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Abstract
A Lyndon word is a word that is lexicographically smaller than all of its non-trivial rotations

(e.g. ananas is a Lyndon word; banana is not a Lyndon word due to its smaller rotation abanan).
The Lyndon forest (or equivalently Lyndon table) identifies maximal Lyndon factors of a word, and
is of great combinatoric interest, e.g. when finding maximal repetitions in words. While optimal
linear time algorithms for computing the Lyndon forest are known, none of them work in an online
manner. We present algorithms that compute the Lyndon forest of a word in a reverse online manner,
processing the input word from back to front. We assume a general ordered alphabet, i.e. the only
elementary operations on symbols are comparisons of the form less-equal-greater. We start with a
naive algorithm and show that, despite its quadratic worst-case behavior, it already takes expected
linear time on words drawn uniformly at random. We then introduce a much more sophisticated
algorithm that takes linear time in the worst-case. It borrows some ideas from the offline algorithm
by Bille et al. (ICALP 2020), combined with new techniques that are necessary for the reverse online
setting. While the back-to-front approach for this computation is rather natural (see Franek and
Liut, PSC 2019), the steps required to achieve linear time are surprisingly intricate. We envision
that our algorithm will be useful for the online computation of maximal repetitions in words.
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1 Lyndon words

A Lyndon word is a word that is lexicographically smaller than all of its non-trivial rotations
(e.g. ananas is a Lyndon word; banana is not a Lyndon word due to its smaller rotation
abanan). The Lyndon table or equivalently the right Lyndon forest of a word (generalized
from the right Lyndon tree of a Lyndon word) identifies the longest Lyndon prefix of each
suffix of the word (a precise definition follows later). The article explores the complexity of
algorithms for building the Lyndon table or forest of a word over a general ordered alphabet.
The only elementary operations on letters of the alphabet are comparisons of the form
less-equal-greater. The presented algorithms process the input word y[0 . . n− 1] in a reverse
online manner. When accessing position y[i] for the first time, they have already computed
the Lyndon table of y[i + 1 . . n− 1].
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Background and applications. Introduced in the field of combinatorics on words by Lyndon
(see [26, 24]) and used in algebra, Lyndon words introduce structural elements in plain
sequences of symbols, provided there is an ordering on the set of symbols. They have shown
their usefulness for designing efficient algorithms on words. For example, they underpinned
the notion of critical positions in words [24], the two-way string matching [14] and rotations
of periodic words [8].

The right Lyndon tree of a Lyndon word y (based on the factorisation y = uv, where v

is the lexicographically smallest, or equivalently longest, proper Lyndon suffix of y) is by
definition related to the sorted list of suffixes of y. Hohlweg and Reutenauer [21] showed
that the right Lyndon tree is the Cartesian tree (see [30]) built from ranks of suffixes in their
lexicographically sorted list (see also [15]). The list corresponds to the standard permutation
of suffixes of the word and is the main component of its suffix array (see [27]), one of the
major data structures for text indexing. The relation between suffix arrays and properties
of Lyndon words is used by Mantaci et al. [28], by Baier [2] and by Bertram et al. [6] to
compute the suffix array, as well as by Louza et al. [25] to induce the Lyndon table.

If the suffix array is given, the Lyndon table can be constructed in linear time (e.g.
[19, Algorithm NSVISA]). In fact, the method is similar to the standard algorithms that
build a Cartesian tree from the ranks of suffixes in their lexicographical order. However,
computing the suffix array on general ordered alphabets requires Ω(n lg n) time due to the
well-known information-theoretic lower bound on comparison sorting. A linear-time algorithm
that directly computes the Lyndon table (on general ordered alphabets, without requiring
the suffix array) was designed by Bille et al. [7]. While it processes the word from left to
right, it is not an online algorithm because it may need to look ahead arbitrarily far in the
word in order to determine an entry of the Lyndon table.

The Lyndon forest is closely related to runs (maximal periodicities) in words, and is
not only essential for showing theoretical properties of runs, but also for their efficient
computation. Bannai et al. [3] used the Lyndon table to solve the conjecture of Kolpakov and
Kucherov [22] stating that there are less than n runs in a length-n word, following a result in
[12]. The key result in [3] is that every run in a word y contains as a factor a Lyndon root,
according either to the alphabet ordering or its inverse, that corresponds to a node of the
associated Lyndon forest. Since the Lyndon forest has a linear number of nodes according to
the length of y, browsing all its nodes leads to a linear-time algorithm to report all the runs
occurring in y. However, the time complexity of this technique also depends on the time
required to build the forest and to extend a potential run root to an actual run. This is
feasible on a linearly-sortable alphabet using an efficient longest common extension (LCE)
technique (e.g. [18]). Kosolobov [23] conjectured a linear-time algorithm computing all runs
for a word over a general ordered alphabet. An almost linear-time solution was given in [11],
but the final positive answer is by Ellert and Fischer [17] who combined the Lyndon table
algorithm by Bille et al. [7] with a new linear-time computation technique for the LCEs.

Our contributions. We present algorithms that compute the Lyndon table or Lyndon forest
of a word over a general ordered alphabet. They scan the input word y[0 . . n− 1] in a reverse
online manner, i.e. from the end to the beginning. When accessing y[i] for the first time, they
have already computed the Lyndon forest or table of the word y[i + 1 . . n− 1]. Processing
the word in a reverse manner is rather natural (see Franek and Liut [20]), but it requires
intricate algorithmic techniques to obtain an efficient algorithm.

In Section 2, we present a naive algorithm for computing the Lyndon table that takes
quadratic time in the worst case. We also provide a simple linear time algorithm that
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computes the Lyndon forest from the Lyndon table. As shown in Section 3, the naive
algorithm runs in expected linear time if we fix an alphabet and a length, and then choose
a random word of the chosen length over the chosen alphabet. Finally, in Section 4, we
introduce a more sophisticated algorithm for constructing the Lyndon table. It takes optimal
linear time in the worst case, and uses the following techniques. First, the use of both next
and previous smaller suffix tables, and skipping symbol comparisons when computing longest
common extensions (LCEs) associated with these tables (similarly to what has been done in
[7]). Second, the additional acceleration of the LCE computation by exploiting and reusing
previously computed values. Third, additional steps to ensure that we reuse each computed
value at most once, which ultimately results in the linear running time.

We envision that our algorithm will be useful as a tool for the online computation of runs.
For example, it could lead to an online version of the runs algorithm presented in [17].

Remark. The design of the right Lyndon tree construction contrasts with the dual question
of left Lyndon tree construction (see [1] and references therein). The latter is done by a far
simpler algorithm than the algorithm in Section 4. But its use to build a right Lyndon tree,
as done in the Lyndon bracketing by Sawada and Ryskey [29] and in [19] by Franek et al.,
does not seem to lead to a linear right Lyndon tree construction.

