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Abstract

Simple tail similarity measures are investigated in this paper so that the overarching tail sim-

ilarity between two distributions is captured. We develop some theoretical results to support

our novel measures, where the focus is on asymptotic approximations of our similarity measures

for Fréchet-type tails. A simulation study is provided to validate the effectiveness of our pro-

posed measures and demonstrate their great potential in capturing the intricate tail similarity.

We conclude that our measure and the standard comparisons between the (first-order) extreme

index estimates provide complementary information, and one should analyse them in tandem

rather than in isolation. We also provide some very simple guiding principles of good practice

when using the two sources of information; these are recommended to be complemented further

by domain knowledge to validate and clarify the conclusions of our guiding principles, especially

in situations when there is no clear-cut conclusion as it is often the case in real-life applications.

Keywords: Tail similarity; Divergence measures; Extreme value theory; Probability distance;

Regular variation.

1. Introduction

We study in this paper the (dis)similarity between the tails of two distributions, which lies

in the intersection of two research areas that have not seen much overlap in the literature:

characterization of the (dis)similarity between distributions and asymptotic analysis of tails.

Both study important questions that have attracted growing research attention and seen broad

applications in risk management, insurance, economics, machine learning, etc.

First of all, understanding the (dis)similarities between random quantities and their distri-

butions has been a crucial question encountered across diverse research domains. The ability

to distinguish between quantities or distributions based on these (dis)similarities is essential

for many scientific discoveries and decision-making processes. For instance, within risk man-

agement, practitioners frequently deal with the task of comparing different risk scenarios and
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assessing how the addition of certain positions reshapes the loss distribution. Robust risk man-

agement requires decisions robust enough to withstand changes in the loss distribution that are

within close proximity to a benchmark distribution (Birghila and Pflug, 2019; Blanchet et al.,

2019; Lux and Papapantoleon, 2019; Tang and Yang, 2023). Similarly, within causal analysis

that is ubiquitous in the economics literature, one may opt to quantify the (dis)similarity be-

tween the conditional distribution of a response variable given its historical context and that

given the history of both the response variable and a potential causal variable. Detecting

substantial dissimilarity provides a crucial basis for concluding upgraded predictability and,

therefore, a causal relationship (Chen et al., 2014; Granger, 1969; Hong et al., 2009; Mazzarisi

et al., 2020; Sims, 1972). Within the domain of machine learning, diverse applications hinge on

similarity calculations. Anomaly detection algorithms may identify anomalies in a set of data

based on the (dis)similarity between its distribution and how the distribution usually appears

(Nassif et al., 2021). In fact, monitoring machine learning models’ performance after their de-

ployment into production also requires detecting structural changes of input data distribution,

which could impair the model performance. Moreover, the training of various types of neural

networks, such as Generative Adversarial Networks and many of their variants, often amounts

to training the generator to minimize a loss that is represented by the dissimilarity between

the data distribution and the model distribution (Arjovsky et al., 2017; Bellemare et al., 2017;

Goodfellow et al., 2014). All of these applications require measuring or approximating the

(dis)similarities between distributions as a crucial step. Since the quantifications of both simi-

larity and dissimilarity are fundamentally equivalent, in this paper, we may refer to either term

depending on the context.

Second, tail analysis is a crucial component of tail risk management and has been a focus

of risk management and insurance research for decades (Asimit et al., 2011; Embrechts et al.,

1997; Hua and Joe, 2011; Ji et al., 2021; Kelly and Jiang, 2014; Mao et al., 2012, 2023; Qin

and Zhou, 2021; Sun et al., 2022). Over the years, tail risk management is becoming increas-

ingly important in light of the extreme events that are shocking regional or global economy

with increasing frequency—some recent ones include the COVID-19 pandemic, the financial

market turmoils ensuing the pandemic, and the natural catastrophes that flooded or scorched

numerous regions across continents and caused record-level economic losses. Evidently, the

catastrophic consequences of such events render understanding the tails of the potential loss

incredibly important.

While the tail risk research area is perhaps too broad for a thorough yet concise literature

review—it has spanned various fields including actuarial science, economics, insurance, and

finance—we highlight a few examples that employ the same asymptotic approach as ours to

examine tail risk-related quantities. Asimit et al. (2011) approximate a multi-line business’s

risk capital allocations to each line when a tail risk measure is utilized. In doing so, the authors

investigate how individual lines’ tail behaviors and their tail dependence structures influence

the allocations. Hua and Joe (2011) conduct asymptotic analysis on the Conditional Tail

Expectation (CTE) risk measure under a condition of second-order regular variation, which is

also our standing assumption in this paper. They obtain close-form second-order approximations

for both univariate risks and multivariate risks, where for the latter the authors focus on a
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variant of Marginal Expected Shortfall. Mao et al. (2012) study the diversification effect via

the ratio of the CTE of an aggregate risk to the sum of the individual risks’ CTEs and obtain

an asymptotic approximation of the ratio under a second-order regular variation assumption.

Sun et al. (2022) propose a Tail-based Cumulative Residual Entropy as a measure of tail risk

variability, study its asymptotic approximation under a tail scenario, also assuming second-

order regular variation for the risk variable, and investigate how the tail dependence structure

and individual risk severity influence the approximations. Qin and Zhou (2021) propose the

concept of Asymptotic Marginal Expected Shortfall (AMES), which is the limit of the share of

Marginal Expected Shortfall in the total system-wide risk, find its value under an assumption of

multivariate regular variation for the risk variables, and employ the estimated AMES to allocate

systematic risk to individual institutions.

Even though all of the aforementioned areas have been extensively studied, no prior work

has probed probabilistic similarities from the specific perspective of tail analysis. The previous

studies on probability distances and divergences have predominately concentrated on evaluating

the distributions as a whole and have treated tails no differently from the bodies of the distri-

butions. This results in a methodological difference between our study and the existing ones

on similarity measures: ours employs asymptotic analysis for large values of the variables while

the methods in the literature depend on the specific research goal and range from optimization

to large sample statistical analysis. Methodologically, the most closely related works in the

literature are those reviewed above on asymptotic analysis of tails. Nonetheless, despite the

methodological similarities, the research objectives are very different between their works and

ours.

The main contributions of our paper are as follows: First, we explore for the first time

divergence-based similarities within the tails of risks through asymptotic analysis. In doing so,

we derive novel asymptotic approximations for wide classes of probability distance measures with

a focus on the ϕ-divergence and Wasserstein distance, chosen in view of their broad applicability

and versatility (Arjovsky et al., 2017; Ben-Tal et al., 2013; Jager and Wellner, 2007; Tang and

Yang, 2023). The approximations are fine enough to capture the subtle dissimilarity between

close tails that have the same first-order tail index. Second, we propose a tail similarity measure

and identify practical applications for the measure in tail risk budgeting through real-data

analysis. Finally, on a more fundamental level, we pave the way into further research within

the intersection of two primary strands of literature: on probability distance and on tail risk

analysis.

The remainder of our paper is structured as follows: in Section 2, we comprehensively for-

mulate the problem and provide foundational insights into probability distance and divergence

measures. Section 3 then presents our main results, while Section 4 illustrates our results

through numerical tests and real-world applications. Lastly, in Section 5, we provide conclud-

ing remarks. Preliminaries on risk budgeting and risk parity, description of the data generation

processes used for Section 4, and all detailed proofs are relegated to the Appendices.
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2. Problem Formulation and Preliminaries

2.1. Problem formulation

In this section we specify the main problem of interest. Consider an atomless probability

space (Ω,F ,P), where all random variables considered in this paper reside. Suppose that X

and Y are random variables with distribution functions F and G, respectively. We shall build

our theory and tail similarity measure on the probability distances and divergence measures

between the tails of two distributions; specifically, between the conditional distributions

Ft(x) = P (X ≤ x|X > t) and Gt(x) = P (Y ≤ x|Y > t) , x > t,

for large t. Let PX,t and PY,t be the two probability measures on ((t,∞), B(t,∞)) induced by

Ft and Gt, where B(t,∞) is the collection of Borel sets on (t,∞). That is, PX,t and PY,t are
defined by, respectively,

PX,t (·) = P (X ∈ ·|X > t) and PY,t (·) = P (Y ∈ ·|Y > t) .

Below we provide some background on probability distances and divergence measures, as

well as tail characterization via regular variation. Our study will be undertaken within the

latter framework.

2.2. Probability distances and divergence measures

In this section, we provide a brief introduction to the notions of probability distance and

divergence. Simply speaking, a probability distance is a proper metric over a metric space

of probability measures, which is popular in statistical theory, probability theory and general

measure theory. On the other hand, a divergence is a measure of dissimilarity that is a popular

in information theory, machine learning and data science. The general definition of divergence is

given in terms of general Radon-Nikodym derivatives, but for presentation purposes, we restrict

ourselves to a simpler form that assumes densities with respect to Lebesgue measure.

To provide the definition of a probability distance, we first define a probability semidistance,

as follows.

Definition 1 (Probability semidistance). Let X be the set of univariate real-valued random

variables. A mapping d : X × X → R is called a (probability) semidistance if the following

conditions are satisfied:

i) d (X1, X2) ≥ 0 for any X1, X2 ∈ X ;

ii) d (X1, X2) = 0 if X1 and X2 share the same distribution;

iii) d (X1, X2) = d (X2, X1) for any X1, X2 ∈ X ;

iv) d (X1, X2) + d (X2, X3) ≥ d (X1, X3) for any X1, X2, X3 ∈ X .

