further details that are quite obvious. Clearly,

b′(θ) =
(
θ/(α− 1)

)α−1
for all θ ∈ ℜ. Since α < 2, then setting a) is readily true and we require

α ∈ (1, 2), which is equivalent to p < 0, whenever Θ ∈ {ℜ∗
+,ℜ+}. Setting b) is the mirror case

of setting a), and the proof is very similar. Settings c) and d) are similar to the previous ones,

and the analysis depends if α− 1 is an odd or even negative integer.

Appendix A.3. Proof of Theorem 3.5

First, we investigate parts (i) and (iii) (the negative power LF case) together, and therefore

assume only power or negative power LFs. Condition C2 requires

y(α− 1)
(
h(η)

) 1
α−1 − α− 1

α

(
h(η)

) α
α−1 to be concave in η on ℜ for all y ∈ Y. (A.1)

Setting a) is first justified, but only for power LFs since the image of h is ℜ∗
+, and in turn,

γ = 2k, k ∈ Z∗. Denote a1 = y (α− 1), a2 =
1−α
α and γ′ = 1

α−1 . Equation (A.1) is equivalent to

ξ (η; y) := a1η
γγ′

+ a2η
γ(γ′+1) is concave in η on ℜ for all y ∈ Y. (A.2)

Note that Y = ℜ∗
+ is assumed. Since 1 < α < 2 and y > 0, then a1 > 0 and a2 < 0, and in

turn, (A.2) holds if and only if γγ′ ∈ [0, 1] and γ(γ′ + 1) /∈ (0, 1). This is equivalent to having

γ ≥ 0, γγ′ ≤ 1 and γ(γ′ + 1) ≥ 1, since γ′ > 1 in this case, which is further equivalent to
α−1
α ≤ γ ≤ α − 1. The latter cannot hold since α − 1 ∈ (0, 1), α − 1 − α−1

α ∈ (0, 1/2) and

γ = 2k, k ∈ Z∗, which concludes that no proper GLM model is possible for setting a).

Setting b) is now justified, but only for power LFs since the image of h is ℜ∗
+, and thus,

γ = 2k, k ∈ Z∗. We split this in two subcases, setting b1) and setting b2) for 0 < α < 1 and

α < 0, respectively.

Setting b1) holds if and only if γγ′ /∈ (0, 1) and γ(γ′ + 1) ∈ [0, 1], since a1 < 0 and a2 > 0,

which is equivalent to having γ ≤ 0, γγ′ ≥ 1 and γ(γ′ + 1) ≥ 1 as γ′ < −1, and in turn,
α−1
α ≤ γ ≤ α − 1. The later is true if and only if γ = −2k for any k ∈ N∗ and (1 − γ)α ≤ 1

since 0 < α < 1, which concludes setting b1).

Setting b2) implies that a1, a2 < 0 and γ′ ∈ (−1, 0). Therefore, setting b2) holds if and only

if γγ′ /∈ (0, 1) and γ(γ′ + 1) /∈ (0, 1), which is equivalent to having γ ≥ 0 and γ(γ′ + 1) ≥ 1 or

γ ≤ 0 and γγ′ ≥ 1, and in turn, α−1
α ≤ γ or γ ≤ α− 1 must hold, which concludes setting b2).

Setting c) is similar to setting b2), and we thus skip its proof. Setting d) requires for power

and negative power LFs to having γ′ ∈ Z so that the likelihood function is well-defined in (2.4)

(and thus, in (A.1)), but also γ to be an odd integer so that the image of h is ℜ∗. These do

not hold since γ′ ∈ (−1, 0), which justifies our claim for setting d). This concludes parts (i) and

(iii) (the negative power LF case).

The proof of parts (ii) and (iii) (the negative half-power LF case) follows in a similar way, with

one small difference. That is, half-power LFs require γ ∈ ℜ∗ instead of γ = 2k, k ∈ Z∗, but

everything else does not significantly change. For these reasons, we do not provide additional

details on this proof.
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Appendix A.4. Proof of Theorem 3.6

We first show part (i), and assume canonical LFs. Note first h(η) = b′(η) =
(
η/(α − 1)

)α−1
,

which implies that α ∈ Z\{1}. This implies that amongst settings a)–c), only setting b2), which

was introduced in Appendix A.3, might hold while all other settings are clearly infeasible. The

image of h is ℜ∗
+ and therefore, α is an odd negative integer, which is a power LF with an odd

parameter γ. This contradicts our findings in the proof of part (i) from Theorem 3.4 for setting

b2), and concludes that no canonical LF leads to proper GLM in settings a)–c). Setting d)

requires α to be an even negative integer and γ′ ∈ Z as explained in the previous proof, which is

infeasible conditions. Thus, no canonical LF leads to proper GLM in setting d). This concludes

part (i).

We now show part (ii) and assume log LFs. Using the same notations as in Appendix A.3,

Equation (A.1) is equivalent to

ξ (η; y) := a1e
ηγ′

+ a2e
η(γ′+1) is concave in η on ℜ for all y ∈ Y, (A.3)

which requires a1, a2 ≤ 0 due to the convexity property of eηγ in η on ℜ, for any γ ∈ ℜ. The

latter explains that only setting b2) is feasible amongst settings a)–c). Setting d) is infeasible

since the image of h is ℜ∗, which is impossible for a log LF. The proof is now complete.

Appendix A.5. Proof of Theorem 4.2

We proceed by showing part a), but only for (4.1), since (4.2) could be argued similarly. Let

fi,P (βββ) =

(
1

2

(
xxx⊤i βββ

)2
− yi log

(
xxx⊤i βββ

))
for all 1 ≤ i ≤ n, (A.4)

so that fP (βββ) =
n∑

i=1
fi,P (βββ). First, we show that fP is a closed convex function on Ω. From

(A.4), fi,P is convex (and therefore, continuous) on Ω, and since dom (fP ) = Ω is an open set

and lim
βββ→βββ0

fi,P (βββ) = ∞ for all βββ0 ∈ ∂ dom (fP ), it follows that fi,P is closed convex on Ω. The

closed convex property of fP follows from the fact that it is a sum of closed convex functions.