Basic definitions
Let A be an alphabet with an ordering < and A+ be the set of non-empty words with
the lexicographical ordering induced by <. The length of a word y is denoted by |y|. The
empty word of length 0 is denoted by ϵ. The concatenation of two words u and v is denoted
by uv. The e times concatenation of a word u is written as ue (e.g. u3 = uuu). If for
non-empty words u, v, y it holds y = uv, then we say that uv (formally (u, v)) is a non-trivial
factorisation of y; the word vu is a non-trivial rotation (or conjugate) of y; the word u is a
proper non-empty prefix of y; and word v is a proper non-empty suffix of y. A word y is
primitive if it has |y| − 1 distinct non-trivial rotations, or equivalently if it cannot be written
as y = ue for some word u and integer e ≥ 2. If there are non-empty u and v such that
y = uv = vu, then y is non-primitive. A word u is strongly less than a word v, denoted by
u << v, if there are words r, s and t, and letters a and b satisfying u = ras, v = rbt and
a < b. The word u is smaller than a word v, denoted by u < v, if either u << v or u is a
proper prefix of v, i.e. v = ur for some non-empty word r. A Lyndon word is a non-empty
word defined as follows:

▶ Proposition 1 ([16, Proposition 1.2]). Both of the following equivalent conditions define a
Lyndon word y: (i) y < vu, for every non-trivial factorisation uv of y, (ii) y < v, for every
proper non-empty suffix v of y.

Note that the conditions in the definition trivially hold if |y| = 1, i.e. a single symbol is
always a Lyndon word. The main feature of Lyndon words stands in the theorem by Chen,
Fox and Lyndon (see [24]), which states that every word in A+ can be uniquely factorised
into Lyndon words.

▶ Theorem 2 (Lyndon factorisation). Any non-empty word y may be written uniquely as a
lexicographically weakly decreasing product of Lyndon words, i.e. y = x1x2 · · ·xm, where each
xk is a Lyndon word and x1 ≥ x2 ≥ · · · ≥ xm.

A fundamental property of the Lyndon factorisation is the fact that suffix xm of y is both
the longest and the lexicographically smallest Lyndon suffix of y.

CPM 2022
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2 Lyndon tree and Lyndon table construction

The structure of the Lyndon tree of a Lyndon word derives from the next property (see [24]).

▶ Property 3. Let y be a Lyndon word and y = uv, where v is the smallest or equivalently
the longest proper Lyndon suffix of y. Then u is a Lyndon word.

The (right) standard factorisation of a Lyndon word y of length n > 1 is the pair (u, v)
of Lyndon words, simply denoted by u · v, where u and v are as in Property 3.

The (right) Lyndon tree R(y) of a Lyndon word y represents recursively its complete
(right) standard factorisation. It is a binary tree with 2 |y| − 1 nodes: its leaves are positions
on the word and internal nodes correspond to concatenations of two consecutive Lyndon
factors of the word, which as such can be viewed as inter-positions. More precisely, R(y) = ⟨0⟩
if |y| = 1, and otherwise R(y) = ⟨R(u),R(v)⟩, where u · v is the standard factorisation of y.
The next algorithm gives a straightforward construction of a right Lyndon tree.

LyndonTree(y Lyndon word of length n)

1 F ← stack containing only the empty word ϵ

2 for i← n− 1 downto 0 do
3 (u,R(u), v)← (y[i], ⟨i⟩ ,F .peek())
4 while u < v do
5 R(uv)← ⟨R(u),R(v)⟩
6 (u, v)← (uv,F .pop-and-then-peek())
7 F .push(u)
8 return R(y)

Algorithm LyndonTree scans the word from right to left. Just after executing an
iteration of the for loop, the suffix y[i . . n−1] of y is decomposed into its Lyndon factorisation
z1 · z2 · · · zm. In this moment, the stack contains exactly the elements z1, z2, . . . , zm (z1 being
the topmost element), and variable u stands for the first factor z1 of the decomposition.

With an appropriate implementation of the tree, the algorithm runs in linear time if the
test u < v at line 4 is done in constant time. However, in the worst case, the algorithm
runs in quadratic time; this is when the test is performed by mere letter comparisons. For
example, if y = akcak+1b then each factor aℓc is compared with the prefix aℓ+1 of ak+1b).

Lyndon forest and Lyndon table
If x1x2 . . . xm is the Lyndon factorisation of the non-empty word y, then its (right) Lyndon
forest is defined by the list R(x1), R(x2), . . . , R(xm), i.e. the list of Lyndon trees of the
Lyndon factors (the Lyndon forest is a single tree if and only if y is a Lyndon word). One
could compute the Lyndon forest by simply first computing the Lyndon factorisation, and
then building the tree for each factor. A more elegant method computes the forest from the
Lyndon table (sometimes called Lyndon array) of the word. It is denoted by Lyn (l in [3], L
in [20] and λ in [19, 7]) and is defined, for each position i on y, by

Lyn[i] = max{|w| | w is a Lyndon prefix of y[i . . n− 1]}.

An example is provided in Figure 1 (we will explain the labeling of forest nodes and the table
root in a moment; for now, we focus on Lyn). The Lyndon factorisation of y deduces easily
from Lyn. Indeed, if i is the starting position of a factor of the decomposition, the next factor
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0 1 2 3 4 5 6 7 8 9 10 11 12
b a b b a b a b b a a b b

0 21 2 3 19 5 17 7 8 15 14 11 12

1 3 1 1 5 1 3 1 1 4 3 1 1

i

y[i]

root[i]

Lyn[i]

13
14

15

16
17

18

19

20
21

R(b) R(abb) R(ababb) R(aabb)

Figure 1 Lyndon forest and Lyndon table of the word y = babbababbaabb. It holds Lyn[4] = 5
because ababb is the longest Lyndon factor starting at position 4.

starts at position i + Lyn[i], which is the first position of the next smaller suffix of y[i . . n− 1]
(see Lemma 8). For the example above, we get positions 0, (1 = 0 + Lyn[0]), (4 = 1 + Lyn[1])
and (9 = 4− Lyn[4]), corresponding to the Lyndon factorisation b · abb · ababb · aabb of y.

Algorithm LyndonTable shown below computes Lyn using the same scheme as Al-
gorithm LyndonTree. It scans the input word from right to left and implicitly concatenates
two adjacent Lyndon factors u and v to form a Lyndon factor uv when u < v.

LyndonTable(y non-empty word of length n)

1 for i← n− 1 downto 0 do
2 (Lyn[i], j)← (1, i + 1)
3 while j < n and y[i . . j − 1] < y[j . . j + Lyn[j]− 1] do
4 (Lyn[i], j)← (Lyn[i] + Lyn[j], j + Lyn[j])
5 return Lyn

More details (including a proof of correctness) regarding this algorithm can be found in
[13, Problem 87]). The worst-case running time is O(|y|2) in the letter-comparison model.
Note, however, that the comparison of Lyndon words y[i . . j − 1] < y[j . . j + Lyn[j]− 1] in
line 3 can be replaced by a suffix comparison y[i . . n− 1] < y[j . . n− 1] (see [3, 15] and also
[13, Problem 87]). Then, if the suffixes of y are previously sorted and their ranks are stored
in a table, Algorithm LyndonTable runs in linear time. The precomputation takes linear
time if y is drawn from a linearly-sortable alphabet (see suffix arrays in [10, Chapter 4]).