When there is no risk of confusion, we simply call d(·, ·) a probability distance. Technically,

for d(·, ·) to define a probability distance, instead of condition ii) above, we need a stronger

condition: d (X1, X2) = 0 if and only if X1 and X2 share the same distribution. Note that

the probability semidistance (resp., distance) between (X1, X2) only depends on the marginal
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distributions of X1 and X2 and is sometimes called a simple semidistance (resp., distance). By

contrast, compound probability semidistances/distances between (X1, X2) are determined by

its joint distribution, though not considered in the sequel. A more comprehensive discussion on

probability distances can be found in Rachev et al. (2013).

Below we list some well-known probability distances for two probability measures associated

with X1, X2 ∈ X :

1) Total Variation

dTV (X1, X2) := sup
A∈F

|P(X1 ∈ A)− P(X2 ∈ A)|;

2) Kolmogorov–Smirnov

dKS(X1, X2) := sup
x∈R

|P(X1 ≤ x)− P(X2 ≤ x)|;

clearly, dKS(X1, X2) ≤ dTV (X1, X2);

3) Wasserstein

dWp(X1, X2) :=

(∫ 1

0
|qX1(s)− qX2(s)|p ds

)1/p

for any p ≥ 1,

where qX(s) := infx∈R
{
P(X ≤ x) ≥ s

}
is the sth quantile of X; note that the special case

with p = 1 satisfies

dW1(X1, X2) =

∫
R
|P(X1 > x)− P(X2 > x)| dx;

4) Lévy–Prokhorov

dL(X1, X2) := inf
ϵ>0

{
P(X1≤ x− ϵ)− ϵ ≤ P(X2≤ x) ≤ P(X1≤ x+ ϵ) + ϵ, for all x ∈ R

}
.

The notion of divergence is less strict than a probability distance, and requires only the first

two conditions in Definition 1. The literature on divergence measures is quite rich, but the class

of ϕ-divergence captures the most attention; a quick review appears in Ben-Tal et al. (2013),

while a wider discussion is provided in Pardo (2005). A formal definition of the ϕ-divergence is

given as follows.

Definition 2 (ϕ-divergence). Let p, q : Ω → R+ be the densities of two univariate real-valued

random variables. The divergence measure of (p, q) corresponding to the function ϕ : R+ → R
is defined as

dϕ(p, q) :=

∫
R
q(x)ϕ

(
p(x)

q(x)

)
dx,

where ϕ(·) is convex on R+ and ϕ(1) = 0. By convention, 0+ϕ
(
a
0+

)
:= a limt→∞

ϕ(t)
t for any

a > 0, and 0+ϕ
(
a
0+

)
:= 0 if a = 0.

Denote by Φ the set of functions ϕ that satisfy the conditions in Definition 2; further, let

Φ∗ ⊆ Φ be the set of functions ϕ that are differentiable at 1 with derivative equal to 0. Now,

5



if ϕ ∈ Φ is differentiable at 1—since ϕ is convex, it is differentiable almost everywhere—then

ψ(·) := ϕ(·)− ϕ′(1)(t− 1) on R+ satisfies

ψ ∈ Φ∗, dϕ(p, q) = dψ(p, q), ψ
′(1) = 0, ψ(·) ≥ 0 on R+,

and thus, from now on, for ϕ ∈ Φ differentiable at 1, we assume without loss of generality that

ϕ ∈ Φ∗; further details can be found in Pardo (2005). We prefer to use divergence measures

with ϕ functions in Φ∗, since these ϕ-divergences are non-negative on the entire domain.

Definition 2 ensures only the first condition in Definition 1 holds, i.e., dϕ(p, q) ≥ 0 for any

Φ ∈ Φ. Proposition 1.1 of Pardo (2005) shows that for any ϕ ∈ Φ∗ that is strictly convex in a

neighbourhood of 1, dϕ(p, q) = 0 if and only if p(·) = q(·) on Ω. Therefore, ϕ ∈ Φ∗ is a large

class of divergence measures that satisfy the first two conditions of a proper probability distance

as explained in Definition 1. The symmetry property is tackled in the next paragraph, but the

triangle inequality is hardly satisfied by ϕ-divergences, and thus most ϕ-divergence measures

are not proper probability distances.

We now explain how to construct a symmetric ϕ-divergence. First, by definition, if ϕ ∈ Φ

or ϕ ∈ Φ∗, then ϕ̃ ∈ Φ and ϕ̃ ∈ Φ∗, respectively, where ϕ̃ is known as the adjoint divergence

function corresponding to ϕ with ϕ̃(·) := ·ϕ(1/·) on R+; further, if ϕ(·) = ϕ̃(·) on R+, then

ϕ is called self-adjoint divergence. One can show that dϕ(p, q) = dϕ̃(q, p) (even if Φ is not

self-adjoint); for details, see (Ben-Tal et al., 1991, 2013). Therefore, a straightforward way to

construct a symmetric ϕ-divergence for any ϕ ∈ Φ is to consider ϕ+ϕ̃
2 ∈ Φ since

dϕ+ϕ̃
2

(p, q) =
1

2
dϕ(p, q) +

1

2
dϕ̃(p, q) =

1

2
dϕ(p, q) +

1

2
dϕ(q, p). (2.1)

Clearly, ϕ+ϕ̃
2 ∈ Φ∗ if ϕ ∈ Φ∗. Secondly, any ϕ ∈ Φ (or ϕ ∈ Φ∗) has another corresponding

symmetric ϕ-divergence given by

1

2
dϕ

(
p,
p+ q

2

)
+

1

2
dϕ

(
q,
p+ q

2

)
= dϕ̂(p, q), (2.2)

where ϕ̂(x) := (x+ 1)
(
ϕ
(

2x
x+1

)
+ ϕ

(
2

x+1

))
on R+, and ϕ̂ ∈ Φ (or ϕ̂ ∈ Φ∗).

In summary, almost any ϕ-divergence from Definition 2 satisfies the first two conditions of

a probability distance as given in Definition 1, and it can be transformed into a symmetric ϕ-

divergence as in (2.1) and (2.2). Below we enunciate some well-known ϕ-divergences belonging

to Φ∗ (see Table A.1 and Figure A.4 in Appendix A for a summary) with some interesting

relationships; a more exhaustive list can be found in e.g. Pardo (2005). Additionally, some

transformations of well-known ϕ-divergences become proper probability distances in the sense

of Definition 1. A detailed discussion of this matter is provided in Endres and Schindelin (2003)

and the list of divergences below provides such transformations when applicable.

1) Kullback-Leibler divergence with ϕKL(x) := x log x − x + 1; note that ϕKL ∈ Φ∗ and is

the transformation of the standard formulation of the Kullback-Leibler divergence with

ϕ̃KL(t) = x log x that satisfies ϕ̃KL ∈ Φ \Φ∗;
2) Burg divergence with ϕB(x) := − log x+ x− 1; note that ϕ̃B(·) = ϕKL(·) on R+, i.e., the
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Burg divergence is the ad-joint transformation of the Kullback-Leibler divergence;

3) J-divergence with ϕJ(x) := (x − 1) log x; note that ϕJ = ϕKL+ϕ̃KL
2 , i.e., the J-divergence

is the symmetric Kullback-Leibler divergence through (2.1), and thus, condition iii) in

Definition 1 is satisfied;

4) Jensen-Shannon divergence with ϕJS(x) = x log
(

2x
x+1

)
+ log

(
2

x+1

)
; note that ϕJS ∈ Φ∗,

and that
√
dϕJS

(·) and
√
dϕ̃JS

(·) satisfy all conditions in Definition 1; finally, ϕJS is the

symmetric Kullback-Leibler divergence through (2.2);

5) χ2-divergence with ϕC(x) :=
(x−1)2
x ;

6) Modified χ2-divergence with ϕMC(x) := (x − 1)2; note that ϕ̃MC(·) = ϕC(·) on R+, i.e.,

the Modified χ2-divergence is the ad-joint transformation of the χ2-divergence;

7) Hellinger-divergence with ϕH(x) :=
(√
x− 1

)2
; note that the Hellinger-divergence is self-

adjoint, i.e. ϕ̃H(·) = ϕH(·), and thus, condition iii) in Definition 1 is satisfied; this appears

in the literature as the Squared Hellinger-divergence, and one can show that
√
dϕH (·)

satisfies all conditions in Definition 1;

8) Variation-divergence with ϕV (x) := |x − 1|; the Variation-divergence is self-adjoint, i.e.

ϕ̃V = ϕV , and thus, symmetric; one can show that
√
dϕV (·) satisfies all conditions in

Definition 1 as it is closely related to the Total Variation probability distance;

9) χ-divergence of order θ > 1 with ϕθ(x) := |x− 1|θ and θ > 1;

10) Le Cam divergence with ϕLC(x) :=
(x−1)2
4(x+1) ; for details, see Le Cam (1986); one can show

that
√
dϕLC

(·) satisfies all conditions in Definition 1;

11) Cressie-Read divergence with ϕCR(x; θ) := 1−θ+xθ−xθ
θ(1−θ) where θ ∈ R \ {0, 1}, which is

also known as the power divergence; for details, see Cressie and Read (1984); note that

ϕCR(·;−1) = 1
2ϕC(·), ϕCR(·; 1/2) = 2ϕH(·) and ϕCR(·; 2) = 1

2ϕMC(·) on (0,∞).

We should mention that the Cressie-Read divergence class is used in the statistical literature

for goodness-of-fit testing; e.g., Cressie and Read (1984) uses it for testing multinomial data,

and Jager and Wellner (2007) uses two novel statistics in a more general context that rely on

the general ϕ-divergence test statistics in (Ali and Silvey, 1966; Csiszár, 1966).

