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Extension DGAs and topological Hochschild homology

HALDUN ÖZGÜR BAYINDIR

We study differential graded algebras (DGAs) that arise from ring spectra through the
extension of scalars functor. Namely, we study DGAs whose corresponding Eilenberg–
Mac Lane ring spectrum is equivalent to HZ^E for some ring spectrum E. We call
these DGAs extension DGAs. We also define and study this notion for E1 DGAs.

The topological Hochschild homology (THH) spectrum of an extension DGA splits
in a convenient way. We show that formal DGAs with nice homology rings are
extension, and therefore their THH groups can be obtained from their Hochschild
homology groups in many cases of interest. We also provide interesting examples of
DGAs that are not extension.

In the second part, we study properties of extension DGAs. We show that, in various
cases, topological equivalences and quasi-isomorphisms agree for extension DGAs.
From this, we obtain that dg Morita equivalences and Morita equivalences also agree
in these cases.

18G35, 55P43, 55U99

1 Introduction

In [27], Stanley shows that the homotopy category of differential graded algebras is
equivalent to the homotopy category of HZ–algebras. Later, Shipley [26] improves
this equivalence to a zigzag of Quillen equivalences between the model categories of
DGAs and HZ–algebras. This opens up a new opportunity to study DGAs, ie to study
DGAs using ring spectra.

Dugger and Shipley [9] use this zigzag of Quillen equivalences to define new equiva-
lences between DGAs called topological equivalences; see Definition 1.10 below. They
show nontrivial examples of topologically equivalent DGAs and they use topological
equivalences to develop a Morita theory for DGAs. In [2], the author uses topolog-
ical equivalences to obtain classification results for DGAs. Moreover, topological
equivalences for E1 DGAs are studied by the author in [1].
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In this work, we follow this philosophy in a different way. We study what we call
extension DGAs which are the DGAs that are obtained from ring spectra through the
extension of scalars functor from S–algebras to HZ–algebras, ie the functor HZ^�.
More generally, we work in R–DGAs for a discrete commutative ring R. There is a
zigzag of Quillen equivalences between R–DGAs and HR–algebras [26]. Composing
the corresponding derived functors, one obtains a functor from the category of R–
DGAs to the category of HR–algebras. For a given R–DGA X , we let HX denote
the HR–algebra corresponding to X under this composite functor. We often abuse
notation and denote a cofibrant and fibrant replacement of HX also by HX .

Definition 1.1 An R–DGA X is R–extension if the HR–algebra corresponding to X
is weakly equivalent to HR^E for some cofibrant S–algebra E. For RDZ, we omit
Z and write extension instead of Z–extension.

To define R–extension E1 R–DGAs, we use the zigzag of Quillen equivalences
between E1 R–DGAs and commutative HR–algebras constructed by Richter and
Shipley in [19]. As before, composing the corresponding derived functors, one obtains
a functor from the category of E1 R–DGAs to the category of commutative HR–
algebras. For a given E1 R–DGA X , the corresponding commutative HR–algebra,
which we denote by HE1X , is obtained by applying this composite functor to X .
Again, we often abuse notation and denote a cofibrant and fibrant replacement of
HE1X also by HE1X .

Definition 1.2 An E1 R–DGA X is R–extension if the commutative HR–algebra
corresponding to X is weakly equivalent to HR^E for some cofibrant commutative
S–algebra E. For RD Z, we omit Z and write extension instead of Z–extension.

See Appendix A for a discussion on the compatibility of the two definitions above.

Although we only study the extension problems coming from the definitions above, it is
also interesting to consider the following general extension problem. Let ' WA!B be
a map of commutative S–algebras and let X be a B–algebra. We say X is '–extension
if it is weakly equivalent to B ^A E for some cofibrant A–algebra E. For the map
S!HR, this corresponds to the extension problem coming from Definition 1.1.

Let k be a perfect field of characteristic p and let W.k/ denote the Witt ring of k. The
extension problem corresponding to the canonical map � WHW.k/!Hk is analogous

Algebraic & Geometric Topology, Volume 23 (2023)
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to a classical lifting problem for schemes; see for instance Grothendieck [11, Section 6]
and Serre [24]. One of the motivations for the classical Witt-lifting problem is to
understand the crystalline cohomology of smooth algebraic varieties over Fp through
the de Rham cohomology of their lifts to W.Fp/ whenever such a lift exists; see
Berthelot [5, V.2.3.2]. Following this philosophy, Petrov and Vologodsky [18] recently
showed that if an Hk–algebra (ie a k–DGA) X is �–extension, ie X 'Hk^HW.k/E
for some cofibrant HW.k/–algebra (ie a W.k/–DGA) E, then the p–completed peri-
odic topological cyclic homology of X agrees with the p–completed periodic cyclic
homology ofE when p>2. This boils down the computation of a topological homology
theory to the computation of an algebraic homology theory.

Similarly, the extension property we study in this work boils down the computation of
the topological Hochschild homology of an extension DGA to a Hochschild homology
computation. Namely, for an R–extension DGA X (as in Definition 1.1), we have the
following splitting at the level of topological Hochschild homology. This splitting is
possibly well known to the experts in the field; see Schwänzl, Vogt and Waldhausen [20,
Theorem 1] for an instance of this splitting whenX is the Eilenberg–Mac Lane spectrum
of a discrete ring. In the proposition below, HHR.�/ denotes THHHR.�/.

Proposition 1.3 If X is an R–extension R–DGA , then there is an equivalence of
spectra

THH.X/' THH.HR/^HR HHR.X/:

If X is an R–extension E1 R–DGA , then the equivalence above is an equivalence of
commutative S–algebras.

For a map ' W A ! B of commutative S–algebras, there is a similar splitting of
THHA.X/ whenever X is a '–extension B–algebra; see Proposition B.1.

The splitting in Proposition 1.3 simplifies THH calculations significantly in many
situations. Indeed, it is an important stepping stone in many THH calculations in
the literature, particularly for the case where X is a discrete ring, ie a DGA whose
homology is concentrated in degree 0. For example, Larsen and Lindenstrauss [16]
show that this splitting exists at the level of homotopy groups for various discrete rings
of characteristic p. Furthermore, Hesselholt and Madsen [12, Theorem 7.1] prove such
a splitting for discrete rings that have a nice basis with respect to the ground ring R. In
the following theorem, we generalize this result to connective formal DGAs. Note that
a connective DGA is a DGA whose negative homology is trivial.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.4 Let X be a connective formal R–DGA whose homology has a ho-
mogeneous basis as an R–module containing the multiplicative unit such that the
multiplication of two basis elements is either zero or a basis element. In this situation ,
X is R–extension. As a result , we have the equivalence of spectra

THH.X/' THH.HR/^HR HHR.X/:

Section 5 is devoted to the proof of this theorem. Furthermore, for a given R–DGA
that satisfies the hypothesis of the theorem above, we provide an explicit description
of the corresponding HR–algebra; see Proposition 5.8. The author and Moulinos [3,
4.8 and 6.1] show that for such HR–algebras, one often obtains nontrivial splittings at
the level of topological negative cyclic homology and topological periodic homology.
Using these splittings, the author and Moulinos compute the algebraic K–theory of
THH.HFp/, ie the algebraic K–theory of the formal DGA with homology FpŒx2�. In
a future work, the author plans to compute the algebraic K–theory groups of various
formal DGAs by using Proposition 5.8 and the splittings provided in [3].

Remark 1.5 Another way to state the hypothesis of Theorem 1.4 is the following. Let
M be a monoid in the category of graded pointed sets. From M , one obtains a graded
R–algebra RhM i whose underlying R–module is the free R–module over the graded
set M� obtained by removing the based point from M . The multiplication on RhM i is
given by the multiplication on M where the based point of M is considered as the zero
element in RhM i. A graded R–algebra of the form RhM i is called a graded monoid
R–algebra. With this definition, a connective formal R–DGA satisfies the hypothesis
of Theorem 1.4 if and only if its homology is a graded monoid R–algebra.

Remark 1.6 We mention a few examples of graded rings that satisfy the hypothesis
of the theorem above as homology of X . The polynomial algebra over R with a
nonnegatively graded set S of generatorsRŒS� satisfies the hypothesis if all the elements
of S are in even degrees. The basis of RŒS� is given by the monomials in S and the
unit 1 2 R. Similarly, many examples of quotients of polynomial rings with even
degree generators also satisfy this hypothesis; for example RŒx�=.x2/, RŒx; y�=.y2/
and RŒx; y�=.x2y; y3/ with even jxj and jyj. However, there are rings that do not
satisfy this hypothesis. For example, for RDZ, the exterior algebra on two generators
ƒŒx; y� Š ƒŒx� ˝ ƒŒy� with odd jxj and jyj has a basis given by fx; y; xyg, but
yx D�xy and therefore yx is not one of the basis elements. Indeed, ƒŒx; y� has no
basis that satisfies this hypothesis.

Algebraic & Geometric Topology, Volume 23 (2023)
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We prove the following nonextension results.

Theorem 1.7 Let Y be an E1 DGA. For all primes p, if Y is quasi-isomorphic to an
E1 Fp–DGA then Y is not an extension E1 DGA.

Theorem 1.8 Let X be a DGA. If X is quasi-isomorphic to an F2–DGA then X is
not an extension DGA.

Remark 1.9 These theorems should be compared with the two commutative HZ–
algebras X and Y obtained from HZ^HFp through the structure maps

HZŠHZ^S!HZ^HFp and HZŠ S^HZ! S^HFp!HZ^HFp;

respectively. The E1 DGA corresponding to X is an extension E1 DGA and the
E1 DGA corresponding to Y is an E1 Fp–DGA. Although these two E1 DGAs are
E1 topologically equivalent, they are not quasi-isomorphic due to [1, Theorem 5.3]. For
the associative case with p D 2, the distinction between the two DGAs corresponding
to X and Y is due to [9, Example 5.6].