Obtaining the Lyndon forest from the table. A possible data structure that implements the
Lyndon forest uses tables root, left and right. Implicitly, the leaves are positions 0, . . . , n− 1
on y. For each position i, root[i] is the root of the largest subtree whose leftmost leaf is i.
Thus, if xk is a factor of the Lyndon factorisation of y that start at position i, then root[i] is
the root of the Lyndon tree of xk. Internal nodes are integers larger than n− 1. The left
and right child of an internal node m are respectively left[m] and right[m]. An example of
this representation is provided in Figure 1.

As demonstrated by the example, Lyn[i] is exactly the size of the subtree that is rooted
in root[i]. This makes it easy to translate the Lyndon forest to the Lyndon table and vice
versa. Algorithm LyndonForest below shows the conversion from Lyndon table to forest.
Note that the time required by the algorithm, apart from the time needed to compute Lyn,
is linear in n. This is due to the fact that each iteration of the inner loop creates a new
internal node, and there are at most n− 1 such nodes.

CPM 2022
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LyndonForest(y non-empty word of length n)

1 Lyn ← LyndonTable(y)
2 m← n ▷ next available integer for a new internal node
3 for i← n− 1 downto 0 do
4 (root[i], j)← (i, i + 1)
5 while j < i + Lyn[i] do
6 (left[m], right[m])← (root[i], root[j])
7 (root[i], m)← (m, m + 1)
8 j ← j + Lyn[j]
9 return (root, left, right)

3 Average running time for building a Lyndon table

In this section, we prove that the average running time of Algorithm LyndonTable is linear,
for the uniform distribution on size-n words, on any alphabet. The result also applies to
Algorithm NaiveLyn of the next section and implies that the construction of a Lyndon
forest can also be done in average linear time. We assume the alphabet A = {a0, a1, . . . aσ−1}
of size σ ≥ 2, equipped with the order a0 < a1 < . . . < aσ−1. (Note that LyndonTable
takes worst-case linear time for σ = 1, because then it holds Lyn[i] = 1 for all i, which means
that the comparison in line 3 takes constant time).

For any positive n, let Pn be the uniform probability on An, where every word u has
probability Pn(u) = σ−n. Formally, we are considering a sequence of uniform distributions,
one for each size n; as we seek to obtain a result for every σ, we therefore have to consider
that σ = σn also depends on n (even if it can be the constant sequence and want a result for a
fixed alphabet). In the following, we just require that σn ≥ 2 for every n and write σ instead
of σn for readability. Observe that allowing an alphabet of unbounded size is a completely
different framework than in the series of articles [5, 9] dealing with the expected properties
of uniform random Lyndon words, where the alphabet has a fixed size. In particular, for
large σn, a uniform random word ressembles a uniform random permutation, whose typical
statistics are greatly different from the ones of a uniform random word on, say, four letters.

Let i, j be two integers with 0 ≤ i < j < n. The random variable Cij is defined as the
number of comparisons performed between y[i . . j − 1] and y[j . . j + Lyn[j]− 1] at line 3 of
Algorithm LyndonTable, for a random word y: if the algorithm does not compare these two
factors, then Cij = 0, otherwise it is the number of letter comparisons performed by the naive
algorithm that scans both words from left to right until it can decide. Since this is the only
step of Algorithm LyndonTable where letter comparisons are performed, the total number
of such comparisons performed by the algorithm is the random variable C =

∑
i<j Cij . We

also define Cj =
∑

i<j Cij . In this section, we are interested in estimating the expectation
En[C] of C for uniform random words of length n.

By linearity of the expectation, we have En[C] =
∑

j En[Cj ]. Our proof consists in
bounding from above the contribution of each En[Cj ], using En[Cj ] =

∑
i<j En[Cij ]. Let

us first consider the cases where the position j is near the end of the word, as it has to be
considered separately in our analysis and since it illustrates well the kind of techniques used
for the main part of the proof.

▶ Lemma 4. If j ≥ n− 3 log2 n then En[Cj ] = O(log2 n).
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Proof. We make the following observations: (i) the factors starting at indices i and j can
only be compared once by the algorithm, (ii) the factors compared at line 3 are always
Lyndon words, and (iii) the number of letter comparisons performed for given i and j, if any,
is at most 3 log2 n since j ≥ n− 3 log2 n. So for every word y, the number of comparisons
Cij(y) is bounded from above by Dij(y), where Dij(y) is 0 if y[i . . j − 1] is not Lyndon and
3 log2 n otherwise. Therefore En[Cij ] ≤ En[Dij ].

Let ℓ = j − i be the length of the factor y[i . . j − 1]. Since a non-primitive word cannot
be a Lyndon word, if L and P respectively denote the set of Lyndon words and of primitive
words, we have

Pn(y[i . . j − 1] ∈ L) = Pℓ(L) = Pℓ(L ∩ P) = Pℓ(L | P)Pℓ(P) ≤ Pℓ(L | P).

But Pℓ(L | P) = 1
ℓ as all rotations of a primitive word are equally likely, and only one of

them is a Lyndon word. Hence y[i . . j − 1] ∈ L with probability at most 1
ℓ . This yields that

En[Cij ] ≤ En[Dij ] ≤ 3 log2 n
ℓ , and if we sum the contributions of all possible i, we have the

announced result as En[Cj ] ≤
∑j−1

i=0
3 log2 n

j−i ≤ 3 log2 n · (log j + 1) = O(log2 n). ◀

So when we sum the contributions of the En[Cj ] for j ≥ n− 3 log2 n, the expected total
number of comparisons is O(log3 n), hence sublinear. Thus we can focus on estimating
En[Cj ] for j sufficiently far away from the end of the word. We need the following lemma. The proof is given

in Appendix A.1
▶ Lemma 5. Let Λ be an ordered alphabet with |Λ| ≥ 2 letters, # /∈ Λ be a new letter that is
greater than every letter of Λ, and y be a word selected from Λt uniformly at random. Then
there exists a constant c ≥ 1 such that the probability that y# is a Lyndon word is at most c

t .

Our main technical result is stated in the following proposition.

▶ Proposition 6. There exists a constant γ such that En[Cj ] ≤ γ, for all j < n− 3 log2 n.

Proof. Recall that if E ⊆ An, the indicator function of E is the random variable 1E that
values 1 for elements of E and 0 otherwise. The first step of the proof is to look at the
factor of a random word whose positions range from j to j + ⌊3 log2 n⌋ − 1. Let A ⊆ An

denote the set of words y such that y[j . . j + ⌊3 log2 n⌋ − 1] = a
⌊3 log2 n⌋
0 , i.e. it consists of

the repetition of the smallest letter. Let A denote the complement of A in An. We have
Cj = 1A · Cj + 1A · Cj , hence En[Cj ] = En[1A · Cj ] + En[1A · Cj ].