There are many inequalities amongst the ϕ-divergences, and two notable ones are

1

2
dϕH (p, q) ≤ dϕV (p, q) ≤

√
dϕH (p, q)

(
1− 1

4
dϕH (p, q)

)
≤ 1 (2.3)

and

dϕV (p, q) ≤
√

1

2
dϕKL

(p, q) (2.4)

for any two densities p and q. Note that (2.4) is the well-known Pinsker’s inequality. Useful

inequalities, such (2.3) and (2.4), appear in the literature, and comprehensive collections of

results are provided in (Sason and Verdu, 2016; Tsybakov, 2009). Elegant proofs for showing

that such inequalities are tight is possible via the so-called joint range of a given pair of ϕ-

divergences; for details, see Harremoës and Vajda (2011).
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2.3. Regular variation

For our tail analysis, we will focus on distributions with heavy tails; specifically, tails that

are regularly varying. Regular variation has long been used to model a large class of heavy-

tailed distributions, that is, every distribution in the Fréchet max-domain of attraction. In this

section, we provide some preliminaries on first- and second-order regular variation.

Definition 3 (Regular variation). A positive measurable function h(·) is said to be regularly

varying at ∞ with index −α ∈ R, written as h ∈ RV−α, if for every x > 0

lim
t→∞

h(xt)

h(t)
= x−α.

Hereafter, all limiting relations are according to t→ ∞ unless otherwise stated.

We are particularly interested in the case where the distributions have close tails and dis-

tinction is challenging, especially when the distributions share the same tail index. For the

case with distinct tail indexes, the difference between their tail behaviors are easier to quantify

and our approach readily extends to derive analogous results. Yet for the equal-index case, we

require a more nuanced description of the tails to obtain non-trivial results. Specifically, we

impose a second-order regular variation assumption on both tails being compared.

Definition 4 (Second-order regular variation). A positive measurable function h(·) is said to

be second-order regularly varying with indexes −α ∈ R and ρ ≤ 0, written as h ∈ 2RV−α,ρ, if

for some constant k ̸= 0 and some function A(·) with limt→∞A(t) = 0 that ultimately has a

constant sign, it holds that

lim
t→∞

h(xt)/h(t)− x−α

A(t)
= kx−α

∫ x

1
uρ−1 du, x > 0. (2.5)

Here A(t) is called the auxiliary function and known to possess regular variation. Specifically,

we have |A(·)| ∈ RVρ. With a slight abuse of notation, we denote by sgn (A(∞−)) the constant

sign of A(t) for t large, which is equal to 1 if A(t) is positive and −1 if it is negative.

By carefully choosing the auxiliary function, one can ensure k = 1 in (2.5). Thus, in the

sequel we assume without loss of generality that k = 1 in the definition of 2RV. Note that the

2RV condition in (2.5) implies that

h(xt)

h(t)
= x−α + x−α

∫ x

1
uρ−1 duA(t) + o (A(t)) . (2.6)

Also note that the convergence in relation (2.5) holds locally uniformly and that we have certain

Drees-type inequalities. The following proposition is a version from Mao (2013).

Proposition 5 (Dree-type inequality; Mao (2013)). If h ∈ 2RV−α,ρ with indexes −α ∈ R
and ρ ≤ 0, then, for any fixed ε, δ > 0, there exists t0 = t0(ε, δ, α, ρ) > 0, such that, for all

min(t, xt) > t0, we have∣∣∣∣h(xt)/h(t)− x−α

A(t)
− x−α

∫ x

1
uρ−1 du

∣∣∣∣ ≤ εx−α
(∣∣∣∣∫ x

1
uρ−1 du

∣∣∣∣+ xρmax{xδ, x−δ}
)
.
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While some Drees-type inequalities require careful choices of auxiliary function, the version

above uses precisely the A(t) function in (2.5); see also, e.g., Theorem 2.3.9 of de Haan and

Ferreira (2007). Note that Proposition 5 implies that, if α > 0, then equations (2.5) and (2.6)

hold uniformly over [x0,∞) for every x0 > 0, in the sense that

lim
t→∞

sup
x≥x0

∣∣∣∣h(xt)/h(t)− x−α

A(t)
− x−α

∫ x

1
uρ−1 du

∣∣∣∣ = 0. (2.7)

In asymptotic analysis for regularly varying functions, uniform asymptotic relations usually

hold locally on bounded intervals. Below we show a useful result stating that under certain

second-order conditions, the property holds on intervals of form [x0,∞) for any x0 > 0. The

proof is relegated to Appendix D.

Lemma 6 (Uniformity). If h ∈ 2RV−α,ρ with α > 0 and ρ < 0, then h(xt) ∼ x−αh(t) holds

uniformly over [x0,∞) for any x0 > 0, that is

lim
t→∞

sup
x≥x0

∣∣∣∣ h(xt)

x−αh(t)
− 1

∣∣∣∣ = 0.

Hereafter, for a non-decreasing function h on R, we write its left-continuous inverse function
as h←(·) = inf{x ∈ R : h(x) ≥ ·}. For a distribution function H, write its tail quantile function

as UH(·) = H←(1− 1/·) =
(
1/H̄

)←
(·) and write H̄←(·) = H←(1− ·).

The following lemma, proved in Appendix D, provides properties related to the inverse

function of a 2RV distribution function.

Lemma 7 (Properties of UH and H̄). Let H̄ ∈ 2RV−ν,ρ for some ν > 0 and ρ ≤ 0 with auxiliary

function A(·). Then

a) UH ∈ 2RV1/ν,ρ/ν and a possible choice of auxiliary function is a(·) = ν−2A(UH(·));

b) H̄←
(
H̄(t)

)
∼ t and H̄←

(
H̄(t)

)
/t− 1 = o (A(t)) .

We are now ready to present our main results.

3. Main Results

Our first main result is an asymptotic characterization of the p-Wasserstein distance and

second main result is one of the ϕ divergence. The Wasserstein distance and ϕ divergence

both depend only on the tails of the marginal distributions, and hereafter, are denoted by

dW,p (PX,t,PY,t) and dϕ (PX,t,PY,t), respectively.

3.1. Wasserstein distance

Recall that the p-Wasserstein distance between PX,t and PY,t with p ≥ 1 is given by

dW,p (PX,t,PY,t) =
(∫ 1

0

∣∣F̄t←(q)− Ḡt
←
(q)
∣∣p dq)1/p

. (3.1)

Some technical set of assumptions are needed in this section, namely, some standard second-

order regular variation for the survival functions, summarized as follows.
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Assumption 3.1 (Second-order RV of tails). Assume that F̄ ∈ 2RV−ν,ρX and Ḡ ∈ 2RV−ν,ρY ,

with ν > 1, ρX ̸= ρY
1, and auxiliary functions AX and AY , respectively.

With the help of Assumption 3.1, we obtain the following asymptotic result that establishes

the rate of convergence for the Wasserstein distance.

Theorem 8 (Wasserstein distance asymptotic). Suppose Assumption 3.1 holds with ν > p and

ρXY := max{ρX , ρY } ≤ 0. Then, for p ∈ [1,∞), it holds that

dW,p (PX,t,PY,t) ∼ C (ν, ρXY , p) t |AXY (t)| , (3.2)

where

AXY = AXI{ρX>ρY } +AY I{ρX<ρY },

and the constant C (ν, ρXY , p) ∈ (0,∞) is given by

C (ν, ρXY , p) =

(∫∞
1

(
z1/ν−2 − z(ρXY +1)/ν−2)p dz)1/p

ν |ρXY |
.

When ρXY = 0, the constant C (ν, ρXY , p) is interpreted as

C (ν, 0, p) = lim
ρXY→0

C (ν, ρXY , p) = ν−2
(∫ ∞

1
zp/ν−2p (log z)p dz

)1/p

.

It is straightforward to verify that for p = 1, the constant reduces to

C (ν, ρXY , 1) =
1

(ν − 1) (ν − ρXY − 1)
.

We see that under the conditions above, the Wasserstein distance is regularly varying with

index ρXY + 1. The second-order difference between the two distributions determines whether

the Wasserstein distance vanishes or explodes.

3.2. Phi-divergence

We now study the behavior of the ϕ-divergence, given by

dϕ (PX,t,PY,t) =
∫ ∞
t

ϕ

(
ft(x)

gt(x)

)
gt(x) dx, (3.3)

where ft and gt are the densities of PX,t and PY,t. That is,

ft(x) =
f(x)

F̄ (t)
, gt(x) =

g(x)

Ḡ(t)
, x > t,

where f and g are the densities of F and G, respectively.

1The condition ρX ̸= ρY ensures that the two distributions are at least distinguishable at the second order.
The case with equal second-order indexes would require a cumbersome higher-order expansion to solve. We
restrict our attention to the current setup.
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We assume that the function ϕ behaves like a power function around 1, with possibly different

behavior on the left and right of 1. The mathematical formulation is provided as follows.

Assumption 3.2 (Local behavior). As h→ 0, the function ϕ satisfies

ϕ (1 + h)− ah ∼ ζ(h) := k+hλ+ + k−hλ−, (3.4)

for some a ∈ R and some non-degenerate convex function ζ(·) on R given above, where h+ =

h1(h>0) and h− = −h1(h<0) denote the positive and negative parts of h, respectively.

Here, the constant a in equation (3.4) can be 0. When one of k+ and k− is zero, we follow

the convention that a quantity asymptotically equivalent to zero is zero.

By Assumption 3.2, we are assuming ϕ(1 + h) can be approximated ah + ζ(h) for small h.

Note that the decomposition into a linear term plus a convex function may not be unique; for

details, see Example 1.

Remark 9. Because the functions ϕ(t) and ϕ(t) + c(t − 1)—provided that they are proper

generating functions for the corresponding divergence—result in the same ϕ-divergence for any

pair of distributions and for any c ∈ R, our anticipated asymptotic approximation should be

invariant with respect to the value of a in Assumption 3.2. As it turns out, this is indeed the

case.