In the results above, we work with (E1) DGAs in mixed characteristic, ie we work in
(E1) Z–DGAs. A natural question to ask is if there are examples of E1 k–DGAs
that are not k–extension for a field k. In Example 1.12 below, we show that there are
E1 Fp–DGAs that are not Fp–extension.

Now we discuss topological equivalences of DGAs and the properties of extension
DGAs regarding topological equivalences.

Definition 1.10 Two DGAs X and Y are topologically equivalent if the corresponding
HZ–algebras HX and HY are weakly equivalent as S–algebras.

The definition of E1 topological equivalences is as follows.

Definition 1.11 Two E1 DGAs X and Y are E1 topologically equivalent if the
corresponding commutative HZ–algebras HE1X and HE1Y are weakly equivalent
as commutative S–algebras.

It follows from these definitions that quasi-isomorphic (E1) DGAs are (E1) topolog-
ically equivalent. However, there are examples of nontrivially topologically equivalent
DGAs, ie DGAs that are topologically equivalent but not quasi-isomorphic [9]. Further-
more, examples of nontrivially E1 topologically equivalent E1 DGAs are constructed
by the author in [1].

Algebraic & Geometric Topology, Volume 23 (2023)



900 Haldun Özgür Bayındır

Example 1.12 This is an example of E1 Fp–DGAs that are not Fp–extension. In
[1, Example 5.1], the author constructs nontrivially E1 topologically equivalent E1
Fp–DGAs that we call X and Y , ie X and Y are E1 topologically equivalent but
they are not quasi-isomorphic. Although these E1 Fp–DGAs are E1 topologically
equivalent, their Dyer–Lashof operations are different.

For p D 2, the homology rings of these E1 Fp–DGAs are given by

F2Œx�=.x
4/

for both X and Y where jxj D 1. On the homology of X , the first Dyer–Lashof
operation is trivial, ie Q1xD 0. On the other hand, we have Q1xD x3 on the homology
of Y . Using these properties we show (for all primes) that these E1 Fp–DGAs are
not Fp–extension E1 Fp–DGAs. See Section 3B for a proof of this fact.

By [1, Theorem 1.6], E1 topological equivalences between E1 Fp–DGAs with
trivial first homology preserve Dyer–Lashof operations. We prove a stronger result for
Fp–extension E1 Fp–DGAs.

Theorem 1.13 Let X be an Fp–extension E1 Fp–DGA with H1X D 0 and let Y
be an E1 Fp–DGA. Then X and Y are quasi-isomorphic if and only if they are E1
topologically equivalent.

In the following results, we show various situations where topological equivalences
and quasi-isomorphisms agree.

Theorem 1.14 Let Y be an Fp–DGA and let X be an Fp–extension Fp–DGA. For
odd p, assume that the homology of X is trivial in degrees 2pr � 2 for r � 1 and
2ps �1 for s � 0. For pD 2, assume that the homology of X is trivial in degree 2r �1
for r � 1. Then X and Y are quasi-isomorphic if and only if they are topologically
equivalent.

For the corollary below, note that a coconnective DGA is a DGA with trivial homology
in positive degrees.

Corollary 1.15 LetX be a coconnective extension Fp–DGA and let Y be an Fp–DGA.
Then X and Y are quasi-isomorphic if and only if they are topologically equivalent.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.16 Let R D Z=.m/ for some integer m¤˙1 and let X be an R–DGA
whose corresponding HR–algebra is equivalent to HR ^ Z for some cofibrant S–
algebra Z whose underlying spectrum is equivalent to a coproduct of (de)suspensions
of the sphere spectrum. Also , let Y be anR–DGA. ThenX and Y are quasi-isomorphic
if and only if they are topologically equivalent.

Our main interest for this theorem is due to its corollary stated below. This follows
by Proposition 5.8 which implies that an R–DGA that satisfies the hypothesis of
Theorem 1.4 also satisfies the hypothesis of the theorem above.

Corollary 1.17 Let RD Z=.m/ for some integer m¤˙1, let Y be an R–DGA and
let X be as in Theorem 1.4. Then X and Y are quasi-isomorphic if and only if they are
topologically equivalent.

Two DGAs X and Y are said to be Morita equivalent if the model categories of X–
modules and Y –modules are Quillen equivalent. There is a stronger notion of Morita
equivalence for DGAs called dg Morita equivalences defined by Keller [14, Section 3.8].
Due to [9, 7.7], two DGAs X and Y are dg Morita equivalent if and only if the model
categories of X–modules and Y –modules are additively Quillen equivalent; see Dugger
and Shipley [8] for the definition of additive Quillen equivalences. This is a strictly
stronger notion of Morita equivalence since there are examples of DGAs that are Morita
equivalent but not dg Morita equivalent [9, Section 8]. However, in the situations where
topological equivalences and quasi-isomorphisms agree, these two notions of Morita
equivalences also agree [9, Proposition 7.7 and Theorem 7.2]. We obtain the following
corollary to Theorems 1.14 and 1.16.

Corollary 1.18 Assume that X and Y are as in Theorem 1.14 or Theorem 1.16. Then
X and Y are Morita equivalent if and only if they are dg Morita equivalent.

Organization In Section 2, we describe the dual Steenrod algebra and the Dyer–Lashof
operations on it. In Section 3, we prove Theorems 1.13, 1.14 and 1.16. Section 4 is
devoted to the proof of Theorems 1.7 and 1.8. In Section 5, we prove Theorem 1.4. This
section is independent from Sections 2, 3 and 4, and it contains explicit descriptions
of the HZ–algebras corresponding to the formal DGAs as in Theorem 1.4, which is
of independent interest. We leave the proof of Theorem 1.4 to the end because it uses
different tools than the rest of the proofs in this work. Appendix A is devoted to a
discussion on the compatibility of Definitions 1.1 and 1.2.

Algebraic & Geometric Topology, Volume 23 (2023)
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Terminology We work in the setting of symmetric spectra in simplicial sets; see
Hovey, Shipley and Smith [13]. For commutative ring spectra, we use the positive
S–model structure developed by Shipley in [25]. When we work in the setting of
associative ring spectra, we use the stable model structure of [13]. Throughout this
work, R denotes a general discrete commutative ring except in Section 3C where R
denotes a quotient of Z. When we say (E1) DGA, we mean (E1) Z–DGA.

Acknowledgements The author would like to thank Don Stanley for suggesting to
study extension DGAs and also for showing the construction of the monoid object in
Construction 5.1. I also would like to thank Dimitar Kodjabachev and Tasos Moulinos
for a careful reading of this work.

2 The dual Steenrod algebra

Here, we recall the ring structure and the Dyer–Lashof operations on the dual Steenrod
algebra. Using the standard notation, we denote the dual Steenrod algebra by A�. We
have ��.HFp ^HFp/Š A�. Milnor shows that the dual Steenrod algebra is a free
graded commutative Fp–algebra [17].

For p D 2, A� is given by

A� D F2Œ�r j r � 1�D F2Œ�r j r � 1�;

where j�r j D j�r j D 2r � 1. Let � denote the action of the transpose map of the smash
product on ��.HFp ^HFp). We have �.�r/D �r .

For an odd prime p, the dual Steenrod algebra is described by

A� D FpŒ�r j r � 1�˝Fp ƒ.�s j s � 0/D FpŒ�r j r � 1�˝Fp ƒ. N�s j s � 0/;

where j�r jD j�r jD2.pr�1/ and j�sjD jN�sjD2ps�1. In this case, we have �.�r/D �r
and �.�r/D N�r .

Dyer–Lashof operations are power operations that act on the homotopy rings of H1
HFp–algebras [7]. By forgetting structure, commutative HFp–algebras are examples
of H1 HFp–algebras and therefore Dyer–Lashof operations are also defined on
the homotopy ring of commutative HFp–algebras, and maps of commutative HFp–
algebras preserve these operations. For pD 2, there is a Dyer–Lashof operation denoted
by Qs for ever integer s where Qs increases the degree by s. For odd p, there are

Algebraic & Geometric Topology, Volume 23 (2023)
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Dyer–Lashof operations denoted by ˇQs and Qs for every integer s that increase the
degree by 2s.p�1/�1 and 2s.p�1/, respectively. See [7, III.1.1] for further properties
of these operations.

With the unit map
HFp ŠHFp ^S!HFp ^HFp;

HFp ^HFp is a commutative HFp–algebra and therefore Dyer–Lashof operations
are defined on the dual Steenrod algebra. These operations are first studied in [7, III.2].
Steinberger shows that the degree one element �0 for odd p and �1 for pD 2 generates
the dual Steenrod algebra as an algebra with Dyer–Lashof operations, ie as an algebra
over the Dyer–Lashof algebra. In particular for p D 2, we have

Q2
s�2�1 D �s for s > 1:

For odd p, we have

Q.p
s�1/=.p�1/�0 D .�1/

s
N�s; ˇQ.p

s�1/=.p�1/�0 D .�1/
s�s

for s � 1.

3 Proof of the results on topological equivalences and the
nonextension example

In this section, we prove Theorems 1.13, 1.14 and 1.16 which provide comparison
results on (E1) topological equivalences and quasi-isomorphisms of (E1) DGAs for
various cases. At the end, we prove Proposition 3.2 which justifies the last claim in
Example 1.12. This provides examples of E1 Fp–DGAs that are not Fp–extension.

These results are obtained using similar arguments. Therefore, we suggest the reader
to go through their proof in the order presented in this section.

3A Proof of Theorems 1.13 and 1.14

In the proof of Theorems 1.13 and 1.14 and also in the proof of Theorem 1.16 and
Proposition 3.2, we show that for various R–extension (E1) R–DGAs, (E1) topolog-
ical equivalences and quasi-isomorphisms agree.

For this, we use the same technique to produce a quasi-isomorphism, ie an HR–algebra
equivalence, out of a given topological equivalence, ie an S–algebra equivalence. We
start by describing this technique.