Since for all word y ∈ An we have Cj(y) ≤ C(y) ≤ n2, it holds that 1A(y) · Cj(y) ≤
1A(y) n2 and therefore En[1A · Cj ] ≤ n2 En[1A] = n2 Pn(A) = n2

σ⌊3 log2 n⌋ . As σ ≥ 2, this
yields that En[1A · Cj ] ≤ 2

n .
We now focus on A. Let B(n)

k,s denote the set of words y in An such that there exist a
positive integer k ≤ ⌊3 log2 n⌋ and a letter as ̸= a0 such that ak−1

0 as is a prefix of the suffix
of y that starts at position j. Any word of A has a factor of the form ak−1

0 as starting at
position j, so we have the following partition:

A =
⌊3 log2 n⌋⊔

k=1

σ−1⊔
s=1
B(n)

k,s ,

and therefore En[1ACj ] =
∑⌊3 log2 n⌋

k=1
∑σ−1

s=1 En[1B(n)
k,s

Cj ].

Fix k and s. We want to bound from above the contribution of B(n)
k,s to En[Cj ] by summing

the En[1B(n)
k,s

Cij ] for i < j.
For a given index i < j − k (the cases j − k ≤ i < j will be studied separately), when the

algorithm works on an input y ∈ B(n)
k,s , if it compares y[i . . j − 1] and y[j . . j + Lyn[j]− 1]

then necessarily:

CPM 2022
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(i) The factor y[i . . j − 1] is a Lyndon word.
(ii) There is no occurrence of ak−1

0 at with t < s in y[i + 1 . . j − 1], otherwise the Lyndon
factor starting at position j would have already merged, before reaching index i.

In our proof, we ask for weaker conditions, which is not an issue as we are looking for an
upper bound for En[Cj ]. For this, we split the factor y[i . . j − 1] of length ℓ = j − i into
λ = ⌊ℓ/k⌋ blocks y0, . . . , yλ−1 of k letters, and one remaining block z of length ℓ mod k if ℓ

is not a multiple of k:

∀m ∈ {0, . . . , λ−1} : ym = y[i+mk . . i+m(k +1)−1], so that y[i . . j−1] = y0 · · · yλ−1 ·z.

The number λ of blocks is at least 1, as we only consider the indices i smaller than j − k for
now. Observe that, as y is a uniform random word, the ym’s are uniform and independent
random words of length k. Condition (ii) implies that none of the ym is smaller than ak−1

0 as

for m ≥ 1. We distinguish two cases, depending on whether y0 is smaller than ak−1
0 as or not,

and define, for i < j − k, the following sets

B<
k,s,i = {x ∈ B(n)

k,s | y0 < ak−1
0 as and ∀m ∈ {1, . . . , λ− 1}, ym ≥ ak−1

0 as},

B≥
k,s,i = {x ∈ B(n)

k,s | ∀m ∈ {0, . . . , λ− 1}, ym ≥ ak−1
0 as and y[i . . j − 1] ∈ L}.

As a consequence of Condition (i) and Condition (ii), if y ∈ B(n)
k,s and Cij(y) ̸= 0 (the

algorithm compares the factors at positions i and j), then necessarily y ∈ B<
k,s,i or y ∈ B≥

k,s,i.
Therefore Pn(Cij ̸= 0 and B(n)

k,s ) ≤ Pn(B<
k,s,i) + Pn(B≥

k,s,i).

The probability of B<
k,s,i is Pn(B<

k,s,i) = 1
σk

s
σk

(
σk−s

σk

)λ−1
, as the probability to be in B(n)

k,s

is σ−k and as there are s words of length k smaller than ak−1
0 as.

To compute the probability of B≥
k,s,i observe the ym’s are uniform independent elements

of Λk,s = {w ∈ Ak : w ≥ ak−1
0 as} and z is an independent and uniform word of length

ℓ mod k on A. Moreover, if y[i . . i + j − 1] is a Lyndon word, then ymym+1 · · · yλ−1z is
greater than y[i . . i + j − 1] for every 1 ≤ m < λ. Now consider y0 · · · yλ−1 as a size-λ
word on the alphabet Λk,s; the latter property implies that y0 . . . yλ−1# is smaller than
ymym+1 · · · yλ−1#, where # is a new letter greater than all the letters of Λk,s. This
weakens the condition that y[i . . j − 1] is a Lyndon word, but still provides a useful upper
bound: by Lemma 5 a proportion of at most c

λ of the possibilities satisfy the property
(in fact we cannot apply Lemma 5 if k = 1 and s = σ − 1, but the inequality trivially
holds as Condition (i) forces i = j − 1 and c ≥ 1). Putting all together, the probability of

B≥
k,s,i is bounded from above by 1

σk

(
σk−s

σk

)λ
c
λ .

So we established that, for i < j − k, Pn(Cij ̸= 0 and B(n)
k,s ) ≤ q(k, s, λ) where

q(k, s, λ) = s

σ2k

(
σk − s

σk

)λ−1

+ c

λσk

(
σk − s

σk

)λ

. (1)

Observe that we only used conditions on the letters of indices smaller than j + k to estimate
the probability Pn(Cij ̸= 0 and B(n)

k,s ). Hence, conditioned by Cij ̸= 0 and B(n)
k,s , the suffix

y[j + k . . n − 1] of y is a uniform random word of An−j−k. For any z ∈ Aj+k, consider a
random word y ∈ An that admits z as a prefix, which is the same as saying that y = zz′ where
z′ is a uniform random word of length n− j − k. The number of comparisons Cij performed
by the algorithm between y[i . . j − 1] and y[j . . j + Lyn[j]− 1] can be bounded from above
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by k + 1 + Di+k,j+k(y), where Di+k,j+k is the length of the longest common prefix between
y[i + k . . n− 1] and y[j + k . . n− 1]: we get the upper bound by considering that the k first
comparisons are successful and by discarding the conditions on the lengths of the factors. If
we fix z, the law of 1 + Di+k,j+k is a truncated geometric law of parameter 1− 1

σ (we count
the number of Bernoulli trials of parameter 1− 1

σ until we get a success, i.e. a mismatch, or
reach the end of the word). This can be in turn bounded from above by a geometric law of
parameter 1− 1

σ . Hence 1 + Di+k,j+k ≤ Geom(1− 1
σ ), so E[1 + Di+k,j+k] ≤ σ

σ−1 ≤ 2. Let
prefm be the random variable that associates to a word its prefix of length m. For i < j − k,
this yields

En[1B(n)
k,s

· Cij ] ≤
∑

z∈B(j+k)
k,s

En[1prefj+k=z · Cij ] ≤
∑

z∈B(j+k)
k,s

Cij(z)̸=0

k + 2
σj+k

= (k + 2) · Pn(Cij ̸= 0 and B(n)
k,s ) ≤ (k + 2) · q(k, s, λ).

Now we have to sum the contributions for all i < j−k, all 1 ≤ s < σ−1 and all k ≤ ⌊3 log2 n⌋.
After tedious but elementary computations of sums, we obtain that there exists some positive
constant γ1 such that The details are

given in
Appendix A.2⌊3 log2 n⌋∑

k=1

σ−1∑
s=1

j−k−1∑
i=0

En[1B(n)
k,s

· Cij ] ≤ γ1. (2)

We still have to estimate the contribution of the indices i such that j − k ≤ i < j. For
this, we just use Condition (i): y[i . . j − 1] must be a Lyndon word for Cij to be positive,
which happens with probability at most 1

ℓ . The comparisons performed by the algorithm are
evaluated as previously, by bounding them by an independent geometric law of parameter
1− 1

σ plus k, yielding, as the probability that y[j . . j + k − 1] = ak−1
0 as is σ−k:

En[1B(n)
k,s

· Cij ] ≤ k + 2
ℓσk

.