Example 1. All ϕ functions mentioned in Section 2 satisfy Assumption 3.2. Here are some

examples:

• For variation divergence (or, χ-divergence with θ = 1), (3.4) is satisfied with λ = 1 and

infinitely many choices of a, k+, and k−; that is,
(
a, k+, k−

)
∈
{
(c, 1− c, 1 + c) : c ∈ R

}
.

• For Kullback-Leibler divergence, the function ϕ(x) = x log x satisfies (3.4) with

(
a, k+, k−

)
∈
{
(c, 1− c, c− 1) : c ∈ R

}
, λ = 1 or a = 1, k+ = k− =

1

2
, λ = 2

and the function ϕ(x) = x log x− x+ 1 satisfies (3.4) with

(
a, k+, k−

)
∈
{
(c,−c, c) : c ∈ R \ {0}

}
, λ = 1 or a = 0, k+ = k− =

1

2
, λ = 2.

Note that all previously-mentioned examples except of the variation divergence satisfy

ϕ′(1+) = ϕ′(1−) = 0; further, the variation divergence satisfies ϕ′(1+) = 1 and ϕ′(1−) = −1.

Secondly, all previously-mentioned examples (except the variation divergence and χ-divergence

with θ ∈ [1,∞) \ {2}) satisfy ϕ′′(1+) = ϕ′′(1−) > 0; specifically, ϕ′′(1) = 1 for Kullback-Leibler

and Burg divergences, ϕ′′(1) = 1/2 for Jensen-Shannon and Hellinger divergences, ϕ′′(1) = 2

for J, χ2 and Modified-χ2 divergences, ϕ′′(1) = 1/4 for Le Cam divergence, ϕ′′(1) = 1 for

Cressie-Read divergences.

In addition to Assumption 3.2, we require some knowledge of the tail behavior of X and Y

that mirrors Assumption 3.1. That is, we assume 2RV conditions on the densities, which are

given as follows.
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Assumption 3.3 (Second-order RV of densities). The density functions f and g satisfy f ∈
2RV−α,ρX and g ∈ 2RV−α,ρY for some α > 1, some ρX ̸= ρY , both negative, and respective

auxiliary functions AX and AY .

A link between Assumptions 3.1 and 3.3 is now provided. Essentially, Assumption 3.3

implies Assumption 3.1, and their tail indexes are linked through ν = α− 1, as is shown below.

That is, a sufficient condition for 2RV to hold for the densities can be found in Theorem 2.1 of

de Haan and Resnick (1996).2 Further, Assumption 3.3 implies that F̄ ∈ 2RV−ν,ρX and that

Ḡ ∈ 2RV−ν,ρY with ν = α− 1, as stated in the following lemma, which is built on Proposition 6

of Hua and Joe (2011) and will be useful for our asymptotic approximations.

Lemma 10 (Transfer of 2RV). Let h ∈ 2RV−α,ρ, α > 1, ρ < 0, with auxiliary function A(·).
Then

th(t)∫∞
t h(x) dx

− ν = − ν

ν − ρ
A(t) + o (A(t)) ,

where ν = α−1. Moreover,
∫∞
t h(x) dx ∈ 2RV−ν,ρ with auxiliary function A∗(t) = A(t)ν/(ν−ρ).

From this point on, our results will be presented in terms of the tail index of the survival

functions, ν. We are now ready to provide the main result of this section, given as follows.

Theorem 11 (ϕ-divergence asymptotic). Suppose that Assumptions 3.2 and 3.3 hold with ρX >

ρY . Then we have

lim
t→∞

dϕ (PX,t,PY,t)
|AX(t)|λ

= C (ν, ρX , λ) , (3.5)

where ν = α− 1 and C (ν, ρX , λ) is a finite non-negative constant given by

ν

(−ρX)λ

∫ ∞
1

ζ

(
sgn(AX(∞−))

(
ν

ν − ρX
− zρX

))
z−(ν+1) dz. (3.6)

Remark 12. Following a similar proof, we can show that if ρY > ρX , then, similarly to (3.5),

we have

lim
t→∞

dϕ (PX,t,PY,t)
|AY (t)|λ

= C (ν, ρY , λ)

holds with C (ν, ρY , λ) given by

ν

(−ρY )λ

∫ ∞
1

ζ

(
sgn(AY (∞−))

(
zρY − ν

ν − ρY

))
z−(ν+1) dz.

2Specifically, if the functions

ÃX(t) :=
tf ′(t)

f(t)
− α and ÃY (t) :=

tg′(t)

g(t)
− α

have constant sign near ∞ and satisfy, as t → ∞,

ÃX(t) → 0 with
∣∣∣ÃX(t)

∣∣∣ ∈ RVρX , and ÃY (t) → 0 with
∣∣∣ÃY (t)

∣∣∣ ∈ RVρY

for some ρX ≤ 0 and ρY ≤ 0, then both the density functions f and g and the survival functions F̄ and Ḡ are
2RV.
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Remark 13. Recall that ϕ′(1+) and ϕ′(1−) exist, and ϕ′(1+) ≥ ϕ′(1−) holds due to the convexity

of ϕ, and thus, for any ϕ ∈ Φ, (3.4) holds with

(
a, k+, k−

)
∈
{
(c, ϕ′(1+)− c,−ϕ′(1−) + c) : c ∈ R

}
, λ = 1.

Further, if ϕ′(1+) = ϕ′(1−) denoted as ϕ′(1), and ϕ′′(1+) and ϕ′′(1−) exist, then another possible

choice is

a = ϕ′(1), k+ =
ϕ′′(1+)

2
, k− =

ϕ′′(1−)

2
, λ = 2.

Since all previously-mentioned divergences (except variation divergence and χ-divergence

with θ ∈ [1,∞)\{2}), can be formulated to satisfy ϕ′(1) = 0 and ϕ′′(1) > 0, all these divergences

satisfy Assumption 3.2 with a = 0, k+ = k− > 0 and λ = 2, and in turn, C (ν, ρX , λ) in (3.5)

is simplified to

C(ν, ρX , 2) =
ϕ′′(1)

2(−ρX)2
E

[(
ZρX − ν

ν − ρX

)2
]
∈ (0,∞), (3.7)

where Z is Pareto distributed with survival function P(Z > z) = z−ν on [1,∞).

Similarly, these divergences satisfy Assumption 3.2 for some
(
a, k+, k−

)
and λ = 1 such

that k+ = −k−, and the corresponding constant in (3.5) is C (ν, ρX , 1) = 0, regardless of the

sign of AX . In fact, this can also be seen as a consequence of the conclusion for λ = 2 preceding

(3.7).

Remark 14. The function ζ(·) is convex and non-degenerate in a neighbourhood of 0, and

thus, λ ≥ 1, but we must either have λ > 1 and k+, k− ≥ 0 with k+ + k− > 0, or λ = 1 and

k+ + k− ≥ 0. Strict convexity of ζ(·) in a neighbourhood of 0 holds if and only if λ > 1 and

k+, k− > 0. Therefore, strict convexity of ζ(·) in a neighbourhood of 0 ensures (3.5) holds with

positive asymptotic constants; further, C (ν, ρX , λ) in (3.5) is the same regardless of the sign of

AX if k+ = k−, and one may find a similar expression (to (3.7), with Z defined in the same

way) as follows:

C(ν, ρX , λ) =
k+

(−ρX)λ
E

[∣∣∣∣ZρX − ν

ν − ρX

∣∣∣∣λ
]
∈ (0,∞).

Theorem 11 and its two corollaries below help us establish some asymptotic results useful

for constructing the tail similarity measure.

Corollary 15 (Ratio of ϕ-divergences). Suppose that ϕ1 and ϕ2 satisfy Assumption 3.2 with

k+1 = k−1 = k1 > 0, k+2 = k−2 = k2 > 0, and λ1 = λ2. Further, assume that Assumption 3.3

holds. Then, we have
dϕ1 (PX,t,PY,t)
dϕ2 (PX,t,PY,t)

∼ k1
k2
. (3.8)

We have already shown that many ϕ-divergences satisfy the condition in Corollary 15;

namely, all previously-mentioned divergence examples, except for variation divergence and χ-

divergence with some choices of θ.
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A similar result to Corollary 15 is given to asymptotically compare the Wasserstein diver-

gence with p = 1 and a bespoke ϕ-divergence, namely ϕ∗(x) := ϕKL(x)I{x<1} + ϕV (x)I{x≥1}

that satisfies Assumption 3.2 with any tuple

(
a, k+, k−

)
∈
{
(c, 1− c, c) : c ∈ R

}
, λ = 1.

Now, let z0 = (ν/ (ν − ρX))
1/ρX ∈ (1,∞); that is, z0 is the unique solution of zρX − ν

ν−ρX = 0.

Some algebraic manipulations show that, for AX(∞−) > 0, the constant in (3.6) is given by

ν

(−ρX)λ

∫ ∞
1

ζ

(
ν

ν − ρX
− zρX

)
z−(ν+1) dz

=
ν k−

(−ρX)λ

(∫ z0

1

(
zρX− ν

ν−ρX

)
z−(ν+1) dz

)
+

ν k+

(−ρX)λ

(∫ ∞
z0

(
ν

ν−ρX
−zρX

)
z−(ν+1) dz

)
=

ν (k+ + k−)

(−ρX)λ

(∫ ∞
z0

(
ν

ν−ρX
−zρX

)
z−(ν+1) dz

)
=

1

(−ρX)λ
E
[
max

{
ν

ν−ρX
−ZρX , 0

}]
,

which a positive and finite constant since ρX < 0, where Z is Pareto distributed random variable

defined as before. Note that E
[
ZρX − ν

ν−ρX

]
= 0 is used in the second equality from above.