Algebraic & Geometric Topology, Volume 23 (2023)
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Let us focus on the E1 case. Assume that we are given commutative HR–algebras Y
and HR^Z, where Z denotes a cofibrant commutative S–algebra and assume that we
are given a weak equivalence

' WHR^Z ��! Y

of commutative S–algebras. Using ', we produce a map of commutative HR–algebras
through the composite

 WHR^Z ŠHR^S^Z i
�!HR^HR^Z

HR^'

'
���!HR^Y m

�! Y:

Here, i is the canonical map induced by the unit map S!HR of HR and m is the
commutative HR–algebra structure map of Y . Except Y , we provide the objects in the
composite above with the commutative HR–algebra structure coming from the first
HR factor. The maps i and HR^' are maps of commutative HR–algebras as they are
obtained using the functor HR^� from the category of commutative S–algebras to the
category of commutative HR–algebras. Furthermore, we assume that HR is cofibrant
as a commutative S–algebra in the positive S–model structure of [25]. This implies
that HR is cofibrant as an S–module [25, 4.1] in the model structure of [25], ie HR is
S–cofibrant in the terminology of [13, 5.3.6]. Therefore, HR^' is a weak equivalence
[13, 5.3.10]. Note thatm is the left adjoint of the identity map of Y under the adjunction
between the categories of commutative S–algebras and commutative HR–algebras
whose left adjoint is given by the extension of scalars functor HR^� and whose right
adjoint is given by the restriction of scalars functor. In particular, this shows that m is
also a map of commutative HR–algebras. We deduce that  is a map of commutative
HR–algebras as it is given by a composite of such maps. Compared to the commutative
case, the definition of the map  is slightly more complicated in the associative case
as we consider various cofibrant replacements. The results we prove in this section are
obtained by showing that  is an equivalence under the given hypothesis.

We start with the proof of Theorem 1.13. We provide a restatement of this theorem
below.

Theorem 1.13 Let X be an Fp–extension E1 Fp–DGA with H1X D 0 and let Y
be an E1 Fp–DGA. Then X and Y are quasi-isomorphic if and only if they are E1
topologically equivalent.

In what follows, we denote the category of commutative E–algebras by E–cAlg
and the category of associative E–algebras by E–Alg for a given commutative ring
spectrum E.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof Since quasi-isomorphic E1 DGAs are always E1 topologically equivalent,
we only need to show that if X and Y are E1 topologically equivalent then they are
quasi-isomorphic as E1 Fp–DGAs.

Let HFp denote a cofibrant model of HFp in S–cAlg. The category of commutative
HFp–algebra spectra is the same as the category of commutative S–algebra spectra
underHFp . Therefore we have a model structure onHFp–cAlg where the cofibrations,
fibrations and weak equivalences are precisely the maps that forget to cofibrations,
fibrations and weak equivalences in S–cAlg. We let Y also denote the commutative
HFp–algebra corresponding to theE1 DGA Y . Therefore �1.Y /D0. Taking a fibrant
replacement, we assume Y is fibrant both in HFp–cAlg and in S–cAlg. Furthermore,
we let HFp ^Z denote the commutative HFp–algebra corresponding to the extension
E1 Fp–DGA X , where Z is a cofibrant object in S–cAlg. This ensures thatHFp^Z

is cofibrant in HFp–cAlg. Therefore the composite S �HFp �HFp ^Z is also
a cofibration in S–cAlg; this shows that HFp ^Z is also cofibrant in S–cAlg. To
prove Theorem 1.13, we need to show that HFp ^Z and Y are weakly equivalent in
HFp–cAlg.

Because HFp ^Z and Y are obtained from E1 topologically equivalent E1 DGAs,
they are equivalent as commutative S–algebras. Furthermore HFp^Z is cofibrant and
Y is fibrant; therefore there is a weak equivalence ' WHFp ^Z ��! Y of commutative
S–algebras. We consider the composite map

(1)  WHFp ^Z ŠHFp ^S^Z i
�!HFp ^HFp ^Z

HFp^'
'

����!HFp ^Y
m
�! Y;

where the first map is induced by the unit map uHFp W S!HFp of HFp and the last
map is the HFp structure map of Y . If we consider all the objects in this composite
except Y to have the HFp structure coming from the first smash factor, then all
objects involved are commutative HFp–algebras and the maps involved are maps
of commutative HFp–algebras. Note that i and HFp ^ ' are maps of commutative
HFp–algebras as they are obtained via the functor HFp^�W S–cAlg!HFp–cAlg.
The last map m is a map of commutative HFp–algebras because it is the left adjoint
of the identity map of Y under the usual adjunction between S–cAlg and HFp–cAlg.
Since all the maps in the composite above are maps of commutative HFp–algebras,
we deduce that  is a map of commutative HFp–algebras.

What remains is to show that  is a weak equivalence. For this, we take the homotopy
groups of the composite defining  and show that it is an isomorphism. Firstly, we
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have a splitting

HFp ^HFp ^Z Š .HFp ^HFp/^HFp .HFp ^Z/

in HFp–cAlg where we consider the object on the right-hand side of the equality
with the HFp structure given by the first smash factor instead of the canonical one
given by the smash product ^HFp . Because the homotopy of HFp is a field, we
have ��.HFp ^HFp ^ Z/ Š A� ˝Fp ��.HFp ^ Z/; see [10, IV.4.1]. With this
identification, we obtain that the composite map induced in homotopy by the composite
defining  is given by

(2)  � W ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.HFp^'/
Š

�������!HFp�Y
m�
�! Y�:

Note that although we identify the domain of ��.HFp ^'/ as a tensor product, we do
not claim that ��.HFp ^'/ splits as a tensor product of two maps.

Below, we state three claims. Afterwards, we assume these claims and prove that  � is
an isomorphism by showing  � D '�, ie we prove the theorem assuming the claims
below. After that, we provide a proof of the three claims listed below.

Claim 1 The composite m� ı��.HFp ^'/ maps every element of the form a˝Fp x

with jaj> 0 to zero in Y�.

Claim 2 We have m� ı��.HFp^'/.1˝Fp x/D '�.x/ for every x 2 ��.HFp^Z/.

Claim 3 We have i�.x/D 1˝Fp xC†iai ˝Fp xi for some ai 2 A� with jai j > 0
and xi 2 ��.HFp ^Z/.

Now we show that  is a weak equivalence by assuming the claims above. We have

 �.x/Dm� ı��.HFp ^'/ ı i�.x/

Dm� ı��.HFp ^'/.1˝Fp xC†iai ˝Fp xi /

D '�.x/

for some ai 2A� with jai j> 0. Here, the first equality follows by the definition of  �,
the second equality follows by Claim 3 and the third follows by Claims 1 and 2. This
proves that  � is an isomorphism since '� is an isomorphism. Therefore, we deduce
that  is a weak equivalence as desired. What is left to prove is the three claims stated
above.

Proof of Claim 1 The map S!Z induces a map

.HFp ^HFp/^HFp HFp! .HFp ^HFp/^HFp .HFp ^Z/:
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This map is in HFp–cAlg, therefore the induced map in homotopy preserves the
Dyer–Lashof operations. The induced map in homotopy is given by the inclusion
A� ˝Fp Fp ! A� ˝Fp ��.HFp ^Z/ and this shows that Dyer–Lashof operations
on this subset of A�˝Fp ��.HFp ^Z/ are given by the action of the Dyer–Lashof
operations on the dual Steenrod algebra, ie Qs.a˝Fp 1/D .Q

sa/˝Fp 1. Let p be an
odd prime. Since �1.Y / is trivial, m� ı��.HFp^'/.�0˝Fp 1/D 0. Because the dual
Steenrod algebra is generated with the Dyer–Lashof operations by �0, this shows that
m� ı��.HFp ^'/.a˝Fp 1/D 0 for all a 2A� with jaj> 0. Since all maps involved
are ring maps and a˝Fp x D .a˝Fp 1/.1˝Fp x/, this finishes the proof of our claim
m� ı��.HFp ^'/.a˝Fp x/D 0 whenever jaj> 0. Note that for p D 2, one uses �1
instead of �0.

Proof of Claim 2 We consider the commutative diagram

(3)

.S^HFp/^HFp .HFp ^Z/ S^HFp ^Z S^Y

.HFp ^HFp/^HFp .HFp ^Z/ HFp ^HFp ^Z HFp ^Y Y

Š

h

S^'

hY
id

Š HFp^' m

Because Y is in HFp–cAlg, we have m ı hY D id. We also have

m� ı��.HFp ^'/.1˝Fp x/Dm� ı��.HFp ^'/ ı h�.x/:

Carrying x through the top row and then composing withmıhY , we obtain the equality
m� ı��.HFp ^'/.1˝Fp x/D '�.x/ in our claim.

Proof of Claim 3 The composite of the maps below is the identity

HFp ^Z ŠHFp ^S^Z i
�!HFp ^HFp ^Z

mHFp^id
������!HFp ^Z;

where mHFp is the multiplication map of HFp. With the identification

HFp ^HFp ^Z Š .HFp ^HFp/^HFp .HFp ^Z/;

we obtain the composite in homotopy

(4) ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.mHFp^id/
��������! ��.HFp ^Z/;

where ��.mHFp ^ id/ is given by the augmentation A� ! Fp. This description of
��.mHFp ^ id/ and the fact that ��.mHFp ^ id/ ı i� D id proves our claim.

This completes the proof of Theorem 1.13.
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Remark 3.1 The proof of Theorem 1.13 is showing slightly more. For a given
cofibrantZ in S–cAlg and a fibrant Y inHFp–cAlg with �1Y D0 and an equivalence
HFp ^Z ��! Y of S–algebras, the map HFp ^Z! Y in HFp–cAlg given by the
structure map of Y on HFp and the map S^Z! HFp ^Z ��! Y on Z is also a
weak equivalence. Note that to construct this map, we use the fact that HFp ^Z is a
coproduct of HFp and Z in S–cAlg.