Using the same kind of elementary techniques as for Eq. (2), we get that there exists a
constant γ2 such that The details are

given in
Appendix A.3⌊3 log2 n⌋∑

k=1

σ−1∑
s=1

j−1∑
i=j−k

En[1B(n)
k,s

· Cij ] ≤ γ2. (3)

As a consequence, for all j ≤ n−3 log2 n we have En[Cj ] ≤ γ1 +γ2, concluding the proof. ◀

Eventually we can state the main result of this section whose proof directly follows from
Proposition 6 and Lemma 4, by summing for all j.

▶ Theorem 7. For any n ≥ 1 let An be an alphabet having σn ≥ 2 letters. For the uniform
distribution on words of length n over An, the expected number of comparisons performed by
Algorithm LyndonTable (and by its variant NaiveLyn below) is linear.

4 Linear computation of the Lyndon table

To describe the algorithm that computes the Lyndon table Lyn in linear time, we proceed
in four steps. First, we consider the next smaller suffix table, which contains the same
information as the table Lyn, and its dual version, the previous smaller suffix table. They
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form an important element in the left-to-right solution introduced by Bille et al. [7]. Second,
we adapt another component of the left-to-right solution, namely skipping some letter
comparisons when lexicographically comparing suffixes. We achieve this by efficiently
computing the longest common extension (LCE) of the relevant suffixes, which is the length
of their longest common prefix (see e.g. [10, Chapter 4]). In the third step, we show how
to compute the LCEs even faster by reusing previously computed values. The fourth step
completes the algorithm with small adjustments that lead to an overall linear running time.

4.1 Next and previous smaller suffix tables
From now on, we prepend and append an infinitely small sentinel symbol y[−1] = y[n] = $
to the input word y[0 . . n− 1]. This simplifies the description of algorithms, e.g. by ensuring
that for any two positions it holds y[i . . n] < y[j . . n] ⇐⇒ y[i . . n] << y[j . . n]. Note that
this does not affect the lexicographical order of suffixes (i.e. y[i . . n− 1] < y[j . . n− 1] ⇐⇒
y[i . . n] < y[j . . n]). As mentioned earlier, our algorithm uses the previous and next smaller
suffix tables pss and nss, which are closely related to the Lyndon table. For each position i,
where 0 ≤ i < n, these tables store the (starting) positions of the closest lexicographically
smaller suffixes, formally defined by

pss[i] = max{j | j < i and y[j . . n] < y[i . . n]}, and
nss[i] = min{j | j > i and y[j . . n] < y[i . . n]}.

The tables Lyn and nss are equivalent; indeed, the longest Lyndon prefix of y[i . . n− 1]
is exactly y[i . . nss[i]− 1]. Additionally, y[pss[i] . . i− 1] is a Lyndon word.

▶ Lemma 8 ([19, Lemma 15]). For any position i of a word y, it holds Lyn[i] = nss[i]− i.

▶ Corollary 9 ([7, Lemma 4] and Lemma 8 above). For any position i of a word y, both
y[pss[i] . . i− 1] and y[i . . nss[i]− 1] are Lyndon words.

An important property of nearest smaller suffixes is that they do not intersect. If we
draw directed edges underneath the word such that for each position i there are two outgoing
edges, one to position pss[i] and one to position nss[i], then the resulting drawing is a planar
embedding. Formally, this is expressed by the following lemma.

▶ Lemma 10. If i < j < nss[i], then pss[j] ≥ i and nss[j] ≤ nss[i].

Proof. Because of i < j < nss[i], and by the definition of nss, it holds y[nss[i] . . n] <

y[i . . n] < y[j . . n]. This implies pss[j] ≥ i and nss[j] ≤ nss[i]. ◀

In the remainder of the section, we show how to simultaneously compute the tables pss
and nss in right-to-left order. The core of our solution is a simple folklore algorithm for
the linear time computation of next and previous smaller values, where we substitute value
comparisons for lexicographical suffix comparisons. The process is similar to the linear-time
construction of the Cartesian tree [30] or the LRM-tree [4].

NaiveLyn(y non-empty word y[0 . . n− 1] with sentinels y[−1] = y[n] = $)

1 for i← n− 1 downto 0 do
2 j ← i + 1
3 while y[i . . n] < y[j . . n] do
4 (pss[j], j)← (i, nss[j]) ▷ j ← j + Lyn[j]
5 (nss[i], pss[i])← (j,−1) ▷ Lyn[i]← j − i

6 return (pss, nss)
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j
↓
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nss[j]
↓

x
s z s z

|s||r|

|s|

(a) If |r| > |s| then lce(i, nss[j]) = |s| and
y[nss[j] . . n] < y[i . . n], and thus nss[i] = nss[j].

y = r

i
↓

x r

j
↓

z r

nss[j]
↓

z
s s

|s||r|
|r|

(b) If |r| < |s| then lce(i, nss[j]) = |r| and
y[nss[j] . . n] > y[i . . n], and thus pss[nss[j]] = i.

Figure 2 Skipping symbols comparisons when y[i . . n] < y[j . . n]. (Best viewed in colour.)

The algorithm merely adapts Algorithm LyndonTable to the computation of nss, up
to the use of sentinels, and adds the computation of pss. In fact, if we omit the assignment
of pss entries and apply Lemma 8 (i.e. if we replace lines 4–5 with their comments), then
we essentially obtain Algorithm LongestLyndon described in [15, Algorithm 5] and in
[13, Problem 87]. As shown in [15], the algorithm correctly computes the table Lyn (or
respectively nss), and performs no more than 2n− 2 lexicographical suffix comparisons in
line 3. Note that the loop in line 3 maintains the invariant that all suffixes y[k . . n] with
i < k < j are lexicographically larger than both y[i . . n] and y[j . . n]. This means that the
computation of pss is correct.

If we could lexicographically compare suffixes in constant time, then NaiveLyn would
take O(n) time (as already mentioned in Section 2 for Algorithm LyndonTable). However,
for each suffix comparison, we first have to determine the length lce(i, j) = min{ℓ | ℓ ≥
0 and y[i + ℓ] ̸= y[j + ℓ]} of the longest common prefix of two suffixes. By the definition of
the lexicographical order, y[i . . n] < y[j . . n] is equivalent to y[i + lce(i, j)] < y[j + lce(i, j)].
If we compute lce(i, j) by naive scanning, then a single suffix comparison might require
Ω(n) individual symbol comparisons, and for some inputs the algorithm will take Ω(n2) time
(e.g. for the pathological word y = an).