The exact same expression can be derived analogously for AX(∞−) < 0. Going through similar

calculations for C (ν, ρY , λ) in Remark 12 for the case of ρY > ρX . Hence, (3.5) is given by

lim
t→∞

dϕ∗ (PX,t,PY,t)
|AXY (t)|

=
1

(−ρXY )λ
E
[
max

{
ν

ν−ρXY
−ZρXY , 0

}]
, (3.9)

where

ρXY = max{ρX , ρY }, and AXY = AXI{ρX>ρY } +AY I{ρX<ρY }.

Now, if Assumption 3.3 holds, then, by Lemma 10, Assumption 3.1 holds with ν = α − 1 and

auxiliary functions

A∗X = νAX/(ν − ρX) and A∗Y = νAY /(ν − ρY ).

The asymptotic result for the Wasserstein distance in (3.2) states that

lim
t→∞

dW (PX,t,PY,t)
t
∣∣A∗XY (t)∣∣ = C (ν, ρXY , p) =

(∫∞
1

(
z1/ν−2 − z(ρXY +1)/ν−2)p dz)1/p

ν |ρXY |
, (3.10)

where A∗XY = A∗XI{ρX>ρY } + A∗Y I{ρX<ρY }. Combining (3.9) and (3.10), we could conclude the

following result:

Corollary 16 (Wasserstein and ϕ-divergence ratio). Let ϕ∗(t) = ϕKL(t)I{t<1} + ϕV (t)I{t≥1}.

Suppose that Assumption 3.3 holds. Then, we have

lim
t→∞

dW (PX,t,PY,t)
t dϕ∗ (PX,t,PY,t)

=
(−ρXY )λ−1

(∫∞
1

(
z1/ν−2 − z(ρXY +1)/ν−2)p dz)1/p

(ν − ρXY )E [max {ν/ (ν−ρXY )−ZρXY , 0}]
, (3.11)
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where P(Z > z) = z−ν on [1,∞).

The main difference between Corollaries 15 and 16 is that the asymptotic constant in (3.8)

is not dependent on the unobserved tail indexes (ν, ρX and ρY ), which is instead the case in

(3.11). Although constructing a tail similarity measure based on the asymptotic approximation

in Corollary 16 is possible, constructing one based on Corollary 15 is more straightforward.

It suggests that the relative difference between the two sides of equation (3.8) serves as a

measurement of the overarching tail similarity for two distributions with close tails, that is,

they have the same first-order tail index but different second-order tail indexes. Specifically,

for ϕ1 and ϕ2 that satisfy Assumption 3.2 with k+1 = k−1 = k1 > 0, k+2 = k−2 = k2 > 0, and

λ1 = λ2, tail similarity is measured by the relative difference:

rϕ1;ϕ2 (X,Y ) :=

∣∣∣∣dϕ1 (PX,t,PY,t)/dϕ2 (PX,t,PY,t)− k1/k2
k1/k2

∣∣∣∣ = k2
k1

∣∣∣∣dϕ1 (PX,t,PY,t)dϕ2 (PX,t,PY,t)
− k1
k2

∣∣∣∣ . (3.12)

Obviously, the measure depends on the choice of ϕ1 and ϕ2. We shall use the ϕ functions

of Hellinger-divergence and χ2-divergence as an example to illustrate the performance and

applications of this tail similarity measure in Section 4 below.

4. Numerical Experiments

We present two sets of numerical experiments in this section: a simulation study in Sec-

tion 4.1, followed by a real-life data analysis in Section 4.2. To this end, we first estimate

dϕ1
(
PX,t,PY,t

)
and dϕ2

(
PX,t,PY,t

)
in Corollary 15 for the following ϕ-divergence functions:

• Hellinger-divergence with ϕH(x) :=
(√
x− 1

)2
, k+ = k− = 1

4 and λ = 2;

• χ2-divergence with ϕC(x) :=
(x−1)2
x , k+ = k− = 1 and λ = 2.

For ϕ ∈ {ϕH , ϕC}, a plug-in estimator of (3.3) is given by

dϕ

(
P̂X,t, P̂Y,t

)
=

∫ ∞
t

ϕ

(
f̂t(x)

ĝt(x)

)
ĝt(x) dx, (4.1)

where f̂t and ĝt are suitable estimators of the densities of PX,t and PY,t. These densities could be

estimated via the Generalised Pareto Distribution (GPD) though not without computational

issues via Maximum Likelihood Estimation (MLE) (see Del Castillo and Serra (2015)), and

thus, we use a simpler approach. Namely we consider

f̂t(z) =
1

ξ̂X

1

t
(z/t)−1/ξ̂X−1, ĝt(z) =

1

ξ̂Y

1

t
(z/t)−1/ξ̂Y −1 for all z > t,

where ξ̂X and ξ̂Y are suitable extreme value index (EVI) estimates. That is, if we observe a

sample of size n that is decreasingly ordered, x1 ≥ x2 ≥ . . . ≥ xn and the optimal threshold is

k, then f̂t(z) =
1
ξ̂X

1
xk
(z/xk)

−1/ξ̂X−1 for all z > xk with the Hill estimator (see Hill (1975) and

also McNeil et al. (2015)) given by:

ξ̂Hk,n =
1

k

k∑
i=1

log xi − log xk+1. (4.2)

15



Thus, if nX and nY are the sample sizes for X and Y , respectively, then (4.1) is estimated

by

dϕ

(
P̂X,k,nX

, P̂Y,k,nY

)
=

∫ ∞
tk

ϕ
(
ξ̂Y,k,nY

/ξ̂X,k,nX
(z/tk)

1/ξ̂Y,k,nY
−1/ξ̂X,k,nX

) 1

ξ̂Y,k,nY

1

tk
(z/tk)

−1/ξ̂Y,k,nY
−1 dz, (4.3)

where tk := xk ∨ yk for every k. Note that both observed samples for X and Y are assumed to

be decreasingly ordered samples. Taking ϕ ∈ {ϕH , ϕC} in the above, we find that

dϕH

(
P̂X,k,nX

, P̂Y,k,nY

)
= 2− 4

√
ξ̂X,k,nX

ξ̂Y,k,nY

ξ̂X,k,nX
+ ξ̂Y,k,nY

and

dϕC

(
P̂X,k,nX

, P̂Y,k,nY

)
=

(
ξ̂X,k,nX

− ξ̂Y,k,nY

)2
ξ̂Y,k,nY

(
2ξ̂X,k,nX

− ξ̂Y,k,nY

) . (4.4)

Clearly, both vanish when the tail index estimators coincide. Note that for dϕC to exist (i.e., for

(4.3) to be integrable for ϕC), the tail index estimators need to satisfy ξ̂X,k,nX
/ξ̂Y,k,nY

> 1/2,

which also guarantees (4.4) is non-negative. If ξ̂X,k,nX
/ξ̂Y,k,nY

≤ 1/2, then one could compare

the pair (Y,X) instead of (X,Y ), but the dissimilarity measure may differ, since it is not always

a commutative measure. In fact, Definition 1 tells us that all probability semidistances are

symmetric, which is not the case for the class of phi-divergences; self-adjoint divergences are

explained earlier to posses the symmetry property, and therefore, the Hellinger-divergence is

symmetric, while χ2-divergence is not symmetric.

For simplicity, we assume from now on that the samples have equal sizes, nX = nY = n,

and compute the following tail similarity measure

r̂ϕH ;ϕC (X,Y ) = 4

∣∣∣∣∣∣
dϕH

(
P̂X,k,n, P̂Y,k,n

)
dϕC

(
P̂X,k,n, P̂Y,k,n

) − 1

4

∣∣∣∣∣∣ . (4.5)

The measure is computed for various values of k and denoted by r̂H;C(k, n) for each choice of

k. Since we want to understand how well our main result help distinguish similar tails, it is

natural to compare r̂H;C(k, n) with the equivalent EVI ratio

r̂EV I(k, n) :=

∣∣∣∣∣ ξ̂Y,k,nξ̂X,k,n
− 1

∣∣∣∣∣ . (4.6)

4.1. Simulation study

A small simulation study is performed in this section so that we understand the perfor-

mance of our asymptotic approximations and tail similarity measure. Specifically, we apply

Corollary 15 and calculate (4.5) and (4.6) for six pairs of distributions, most of which satisfy

Assumption 3.3. That is, the second-order indexes (ρ) are negative and unequal for all pairs,

except of one pair—when comparing Distributions 1–4 listed below—where those indexes are
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equal, a case where we do not know whether Corollary 15 applies. We believe that it is worth

comparing that pair of distributions even though there is no theoretical support, though any

extrapolation from comparing 1) and 4) should be taken with caution.

We simulate N = 5, 000 samples of size n = 2, 500 from the following distributions with

survival function being 2RV−ν,ρ such that ν = 4 (and in turn, ξ = 1/4):

1) Pareto with F̄ (·) := (1 + ·)−4 on R+; that is, ρ = −1;

2) Paralogistic with F̄ (·) := (1 + ·2)−2 on R+; that is, ρ = −2;

3) Fréchet with F (·) := exp
{
− ·−4

}
on R+; that is, ρ = −4;

4) Inverse-gamma with f(·) := fIG(·; 1) on R+; that is, ρ = −1.

These four distributions are chosen to have the same first-order index (ν), and all pairs are

compared in Figure 1. It would be good to know how the average errors for r̂H;C(k, n) and

r̂EV I(k, n), given by (4.5) and (4.6) behave when the first-order indexes are different, which

is precisely what we plot in Figure 2. Therefore, two additional sampling distributions are

considered as follows:

5) Pareto with F̄ (·) := (1 + ·)−3 on R+; that is, ν = 3 (hence ξ = 1/3), and ρ = −1;

6) LogNormal with µ = 0 and σ = 1; that is, ν = ∞ (and hence ξ = 0);

Further details about the Data Generation Process (DGP) are provided in Appendix C.