The proof of Theorem 1.14 (restated below) is similar to the proof of Theorem 1.13.
Therefore, in the proof of Theorem 1.14, we assume familiarity with the proof of
Theorem 1.13.

Theorem 1.14 Let Y be an Fp–DGA and let X be an Fp–extension Fp–DGA. For
odd p, assume that the homology of X is trivial in degrees 2pr � 2 for r � 1 and
2ps �1 for s � 0. For pD 2, assume that the homology of X is trivial in degree 2r �1
for r � 1. Then X and Y are quasi-isomorphic if and only if they are topologically
equivalent.

Proof Here, we work in the setting of associative algebras. In this case, we need to be
more careful with cofibrant replacements since the forgetful functor from HFp–Alg
to S–Alg does not necessarily preserve cofibrant objects. Let HFp be cofibrant in
S–cAlg (with the model structure of [25]) as before and let Z be cofibrant in S–Alg
such that HFp^Z is an HFp–algebra that corresponds to X . By abuse of notation, let
Y be a fibrant HFp–algebra corresponding to Y . Let T �

��HFp ^Z be a cofibrant
replacement of HFp ^Z in S–Alg. We have the lift

(5)
S T

Z HFp ^Z

�
f

in S–Alg where the bottom map is given by the map ZŠS^Z!HFp^Z. Since T
and Y are obtained from topologically equivalent DGAs, they are equivalent in S–Alg.
Also because T is cofibrant and Y is fibrant, we have a weak equivalence ' W T ��! Y

of S–algebras. We obtain the composite map of HFp–algebras

 WHFp ^Z
i
�!HFp ^T

HFp^'
'

����!HFp ^Y
m
�! Y;

where i D HFp ^ f and m is the HFp structure map of Y . The map m is a map
of HFp–algebras because it is the left adjoint of the identity map of Y under the
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usual adjunction between HFp–Alg and S–Alg. Note that we denote HFp ^f by i
because the map i in the composite above should be compared to the map i in (1).

Again, what remains is to show that  � is an isomorphism. Note that the functor
HFp ^� preserves weak equivalences [13, 5.3.10]. Identifying homotopy groups of
T with homotopy groups of HFp ^Z through the trivial fibration above, and similarly
identifying the homotopy groups of HFp ^ T with those of HFp ^HFp ^Z, we
obtain a description of  � similar to the one in (2),

 � W ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.HFp^'/
Š

�������!HFp�Y
m�
�! Y�:

It is sufficient to show that the claims in the proof of Theorem 1.13 also hold in this
case. Claim 1 follows by the hypothesis that ��Y is trivial at the degrees where the
algebra generators of the dual Steenrod algebra are. Claim 2 follows similarly. For
Claim 3, consider the sequence of maps

HFp ^Z
i
�!HFp ^T ��!HFp ^HFp ^Z

mHFp^id
������!HFp ^Z;

where mHFp is the multiplication map of HFp. Due to diagram (5), the composite
above is the identity map. Taking homotopy groups of the composite above and omitting
the equivalence in the middle, one obtains (4). The rest of the proof of Claim 3 follows
as before.

3B Example 1.12

Here, we show that the E1 Fp–DGAs provided in Example 1.12 are not Fp–extension.

Proposition 3.2 Let X and Y be as in Example 1.12. As E1 Fp–DGAs , X and Y
are not Fp–extension.

Proof Recall that in Example 1.12, we provide examples of E1 Fp–DGAs that are
E1 topologically equivalent but not quasi-isomorphic. We prove that X is not an
extension E1 Fp–DGA. In order to show Y is not extension, it suffices to exchange
the roles of X and Y in the proof below.

We assume that X is an extension E1 Fp–DGA and obtain a contradiction by showing
that X and Y are quasi-isomorphic under this assumption. This is similar to the proof
of Theorem 1.13, which we assume familiarity with. Following the constructions there,
we obtain a map of commutative HFp–algebras

 WHFp ^Z ŠHFp ^S^Z i
�!HFp ^HFp ^Z

HFp^'
'

����!HFp ^Y
m
�! Y
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as in (1), where HFp ^Z denotes a commutative HFp–algebra corresponding to X
and Y denotes a commutative HFp–algebra corresponding to the E1 Fp–DGA Y by
abusing notation. This is a map of commutative HFp–algebras as before. Therefore, it
is sufficient to show that  � is an isomorphism.

As in (2),  � is given by

 � W ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.HFp^'/
Š

�������!HFp�Y
m�
�! Y�:

By Claim 3 in the proof of Theorem 1.14, for every x 2 ��.HFp ^Z/ we have

(6) i�.x/D 1˝Fp xC†iai ˝Fp xi

for some ai 2A� with jai j> 0 and xi 2 ��.HFp ^Z/.

For p D 2, ��.HFp ^Z/Š F2Œx�=.x4/ with jxj D 1. By degree reasons, we either
have i�.x/D 1˝Fp x or i�.x/D 1˝Fp xC�1˝Fp 1. Since .1˝Fp xC�1˝Fp 1/

4¤ 0

but x4 D 0, the second option is not possible. Therefore we have i�.x/ D 1˝Fp x.
Since i is a map of ring spectra, i� is multiplicative so i�.xl/D 1˝Fp x

l for every l .
By Claim 2 in the proof of Theorem 1.13, this shows that  � is an isomorphism. This
provides a contradiction as X and Y are not quasi-isomorphic as E1 F2–DGAs.

For odd p, we have
��Y Š ��.HFp ^Z/ŠƒFp Œx; y�

with jxj D 1 and jyj D 2p� 2. By (6) above, either

i�.y/D 1˝Fp y or i�.y/D c�1˝Fp 1C 1˝Fp y

for some unit c 2 Fp. However, y2 D 0 but .c�1 ˝Fp 1C 1˝Fp y/
2 ¤ 0 so only

the first option is possible. This shows that  �.y/ D y due to Claim 2 in the proof
of Theorem 1.13. The 2p � 2 Postnikov sections of Y and HFp ^Z agrees with
that of HFp ^HFp in commutative HFp–algebras; see [1, Example 5.1]. Using this
together with the fact that ˇQ1�0 D��1 in the dual Steenrod algebra, ˇQ1x D y up
to a unit both in ��.HFp ^Z/ and in ��Y . Because  is a map of commutative
HFp–algebras,  � preserves Dyer–Lashof operations. Since  �.y/Dy, we obtain that
 �.x/D x up to a unit of Fp . Because  � is a ring map, we deduce that  � is indeed
an isomorphism. Therefore  is a weak equivalence of commutative HFp–algebras
between the commutativeHFp–algebras corresponding to the E1 Fp–DGAs X and Y .
This contradicts the fact that X and Y are not quasi-isomorphic as E1 Fp–DGAs and
finishes our proof.
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3C Proof of Theorem 1.16

Theorem 1.16 Let R D Z=.m/ for some integer m¤˙1 and let X be an R–DGA
whose corresponding HR–algebra is equivalent to HR ^ Z for some cofibrant S–
algebra Z whose underlying spectrum is equivalent to a coproduct of (de)suspensions
of the sphere spectrum. Also , let Y be anR–DGA. ThenX and Y are quasi-isomorphic
if and only if they are topologically equivalent.

Proof LetHR be cofibrant as a commutative S–algebra in Shipley’s convenient model
structure. This guarantees thatHR^� preserves weak equivalences [13, 5.3.10]. Since
HR^� preserves weak equivalences, we can further assume Z to be fibrant.

Let Y be an R–DGA. Since quasi-isomorphic R–DGAs are always topologically
equivalent, we only need to show that X and Y are quasi-isomorphic if they are
topologically equivalent. Abusing notation, we also let Y denote a fibrant HR–algebra
corresponding to the R–DGA Y . We assume that X and Y are topologically equivalent,
ie HR^Z and Y are equivalent as S–algebras. Using this, we are going to show that
there is a weak equivalence

 WHR^Z ��! Y

of HR–algebras.

Let g W T �
��HR^Z be a cofibrant replacement of HR^Z in S–algebras. As in

diagram (5), there exists a map f WZ! T such that

(7)
S T

Z HR^Z

g'

hZ

f

commutes. Here, hZ denotes the canonical map

hZ WZ Š S^Z!HR^Z:

Since X and Y are topologically equivalent, T and Y are equivalent as S–algebras.
Furthermore, T is cofibrant and Y is fibrant; therefore we have a weak equivalence

' W T ��! Y

of S–algebras.

We obtain the composite map

 WHR^Z
HR^f
���!HR^T

HR^'
���!HR^Y m

�! Y
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of HR–algebras where m denotes the HR–module structure map of Y . Note that
the last map above is a map of HR–algebras as it is the left adjoint of the identity
map of Y under the usual adjunction between the categories of HR–algebras and
S–algebras. Since  is a map of HR–algebras, it is sufficient to show that  induces
an isomorphism in homotopy.

We have the commuting diagram

S^T S^Y

HR^T HR^Y Y

S^'

hT
id

HR^' m

where the vertical maps are the canonical maps induced by the unit map uR W S!HR.
This shows that the composite map starting from T Š S^T and ending in Y is given
by ' and therefore is a weak equivalence. In particular, ��.m ı .HR ^ '// is an
isomorphism when it is restricted to the image of the Hurewicz map of T

��hT W ��.S^T /! ��.HR^T /:

Therefore, in order to prove that  � is an isomorphism, it is sufficient to show that the
map

��.HR^f / W ��.HR^Z/! ��.HR^T /

is injective and its image agrees with the image of ��hT . For this, it is sufficient to
prove that the corresponding statements are true after composing with the isomorphism

��.HR^g/ W ��.HR^T /
Š
�! ��.HR^HR^Z/:

In other words, it is sufficient to show that

��.HR^g/ ı��.HR^f /

is injective and the image of this map agrees with the image of ��.HR^g/ ı��hT .
Due to (7), gıf DhZ . Therefore, it is sufficient to show that ��.HR^hZ/ is injective
in homotopy and its image agrees with the image of ��.HR^g/ ı��hT .