We next prove that fP is self-concordant on Ω. For any t ∈ ℜ, uuu ∈ Ω and vvv ∈ ℜd, such

that uuu + tvvv ∈ Ω, we define the function gi,P (t) = fi,P (uuu+ tvvv), or any i = 1, . . . , n, and let

gP (t) =
n∑

i=1
gi,P (t). Next, we show that

∣∣g′′′i,P (t)∣∣ ≤ 2
(
g′′i,P (t)

)3/2
. (A.5)

Note that

g′′i,P (t) =
(
xxx⊤i vvv

)2
+

yi
(
xxx⊤i vvv

)2(
xxx⊤i uuu+ txxx⊤i vvv

)2 and g′′′i,P (t) = −
2yi
(
xxx⊤i vvv

)3(
xxx⊤i uuu+ txxx⊤i vvv

)3 .
Clearly, (A.5) holds whenever xxx⊤i vvv = 0, and thus, we further assume that xxx⊤i vvv ̸= 0. Now,

∣∣g′′′i,P (t)∣∣ (g′′i,P (t))−3/2
= 2yi

(
yi +

(
xxx⊤i uuu+ txxx⊤i vvv

)2)−3/2

≤ 2,
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since yi ≤ y
3/2
i ≤ (yi + ϵi)

3/2 for any non-negative integer yi and any ϵi ≥ 0 (recall that yi ∈ N
as the sampling distribution is Poisson). The self-concordant property of fP follows from

∣∣g′′′P (t)∣∣=
∣∣∣∣∣

n∑
i=1

g′′′i,P (t)

∣∣∣∣∣ ≤
n∑

i=1

∣∣g′′′i,P (t)∣∣ ≤ 2

n∑
i=1

(
g′′i,P (t)

)3/2 ≤ 2

(
n∑

i=1

g′′i,P (t)

)3/2

=2
(
g′′P (t)

)3/2
.

Note that the first inequality follows from the triangle inequality, the second from (A.5), and the

last one from the fact that the p-norm on ℜn, ||xxx||p :=

(
n∑

i=1

|xi|p
)1/p

is a decreasing function

in p on ℜ∗
+ for any x ∈ ℜn, and thus, ||xxx||1 ≤ ||xxx||2/3. This completes the proof for part a).

The proof of part b) follows in a similar way, and thus, we only provide the main steps. As

before, we only show (4.3) since its proof is very similar to the proof of (4.4). We denote

fi,G (βββ) =

(
yi
2

(
xxx⊤i βββ

)2
− log

(
xxx⊤i βββ

))
for all 1 ≤ i ≤ n,

so that fG (βββ) =
n∑

i=1
fi,G (βββ). Following the same arguments as in part a), we may show that fG

is a closed convex function on Ω. The proof that fG is self-concordant on Ω follows in a similar

way by defining the function gi,G(t) = fi,G (uuu+ tvvv) and gG(t) =
n∑

i=1
gi,G(t) for any t ∈ ℜ, uuu ∈ Ω

and vvv ∈ ℜd, such that uuu+ tvvv ∈ Ω, and showing that
∣∣∣g′′′i,G(t)∣∣∣ ≤ 2

(
g′′i,G(t)

)3/2
. The second and

third order derivatives of gi,G are given by

g′′i,G(t) = yi

(
xxx⊤i vvv

)2
+

(
xxx⊤i vvv

)2(
xxx⊤i uuu+ txxx⊤i vvv

)2 and g′′′i,G(t) = −
2
(
xxx⊤i vvv

)3(
xxx⊤i uuu+ txxx⊤i vvv

)3 .
Clearly, the required inequality holds if xxx⊤i vvv = 0, and thus, xxx⊤i vvv ̸= 0 is further assumed. Now,

∣∣g′′′i,G(t)∣∣ (g′′i,G(t))−3/2
= 2

(
yi

(
xxx⊤i uuu+ txxx⊤i vvv

)2
+ 1

)−3/2

≤ 2,

since (1 + yiϵi)
−3/2 ≤ 1 for any yi > 0 and ϵi ≥ 0 (recall that yi ∈ ℜ∗

+ as the sampling

distribution is Gamma). This completes the proof.

Appendix B. Other special cases of GLMs

Appendix B.1. Linear Regression – Gaussian family

Assume that Y ∼ N(θ, ϕ2) with probability distribution function given by

log (fY (y; θ, ϕ)) =
θy − θ2

2

ϕ
− 1

2

(
y2

ϕ
+ log(2πϕ)

)
, (y, θ, ϕ) ∈ ℜ × ℜ× ℜ∗

+.

The above pdf is obtained as a special case of (2.1) by taking

a (ϕ) = ϕ, b (θ) =
θ2

2
, c (y, ϕ) = −1

2

(
y2

ϕ
+ log(2πϕ)

)
.
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In addition, b′ (Θ) = ℜ and b′
−1

(µ) = µ. Proposition Appendix B.1 provides a characterisation

of the LFs under which the Gaussian GLM is properly defined according to Definition 2.1.

Proposition Appendix B.1. Assume that Y ∼ N(θ, ϕ2). The Gaussian GLM is proper if

and only if h : ℜ → ℜ and

−yh(η) +
h2(η)

2
is convex in η on ℜ for any given y ∈ ℜ. (B.1)

Proof. The proof follows from verifying conditions C1 and C2 from Definition 2.1.

Corollary Appendix B.2 identifies the only class of LFs which satisfies Equation (B.1).

Corollary Appendix B.2. The Gaussian GLM is proper if and only if the LF is linear.