4.2 Skipping symbol comparisons
Now we will accelerate the algorithm by exploiting previously computed LCEs. First, we
show how to save comparisons for a single fixed value of i, i.e. for a single iteration of the
outer loop of NaiveLyn. During that iteration, we may have to compute the LCE between i

and multiple different values of j. Assume that we have just computed lce(i, j) = |r| (with
y[j . . n] = ru for some u ∈ A∗), and we discovered that y[i . . n] < y[j . . n]. Then during the
next iteration of the inner loop we have to evaluate whether y[i . . n] < y[nss[j] . . n], thus
we have to compute lce(i, nss[j]). Since we previously computed nss[j], we must have also
computed the value lce(j, nss[j]) = |s| (with y[j . . n] = sv for some v ∈ A∗). We observe
that exactly one of the following cases holds.

It holds |r| > |s| (as depicted in Figure 2a), such that r = szw for some z ∈ A and w ∈ A∗.
Let x = y[nss[j] + |s|], then from y[j . . n] > y[nss[j] . . n] follows x < z and thus sx << sz.
Since y[i . . n] has prefix r = szw, we have lce(i, nss[j]) = |s| and y[nss[j] . . n] < y[i . . n].
Note that this implies nss[i] = nss[j], such that this is the last iteration of the inner loop.
It holds |r| < |s| (as depicted in Figure 2b), such that s = rzw for some z ∈ A and w ∈ A∗.
Let x = y[i + |r|], then from y[j . . n] < y[i . . n] follows x < z and thus rx << rz. Since
y[nss[j] . . n] has prefix s = rzw, we have lce(i, nss[j]) = |r| and y[nss[j] . . n] > y[i . . n].
Note that this implies pss[nss[j]] = i.
It holds r = s and thus lce(i, nss[j]) ≥ |s|.
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The algorithm LceLyn shown below is a modification of NaiveLyn and exploits the new
insights. It uses two auxiliary arrays plce and nlce, in which we store plce[i] = lce(pss[i], i) and
nlce[i] = lce(i, nss[i]) (we update the values whenever we assign nss[i] and pss[i] respectively).
In iteration i of the outer loop, we compute the first LCE value ℓ = lce(i, j) with j = i + 1
in constant time by exploiting the fact that for any index j it holds either nss[j] = j + 1 or
pss[j + 1] = j. Thus, if y[i . . n] starts with a run of a single symbol, then we have previously
computed the length of this run, and we can simply assign lce(i, j) ← 1 + lce(j, j + 1)
(lines 3–5). Whenever we reach the head of the inner loop, we have already computed the
value ℓ = lce(i, j). Thus, we can determine the lexicographical order of y[i . . n] and y[j . . n]
by comparing their first mismatching symbol (line 6). If y[i . . n] < y[j . . n], then we enter the
inner loop and assign pss[j]← i and plce[j]← ℓ. For the next iteration of the inner loop, we
have to compute lce(i, nss[j]). Here we exploit our previous observations. If ℓ > nlce[j] (i.e.
|r| > |s| in terms of Figure 2a), then it holds lce(i, nss[j]) = nlce[j] and we continue with
the next (and final) iteration of the inner loop with ℓ← nlce[j] and j ← nss[j] (lines 8–10).
If ℓ < nlce[j] (i.e. |r| < |s| in terms of Figure 2b), then it already holds ℓ = lce(i, nss[j])
and we continue with the next iteration of the inner loop with j ← nss[j] (lines 11–12).
Only if ℓ = nlce[j] we may need additional steps to compute lce(i, nss[j]). However, in this
case lce(i, nss[j]) ≥ ℓ, and we can skip the first ℓ symbol comparisons when computing
lce(i, nss[j]). We compute the remaining part of the LCE by naive scanning, thus taking
additional lce(i, nss[j])− ℓ + 1 symbol comparisons (lines 13–15).

LceLyn(y non-empty word y[0 . . n− 1] with sentinels y[−1] = y[n] = $)

1 for i← n− 1 downto 0 do
2 j ← i + 1
3 if y[i] ̸= y[j] then ℓ← 0
4 elseif nss[j] = j + 1 then ℓ← 1 + nlce[j]
5 elseif pss[j + 1] = j then ℓ← 1 + plce[j + 1]
6 while y[i + ℓ] < y[j + ℓ] do
7 (pss[j], plce[j])← (i, ℓ)
8 if ℓ > nlce[j] then
9 ℓ← nlce[j]

10 j ← nss[j]
11 elseif ℓ < nlce[j] then
12 j ← nss[j]
13 elseif ℓ = nlce[j] then
14 j ← nss[j]
15 ℓ← ℓ + scan-lce(i + ℓ, j + ℓ) ▷ ℓ← extend(i, j, ℓ)
16 (nss[i], nlce[i], pss[i])← (j, ℓ,−1)
17 return (pss, nss)

Apart from the time needed for executing line 15, algorithm LceLyn takes O(n) time.

4.3 Extending common prefixes with already computed LCEs

In this section, we accelerate the instruction at line 15 by replacing the naive computation of
ℓ + scan-lce(i + ℓ, j + ℓ) with a more sophisticated extension technique extend(i, j, ℓ), for
which we once more exploit previously computed LCEs. The technique requires ℓ > 0. If
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A

A

r

i
↓

s

qi

↓

r

j
↓

s

qj

↓

s

p′
i

↓

s

p′
j

↓
pi

↓
pj

↓

(c) |s| = min(lce(p′
i, qi), lce(p′

j , qj)).

A

A

u

max-left[j]
↓

u

j

↓

v

max-left
[skip-lce[j]]

↓

v

skip-lce[j]
↓

|u| =
max-lce[j] |v| =

max-lce[skip-lce[j]]

(d) Relation between skip-lce and max-lce.

Figure 3 Extending common prefixes between y[i . . n] and y[j . . n] using a known lower bound
ℓ = |r| ≤ lce(i, j) (a-c), and visualization of skip-lce (d). (Best viewed in colour.)

ℓ = 0, then we simply perform one additional symbol comparison to test y[i] = y[j], which
either establishes ℓ = 1, or terminates the LCE computation in constant time.

Assume that we just reached line 15, i.e. we have to compute lce(i, j), and we have
already established lce(i, j) ≥ ℓ. If y[qi] ̸= y[qj ] with qi = i + ℓ and qj = j + ℓ, then
lce(i, j) = ℓ, i.e. no further computation is necessary. Otherwise, let pj ∈ {j, . . ., qj − 1}
be some index with either nss[pj ] = qj or pss[qj ] = pj . Such index always exists because it
trivially holds either nss[qj − 1] = qj or pss[qj ] = qj − 1; we will explain how to choose pj

later. Let pi = pj − (j − i). We compute lce(i, j) with exactly one of three methods.

1. If pi = i and qi = j, then pi = pj − (j − i) implies pj = pi + j − i = j = qi (as depicted
in Figure 3a). From lce(i, j) ≥ ℓ follows lce(i, j) = ℓ + lce(i + ℓ, j + ℓ). Note that
lce(i+ℓ, j+ℓ) = lce(qi, qj) = lce(pj , qj). Since we chose pj such that either nss[pj ] = qj

or pss[qj ] = pj , we have already computed lce(pj , qj) and stored it either in nlce[pj ] or
in plce[qj ]. Thus we can compute lce(i, j) = ℓ + lce(pj , qj) in constant time.