We compute the average errors for r̂H;C(k, n) and r̂EV I(k, n), given by (4.5) and (4.6),

respectively, and provide the ratios based on the χ2 and Hellinger divergences in Figures 1 and

2. Recall that the average errors are computed via the Hill estimator—see (4.2)—and we plot

the ratios for various 125 ≤ k ≤ 750, i.e., by considering 5% to 30% upper order statistics.

Among the twelve comparisons we run between Distributions 1–6, all but one produce EVI

estimators that satisfy the integrability condition ξ̂X,k,nX
/ξ̂Y,k,nY

> 1/2, with the comparison

between Distributions 3 and 4 being the only exception. For the latter case, 94% of the N

sample lead to EVI estimators that satisfy the integrability condition; the 6% samples that

violate the condition are discarded, which presumably has a negligible effect on the comparison.

For comparisons between Distributions 1–6, it is not surprising that the condition is mostly

satisfied, because the distributions have the same or close EVIs. What is somewhat surprising

is that the integrability condition is satisfied for all samples generated for comparisons between

Distribution 6 — which has an EVI of 0 — and Distributions 2–4 (shown in the bottom panel

of Figure 2). This emphasizes the limitation of using EVI only for measuring tail similarity.

The overall conclusion in Figures 1 and 2 is that (4.5) provides more accurate estimates

than (4.6) except of the Fréchet vs Inverse-Gamma pair in Figure 1, where the differences

between r̂H;C(k, n) and r̂EV I(k, n) are extremely small. Therefore, we could clearly argue that

our proposed tail similarity in Corollary 15 would be preferred instead of using the vanilla

comparison between the tail indexes that are measured via the Hill estimator in this paper.

Note that N = 5, 000 samples are obtained in Figures 1 and 2 by generatingM = 50 samples

of size n = 2, 500, and for each of the M samples, we bootstrap with replacement m = 100

samples of the same size. We choose this bootstrapping procedure since this procedure is closer

to the blockwise bootstrapping needed for the temporal dependent data discussed in the real

data analysis provided in Section 4.2.
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Figure 1: Averaged r̂H;C(k, n) and r̂EV I(k, n) ratios across N = 5, 000 samples of size n = 2, 500, and relying on
the estimators shown in (4.5) and (4.6), respectively. Comparisons are made for pairs with the same first-order
index (ν), namely, all possible pairs of Distributions 1)–4) that are described before.

We notice in Figure 1 that the second-order index (ρ) has an impact on detecting the degree

of tail dissimilarity, and our estimator in (4.5) is more sensitive—than the Hill estimator in

(4.6)—in capturing fine differences between second-order indexes. The next question is how

the comparisons in Figure 1 would change if the first-order index of the distributions compared

in each pair would be different; Figure 2 answers this question. This like-for-like comparison

between Figures 2 and 1 show that ratios in (4.5) and (4.6) increase when the first-order indexes

are different, which is very much expected. In addition, changing from a heavy tailed distribution

(Distribution 5) in top plots of Figure 2) to a moderately heavy tailed distribution (Distribution

6) in bottom plots of Figure 2) the degree of tail dissimilarity is tamed. We have not included

light tailed distributions (such as Exponential) or very light tailed distributions (such as some

Weibull parameterisations) since these are very unrealistic comparisons, and thus, we compare

either heavy tailed distributions or a heavy tailed distribution with a moderately heavy tailed

distribution. Note that the concept of moderately heavy tailed distributions is in line with the

description in Embrechts et al. (1997).

In a nutshell, the simulation study tells us that small differences between the estimators in

(4.5) and (4.6) for the same pair of distributions would imply that the two distributions are

either having i) the same first-order index or ii) one distribution has a heavy tail and the other

one has a moderately heavy tailed distribution. These guiding principles are not expected to be

universally true, and should be viewed with caution. A lengthy simulation study would clarify

this point, but this would be beyond the scope of this paper. Therefore, we strongly recommend

practitioners to use domain knowledge to validate the choice between i) and ii), which we do in

Section 4.2.
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Figure 2: Averaged r̂H;C(k, n) and r̂EV I(k, n) ratios across N = 5, 000 samples of size n = 2, 500, and relying
on the estimators shown in (4.5) and (4.6), respectively. The top plots compare Distribution 5) with each of the
Distributions 2)–4), while bottom plots compare Distribution 6) with each of the Distributions 2)–4).

4.2. Real data analysis

Our real-life analysis from this section supplements the previous simulation study in Sec-

tion 4.1, and we are interested in comparing different investment strategies (or portfolios), which

usually result in differing first-order tail behaviour. This section relies on a very robust (to the

market risk changes) investment strategy known as Risk Parity (RP) portfolios, which was in-

troduced in Qian (2005) and further explored in the empirical finance literature (Asimit et al.,

2024b; Roncalli, 2013; Roncalli and Weisang, 2016). A detailed description of such investment

strategies can be found in Roncalli (2013), while Asimit et al. (2024b) and Asimit et al. (2024a)

provide a more theoretical approach of such strategies that could be extended to risk sharing

problems. For completeness, a brief background on the four RP portfolios discussed in this

section is provided in Appendix B.

Hallerbach et al. (2004) developed a framework for constructing an investment portfolio with

social responsible elements that is measured by SRI scores. The SRI scores of these companies

were constructed from the questionnaires gathered by the SiRi research group in Year 2000.3

The raw dataset in their study contains 590 firms from Europe, US and other countries in the

Rest of the World.4 We select 100 US firms in this dataset and collect their daily stock returns

from Year 2001 to 2010 (i.e., a ten-year period covers the 2008 global financial/banking crisis).

3SiRi is a cooperation of 12 European Social research companies that developed an identical research ques-
tionnaire for analysing companies. A full description of the questionnaires is provided in Hallerbach et al. (2004).

4We would like to thank Aloy Soppe for making the original raw dataset available to us.
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Then, based on the 100 US firms’ daily stock returns of size n = 2, 500 (i.e. 250 stock trading

days per year during these 10 years), we create the following five portfolios:

• EW: equal weighted portfolio;

• RP-SD: RP portfolio constructed on the standard deviation (SD) risk measure;

• IW-SD: inverse weighted portfolio constructed on the SD risk measure;

• RP-CVaR95%: RP portfolio constructed on the Conditional Value at Risk (CVaR) risk

measure at 95% level;

• IW-CVaR95%: inverse weighted portfolio constructed on the CVaR risk measure at 95%

level.

For detailed descriptions of the portfolios, see Appendix B.

The computations in Figure 3 are made by bootstrapping N = 1, 000 samples from our

observational data and for various 250 ≤ k ≤ 500, i.e., by considering 10% to 20% upper order

statistics. The averaged r̂H;C(k, n) and r̂EV I(k, n) ratios are plotted in Figure 3 in a similar

way to those provided in the simulation study in Figures 1 and 2. As anticipated in Section 4.1,

we require in Section 4.2 to use a bespoke resampling technique that is more suitable for time

series data. Therefore, we use the standard blockwise bootstrapping in Figure 3.
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Figure 3: Averaged r̂H;C(k, n) (left-hand-side plot computed via (4.5)) and r̂EV I(k, n) (right-hand-side computed

via (4.6)) across N = 1, 000 bootstrapped samples of size n = 2, 500 based on the real-life daily stock returns of

the 100 selected US companies.

We observe that the four comparisons in Figure 3 are quite different though the averaged

r̂H;C(k, n) and r̂EV I(k, n) for each of the four pairs are extremely negligible. These plots are

not provided in this paper so as to avoid redundant information, but they are available upon

request. Therefore, we choose this concise pictorial representation in Figure 3. This scenario

is discussed at the end of Section 4.1, and we may conclude the four pairs of portfolios are

either very tail similar or one portfolio distribution has a heavy tail and the other one has a

moderately heavy tailed distribution.
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First, note that the observation period (01/01/2001 to 31/12/2010) contains periods of bull

and bear markets with very different behaviour, and a good measure of tail dissimilarity should

exhibit an oscillatory behaviour when comparing these portfolios. Therefore, good practice

reasoning would refute the possibility of having tail similarity for the two pairs with a flat

behaviour, i.e., RP-SD vs IW-SD and RP-SD vs EW. Further, the same good practice reasoning

would suggest only RP-CVaR95% vs EW or RP-CVaR95% vs IW-CVaR95% may exhibit some

degree of tail similarity based on what we observe in Figure 3.

Second, we provide some domain knowledge to validate and clarify the claims from the

previous paragraph. The tail discrepancy between the RP-SD vs EW portfolios is confirmed

by the right-panel plot of Figure B.5, where the EW portfolio is expected to show a more

pronounced tail risk exposure; a theoretical foundation of why any RP portfolios are less risky

than EW portfolios, and in turn, tail discrepancy is highly expected can be found in Theorem 1 c)

of Asimit et al. (2024b). The left-panel plot of Figure B.5 may allude tail similarity between the

RP-SD vs IW-SD portfolios due to similar risk positions of the two portfolios, which would not

be true; in fact, more empirical evidence in that sense is available in Asimit et al. (2024b). The

oscillatory shape in Figure 3 is just another source of soft validation of such tail dissimilarity.

These two comparisons (RP-SD vs IW-SD and RP-SD vs EW) are also influenced by the risk

measure choice, namely SD, which is not tail sensitive by design, and thus, RP-SD and IW-

SD portfolios are unlikely to be tail similar; recall that RP portfolios only allocate the overall

risk equally amongst the individual assets, but the overall perception of risk is measured by a

non-tail risk measure.