Proof. Since any convex real function defined on a finite open set I is continuous with non-

decreasing left (and right) derivatives, then (B.1) implies that

h′+ (η1)h (η1)− yh′+ (η1) ≤ h′+ (η2)h (η2)− yh′+ (η2) for all y ∈ ℜ, (B.2)

and any reals η1 < η2 from I, where h′+ is the right derivative of h. Assume now that h

is not linear on ℜ, and thus, not linear on I. Then, there exists η1 < η2 from I such that

h′+ (η2) − h′+ (η1) ̸= 0. The latter contradicts (B.2), and in turn, we must have h linear on ℜ,
and no other possible LF leads to a MLE-based Gaussian GLM.

The canonical LF for Gaussian GLMs is the identity function. Corollary Appendix B.2 implies

the canonical LF leads to a proper GLM and it is the only power function with this property.

Appendix B.2. Logistic Regression – Bernoulli family

Assume that Y ∼ Bernoulli(θ) with probability mass function given by

log (fY (y; θ, ϕ)) = θy − log
(
1 + eθ

)
with (y, θ, ϕ) ∈ {0, 1} × ℜ × {1}.

The above function is obtained as a special case of (2.1) by taking

a (ϕ) = 1, b (θ) = log
(
1 + eθ

)
, c (y, ϕ) = 0.

In addition, b′ (Θ) = (0, 1) and b′
−1

(µ) = log µ
1−µ . Proposition Appendix B.3 provides a brief

characterisation of a proper Logistic regression model.

Proposition Appendix B.3. Assume that Y ∼ Bernoulli(θ). The Bernoulli GLM is proper

if and only if h : ℜ → (0, 1), and

y log (h(η)) + (1−y) log (1−h(η)) is concave in η on ℜ for any given y = {0, 1}. (B.3)

Proof. The proof follows easily by verifying the conditions C1 and C2 from Definition 2.1.

A direct consequence of the above is that the MLE-based Bernoulli GLM is proper if and only
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if h(η) and h(1− η) are log-concave functions26 on ℜ. Three standard choices for h have been

proposed for this family in the literature, and all of them lead to proper GLMs:

(i) logit LF, which corresponds to having h(η) = 1
1+e−η , which is also the Bernoulli canonical

LF that satisfies the conditions in Proposition 2.2 since b is strictly convex on ℜ.
(ii) probit LF, which corresponds to having h(η) = Φ(η), where Φ is the cdf of a standard

Gaussian random variable. In this case, it is not difficult to show that h satisfies the

characterisation from Proposition Appendix B.3.

(iii) complementary log-log LF, which corresponds to having h(η) = 1 − exp (− exp (−η)). It

is not difficult to show that h satisfies the conditions in Proposition Appendix B.3.

Finally, it is clear that no power LF satisfies the conditions in Proposition Appendix B.3.

Appendix C. Data Generation Process

This section briefly outlines the DGPs for the Poisson, Gamma and Inverse Gaussian GLMs.

• Step 1: Generate the matrix of covariatesXXX = {Xi,j}n,di=1,j=1, from a Gaussian distribution

with mean µ and unit standard deviation, Xi,j ∼ N (µ, 1). Note that for each GLM, we

let µ to be a function of d, such that the expected value of the response variable is within

reasonable bounds in order to avoid exaggerating the parameter values when generating

YYY in Step 3, which typically affect the estimation procedure for the benchmarks.27

• Step 2: Generate the regression coefficient βββ = {βj}dj=0 by setting βj = j/d.

• Step 3: For any i = 1, . . . , n, let θi = β0 +
d∑

j=1
βjxi,j and generate the response

variable YYY = {Yi}ni=1 by simulating each Yi from Poisson
(
θ2i
)
for the Poisson GLM,

Gamma
(
θ2i , 1

)
for the Gamma GLM and IG

(
θ−2
i , 1

)
for the Inverse Gaussian GLM.

Appendix D. Deviance for Poisson, Gamma and Inverse Gaussian GLMs

• Poisson GLM with half-square-root LF

D
(
β̂ββ
)
=

n∑
i=1

(
4yi log

(√
yi

xxx⊤i β̂ββ

)
+ 2

((
xxx⊤i β̂ββ

)2
− yi

))
· I

xxx⊤
i β̂ββ>0

+ 0 · I
xxx⊤
i β̂ββ=yi=0

+∞ · Ielse

• Gamma GLM with half-reciprocal-square-root LF

D
(
β̂ββ
)
=

n∑
i=1

(
2yi

((
xxx⊤i β̂ββ

)2
− y−1

i

)
− 2 log (yi)− 4 log

(
xxx⊤i β̂ββ

))
· I

xxx⊤
i β̂ββ>0

+∞ · I
xxx⊤
i β̂ββ≤0

26A function f : A → B is log-concave on A if log (f (αx+ (1− α)y)) ≥ α log (f(x)) + (1− α) log (f(y)) for all
x, y ∈ A and 0 < α < 1.

27Note that in such cases all standard benchmarks fail to converge in most scenarios.
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• Inverse Gaussian GLM with reciprocal-square root LF

D
(
β̂ββ
)
= ϕ2

n∑
i=1

(
yi

((
xxx⊤i β̂ββ

)4
− y−2

i

)
− 2

((
xxx⊤i β̂ββ

)2
− y−1

i

))
· I

xxx⊤
i β̂ββ>0

+∞ · I
xxx⊤
i β̂ββ≤0

Appendix E. Data Description

This section describes the two real-world datasets used in the analysis: the U.S. health insurance

dataset and the FEMA NFIP claims dataset. The first focuses on medical costs and related

demographic and lifestyle factors, while the second provides information on flood insurance

claims from 2010 to 2023 in Florida, Texas, and Louisiana. Both datasets are preprocessed to

ensure the variables are suitable for statistical modelling, including transformations, binning,

and encoding as needed. Summary statistics and visualisations are provided to give an overview

of the datasets and highlight key features. The preprocessing steps and descriptive analyses

ensure the data is prepared for evaluating the performance of Algorithm 1.