2. If the first case does not apply, then we check whether either nss[pi] = qi or pss[qi] = pi.
If one of the two holds (as depicted in Figure 3b), then we have already computed
ℓi = lce(pi, qi) and stored it in nlce[pi] or in plce[qi]. Analogously, we have already
computed ℓj = lce(pj , qj) and stored it in nlce[pj ] or in plce[qj ].

a. If ℓi = ℓj , we have established that lce(i, j) ≥ ℓ + max(1, ℓj). In this case, we say
that we use lce(pj , qj) to extend lce(i, j). If ℓj is large, then we saved many symbol
comparisons. We continue by recursively repeating the extension technique with
ℓ← ℓ + max(1, ℓj). (We can always increase ℓ by at least 1 because we only reach this
point if we initially ensured y[qi] = y[qj ].)

b. If ℓi ̸= ℓj , then lce(i, j) = ℓ + min(ℓi, ℓj), and no further computation is necessary.

3. If none of the other two cases applies, then let p′
i = pss[qi] and p′

j = p′
i + (j− i). This case

is similar to case 2, but this time we use ℓi = lce(p′
i, qi) and ℓj = lce(p′

j , qj) (as depicted
in Figure 3c). First, let us show that we have actually already computed these LCEs. Note
that pss[qj ] = pj or nss[pj ] = qj and Corollary 9 imply that y[pj . . qj − 1] = y[pi . . qi − 1]
is a Lyndon word. Therefore, Lemma 8 implies nss[pi] ≥ qi. We cannot have nss[pi] = qi

because then we would have used case 2 instead of case 3. Thus nss[pi] > qi, and due
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to Lemma 10 it holds p′
i = pss[qi] ≥ pi. Again, we cannot have p′

i = pi because then we
would have used case 2 instead of case 3, i.e. it holds p′

i > pi and consequently p′
j > pj .

Finally, from p′
i = pss[qi] and Corollary 9 follows that y[p′

i . . qi − 1] = y[p′
j . . qj − 1] is a

Lyndon word, such that Lemma 8 implies nss[p′
j ] ≥ qj . Since pj < p′

j < qj and Lemma 10
imply nss[p′

j ] ≤ qj , we must have nss[p′
j ] = qj . Therefore, we have already computed

ℓi = lce(p′
i, qi) = plce[qi] and ℓj = lce(p′

j , qj) = nlce[p′
j ], which means that we can

compute lce(i, j) = ℓ + min(ℓi, ℓj) in constant time.
Note that even if ℓi = ℓj , it cannot be that lce(i, j) > ℓ + ℓj . Since ℓi is associated
with a previous smaller value and ℓj is associated with a next smaller value, it holds
y[qi + ℓj ] > y[p′

i + ℓj ] = y[p′
j + ℓj ] > y[qj + ℓj ].

In cases 1, 2b and 3, we take constant time to finish the computation of lce(i, j). Since we
compute less than 2n LCEs, the total time spent for these cases is O(n). In case 2a, we take
constant time to increase the known lower bound of lce(i, j) by lce(pj , qj) (however, when
computing lce(i, j) we may run into this case repeatedly). Thus we should choose pj such
that we maximize lce(pj , qj). For this purpose, we maintain two auxiliary arrays max-left
and max-lce (initialized with −1). Whenever we compute an LCE value lce(i, j) (where
by design of the algorithm it always holds i < j), we check whether lce(i, j) > max-lce[j].
If this condition holds, then we assign max-left[j] ← i and max-lce[j] ← lce(i, j). For
the extension technique, we always choose pj = max-left[qj ]. However, we may use each
LCE value lce(pj , qj) to extend multiple other LCEs, which may result in super linear
computation time. We show how to avoid this in the following section.

4.4 Linear time extension of common prefixes
In this section, we ensure that we use each lce(pj , qj) to extend at most one LCE. This
imposes a linear upper bound on the number of recursive calls to extend, because each
recursive call is preceded by an extension. For this, we need the following dynamic array.

▶ Definition 11. skip-lce[j] = min{k | k > j and (k + max-lce[k]) > (j + max-lce[j])}.

A schematic drawing of skip-lce is provided in Figure 3d. We maintain these values in
linear time using simple techniques. Whenever we have to update some value max-lce[j], due
to lce(i, j) for some i, we inherently discover the new value of skip-lce[j]1. We may have
to additionally assign skip-lce[x] ← j for some values x ∈ {i + 1, . . . , j − 1}, but the total
number of such updates is linear2. The technical details can be found in our well-documented
implementation. Using skip-lce, the only two changes needed to achieve linear time are:

In line 15 of LceLyn, we call extend(i, j, 0) if and only if ℓ = 0, and otherwise we call
extend(i, j, skip-lce[j]− j). We can replace ℓ with skip-lce[j]− j because in this moment
it holds skip-lce[j]− j ≤ max-lce[j] = ℓ. The special handling of ℓ = 0 ensures that we
compare the symbols y[i] and y[j].
In case 2a of the extension technique, we replace ℓ← ℓ + max(1, ℓj) with ℓ ← ℓ +
skip-lce[qj ]−qj . This is possible due to skip-lce[qj ]−qj ≤ max(1, max-lce[qj ]) = max(1, ℓj).

It may seem counter-intuitive that this improves the execution time, since we no longer
extend by ℓj = max-lce[qj ] but by the possibly shorter length skip-lce[qj ]− qj . However, this

1 see https://github.com/jonas-ellert/right-lyndon/blob/main/right-lyndon-extension-linear.
hpp, lines 88–135 (to be replaced by software heritage permanent link in published version)

2 see same link as above, lines 52–71

https://github.com/jonas-ellert/right-lyndon/blob/main/right-lyndon-extension-linear.hpp
https://github.com/jonas-ellert/right-lyndon/blob/main/right-lyndon-extension-linear.hpp
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Figure 4 Supplementary drawing for the proof of Lemma 14. (Best viewed in colour.)

guarantees that we use each LCE in at most one extension step. A crucial observation for
showing this is that qj only assumes values that can be obtained by repeatedly applying skip-lce
to j. For any j, we define the repeated application of the skip function as skip-lce1[j] =
skip-lce[j] and for integer e > 1 as skip-lcee[j] = skip-lcee−1[skip-lce[j]]. We then write
qj = skip-lce∗[j] if and only if ∃e : qj = skip-lcee[j]. The following observation is a direct
consequence of Definition 11 and extends to the helpful intermediate Lemma 13.

▶ Observation 12. If qj = skip-lce[j], then for every k with j ≤ k < qj it holds k +
max-lce[k] < qj + max-lce[qj ].

▶ Lemma 13. If qj = skip-lce∗[j], then for every k with j ≤ k < qj it holds k + max-lce[k] <

qj + max-lce[qj ].

▶ Lemma 14. When running LceLyn with the modified extension technique using skip-lce,
if we use lce(pj , qj) for an extension, then we will never use it for an extension again.