Third, we explain the last two comparisons, namely RP-CVaR95% vs IW-CVaR95% and

RP-CVaR95% vs EW for which our good practice reasoning explained on our first point. The-

orem 1 c) of Asimit et al. (2024b) suggests that RP-CVaRp and EW should be tail dissimilar

for any 0 ≤ p < 1, and thus, such oscillatory behavior in Figure 3 should not imply tail sim-

ilarity. Portfolios RP-CVaR95% vs IW-CVaR95% show a non-oscillatory behavior (irrespective

of the chosen ratio estimator, either by (4.5) or (4.6)) after a certain threshold—namely, when

k/n ≥ 325/2, 500 = 13% – and thus, tail similarity is inferred in this case.

As a conclusion, we found that our proposed ratio estimator in (4.5) is more sensible than

the standard Hill ratio estimator in (4.6), but both provide meaningful information that could

complement each other. We recommend using both ratio estimators for a more informative

comparisons by keeping in mind the guiding principles of good practice provided in the last

paragraph of Section 4.1. Adding domain knowledge is highly recommended to validate and

clarify the conclusions of our guiding principles, especially in situations with no clear-cut con-

clusion.

5. Conclusions

This paper introduces novel measures of tail similarity designed to comprehensively assess

the overarching tail behaviour between two probability distributions. The theoretical foundation

of these measures is broad, offering a versatile framework for quantifying tail similarity. Our

approach supplements the traditional practice of comparing the (first-order) extreme index

estimates in finite samples by incorporating additional sources of validation.
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Empirical evidence presented in this study showcases the core focus of our research, in

particular providing a wide range of new EVI dissimilarity estimators, and paves the way for

novel lines of research. Additionally, our analysis of real-life data illustrates the conclusions

drawn from our simulation study, and shows how the proposed measures of tail similarity

may be used in practice. The conclusion is that our tail similarity measure and the very

basic comparisons between the (first-order) extreme index estimates provide complementary

information, and one should analyse them in tandem rather than in isolation. We provide some

very simple guiding principles of good practice when using the two sources of information, which

are recommended to be used with domain knowledge to validate and clarify the conclusions of

our guiding principles especially in situations with no clear-cut conclusion as it is often the case

in real-life applications.
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Appendix A. Phi-divergences Examples

A summary of commonly used ϕ-divergences is provided in Table A.1, and a pictorial repre-

senting of these functions is given in Figure A.4. We see that the variation divergence penalises

more than any other ϕ-divergence at small dissimilarities around 1, which makes the variation

divergence a very conservative ϕ-divergence; we also notice in Figure A.4 that χ-divergence

with θ = 3 and Modified χ2-divergence penalise more than any other ϕ-divergence at large

dissimilarities. Therefore, we expect goodness-of-fit tests to behave differently for different

ϕ-divergences.

Table A.1: Commonly used ϕ-divergences

ϕ function Statistical distance

ϕKL(x) = x log x− x+ 1 Kullback-Leibler divergence

ϕB(x) = − log x+ x− 1 Burg divergence

ϕJ(x) = (x− 1) log x J-divergence

ϕJS(x) = − (x+ 1) log ((1 + x)/2) + x log x Jensen-Shannon divergence

ϕC(x) = (x− 1)2 /x χ2-divergence

ϕMC(x) = (x− 1)2 Modified χ2-divergence

ϕH(x) = (
√
x− 1)

2
Hellinger divergence

ϕV (x) = |x− 1| Variation divergence

ϕθ(x) = |x− 1|θ with θ > 1 χ-divergence

ϕLC(x) =
(x−1)2
4(x+1) Le Cam divergence

ϕCR(x) =
1−θ+xθ
θ(1−θ) with θ ∈ R \ {0, 1} Cressie-Read divergence

Figure A.4: Plot of commonly used ϕ functions.
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Appendix B. Risk Parity

A short description of RP strategies is now provided. The decision-maker aims to invest in

a given opportunity set of d assets with losses (i.e. negative returns) of X = (X1, . . . , Xd). The

investment strategy is given by a vector of proportions α ∈ ∆d, where ∆d is the unit d-simplex

∆d := {x ∈ Rd+ : 1Tx = 1} for any positive integer d; recall that Rd+ := {x ∈ Rd : x ≥ 0}
is the standard polyhedral cone of the positive quadrant of Rd. We also use the notation

Rd++ := {x ∈ Rd : x > 0}. This setting leads to a portfolio loss of αTX.

The financial assets are defined on (Ω,F ,P), the same atomless probability space defined

earlier. We assume that the risk preferences of an investor are represented by the risk measure

φ, which is a function that maps an element of X to the real set, i.e. φ : X → R ∪ {−∞,∞}.
Therefore, the investor’s perception of risk is given by R(α) := φ

(
αTX

)
.

For a risk measure φ that is homogeneous of order τ > 0 (i.e., φ (cY ) = cτφ(Y ) for any

Y ∈ X and c ≥ 0), the Euler’s Homogeneous Function Theorem implies that

R (α) =
1

τ

d∑
k=1

αk
∂R (α)

∂αk
=

d∑
k=1

RCk(α), where RCk (α) :=
αk
τ

∂φ
(
αTX

)
∂αk

. (B.1)

By definition, RCk(α) is the risk contribution of the kth individual risk. An investment strategy

α ∈ ∆d ∩ Rd++ is a RP portfolio if RCk (α) = 1
dφ
(
αTX

)
for all k ∈ {1, 2, . . . , d}, where

RCk(α) is given in (B.1). When φ = SD (or φ = CVaR95%), this RP strategy with risk

preferences ordered by the standard deviation and is denoted as α∗SD (or α∗CVaR95%), is an

RP strategy with φ = SD (or φ = CVaR95%). Recall that SD(·) :=
√
E(·2)−

(
E(·)

)2
and

CVaRp(·) = mint∈R{t+ 1
1−pEmax(· − t, 0)} on L0 for any 0 ≤ p < 1.

We next provide some numerical evidence that helps us to understand the performance

of RP portfolios. An RP portfolio constructed on the standard deviation (SD) risk measure

(denoted as RP-SD) does not distinguish between independent and comonotonic risks; e.g., see

Roncalli (2013). Therefore, the risk management literature tends to compare the performance

of RP portfolios with the so-called Inverse Weighted (IW) portfolio, which was originally coined

by the Bridgewater asset management firm in the 1990s. Specifically, a portfolio is said to be

in parity when weights are inverse proportional to the asset-class risk position, and therefore,

such IW portfolios are an earlier version of RP portfolios, but different than the formal RP

portfolios defined here. The mathematical formulation of IW portfolios with SD (resp., CVaR)

risk preferences is given in (B.2) (resp., (B.3)) is denoted as IW-SD (resp., IW-CVaR):

α∗∗SD =

(
1/SD(X1)∑d
l=1 1/SD(Xl)

, . . . ,
1/SD(Xd)∑d
l=1 1/SD(Xl)

)T
(B.2)

and

α∗∗CV aR =

(
1/CVaR95%(X1)∑d
l=1 1/CVaR95%(Xl)

, . . . ,
1/CVaR95%(Xd)∑d
l=1 1/CVaR95%(Xl)

)
. (B.3)

where Xl is asset daily losses (i.e. negative returns) of an individual asset l in a portfolio of d

assets. Further details about IW portfolios and how to compare with RP portfolios are available

in Clarke et al. (2013), while a more detailed analysis is provided in Asimit et al. (2024b).
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Beside IW portfolios, Equal Weighted (EW) portfolios (when α = 1
d1) are another well-

known benchmark portfolios that are introduced in the seminal paper of DeMiguel et al. (2009)

for which the same weight is assumed to every asset. Such portfolios have been praised for

their blindness to historical trends and have been proved to be insensitive to market changes,

a property shared with IW and RP portfolios. There is an extensive literature that compares

the performance of EW vs RP portfolios; e.g., see (Asimit et al., 2024b; Fisher et al., 2015;

Lassance et al., 2022).

We illustrate this section with a small simulation study (as shown in Figures B.5 and B.6)

in order to familiarise the reader with the behaviour of various investment strategies that we

provide in Figures 3. Clearly, EW vs IW portfolios are easily computable, which is not the

case for RP portfolios. Bespoke algorithms for RP-SD and RP-CVaR portfolios are available

in (Asimit et al., 2024a; Bai et al., 2016; Spinu, 2013) and (Asimit et al., 2024b; Mausser and

Romanko, 2018), respectively.

Our first point is about the anecdotal claim alluding that the RP estimation is less sensitive

with respect to the underlying dependence among risks and thus, the covariance matrix estima-

tion error may be less detrimental when constructing RP portfolios than any other investment

strategies base on risk optimisation such as mean-variance; see Section 3.2.3.4 in Roncalli (2013)

or Maillard et al. (2010). More empirical evidence is provided in Figure B.5, where we generate

N = 1, 000 random (positive definite) covariance matrices Σ
(k)
d , k ∈ {1, . . . , N} for various d.

Then, we compute the ratios between the risk position of RP-SD portfolio and its corresponding

IW and EW competitive portfolios. That is, we compute√√√√√√
(
α∗SD;(k)

)T
Σ
(k)
d α∗SD;(k)(

α∗∗SD;(k)
)T

Σ
(k)
d α∗∗SD;(k)

and

√√√√√√
(
α∗SD;(k)

)T
Σ
(k)
d α∗SD;(k)

1
d2

(
1TΣ

(k)
d 1

) ,

where α∗SD;(k) is the RP-SD portfolio risk proportions and α∗∗SD;(k) is the IW-SD portfolio

risk proportions (as in (B.2)) for the kth replicate.
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Figure B.5: Boxplots of ratios between the standard deviation of RP-SD and IW-SD portfolios (based on various

d assets) are shown in the left-panel plot, while the corresponding ratios between RP-SD and EW portfolios are

displayed in the right plot; computations are based on N = 1, 000 random (positive definite) covariance matrices.