Appendix E.1. U.S. Health Insurance dataset

The first U.S. health insurance dataset28 contains 1,338 observations and is widely used in

the machine learning research community to study the relationships between medical costs and

various demographic and lifestyle factors. The dataset includes one dependent variable, Medical

Costs (Charges), and six independent variables: Age, Sex, BMI, Number of Children, Smoker,

and Region. Table E.7 provides summary statistics for the raw dataset, which highlights the

distribution of the numerical variables and the counts for categorical variables. The dependent

variable, Charges, exhibits a wide range from 1, 122 to 63, 770 USD with a mean of 13, 270 USD,

showing a right-skewed distribution.

Table E.7: Summary Statistics of Raw Health Insurance Data

Variable Obs. Min Max Median Mean Std.Dev.

Medical costs (charges, USD) 1,338 1,122 63,770 9,382 13,270 12,110
Age 1,338 18 64 39 39 14
Sex (female: 662 vs. male: 676) 1,338 N/A N/A N/A N/A N/A
BMI 1,338 15.96 53.13 30.4 30.66 6.1
No. of Children 1,338 0 5 1 1.1 1.21
Smoker (yes: 274 vs. no: 1,064) 1,338 N/A N/A N/A N/A N/A
Region 1,338 N/A N/A N/A N/A N/A

Notes: This table summarises the variables in the U.S. health insurance dataset. The dataset includes 1,338
observations. Character variables such as Sex, Smoker, and Region are shown with counts. For Region, NE refers
to the Northeast (324 observations), NW refers to the Northwest (325 observations), SE refers to the Southeast
(364 observations), and SW refers to the Southwest (325 observations). Numeric variables include medical costs
(charges), age, BMI, and the number of children, summarised by their minimum, maximum, median, mean, and
standard deviation. Character variables are listed as “N/A” for numerical summaries.

To prepare the dataset for analysis, preprocessing steps were applied to both dependent and

independent variables, as summarised in Table E.8. The Charges variable, representing med-

ical costs, was regrouped into four categories: Low (≤ 10, 000 USD), Mid (10, 001 − 20, 000

28“U.S. Health Insurance” dataset is available at https://github.com/stedy/

Machine-Learning-with-R-datasets or www.kaggle.com/datasets/teertha/ushealthinsurancedataset.
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USD), Upper-Mid (20, 001 − 40, 000 USD), and High (> 40, 000 USD). Binning the Charges

variable simplifies the interpretation of medical costs and makes it suitable for modelling with a

Poisson GLM. For Age, values were grouped into six categories based on predefined age ranges

to facilitate modelling. The BMI variable underwent a logarithmic transformation to reduce

skewness and improve its interpretability. Binary variables, such as Sex (Male or Female) and

Smoker (Yes or No), were one-hot encoded. The Region variable was also one-hot encoded to

represent four geographic areas: Northeast, Northwest, Southeast, and Southwest. Table E.9

presents the cleaned dataset, grouped by binned Charges, with numerical averages and distri-

butions of categorical variables. Similar preprocessing techniques, including binning age groups

and applying logarithmic transformations to handle skewness, can be found in the analysis of

the French Motor Third-Party Liability Claims dataset29.

Figure E.3 visualises the dependent variable, Charges, with two histograms. The left plot shows

the original distribution, which is right-skewed due to high-cost outliers, while the right plot

depicts the binned Charges distribution categorised into four levels. These preprocessing steps

ensure the dataset is structured and ready for a 70% training and 30% testing split to evaluate

the out-of-sample performance of Algorithm 1 and compare it to other methods implemented

in Matlab, Python, and R.

Table E.8: Summary of Data Preprocessing for Health Insurance Dataset

Variable Type Regrouped Bounded One-hot Encoded Resulting Columns

Charges Numeric Yes No Yes 4
Age Integer Yes No Yes 6
Sex Character No No Yes 2
BMI Numeric No No No N/A
Children Integer No Yes Yes N/A
Smoker Character No No Yes 2
Region Character No No Yes 4

Notes: This table summarises the processing steps applied to the U.S. health insurance dataset. The Charges
variable, used as the dependent variable, was regrouped into four categories: (1) Low (≤ 10, 000 USD), (2) Mid
(10, 001− 20, 000 USD), (3) Upper-Mid (20, 001− 40, 000 USD), and (4) High (> 40, 000 USD). The remaining
variables were used as features in the analysis. For Age, values were regrouped into six categories: (1) Ages
18-21, (2) Ages 22-26, (3) Ages 27-35, (4) Ages 36-45, (5) Ages 46-55, and (6) Ages 56-64. The Children variable
was capped at 3, meaning any number greater than 3 was set to 3. The BMI variable underwent a logarithmic
transformation to reduce skewness. Binary variables such as Smoker and Sex were encoded into two categories.
The Region variable, which includes four geographic areas (Northeast, Northwest, Southeast, and Southwest), was
one-hot encoded. The Resulting Columns column indicates the number of columns created after one-hot encoding
for character variables. For numeric variables (BMI and Children), “N/A” is shown under the Resulting Columns
column, as they were not transformed into additional columns during preprocessing.

Appendix E.2. Flood Insurance dataset

The second FEMA NFIP Claims dataset30 includes flood insurance claim records from the

NFIP. The data provide information on flood-related claims across the United States, with

sensitive details redacted to protect policyholders. We focus on claim data from 2010 to 2023

for three states: Florida, Texas, and Louisiana. These states are particularly vulnerable to

flood-related losses and were selected due to their prominence in flood insurance claims. The

29Tutorials for similar preprocessing steps can be accessed at https://github.com/actuarial-data-science/
Tutorials.