The composite

HR^Z
HR^hZ
�����!HR^HR^Z m^id

���!HR^Z

is the identity map, where m denotes the multiplication map of HR and id denotes the
identity map of Z. From this, we deduce that ��.HR^ hZ/ is injective in homotopy,
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as desired. What remains to prove is that the image of ��.HR^ hZ/ agrees with the
image of ��.HR^g/ ı��hT .

Due to the commuting diagram

S^T S^HR^Z

HR^T HR^HR^Z

g

'

hT hHR^Z

HR^g

'

the image of the map ��.HR^g/ ı��hT is given by the image of the Hurewicz map

��.hHR^Z/ W ��.S^HR^Z/! ��.HR^HR^Z/

of HR^Z. Note that hHR^Z is induced by the unit map of HR as usual. Therefore,
it is sufficient to show that the image of ��.HR ^ hZ/ agrees with the image of
��.hHR^Z/.

The map HR^ hZ is the canonical map

HR^Z ŠHR^S^Z!HR^HR^Z:

This is the same as the composite

(8) HR^Z Š S^HR^Z
hHR^Z
����!HR^HR^Z �^id

���!HR^HR^Z;

where � is the transposition map of the monoidal structure. Since the map hHR^Z in
the middle of the composite in (8) induces ��.hHR^Z/, it is sufficient to show that
��.� ^ id/ is the identity map on the image of ��.hHR^Z/.

By hypothesis, the underlying spectrum of Z is a wedge of suspensions of the sphere
spectrum. Let

E D
_
a2A

†jajS

be weakly equivalent to Z as a spectrum where A is a graded set. Since E is cofibrant
and Z is fibrant, there is a weak equivalence of spectra E ��!Z.

This equivalence induces the vertical maps in the commuting diagram of S–modules,

HR^E HR^HR^E HR^HR^E

HR^Z HR^HR^Z HR^HR^Z

hHR^E

'

�^id

' '

hHR^Z �^id
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where hHR^E denotes the canonical map that induces the Hurewicz map of HR^E
in homotopy. In order to show that ��.� ^ id/ (of the bottom row) is the identity map
on the image of ��.hHR^Z/, it is sufficient to show that ��.� ^ id/ (of the top row) is
given by the identity map on the image of ��.hHR^E /. For this, it is sufficient to show
that the composite of the maps on the top row is given by ��.hHR^E / in homotopy.

Note that the canonical R–module basis elements of

��.HR^E/D ��

�
HR^

�_
a2A

†jajS

��
Š

M
a2A

†jajR

are also abelian group generators because RD Z=.m/ for some integer m. Therefore,
it is sufficient to show that

��.� ^ id/ ı��.hHR^E /.x/D ��.hHR^E /.x/

for every canonical basis element x. Such an x is represented by a map

uHR ^ ia W S^†
jajS!HR^

�_
a2A

†jajS

�
DHR^E;

where ia is the inclusion of the cofactor corresponding to an a 2 A.

In other words, it is sufficient to show that the composite

S^†jajS
uHR^ia
�����!HR^E

hHR^E
����!HR^HR^E �^id

���!HR^HR^E

agrees with the composite

S^†jajS
uHR^ia
�����!HR^E

hHR^E
����!HR^HR^E:

To see this, note that the composite maps above are of the form � ^ ia and � ^ ia,
respectively, where � and � are S–algebra maps from S to HR^HR. Since S is the
initial object in the category of S–algebras, we deduce that � D �. Therefore, the two
composites above agree, as claimed.

4 E–infinity Fp–DGAs are not extension

This section is devoted to the proof of Theorems 1.7 and 1.8. We restate these theorems
below. Recall that when we say extension (E1) DGA, we mean Z–extension (E1)
Z–DGA.

Theorem 1.7 Let Y be an E1 DGA. For all primes p, if Y is quasi-isomorphic to an
E1 Fp–DGA then Y is not an extension E1 DGA.
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Theorem 1.8 Let X be a DGA. If X is quasi-isomorphic to an F2–DGA then X is not
an extension DGA.

In the proof of these theorems, we use the ring structure and the Dyer–Lashof operations
on ��.HFp ^HZ/DHFp�HZ. For odd p, the ring structure is given by

HFp�HZŠ FpŒ�r j r � 1�˝Fp ƒ. N�s j s � 1/;

where the degrees of the generators are the same as those of the dual Steenrod algebra.
Note that HFp�HZ has the same generators as the dual Steenrod algebra except that
HFp�HZ does not contain the degree 1 generator �0. Indeed, the map

HFp�HZ!HFp�HFp DA�

induced by HZ! HFp is the canonical inclusion [21, II.10.26]. This inclusion is
induced by a map of commutative HFp–algebras and therefore it preserves the Dyer–
Lashof operations. Therefore through this map, the Dyer–Lashof operations on the dual
Steenrod algebra determine the Dyer–Lashof operations on HFp�HZ; see [7, III.2].

For p D 2, we have

HF2�HZD F2Œ�
2
1 �˝F2 F2Œ�r j r � 2�;

where j�i j D 2i � 1 for i � 2 and j�21 j D 2. Again, the canonical map

HF2�HZ!HF2�HF2 DA�

is the canonical inclusion and this determines the Dyer–Lashof operations onHF2�HZ.

For the rest of this section, we assume thatHZ is cofibrant as a commutative S–algebra
and HFp is cofibrant as a commutative HZ–algebra in the model structure developed
in [25]. Since the category of commutative HZ–algebras is the same as the category
of commutative S–algebras under HZ, cofibrations of commutative HZ–algebras
forget to cofibrations of commutative S–algebras. Therefore, HZ! HFp is also
a cofibration of commutative S–algebras. This ensures that HFp is also cofibrant
as a commutative S–algebra and therefore the functor HFp ^� preserves all weak
equivalences [13, 5.3.10].

We start by proving the following lemma. This lemma is obvious if one assumes
that for a map of discrete commutative rings R! R0, the Quillen equivalences of
[19; 26] are compatible with the restriction of scalars functors from (E1) R0–DGAs to
(E1)R–DGAs and from (commutative)HR0–algebras to (commutative)HR–algebras.
However, there is no such compatibility result available in the literature and proving it
is beyond the scope of this work.
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Lemma 4.1 LetX be anE1 DGA that is quasi-isomorphic to anE1 Fp–DGA. Then
there is a map of commutative HZ–algebras

HFp!HE1X;

where HE1X denotes a fibrant commutative HZ–algebra corresponding to the E1
DGA X .

If X is a DGA that is quasi-isomorphic to an Fp–DGA , then there is a map of HZ–
algebras

c.HFp/!HX;

whereHX denotes a fibrantHZ–algebra corresponding to the DGAX . Here , c.HFp/

denotes a cofibrant replacement of HFp in HZ–algebras.

Proof We only prove the E1 case; the associative case follows in a similar manner.
Assume that we are using a unital E1 operad, ie an operad given by the monoidal
unit Fp in operadic degree zero. The Barratt–Eccles operad is an example of a unital
E1–operad [4]. In this situation, Fp is the free E1 Fp–DGA generated by the trivial
Fp–chain complex 0. Therefore, Fp is the initial object in E1 Fp–DGAs. This,
together with the fact that X is quasi-isomorphic to an E1 Fp–DGA implies that there
is a map Fp!X in the homotopy category of E1 DGAs.

The equivalence of categories between the homotopy categories of commutative HZ–
algebras and E1 DGAs implies that there is also a map HFp ! HE1X in the
homotopy category of commutative HZ–algebras. Since HE1X is fibrant in commu-
tative HZ–algebras and HFp is cofibrant in commutative HZ–algebras due to our
standing assumptions, there is a map HFp!HE1X of commutative HZ–algebras
as desired.

The following starts with the proof of Theorem 1.7, and at the end we mention how
this also shows Theorem 1.8.

Proof of Theorems 1.7 and 1.8 Assume to the contrary that there is an extension E1
DGA X that is quasi-isomorphic to an E1 Fp–DGA. It follows by Lemma 4.1 that
there is a map HFp!HE1X of commutative HZ–algebras where HE1X denotes
a fibrant commutative HZ–algebra corresponding to the E1 DGA X . In particular,
the HZ–structure map HZ!HE1X of HE1X factors as

HZ
'HFp
���!HFp!HE1X;

where 'HFp denotes the canonical map.
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Since X is a Z–extension E1 DGA, there is a cofibrant commutative S–algebra Y
such that HZ^Y is weakly equivalent to HE1X in commutative HZ–algebras.

Note that HZ^Y is cofibrant as a commutative HZ–algebra; this is the case because
HZ^� is a left Quillen functor from commutative S–algebras to commutative HZ–
algebras and therefore it preserves cofibrant objects.

Since HE1X is fibrant and HZ^Y is cofibrant, there is a weak equivalence of com-
mutative HZ–algebras  WHZ^Y ��!HE1X . Because  is a map of commutative
HZ–algebras, we obtain a commutative diagram

HZ

HFp

HZ^Y HE1X

'HFp

'HZ^Y

'

 

where the composite on the right from HZ to HE1X is the composite given above.
The map 'HZ^Y is the HZ–structure map of HZ^Y which is given by

HZŠHZ^S!HZ^Y:

Applying the homology functor HFp� to this diagram and inverting HFp� , we
obtain

HFp�HZ

HFp�HFp

HFp�HZ˝Fp HFp�Y HFp�HE1X

HFp�'HFp

HFp�'HZ^Y

Š

.HFp� /
�1

By the Künneth spectral sequence in [10, IV.4.1],

HFp�.HZ^Y /ŠHFp�HZ˝Fp HFp�Y

and the morphism on the left is given by

(9) HFp�'HZ^Y .a/D a˝Fp 1:

Since the diagram above commutes, HFp�'HZ^Y factors as

(10) HFp�'HZ^Y WHFp�HZ
HFp�'HFp
�������!HFp�HFp

f
�!HFp�HZ˝FpHFp�Y;
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where the second map f is the composite in the triangle above starting fromHFp�HFp
and ending in the bottom left corner. Both maps in the composite above are ring maps
that preserve the Dyer–Lashof operations.