Proof. For the sake of contradiction, assume that we use lce(pj , qj) more than once: first to
compute lce(i′, j′), and then again to compute lce(i, j) for some i, j with i ̸= i′ or j ̸= j′.
We have two cases to consider according to the position of j with respect to j′:

Case j < j′: Since we use lce(pj , qj) to extend lce(i, j), it holds qj = skip-lce∗[j].
However, Lemma 13 implies that j′ +max-lce[j′] < qj +max-lce[qj ] (note that max-lce[qj ] has
not changed). This contradicts the assumption that we used lce(pj , qj) to extend lce(i′, j′).

Case j ≥ j′: This case is accompanied by a schematic drawing in Figure 4. If we are
comparing i and j then either nss[i] = j or pss[j] = i, which implies y[k . . n] > y[j . . n]
for all k with i < k < j. Let y[k′ . . n] be the lexicographically smallest suffix amongst the
suffixes starting between positions i and j, then it holds nss[k′] = j. Thus, at the time we
compute lce(i, j), we have computed lce(k′, j) already, and it holds max-lce[j] ≥ lce(k′, j).
Let j′′ = i′ + j − j′, then due to our choice of k′ it holds y[j′′ . . n] ≥ y[k′ . . n] > y[j . . n]
and thus lce(j′′, j) ≤ lce(k′, j). Therefore, we have j + max-lce[j] ≥ j + lce(k′, j) ≥
j + lce(j′′, j) = j′ + lce(i′, j′) ≥ qj + lce(pj , qj). However, according to Lemma 13,
j + max-lce[j] ≥ qj + lce(pj , qj) contradicts qj = skip-lce∗[j], which means that we do not
use lce(pj , qj) to extend lce(i, j). ◀

We now state the main results, which are direct consequences of Lemma 14 and Lemma 8.

▶ Theorem 15. Algorithm LceLyn using the modified extension technique computes the
previous and next smaller suffix tables of a word over a general ordered alphabet. It does so
in a back-to-front online manner, and in linear time with respect to the length of the word.

▶ Corollary 16. Theorem 15 also holds when computing the Lyndon table and forest.

Proof. For the Lyndon table we output Lyn alongside nss, using Lemma 8. For the Lyndon
forest, we additionally interleave the computation with Algorithm LyndonForest. ◀

CPM 2022
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A Appendix
The following inequalities (obtained by comparing sums and integrals) will be needed.

▶ Lemma 17. Let Hn =
∑n

i=1
1
i

and Ln =
∑n

i=1 log i. For all n ≥ 1, Hn ≤ log n + 1 and
Ln ≥ n log n− n.

Proof. The mapping x 7→ log x is increasing, so for any i ≥ 1 and any x ∈ [i, i + 1], we have
log x ≤ log(i + 1). We integrate on the length-1 interval [i, i + 1] to get

∫ i+1
i

log x dx ≤ log(i + 1).
Summing for i ranging from 1 to n− 1 gives∫ n

1
log x dx ≤

n∑
i=2

log i = Ln,

which concludes the proof since
∫ n

1 log x dx = n log n − n + 1. The proof is similar for Hn by
considering the decreasing map x 7→ 1

x
. ◀

A.1 Proof of Lemma 5
Proof. Any Lyndon word w of length at least 2 can uniquely be written [16] as w = u+vb where u is
a Lyndon word, va is a prefix of u, and a and b are letters such that a < b. Thus, if y# is a Lyndon
word, then y can be uniquely written y = ux where x is the longest border of y (or the empty word
if y is a Lyndon word). As y is entirely defined by its associated u and its length t, this yields a
bijection between the words y such that y# ∈ L and the union of the Lyndon words of length i, for
i ranging from 1 to t. Let κ = |Λ|. As we already established that

∣∣L ∩ Λi
∣∣ ≤ κi

i
, we have

Pt(y# ∈ L) ≤ 1
κt

t∑
i=1

κi

i
=

t−1∑
i=0

κ−i

t− i
= 1

t

t−1∑
i=0

κ−i

1− i/t
.

Observe that for any x ∈ [0, t−1
t

], we have 1
1−x
≤ 1 + tx, and therefore

1
t

t−1∑
i=0

κ−i

1− i/t
≤ 1

t

t−1∑
i=0

(1 + i)κ−i ≤ c

t
,

if we set c =
∑∞

i=0(1 + i)κ−i. This concludes the proof. ◀

A.2 Proof of Equation (2)
Recall that λ = ⌊ j−i

k
⌋, so that there are k values of i for each λ. Hence

j−k−1∑
i=0

(k + 2) q
(

k, s,
⌊

j − i

k

⌋)
≤ k(k + 2)

⌈j/k⌉∑
λ=1

q (k, s, λ) .

We consider separately the two terms coming from Eq. (1):

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

k(k + 2)
⌈j/k⌉∑
λ=1

s

σ2k

(
σk − s

σk

)λ−1

≤
∞∑

k=1

σ−1∑
s=1

k(k + 2)s
σ2k

∞∑
λ=1

(
1− s

σk

)λ−1

=
∞∑

k=1

σ−1∑
s=1

k(k + 2)s
σ2k

1
1− (1− s/σk)

=
∞∑

k=1

σ−1∑
s=1

k(k + 2)
σk

≤
∞∑

k=1

k(k + 2)
2k−1 =: ∇2.
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For the second part of Eq. (1), we have:

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

k(k + 2)
⌊j/k⌋∑
λ=1

c

λσk

(
σk − s

σk

)λ

≤
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

∞∑
λ=1

1
λ

(
1− s

σk

)λ

=
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

log
(

1
1− (1− s/σk)

)

≤
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
.

We have
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
=

σ−1∑
s=1

3c

σ
log

(
σ

s

)
+

∞∑
k=2

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
.

We use Lemma 17 for the first sum:
σ−1∑
s=1

log
(

σ

s

)
= (σ − 1) log σ −

σ−1∑
s=1

log s ≤ (σ − 1) log σ − (σ − 1) log(σ − 1) + σ − 1

= (σ − 1)
(

log
(

σ

σ − 1

)
+ 1

)
≤ (1 + log 2)σ.

Thus
σ−1∑
s=1

3c

σ
log

(
σ

s

)
≤ 3c(1 + log 2) =: ∇2.

Finally

∞∑
k=2

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
≤

∞∑
k=2

σ−1∑
s=1

ck2(k + 2) log σ

σk

≤ log σ

σ

∞∑
k=2

ck2(k + 2)
σk−2 ≤

∞∑
k=2

ck2(k + 2)
2k−2 =: ∇3.

This concludes the proof by setting γ1 = ∇1 +∇2 +∇3.

A.3 Proof of Equation (3)
Using Lemma 17 we have

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

k−1∑
ℓ=1

k + 2
ℓσk

≤ σ − 1
σ

⌊3 log2 n⌋∑
k=1

(k + 2)(log k + 1)
σk−1

≤
∞∑

k=0

(k + 3)(log(k + 1) + 1)
σk

≤
∞∑

k=0

(k + 3)(log(k + 1) + 1)
2k

=: γ2.
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