30“OpenFEMA” dataset is available at www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
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Table E.9: Summary Statistics of Cleaned Health Insurance Data by Binned Charges

Charges binned Low Mid Upper-Mid High

Avg charges 5,207.23 13,513.71 29,222.34 45,681.02
Avg age 33.09 49.03 39.90 48.75
Avg log(BMI) 3.39 3.39 3.39 3.60

Sex F: 355, M: 357 F: 192, M: 161 F: 83, M: 111 F: 32, M: 47

Smoker N: 712, Y: 0 N: 291, Y: 62 N: 61, Y: 133 N: 0, Y: 79

Children Count
0: 292, 1: 201,
2: 126, 3: 93

0: 174, 1: 59,
2: 53, 3: 67

0: 82, 1: 46,
2: 40, 3: 26

0: 26, 1: 18,
2: 21, 3: 14

Age binned
1: 140, 2: 100, 3: 168
4: 190, 5: 114, 6: 0

1: 27, 2: 16, 3: 36
4: 19, 5: 93, 6: 162

1: 27, 2: 21, 3: 30
4: 36, 5: 50, 6: 30

1: 0, 2: 3, 3: 6
4: 19, 5: 27, 6: 24

Region
NE: 161, NW: 176,
SE: 193, SW: 182

NE: 95, NW: 88,
SE: 83, SW: 87

NE: 53, NW: 47,
SE: 52, SW: 42

NE: 15, NW: 14,
SE: 36, SW: 14

Notes: This table summarises the U.S. health insurance dataset grouped by binned charges. Avg charges,
Avg age, and Avg log(BMI) represent the averages for numerical variables. The distributions of Character vari-
ables are provided for Sex, Smoker, Age binned, and Region. For Sex, F indicates Female, and M indicates Male.
For Smoker, Y indicates Yes (smoker) and N indicates No (non-smoker). While Children is treated as a numeric
variable, it is displayed in the table as counts for 0, 1, 2, and capped at 3 children to enhance clarity. Age binned
represents grouped age ranges labelled from 1 to 6. Region refers to geographic locations, with NE for Northeast,
NW for Northwest, SE for Southeast, and SW for Southwest.

dataset captures financial, structural, and geographical attributes of flood claims, making it

suitable for analysing coverage efficiency and model-based predictions.

The dependent variable, ratioCoverage, is defined as the ratio of amountPaidOnBuildingClaim

to totalBuildingInsuranceCoverage. This variable represents the proportion of coverage utilised

in claims and is used to evaluate the efficiency and adequacy of flood insurance coverage.

To ensure meaningful values and reduce the impact of outliers, ratioCoverage was capped

at the 0.99 quantile. In addition to this dependent variable, the dataset includes 15 fea-

tures: totalBuildingInsuranceCoverage, buildingPropertyValue, buildingDamageAmount, num-

berOfFloorsInTheInsuredBuilding, waterDepth, buildingDeductibleCode, elevatedBuildingIndica-

tor, postFIRMConstructionIndicator, ratedFloodZone, buildingDescriptionCode, originalCon-

structionDate, replacementCostBasis, causeOfDamage, latitude, and longitude. These features

reflect various aspects of the claims, including financial details, building characteristics, and

geographical location. Table E.10 outlines the features, their types, and the preprocessing steps

applied, which include bounding numerical variables, simplifying categorical variables, and en-

coding binary variables as needed.

Tables E.11, E.12, and E.13 present the annual and overall summary statistics for amount-

PaidOnBuildingClaim, totalBuildingInsuranceCoverage, and ratioCoverage, respectively, across

Florida, Texas, and Louisiana. They also include the number of observations, minimum, max-

imum, median, mean, and standard deviation for each variable, which helps to understand

variability and trends over time. For example, amountPaidOnBuildingClaim (Table E.11) un-

derscores variations in flood-related claims between states and across years, while totalBuildin-

gInsuranceCoverage (Table E.12) shows differences in insured amounts. ratioCoverage (Ta-

ble E.13) summarises the proportion of claims relative to coverage, illustrating patterns in

insurance utilisation.
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Figure E.3: Distribution of Medical Costs (Charges).
Notes: The left plot shows the histogram of the dependent variable, medical charges, which exhibits a
right-skewed distribution due to a few high-cost outliers. The right plot depicts the histogram of the same
variable after binning into four categories for analysis: Low (≤ 10, 000 USD), Mid (10, 001− 20, 000 USD),
Upper-Mid (20, 001− 40, 000 USD), and High (> 40, 000 USD). Binning simplifies the interpretation of the
dependent variable by grouping observations into discrete categories, which are used in subsequent modelling
and analysis. These plots represent data from the U.S. health insurance dataset used in the study.

Figures E.4, E.5, and E.6 provide visualisations of the data for Florida, Texas, and Louisiana,

respectively. These include histograms of amountPaidOnBuildingClaim, totalBuildingInsurance-

Coverage, and ratioCoverage. Logarithmic transformations of financial variables are included to

address skewness and enhance interpretability. The ratioCoverage histograms are also overlaid

with a Gamma distribution fit, illustrating its suitability for modelling purposes.

These preprocessing steps ensure that the extracted data from 2010 to 2023 are ready for an

out-of-sample testing approach to evaluate the forecasting performance of different methods.

Specifically, each year’s dataset is used as a test set, and the data from the previous year is used

as a training set. This approach exploits temporal patterns while avoiding data leakage. The

main goal of the analysis is to compare the performance of Algorithm 1 with alternative methods

implemented inMatlab, Python, andR, focusing on the ability to predict ratioCoverage using

the selected features.
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Table E.10: Summary of Data Preprocessing for Flood Insurance Dataset

Variable Type Regrouped Bounded One-hot Encoded Resulting Columns

ratioCoverage Numeric No Yes No N/A
amountPaidOnBuildingClaim Numeric No Yes No N/A
totalBuildingInsuranceCoverage Integer No Yes No N/A
buildingPropertyValue Numeric No Yes No N/A
buildingDamageAmount Integer No Yes No N/A
numberOfFloorsInTheInsuredBuilding Integer No No No N/A
waterDepth Integer No Yes No N/A
buildingDeductibleCode Character No Yes No N/A
elevatedBuildingIndicator Integer No No Yes 2
postFIRMConstructionIndicator Character No No Yes 2
ratedFloodZone Character Yes No Yes 2
buildingDescriptionCode Integer Yes No Yes 2
originalConstructionDate Character Yes No Yes 3
replacementCostBasis Character Yes No Yes 2
causeOfDamage Character Yes No Yes 2
latitude Numeric Yes No Yes 4
longitude Numeric Yes No Yes 4