Let p denote an odd prime; we discuss the case p D 2 at the end of this proof.
We have ˇQ1�0 D �1 (up to a unit we are going to omit) in HFp�HFp. Note that
f .�1/D �1˝Fp 1. This follows by considering the composite in (10), equality (9) and
by noting that HFp�'HFp is the canonical inclusion. Since f preserves Dyer–Lashof
operations,

ˇQ1f .�0/D f .ˇQ1�0/D f .�1/D �1˝Fp 1:

We conclude that ˇQ1f .�0/D �1˝Fp 1 in HFp�HZ˝Fp HFp�Y .

We obtain a contradiction by showing that there is no z in HFp�HZ˝FpHFp�Y that
satisfies ˇQ1z D �1˝Fp 1, ie there is no candidate for f .�0/. For an element of the
form 1˝Fp y 2HFp�HZ˝Fp HFp�Y , we have that ˇQ1.1˝Fp y/D 1˝Fp ˇQ1y
does not contain �1 ˝Fp 1 as a summand. Now consider an element of the form
a˝Fp y 2HFp�HZ˝Fp HFp�Y with jaj> 0. By the Cartan formula and the fact
that the Bockstein operation is a derivation, ˇQ1.a˝Fp y/ is a sum of elements of the
form a0˝Fp y

0 where a
0

is obtained by applying a Dyer–Lashof operation to a. In
particular, ja0j > jaj � j�1j; therefore ˇQ1.a˝Fp y/ does not contain �1˝Fp 1 as a
summand either. We deduce that ˇQ1z does not contain �1˝Fp 1 as a summand for
all z 2HFp�HZ˝Fp HFp�Y .

For p D 2, we do not need to use the Dyer–Lashof operations. In this case, we have
f .�21/ D �

2
1 ˝F2 1 due to the composite in (10). We obtain that f .�1/2 D �21 ˝F2 1.

However, there is no element inHF2�HZ˝F2HF2�Y that squares to �21˝F2 1. Since
this does not use Dyer–Lashof operations, this argument at pD 2 also works for DGAs
and HZ–algebras and provides a proof of Theorem 1.8.

5 Formal DGAs to H Z–algebras

This section is devoted to the proof of Proposition 5.8 which provides an explicit
description of the HR–algebra corresponding to a formal R–DGA whose homology
satisfies the hypothesis of Theorem 1.4. This description provides Theorem 1.4. Recall
that we also use Proposition 5.8 to obtain Corollary 1.17.

We work in several different monoidal categories in this section. When we work in
the category of chain complexes or in the category of differential graded algebras,
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we denote the monoidal product by ˝. For the categories of HR–modules and HR–
algebras, we denote the smash product by ^HR as before. In all the other cases, we let
^ denote the monoidal product. In this section, HR denotes the Eilenberg–Mac Lane
spectrum of a general discrete commutative ring as in [13, 1.2.5].

LetX be anR–DGA satisfying the hypothesis of Theorem 1.4. Recall from Remark 1.5
that there is a monoid M in graded pointed sets for which H�.X/ Š RhM i as R–
algebras where the underlying R–module of RhM i is the free graded R–module over
the graded set M� obtained by removing the base point of M . Furthermore, the
multiplication on RhM i is the canonical one induced by that of M . For the rest of this
section, let M denote a monoid in nonnegatively graded pointed sets.

5A A monoid object corresponding to M

Here, we construct a monoid in a general monoidal category by using M . Furthermore,
we show that this construction is preserved by strong monoidal Quillen pairs.

We start by explaining a notation we use for the symmetric monoidal pointed model
categories we consider in this section. For a cofibrant C , †C denotes the pushout of
the diagram N�� C � N�, where N� is obtained by a factorization C � N�

�
�� � of

the map C !� by a cofibration followed by a trivial fibration, and � denotes the final
object. For the unit I of the monoidal structure, †kI denotes .†I/^k for k > 0 and
denotes I for k D 0.

Construction 5.1 Let .C;^; I/ denote a pointed cofibrantly generated closed sym-
metric monoidal model category whose unit I is cofibrant. Furthermore, assume that
C satisfies the monoid axiom and the smallness axioms of [22]. This implies that the
category of modules over a monoid in C carries an induced model structure where the
weak equivalences and the fibrations are those created by the forgetful functor to C [22,
4.1]. For a given M as above, we construct a monoid structure on_

m2M�

†jmjI;

where _ denotes the coproduct in C. The multiplication map

(11)
� _
m2M�

†jmjI

�
^

� _
n2M�

†jnjI

�
Š

_
.m;n/2M��M�

†jmjCjnjI!
_

m2M�

†jmjI

is given (on the cofactor corresponding to .m; n/ 2M �M ) by the inclusion of the
cofactor corresponding to mn 2M if mn¤ 0 and given by the zero map if mnD 0.
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Note that in a pointed model category, there is a unique zero map between every pair
of objects which is defined to be the map that factors through the point object. One
easily checks that the multiplication above is associative and unital.

If E is a commutative monoid in C, then the category of E–modules is also a symmetric
monoidal model category [22, 4.1]. We let

W
m2M�

†jmjE denote the monoid we
obtain by applying the construction above in the category of E–modules. In particular,W
m2M�

†jmjE is an E–algebra.

Using the construction above, we obtain an HR–algebra
W
m2M�

†jmjHR. In order to
prove Theorem 1.4, we go through the zigzag of Quillen equivalences between the model
categories of R–DGAs and HR–algebras to show that the HR–algebra corresponding
to the formal R–DGA with homology RhM i is given by

W
m2M�

†jmjHR [26]. We
deduce that the formal R–DGA with homology RhM i is R–extension by showing thatW
m2M�

†jmjHR is weakly equivalent to HR^ c
�W

m2M�
†jmjS

�
in HR–algebras

where c denotes the cofibrant replacement functor in S–algebras. For this, we start
with the following lemmas.

Lemma 5.2 Assume that .C;^; IC/ and .D;^; ID/ are pointed and closed symmetric
monoidal model categories with cofibrant units. Furthermore , let

C D
F

G

be a Quillen pair , where F denotes the left adjoint. If there is a weak equivalence
� W F.IC/ ��! ID, then there exists a weak equivalence

' W F.†IC/ ��!†ID:

Proof By factoring the map IC!� by a cofibration followed by a trivial fibration,
we obtain a factorization F.IC/� F. N�/ ��! F.�/Š �. Note that the isomorphism
follows by the fact that F is a left adjoint functor between pointed categories. To
see that the second map is a weak equivalence, note that � is cofibrant in the pointed
model category C and that F preserves all weak equivalences between cofibrant objects.
Similarly, we have a factorization ID � N�

�
�� � consisting of a cofibration followed

by a trivial fibration. We use the equivalence � W F.IC/ ��! ID and the lift in the square

F.IC/ ID N�

F. N�/ F.�/Š �

�
�

�
�

�
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to obtain a weak equivalence of diagrams

.F. N�/� F.IC/� F. N�// ��! . N�� ID � N�/:

This in turn gives a map ' of the corresponding pushouts of these diagrams. This is a
weak equivalence because these are diagrams consisting only of cofibrations between
cofibrant objects; therefore their pushout is the homotopy pushout. Since the pushout
of the diagram on the left-hand side is F.†IC/ and the pushout of the diagram on the
right-hand side is †ID, we obtain the weak equivalence

' W F.†IC/ ��!†ID

we wanted to construct.

Lemma 5.3 Assume that .C;^; IC/ and .D;^; ID/ are pointed and closed symmetric
monoidal model categories with cofibrant units as in Construction 5.1. Furthermore , let

C D
F

G

be a Quillen pair where the left adjoint F is a strong monoidal functor. In this situation ,
Fc
�W

m2M�
†jmjIC

�
and

W
m2M�

†jmjID are weakly equivalent as monoids in D,
where c denotes the cofibrant replacement functor in the model category of monoids
in C [22, 4.1].

Proof Since F is a strong monoidal functor, we have a natural isomorphism

F.X/^F.Y /Š F.X ^Y /

and an isomorphism F.IC/Š ID. This isomorphism provides the weak equivalence � in
the hypothesis of Lemma 5.2. Thus, there is a weak equivalence ' W F.†IC/ ��!†ID.

Using ', we produce a weak equivalence of monoids,

ˆ W F

� _
m2M�

†jmjIC

�
Š

_
m2M�

F.†jmjIC/ ��!
_

m2M�

†jmjID:

Here, ˆ is the coproduct of maps given by the isomorphism F.IC/Š ID for jmj D 0
and the map

F.†jmjIC/D F..†IC/
^jmj/Š F.†IC/

^jmj '
^jmj

�
���! .†ID/

^jmj
D†jmjID

for jmj> 0, where the first and the last equalities follow by our definition of †k� for
k > 0 and the second isomorphism comes from the strong monoidal structure of F .
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Also, note that '^jmj is a weak equivalence because it is a smash product of weak
equivalences between cofibrant objects. Since ˆ is a coproduct of weak equivalences
between cofibrant objects, it is a weak equivalence by [28, Lemma 4.7]. It is clear thatˆ
is a map of monoids by the definition of the monoidal structure on both sides and from
the fact that left adjoint functors between pointed categories preserve the zero maps.
This shows that ˆ is a weak equivalence of monoids between F

�W
m2M�

†jmjIC
�

andW
m2M�

†jmjID.

Therefore, in order to finish the proof of the lemma, it is sufficient to show that the
monoids Fc

�W
m2M�

†jmjIC
�

and F
�W

m2M�
†jmjIC

�
are weakly equivalent. Since c

is the cofibrant replacement functor in the category of monoids, there is a weak
equivalence of monoids

f W c

� _
m2M�

†jmjIC

�
��!

_
m2M�

†jmjIC :

By [22, Theorem 4.1], the source of f is cofibrant in C. This means that f is a
weak equivalence between cofibrant objects and therefore F.f / is a weak equivalence.
Furthermore, F.f / is a weak equivalence of monoids because a strong monoidal
functor preserves maps of monoids. Therefore, the monoids Fc

�W
m2M�

†jmjIC
�

and
F
�W

m2M�
†jmjIC

�
are weakly equivalent as desired.

5B From DGAs to H Z–algebras

Here, we carry out our discussion for the case R D Z. The case of general discrete
commutative ring R follows similarly.

The DGA corresponding to an HZ–algebra is obtained using the zigzag of monoidal
Quillen equivalences of [26]

HZ-Mod Sp†.sAB/ Sp†.ChC/ Ch;
Z

U ��N

L D

R

where the left adjoints are the top arrows and the pairs .Z;U / and .D;R/ are both
strong monoidal Quillen equivalences. The pair .L; ��N/ is a weak monoidal Quillen
equivalence. See [23, 3.6] for the definitions of strong monoidal Quillen equivalences
and weak monoidal Quillen equivalences. We often use the fact that the model categories
in the zigzag above are pointed.

Since each Quillen equivalence in the zigzag is a monoidal Quillen equivalence, there
is an induced zigzag of Quillen equivalences of the corresponding model categories
of monoids. This gives the induced derived functors H W DGA ! HZ–Alg and
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‚ WHZ–Alg! DGA in [26, Theorem 1.1]. We have

‚DDc��NZc; HD ULmoncR;

where Lmon is the induced left adjoint at the level of monoids and c denotes the
cofibrant replacement functors in the corresponding model category of monoids. See
[23, Section 3.3] for a definition of the induced left adjoint at the level of monoids.
Recall that for a given DGA X , we often write HX to denote HX or a cofibrant and/or
fibrant replacement of HX as an HZ–algebra.

In the lemmas below, I1 and I2 denote the monoidal units of Sp†.sAB/ and Sp†.ChC/
respectively. Note that the units of the monoidal model categories in the zigzag above
are all cofibrant [26, Definition 2.1 and Corollary 3.4]. By Construction 5.1, we
have the monoids

W
m2M�

†jmjI1 and
W
m2M�

†jmjI2 in Sp†.sAB/ and Sp†.ChC/,
respectively.

Lemma 5.4 In Sp†.sAB/, Zc
�W

m2M�
†jmjHZ

�
and

W
m2M�

†jmjI1 are weakly
equivalent as monoids. In Ch, Dc.

W
m2M�

†jmjI2/ and the formal DGA with homol-
ogy ZhM i are quasi-isomorphic as DGAs.

Proof The first statement is a direct consequence of Lemma 5.3. We prove the second
statement of the lemma. It again follows by Lemma 5.3 that Dc

�W
m2M�

†jmjI2
�

and
L
m2M�

†jmjZ are quasi-isomorphic as DGAs (ie weakly equivalent as monoids
in Ch).

Therefore, it is sufficient to show that
L
m2M�

†jmjZ is quasi-isomorphic to the formal
DGA with homology ZhM i. Let N0 denote the chain complex consisting of Z in degrees
0 and 1 and the trivial module in the rest of the degrees; its differentials are trivial except
degree 1 where the differential is the identity. There is a factorization Z � N0 ��� 0 of
the trivial map Z! 0 as a cofibration followed by a trivial fibration.

Let �Z denote the chain complex consisting of Z in degree 1 and the trivial module in
the rest of the degrees. This is the pushout of the diagram N0� Z! 0.

Note that due to our conventions, †Z is the pushout of the diagram N0 � Z ! N0.
Since the category of chain complexes is left proper, there is a weak equivalence
' W †Z ��! �Z. Let �nZ denote .�Z/˝n. Following Construction 5.1, we obtain a
formal DGA

L
m2M�

� jmjZ. Similar to the map ˆ in the proof of Lemma 5.3, we
obtain a quasi-isomorphism of DGAs

ˆ W
M
m2M�

†jmjZ ��!

M
m2M�

� jmjZ
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given by the identity map for jmj D 0 and given by 'jmj for jmj> 0. This shows thatL
m2M�

†jmjZ and
L
m2M�

� jmjZ are quasi-isomorphic as DGAs where the latter
is the formal DGA with homology ZhM i.

We state and prove the following two lemmas, which we use in the proof of Lemma 5.7.

Lemma 5.5 The functor ��N preserves colimits.

Proof The category of symmetric spectra in a closed symmetric monoidal model
category C is the category of modules over a monoid in symmetric sequences in C; see
[26, Definition 2.7]. Since symmetric sequences in C is a diagram category in C, the
colimits in symmetric sequences are levelwise. Furthermore, the forgetful functor from
modules over a monoid to the underlying closed monoidal category preserves colimits.
Therefore colimits of symmetric spectra in C are also levelwise.

Here, N is the normalization functor sAB! ChC of the Dold–Kan correspondence,
an equivalence of categories, applied levelwise. Therefore it preserves colimits. Fur-
thermore, �� is the restriction of scalars functor between the categories of modules
over two monoids induced by a map of these monoids in symmetric sequences in ChC;
see [26, page 358]. Therefore �� is the identity functor on the underlying symmetric
sequences and therefore it also preserves colimits.

Lemma 5.6 For every cofibrant A in Sp†.ChC/ and every B in Sp†.sAB/, a map
L.A/! B is a weak equivalence if and only if its adjoint A! ��N.B/ is a weak
equivalence.

Proof This follows from the fact that ��N preserves weak equivalences. LetB ��!fB

be a fibrant replacement of B . The adjoint of the composite L.A/! B ��! fB is
given by the composite A! ��N.B/ ��! ��N.fB/ whose first map is the adjoint of
the map L.A/! B . Because .L; ��N/ is a Quillen equivalence, the first composite
is a weak equivalence if and only if the second composite is a weak equivalence. The
result follows by the two-out-of-three property of weak equivalences.

The following lemma takes care of the middle step in the zigzag of Quillen equivalences
between the model categories of HZ–algebras and DGAs. Note that since .L; ��N/ is
a weak monoidal Quillen pair, ��N is a lax monoidal functor; see [23, Definition 3.3].
Therefore, ��N carries monoids to monoids. In particular, ��N

�W
m2M�

†jmjI1
�

is
a monoid.
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Lemma 5.7 In Sp†.ChC/, ��N
�W

m2M�
†jmjI1

�
and

W
m2M�

†jmjI2 are weakly
equivalent as monoids.

Proof By Lemma 5.5, ��N preserves coproducts. Therefore, there is an isomorphism

(12) ��N

� _
m2M�

†jmjI1

�
Š

_
m2M�

��N.†jmjI1/:

Similar to Construction 5.1, the object on the right-hand side above carries a canonical
monoid structure given by the multiplication on M and the lax monoidal structure
of ��N . Namely, the multiplication map_

m2M�

��N.†jmjI1/^
_
n2M�

��N.†jnjI1/!
_

m2M�

��N.†jmjI1/

is given (on the cofactor corresponding to .m; n/ 2M� �M�) by the composite

��N.†jmjI1/^�
�N.†jnjI1/! ��N.†jmjI1 ^†

jnjI1/D �
�N.†jmnjI1/

followed by the inclusion of the cofactor corresponding to mn 2M if mn ¤ 0 and
given by the zero map if mnD 0. Note that the map above is the lax monoidal structure
map of ��N and the equality above follows by our definition of †k�. Furthermore,
one checks using this definition that the isomorphism in (12) is an isomorphism of
monoids. Therefore, in order to prove the lemma, it is sufficient to show that there is
an isomorphism of monoids between

W
m2M�

��N.†jmjI1/ and
W
m2M�

†jmjI2.

There is a weak equivalence L.I2/ ��! I1 since .L; ��N/ is a weak monoidal Quillen
pair; see [23, 3.6]. Therefore, there is also a weak equivalence ' W L.†I2/ ��!†I1 by
Lemma 5.2. Let

 W†I2! ��N.†I1/

be the adjoint of '.

Let  0 denote the unit I2! ��N.I1/ of the lax monoidal structure of ��N and let
 1 denote  . For ` > 1, let  ` denote the composite

 ` W†`I2 D .†I2/
^`  

^`

��! .��N.†I1//
^`
! ��N..†I1/

^`/D ��N.†`I1/;

where the equalities follow by our definition of †` and the second map is obtained by
successive applications of the transformation ��N.�/^��N.�/! ��N.�^�/ that
is a part of the lax monoidal structure of ��N ; see [23, 3.3].
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Now we define a map of monoids

‰ W
_

m2M�

†jmjI2!
_

m2M�

��N.†jmjI1/

as the coproduct of  jmj over m 2M�. By the associativity and the unitality of the lax
monoidal structure on ��N and by the fact that right adjoint functors preserve the zero
maps between pointed categories, ‰ is a map of monoids; see [6, 6.4.1].

Finally, we need to show that ‰ is a weak equivalence. By Lemmas 5.5 and 5.6, it is
sufficient to show that the adjoint of ‰ is a weak equivalence. Since both ��N and L
preserve coproducts and since ‰ is a coproduct of maps  jmj, the adjoint of ‰ is a
coproduct of the adjoints of the maps  jmj. Note that a coproduct of weak equivalences
of cofibrant objects is again a weak equivalence by [28, 4.7]. Since the adjoint of  `

is a map between cofibrant objects, it is sufficient to show that the adjoint of  ` is a
weak equivalence for each `� 0.

For the case `D 0, we have that the adjoint of  0 is the weak equivalence L.I2/ ��! I1
mentioned above. For ` D 1, the adjoint of  1 is the map ' above which is also a
weak equivalence.