Notes: This table summarises the dependent variable and features used in the flood insurance dataset. The
dependent variable, ratioCoverage, is calculated as the ratio of amountPaidOnBuildingClaim to totalBuildin-
gInsuranceCoverage, representing the proportion of insurance coverage paid for building claims. To mitigate
the effect of outliers, ratioCoverage was capped at the 0.99 quantile. Features include all variables except
amountPaidOnBuildingClaim. Variables such as totalBuildingInsuranceCoverage, buildingPropertyValue, build-
ingDamageAmount, and buildingDeductibleCode were bounded to be strictly greater than 0 to avoid numerical
issues during logarithmic transformation and to ensure meaningful values. Specifically, buildingDeductibleCode
was transformed from its original character representation into numerical amounts based on descriptions provided
in the FEMA NFIP Claims dataset. waterDepth was capped at the 0.99 quantile to handle outliers and was
lower bounded by 0 (including 0). latitude and longitude were used together and grouped into clusters to repre-
sent the location of buildings. Binary variables, including replacementCostBasis, elevatedBuildingIndicator, and
postFIRMConstructionIndicator, were retained in their original format. Categorical variables such as ratedFlood-
Zone, buildingDescriptionCode, and causeOfDamage were simplified into two groups based on the meaning being
described to avoid rare categories that may not appear in all years. originalConstructionDate was converted to
originalConstructionYears to calculate building age and grouped into three categories. The Resulting Columns
column indicates the number of columns created after one-hot encoding or clustering. For numeric variables that
were not transformed into additional columns, “N/A” is shown to indicate no additional columns were created.
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Table E.11: Summary Statistics for Flood Insurance Dataset (Building Claim)

Year Obs. Min Max Median Mean Std.Dev.

Florida (FL)

2010 241 265.50 151,336.40 6,275.89 14,310.32 20,469.76
2011 1,027 19.13 483,061.70 8,099.52 17,327.53 31,953.73
2012 2,741 0.20 494,292.70 8,836.92 19,712.75 34,265.14
2013 1,101 31.58 1,070,279.00 13,373.94 22,732.65 43,857.98
2014 2,352 10.65 1,649,712.00 24,377.75 36,088.53 54,672.15
2015 1,080 45.04 433,906.00 10,214.19 20,090.91 30,566.75
2016 5,044 44.64 1,011,369.00 26,107.08 39,331.90 47,977.24
2017 16,216 3.88 2,395,029.00 20,934.88 42,705.43 67,122.00
2018 2,864 46.06 4,504,105.00 27,212.72 52,764.74 120,814.80
2019 492 41.66 868,788.00 17,669.28 40,740.05 73,328.56
2020 6,322 24.13 908,923.50 21,511.22 39,308.67 52,624.37
2021 384 386.67 248,750.00 18,294.27 34,779.68 41,193.29
2022 31,061 2.68 9,899,055.00 69,509.74 105,434.20 219,265.70
2023 7,754 34.25 1,084,439.00 61,062.64 69,173.08 66,755.06
All Years 78,679 0.20 9,899,055.00 35,001.34 67,897.07 150,038.60

Texas (TX)

2010 1,642 8.60 357,937.80 13,903.04 28,785.46 37,879.04
2011 82 11.53 131,565.20 6,346.45 15,411.13 24,837.49
2012 1,336 25.81 244,527.90 10,579.21 19,815.68 24,443.59
2013 1,241 23.68 230,043.00 24,929.10 35,464.10 37,020.18
2014 654 102.38 287,634.50 9,395.23 16,695.70 22,481.69
2015 8,972 12.69 2,250,779.00 25,606.37 43,018.55 58,203.41
2016 10,509 26.62 480,806.20 35,234.87 47,613.32 48,642.23
2017 61,229 5.68 3,718,845.00 66,255.77 78,802.76 68,702.77
2018 2,091 4.00 490,812.20 25,102.79 39,657.50 44,727.73
2019 8,998 18.70 515,975.00 48,697.10 56,777.53 48,429.79
2020 1,191 9.34 361,616.30 15,578.69 26,336.46 31,344.37
2021 1,237 153.67 428,758.30 17,248.87 29,623.56 38,413.29
2022 346 78.30 259,506.50 21,284.90 36,452.89 42,293.05
2023 285 200.29 339,217.60 22,280.11 37,757.51 47,990.23
All Years 99,813 4.00 3,718,845.00 51,192.40 65,386.98 64,221.07

Louisiana (LA)

2010 177 269.71 186,889.00 6,663.98 12,771.22 18,402.82
2011 1,789 6.21 225,524.70 10,635.26 18,323.00 24,697.03
2012 9,195 4.80 454,036.50 23,601.94 34,873.10 38,161.29
2013 702 45.16 166,523.50 10,805.19 20,788.63 23,292.28
2014 486 194.17 209,857.40 18,746.75 27,304.86 27,819.45
2015 488 80.82 213,694.10 10,720.24 20,341.93 27,430.32
2016 26,704 9.54 692,480.00 66,080.45 71,927.44 52,991.48
2017 1,741 21.75 361,308.00 20,654.59 30,409.53 34,754.57
2018 346 89.23 215,838.50 18,381.26 26,296.47 28,477.97
2019 2,031 133.29 433,805.00 24,241.07 35,923.32 41,337.63
2020 2,737 8.03 434,323.20 27,130.69 39,524.83 42,882.96
2021 11,615 14.68 499,648.60 51,518.71 58,998.37 52,799.65
2022 123 804.05 156,646.90 13,893.35 25,412.10 31,172.44
2023 109 681.94 476,322.80 19,225.69 35,527.84 61,953.50
All Years 58,243 4.80 692,480.00 47,332.86 55,795.29 51,312.22

Notes: This table summarises the annual statistics for the feature amountPaidOnBuildingClaim across three
states (Florida, Texas, and Louisiana). The statistics are calculated for each year and state (Florida, Texas, and
Louisiana) and include the number of observations, minimum, maximum, median, mean, and standard deviation.
The “All Years” row aggregates the data across all years (2010-2023) to provide overall summary statistics for
each state. The data provides insights into the variability and distribution of building claim payments over time
and across states.
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Table E.12: Summary Statistics for Flood Insurance Dataset (Building Coverage)

Year Obs. Min Max Median Mean Std.Dev.