We show the `D 2 case and the rest follow similarly. Let m��N denote the natural
transformation

m��N W �
�N.�^�/! ��N.�/^��N.�/

that is part of the lax monoidal structure of ��N . We show that the adjoint to the
composite defining  2

 2 W†I2 ^†I2
 ^ 
���! ��N.†I1/^�

�N.†I1/
m��N
���! ��N.†I1 ^†I1/

is the composite map

(13) L.†I2 ^†I2/
cL
'
�! L.†I2/^L.†I2/

'^'

'
��!†I1 ^†I1:

The first map in this composite is the comonoidal map induced by the lax monoidal
structure of ��N and this is a weak equivalence since .L; ��N/ is a weak monoidal
Quillen pair [26, 4.4]. Furthermore, the second map in the composite is a smash product
of weak equivalences between cofibrant objects; therefore, it is also a weak equivalence.
This shows that the composite is a weak equivalence.

To show that  2 is the adjoint to this composite, first note that by the discussion on
equation (3.4) in [23], the comonoidal map cL is the adjoint of the composite map

†I2 ^†I2
�^�
��! ��NL.†I2/^�

�NL.†I2/
m��N
���! ��N.L.†I2/^L.†I2//;
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where � denotes the unit of the adjunction .L; ��N/. Considering the adjoint of
the composite (13) as the adjoint of the first map cL in the composite followed by
��N.' ^'/, we obtain that the adjoint of (13) is given by the composite

†I2^†I2
�^�
��! ��NL.†I2/^�

�NL.†I2/
m��N
���! ��N.L.†I2/^L.†I2//

��N.'^'/
������! ��N.†I1^†I1/:

By the naturality of m��N , this composite is equal to the canonical composite

†I2^†I2
�^�
��! ��NL.†I2/^�

�NL.†I2/
��N.'/^��N.'/
����������! ��N.†I1/^�

�N.†I1/
m��N
���! ��N.†I1^†I1/:

Note that the composition of the first two maps is the smash product of adjoints of '
which is  ^ . Therefore, this composite is precisely the composite that defines  2

above. This shows that the adjoint of  2 is the composite weak equivalence in (13).

5C Proof of Theorem 1.4

We prove the following proposition which provides an explicit description of the HR–
algebra corresponding to the formal R–DGA with homology RhM i. After that, we
use this description to prove Theorem 1.4.

Proposition 5.8 The R–DGA corresponding to the HR–algebra
W
m2M�

†jmjHR is
the formal R–DGA with homology RhM i. Furthermore , there is an equivalence of
HR–algebras _

m2M�

†jmjHR'HR^ c

� _
m2M�

†jmjS

�
;

where c denotes the cofibrant replacement functor in S–algebras.

Proof For the first statement, we discuss the case R D Z, the proof for general R
follows similarly. The first statement is a consequence of Lemmas 5.4 and 5.7.

Now we prove the second statement. Recall that HR ^� is a symmetric monoidal
functor between S–modules and HR–modules. Therefore, the second statement is
consequence of Lemma 5.3.
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Theorem 1.4 Let X be a connective formal R–DGA whose homology has a ho-
mogeneous basis as an R–module containing the multiplicative unit such that the
multiplication of two basis elements is either zero or a basis element. In this situation ,
X is R–extension. As a result , we have the equivalence of spectra ,

THH.X/' THH.HR/^HR HHR.X/:

Proof Recall from Remark 1.5 that the homology of X is RhM i for some monoid M
in nonnegatively graded pointed sets. In other words, X is the formal R–DGA with
homologyRhM i. Using Proposition 5.8, we deduce that theHR–algebra corresponding
to X is

W
m2M�

†jmjHR. By the equivalence given in Proposition 5.8, X is an R–
extension R–DGA.

Since X is an R–extension R–DGA, the splitting for THH.X/ is a consequence of
Proposition 1.3.

We are ready to prove the following corollaries of our results.

Corollary 1.17 Let RD Z=.m/ for some integer m¤˙1, let Y be an R–DGA and
let X be as in Theorem 1.4. Then X and Y are quasi-isomorphic if and only if they are
topologically equivalent.

Proof By Remark 1.5, X is the formal R–DGA with homology RhM i for some
monoid M in nonnegatively graded pointed sets. Using Proposition 5.8, we de-
duce that the HR–algebra corresponding to X is given by HR^ c

�W
m2M�

†jmjS
�
,

where c denotes the cofibrant replacement functor in HR–algebras. In particular,
Z D c

�W
m2M�

†jmjS
�

is weakly equivalent as a spectrum to a wedge of suspensions
of the sphere spectrum. We deduce that X satisfies the hypothesis of Theorem 1.16.
This implies that X and Y are quasi-isomorphic if and only if they are topologically
equivalent.

Corollary 1.18 Assume that X and Y are as in Theorem 1.14 or Theorem 1.16. Then
X and Y are Morita equivalent if and only if they are dg Morita equivalent.

Proof We need to show that the model categories of X–modules and Y –modules
are additively Quillen equivalent if and only if they are Quillen equivalent [9, 7.7].
By definition, additively Quillen equivalent additive model categories are Quillen
equivalent [8]. Therefore, we only need to prove one direction.

If the model categories of X–modules and Y –modules are Quillen equivalent then
there exists a fibrant and cofibrant representative P of a compact generator of the

Algebraic & Geometric Topology, Volume 23 (2023)



Extension DGAs and topological Hochschild homology 929

homotopy category of Y –modules such that the endomorphism DGA EndY –mod.P / of
P is topologically equivalent toX [9, 7.2]. Since Y is anR–DGA, EndY –mod.P / is also
an R–DGA. It follows by Theorems 1.14 and 1.16 that EndY –mod.P / quasi-isomorphic
to X . By [9, 7.2], this implies that the model categories of X–modules and Y –modules
are additively Quillen equivalent, as desired.

Appendix A

Here, we provide a short discussion on the compatibility of Definitions 1.1 and 1.2.

If we choose our E1 operad to be the Barratt–Eccles operad, then every E1 R–DGA
is at the same time an R–DGA; see [4, Section 1.1.1]. Let X be an R–extension E1
R–DGA and let U.X/ denote its underlying R–DGA. The canonical compatibility
question asks if U.X/ is R–extension as an R–DGA. In other words, we want to know
if every R–extension E1 R–DGA forgets to an R–extension R–DGA.

Let HE1X denote the commutative HR–algebra corresponding to X and let HU.X/
denote theHR–algebra corresponding toU.X/. For the moment, assume thatHE1X is
weakly equivalent to HU.X/ as an HR–algebra. Under this assumption, we conclude
that U.X/ is R–extension. To see this, let HE1X ' HR ^ E for some cofibrant
commutative S–algebra E and let c denote the cofibrant replacement functor in S–
algebras. Since cofibrant (commutative) S–algebras forget to cofibrant S–modules
[22; 25] and since the left Quillen functorHR^� preserves weak equivalences between
cofibrant objects, we deduce that HR^E is equivalent to HR^ cE in HR–algebras.
Hence, HU.X/ is weakly equivalent to HR^ cE and therefore U.X/ is R–extension,
as desired.

However, it is not known whether HE1X and HU.X/ are weakly equivalent in HR–
algebras. In other words, it is not known if the zigzag of Quillen equivalences between
HR–algebras and R–DGAs in [26] is compatible with the zigzag of Quillen equiva-
lences between commutative HR–algebras and E1 R–DGAs in [19]. In conclusion, if
we assume that these Quillen equivalences are compatible, then Definitions 1.1 and 1.2
are also compatible in the sense described above.

Appendix B

Here, we provide a proof of Proposition 1.3. Indeed, we prove the following more
general statement.
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Proposition B.1 Let ' W A! B be a map of commutative S–algebras and let X be a
B–algebra. If X is '–extension , ie if X ' B ^A E for some cofibrant A–algebra E,
then there is the equivalence of spectra

THHA.X/' THHA.B/^B THHB.X/:

Furthermore , if X is a commutative B–algebra that is weakly equivalent to B ^AE for
some cofibrant commutative A–algebra E, then the equivalence above is an equivalence
of commutative ring spectra.

Proof Let X ' B ^A E for some cofibrant A–algebra E. The equivalence in the
proposition is given by the composite of the chain of equivalences

(14) THHA.B ^AE/' THHA.B/^A THHA.E/

' THHA.B/^B .B ^A THHA.E//

' THHA.B/^B THHB.B ^AE/:

The first equivalence follows by the fact that THHA.�/ is a monoidal functor and
the last equivalence follows by the base change formula for topological Hochschild
homology; see [15, Conventions]. The base change formula and the monoidality of
THHA.�/ can be easily shown using the cyclic bar construction defining topological
Hochschild homology [10, IX.2.1].

When E is a cofibrant commutative A–algebra, the equivalences given in (14) are those
of commutativeA–algebras. This is because THHA.�/ is a symmetric monoidal functor
and the base change formula provides an equivalence of commutative A–algebras.

The following is the special case of the proposition above corresponding to the map
of commutative S–algebras S!HR. Note that for an R–DGA X , we let THH.X/
denote THH.HX/ and HHR.X/ denote THHHR.HX/. For an E1 R–DGA X , we
let THH.X/ denote THH.HE1X/ and HHR.X/ denote THHHR.HE1X/.

Proposition 1.3 If X is an R–extension R–DGA , then there is an equivalence of
spectra

THH.X/' THH.HR/^HR HHR.X/:

If X is an R–extension E1 R–DGA , then the equivalence above is an equivalence of
commutative S–algebras.

Proof For an R–extension R–DGA X , we have that HX satisfies the first hypothesis
of Proposition B.1 for the map of commutative S–algebras ' W S!HR. This provides
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the equivalence in the proposition. Similarly, for an R–extension E1 R–DGA X ,
HE1X satisfies the last hypothesis of Proposition B.1. This provides the second
statement of the proposition.
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