Florida (FL)

2010 241 18,400.00 90,967,200.00 200,000.00 1,092,283.00 7,211,990.00
2011 1,027 15,000.00 116,000,000.00 250,000.00 747,523.50 5,625,071.00
2012 2,741 4,900.00 93,250,000.00 198,400.00 419,302.80 3,164,952.00
2013 1,101 12,000.00 244,000,000.00 227,900.00 2,293,090.00 12,477,770.00
2014 2,352 5,500.00 142,000,000.00 240,000.00 633,667.90 4,383,651.00
2015 1,080 8,700.00 244,000,000.00 204,700.00 923,395.40 9,691,769.00
2016 5,044 5,000.00 61,000,000.00 250,000.00 370,075.90 1,967,997.00
2017 16,216 2,700.00 123,000,000.00 250,000.00 552,023.80 3,636,400.00
2018 2,864 10,000.00 64,000,000.00 250,000.00 307,067.80 1,583,612.00
2019 492 17,700.00 244,000,000.00 250,000.00 4,288,565.00 19,228,059.00
2020 6,322 5,500.00 58,250,000.00 250,000.00 369,857.60 1,723,522.00
2021 384 17,700.00 114,000,000.00 240,000.00 801,724.20 6,515,546.00
2022 31,061 3,600.00 63,750,000.00 250,000.00 493,944.60 1,844,845.00
2023 7,754 4,000.00 244,000,000.00 250,000.00 346,802.90 3,204,194.00
All Years 78,679 2,700.00 244,000,000.00 250,000.00 529,721.10 3,643,900.00

Texas (TX)

2010 1,642 7,400.00 6,442,000.00 150,000.00 172,664.50 244,207.70
2011 82 20,000.00 500,000.00 164,800.00 179,298.80 98,285.68
2012 1,336 10,000.00 7,247,400.00 177,900.00 185,815.90 249,984.40
2013 1,241 16,500.00 20,500,000.00 150,000.00 208,194.20 835,324.90
2014 654 12,100.00 32,524,800.00 150,000.00 261,836.70 1,532,190.00
2015 8,972 2,800.00 29,250,000.00 191,900.00 205,652.40 654,214.20
2016 10,509 3,500.00 26,000,000.00 193,600.00 192,483.20 336,868.60
2017 61,229 2,300.00 99,809,800.00 227,600.00 216,316.20 584,933.90
2018 2,091 5,500.00 6,797,800.00 200,000.00 199,071.40 279,317.40
2019 8,998 6,000.00 7,477,600.00 200,000.00 187,718.70 127,481.70
2020 1,191 5,100.00 9,949,300.00 150,000.00 194,172.20 451,069.50
2021 1,237 4,500.00 4,126,100.00 200,000.00 200,803.20 200,332.00
2022 346 19,000.00 1,750,000.00 196,500.00 195,624.60 133,564.20
2023 285 12,000.00 500,000.00 250,000.00 211,410.50 82,326.96
All Years 99,813 2,300.00 99,809,800.00 200,000.00 208,407.40 540,750.00

Louisiana (LA)

2010 177 6,500.00 500,000.00 118,100.00 144,411.90 104,203.10
2011 1,789 5,500.00 21,072,500.00 118,600.00 143,834.30 503,543.70
2012 9,195 2,000.00 13,310,000.00 175,000.00 185,403.80 273,969.90
2013 702 1,000.00 500,000.00 125,000.00 129,675.50 79,398.39
2014 486 10,000.00 500,000.00 150,000.00 163,741.60 81,913.65
2015 488 6,500.00 500,000.00 125,000.00 148,917.00 98,669.01
2016 26,704 1,000.00 4,341,700.00 170,000.00 176,025.70 85,021.68
2017 1,741 6,500.00 1,625,000.00 153,100.00 178,626.40 115,088.40
2018 346 8,800.00 500,000.00 143,000.00 159,257.20 108,916.30
2019 2,031 2,900.00 21,072,500.00 200,000.00 230,164.90 668,780.60
2020 2,737 1,800.00 3,250,000.00 170,000.00 179,188.80 119,142.70
2021 11,615 2,200.00 3,250,000.00 203,500.00 203,445.70 98,007.40
2022 123 20,400.00 500,000.00 200,000.00 191,066.70 84,045.23
2023 109 33,000.00 500,000.00 250,000.00 227,714.70 108,870.80
All Years 58,243 1,000.00 21,072,500.00 177,100.00 183,144.40 205,325.90

Notes: This table summarises the annual statistics for the feature totalBuildingInsuranceCoverage across three
states (Florida, Texas, and Louisiana). The statistics are calculated for each year and state (Florida, Texas, and
Louisiana) and include the number of observations, minimum, maximum, median, mean, and standard deviation.
The “All Years” row aggregates the data across all years (2010-2023) to provide overall summary statistics for
each state. These values reflect the distribution and variation in total insurance coverage amounts for building
over time and across states.
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Table E.13: Summary Statistics for Flood Insurance Dataset(Building Coverage Ratio)

Year Obs. Min Max Median Mean Std.Dev.

Florida (FL)

2010 241 0.0005 0.9267 0.0327 0.0795 0.1195
2011 1,027 0.0000 0.9661 0.0393 0.0828 0.1051
2012 2,741 0.0000 0.9963 0.0509 0.1193 0.1599
2013 1,101 0.0001 0.9696 0.0654 0.1079 0.1304
2014 2,352 0.0001 0.9951 0.1284 0.1853 0.1890
2015 1,080 0.0000 0.8852 0.0616 0.1125 0.1386
2016 5,044 0.0002 0.9929 0.1485 0.2007 0.1895
2017 16,216 0.0000 0.9990 0.1075 0.1909 0.2088
2018 2,864 0.0001 0.9991 0.1397 0.2345 0.2457
2019 492 0.0001 0.9831 0.0686 0.1317 0.1622
2020 6,322 0.0001 0.9986 0.0959 0.1733 0.1868
2021 384 0.0000 0.9950 0.1060 0.2217 0.2668
2022 31,061 0.0000 1.0000 0.2990 0.3272 0.2654
2023 7,754 0.0001 0.9998 0.2890 0.2975 0.2068
All Years 78,679 0.0000 1.0000 0.1748 0.2491 0.2392

Texas (TX)

Year Observations Min Max Median Mean Std Dev
2010 1,642 0.0000 0.9900 0.1100 0.1900 0.2100
2011 82 0.0000 0.5300 0.0400 0.1000 0.1300
2012 1,336 0.0000 1.0000 0.0700 0.1300 0.1600
2013 1,241 0.0000 1.0000 0.1700 0.2500 0.2300
2014 654 0.0000 0.9700 0.0600 0.1300 0.1600
2015 8,972 0.0000 1.0000 0.1800 0.2400 0.2200
2016 10,509 0.0000 1.0000 0.2400 0.2700 0.2200
2017 61,229 0.0000 1.0000 0.3900 0.4000 0.2600
2018 2,091 0.0000 1.0000 0.1700 0.2600 0.2500
2019 8,998 0.0000 1.0000 0.3000 0.3200 0.2300
2020 1,191 0.0000 0.9900 0.1100 0.1900 0.2100
2021 1,237 0.0000 0.9700 0.1000 0.1700 0.1800
2022 346 0.0000 0.9600 0.1300 0.2200 0.2200
2023 285 0.0000 0.8900 0.1200 0.1900 0.2100
All Years 99,813 0.0000 1.0000 0.3200 0.3400 0.2600

Louisiana (LA)

2010 177 0.0025 0.9125 0.0634 0.1153 0.1444
2011 1,789 0.0000 0.9982 0.1023 0.1971 0.2248
2012 9,195 0.0000 0.9984 0.1778 0.2195 0.2088
2013 702 0.0002 0.9934 0.1285 0.2132 0.2217
2014 486 0.0009 0.9543 0.1306 0.1990 0.1960
2015 488 0.0003 0.9467 0.0977 0.1830 0.2047
2016 26,704 0.0001 1.0000 0.4226 0.4247 0.2450
2017 1,741 0.0002 0.9939 0.1395 0.2134 0.2167
2018 346 0.0006 0.9952 0.1447 0.2312 0.2460
2019 2,031 0.0009 0.9961 0.1448 0.2045 0.1955
2020 2,737 0.0000 0.9996 0.1917 0.2482 0.2261
2021 11,615 0.0001 0.9999 0.2943 0.3077 0.2388
2022 123 0.0049 0.6765 0.0802 0.1506 0.1676
2023 109 0.0061 0.9761 0.0862 0.1514 0.1696
All Years 58,243 0.0000 1.0000 0.3123 0.3301 0.2510

Notes: This table provides annual summary statistics for the dependent variable ratioCoverage, which represents
the ratio of the amount paid on building claims to the total building insurance coverage. The statistics are
calculated for each year and state (Florida, Texas, and Louisiana) and include the number of observations,
minimum, maximum, median, mean, and standard deviation. The “All Years” row aggregates the data across
all years (2010-2023) to provide overall summary statistics for each state. These ratios reflect the proportion of
insurance coverage utilised in claims, helping to evaluate the efficiency and adequacy of flood insurance coverage
over time.
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Figure E.4: Distribution of Building Claim Data for Florida (FL).
Notes: The first row shows the histogram of the amount paid on building claims (left) and its logarithmic
transformation (right). The second row depicts the histogram of the total building insurance coverage (left)
and its logarithmic transformation (right). The third row illustrates the histogram of the ratio of the amount
paid on building claims to the total building insurance coverage (left) and the histogram of the same ratio
with an overlaid Gamma distribution fit (right). These plots represent all data aggregated across years
(2010-2023) for Florida. Logarithmic transformations are applied to reduce skewness and provide better
visual interpretation for highly dispersed data. The Gamma fit in the last plot highlights the suitability of
a Gamma distribution for modelling the ratio of payments to coverage.
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Figure E.5: Distribution of Building Claim Data for Texas (TX).
Notes: The first row shows the histogram of the amount paid on building claims (left) and its logarithmic
transformation (right). The second row depicts the histogram of the total building insurance coverage
(left) and its logarithmic transformation (right). The third row illustrates the histogram of the ratio of the
amount paid on building claims to the total building insurance coverage (left) and the histogram of the
same ratio with an overlaid Gamma distribution fit (right). These plots represent all data aggregated across
years (2010-2023) for Texas. Logarithmic transformations are applied to reduce skewness and provide better
visual interpretation for highly dispersed data. The Gamma fit in the last plot highlights the suitability of
a Gamma distribution for modelling the ratio of payments to coverage.
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Figure E.6: Distribution of Building Claim Data for Louisiana (LA).
Notes: The first row shows the histogram of the amount paid on building claims (left) and its logarithmic
transformation (right). The second row depicts the histogram of the total building insurance coverage (left)
and its logarithmic transformation (right). The third row illustrates the histogram of the ratio of the amount
paid on building claims to the total building insurance coverage (left) and the histogram of the same ratio
with an overlaid Gamma distribution fit (right). These plots represent all data aggregated across years
(2010-2023) for Louisiana. Logarithmic transformations are applied to reduce skewness and provide better
visual interpretation for highly dispersed data. The Gamma fit in the last plot highlights the suitability of
a Gamma distribution for modelling the ratio of payments to coverage.
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