In the right panel of Figure B.5, RP portfolios are shown to be less risky than their corre-

sponding EW portfolio, since the ratios between RP-SD and EW are shown to be less than 1,
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which confirms the result in Theorem 1 c) of Asimit et al. (2024b). The left panel of Figure B.5

shows that the risk of RP-SD and IW-SD portfolios are not significantly different, since the

ratios are close to 1. The RP literature discusses such pattern when the risk is measured via

SD, and one may believe that this is true for risk preferences measured by other risk measures.

We show that such behaviour is different in Figure B.6, where tail risk measures (specifically,

CVaR) is considered.

We redo the previous computations in Figure B.6 when the risk preferences are ordered

by CVaR95% instead of SD, while IW-CVaR95% is the equivalent portfolio in (B.3). Note

that we only generate random covariance matrices for computations shown in Figure B.5, since

variance based computations (for RP-SD and IW-SD) require only information about the sample

covariance matrix, and thus, we have not simulated the N = 1, 000 asset loss/return samples

in the SD examples. This is not the case for CVaR95% computations, where the sample losses

(i.e. X) are needed. That is, we compute

CVaR95%

((
α∗CV aR;(k)

)T
X(k)

)
CVaR95%

((
α∗∗CV aR;(k)

)T
X(k)

) and

CVaR95%

((
α∗CV aR;(k)

)T
X(k)

)
CVaR95%

(
1
d1

TX(k)
) ,

where α∗CV aR;(k) and α∗∗CV aR;(k) are the RP-CVaR95% and IW-CVaR95% portfolio risk pro-

portions for the kth replicate, respectively; note that α∗∗CV aR;(k) are computed as in (B.3).
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Figure B.6: Boxplots of ratios between the CV aR95% of RP-CV aR95% and IW-CV aR95% portfolios (based on

various d assets) are shown in the left-panel plot, while the corresponding ratios between RP-CV aR95% and EW

portfolios are displayed in the right plot; computations are based on N = 1, 000 samples of size n = 1, 000 from

multivariate normal returns with zero mean vectors and random (positive definite) covariance matrices.

Figure B.6 computations are made by generating N = 1, 000 samples of size n = 1, 000

multivariate normal distributed (for various d-asset portfolios) with zero mean vectors and

random covariance matrices as in SD examples earlier. We note that the right-panel plots in

Figures B.5 and B.6 show similar conclusions, which are in accordance with Theorem 1 c) of

Asimit et al. (2024b). The left-panel plots are different and show that the risk position of

RP-CVaR95% portfolio is smaller than the IW-CVaR95% portfolio (as in Figure B.6), which is

different with our findings in Figure B.5. This is a noteworthy empirical result and explains

the importance of tail risk measures (e.g., CVaR) compared to moment-like risk measures (e.g.,

SD).

26



Appendix C. Data Generation Process (DGP)

The DGP processes used in this paper are detailed in this section. First, we describe the

specific parametric family used in Section 4.1. Note that fIG(·;α) := γ4

Γ(γ) ·
−5 exp

{
− γ/ ·

}
on

R+ is the pdf of the Inverse-gamma distribution as defined in the actuar R package for any

γ > 0; in fact, all distributional class parameterisations considered in this section are exactly

as in the actuar R package, except of the Fréchet that is simulated from first principles. The

precise R commands are as follows:

1) Pareto: rpareto(n=2500, shape=4, scale=1).

2) Paralogistic: rparalogis(n=2500, shape=2, rate=1, scale=1).

3) Fréchet : (− logU)−1/4, where U ∼ U [0, 1].

4) Inverse-gamma: rinvgamma(n=2500, shape=4, rate=1, scale=1).

Distribution 5) is the same as Distribution 1), but with shape=3, while Distribution 6) is fairly

standard and no additional information would be needed.

Second, we briefly describe the steps of our DGP in Section 4.2. That is, the DGP in

Figure B.5 is a repetition (for N = 1, 000 times) of the following steps:

• Step 1: The variance of each set of d assets is randomly generated from U [0, 10] so that we

achieve a wide range of individual asset’s variance when computing the IW-SD portfolio

risk proportions.

• Step 2: Generate random positive definite correlation matrices, which are further trans-

formed so that the individual asset’s variances are as generated in Step 1.

Further, the DGP in Figure B.6 is a repetition (for N = 1, 000 times) of the following steps:

• Steps 1 & 2: Same as the DGP in Figures B.5.

• Step 3: Generate n = 1, 000 individual asset daily losses (i.e. negative returns) from a

multivariate normal distribution with a zero mean vector and covariance matrix that is

generated as in Steps 1 & 2, in order to perform the necessary sample based calculations

for the IW-CVaR and RP-CVaR portfolios.

Appendix D. Proofs

Appendix D.1. Proof of Lemma 6

By Lemma 3 of Hua and Joe (2011),

h(t) = kht
−αlh(t)

for some kh > 0 and slowly varying function lh(·) such that limt→∞ lh(t) = 1. Therefore, for

fixed ε > 0, there exists a large th(ε), such that, for all min{x0t, t} > th and all x ≥ x0,

1− ε ≤ lh(xt)

lh(t)
≤ 1 + ε.
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Hence, for t large such that min{x0t, t} > th,

sup
x≥x0

∣∣∣∣ h(xt)

x−αh(t)
− 1

∣∣∣∣ = sup
x≥x0

∣∣∣∣kh(xt)−αlh(xt)khx−αt−αlh(t)
− 1

∣∣∣∣ ≤ ε.

This completes the proof.

Appendix D.2. Proof of Lemma 7

Lemma 7a) is a result known in the literature; see, e.g., Remark 2.4 of Mao et al. (2012).

To prove Lemma 7b), write s = 1/H̄(t). We have H̄←
(
H̄(t)

)
=
(
1/H̄

)← (
1/H̄(t)

)
= UH(s)

and, for any ϵ(s) > 0,

UH(s) ≤ t ≤ UH(s(1 + ϵ(s))), (D.1)

where we applied Proposition A.3(v) of McNeil et al. (2015) to the right continuous function

1/H̄ and applied equation (0.6c) of Resnick (2008). For arbitrarily fixed ε ∈ (0, 1), letting

ϵ(s) = ε, we have from (D.1) and the regular variation of UH that

1 ≥ UH(s)

t
≥ UH(s)

UH(s(1 + ε))
→ (1 + ε)−1/ν .

The first asymptotic relation in b) follows from the arbitrariness of ε.

Now we prove the second relation. Obviously,∣∣∣∣∣H̄←
(
H̄(t)

)
t

− 1

∣∣∣∣∣ =
∣∣∣∣UH(s)t

− 1

∣∣∣∣ ≤ ∣∣∣∣ UH(s)

UH(s(1 + ϵ(s)))
− 1

∣∣∣∣ . (D.2)

Note that UH ∈ 2RV1/ν,ρ/ν with an auxiliary function that satisfies

a(s) = ν−2A (UH(s)) = ν−2A
(
H̄←

(
H̄(t)

))
∼ ν−2A(t). (D.3)

By Proposition 5, we have, for any fixed ε, δ > 0, there exists s0 = s0 (ε, δ, ν, ρ), such that, for

all t large with s > s0, it holds that∣∣∣∣∣∣
UH(s)

UH(s(1+ϵ(s))) − (1 + ϵ(s))−1/ν

a(s)
− (1 + ϵ(s))−1/ν

(1 + ϵ(s))−ρ/ν − 1

ρ/ν

∣∣∣∣∣∣
≤ ε (1 + ϵ(s))−1/ν

(∣∣∣∣∣(1 + ϵ(s))−ρ/ν − 1

ρ/ν

∣∣∣∣∣+ (1 + ϵ(s))−ρ/ν (1 + ϵ(s))δ
)
,

where, by convention, (·ρ − 1) /ρ is interpreted as log(·). With ϵ(s) ↓ 0, the right-hand side

above can be made close enough to ε. Hence, for s sufficiently large,∣∣∣∣∣∣
UH(s)

UH(s(1+ϵ(s))) − (1 + ϵ(s))−1/ν

a(s)

∣∣∣∣∣∣ ≤ 2ε. (D.4)
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By (D.2), for t large,∣∣∣∣∣∣
H̄←(H̄(t))

t − 1

A(t)

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
UH(s)

UH(s(1+ϵ(s))) − 1

A(t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
UH(s)

UH(s(1+ϵ(s))) − (1 + ϵ(s))−1/ν

A(t)

∣∣∣∣∣∣+
∣∣∣∣∣(1 + ϵ(s))−1/ν − 1

A(t)

∣∣∣∣∣
≤

∣∣∣∣∣∣
UH(s)

UH(s(1+ϵ(s))) − (1 + ϵ(s))−1/ν

a(s)

∣∣∣∣∣∣
∣∣∣∣ a(s)A(t)

∣∣∣∣+ (1 + ε)

∣∣∣∣ ϵ(s)νA(t)

∣∣∣∣
≤ (1 + ε)

(
2εν−2 +

∣∣∣∣ ϵ(s)νA(t)

∣∣∣∣) ,
where in the last step we applied (D.3) and (D.4). Letting ϵ(s) = o (|A(t)|), we conclude that∣∣∣∣∣∣

H̄←(H̄(t))
t − 1

A(t)

∣∣∣∣∣∣→ 0,

which completes the proof.

Appendix D.3. Proof of Theorem 8

We only prove for the case with ρX > ρY because the other case with ρX < ρY can be

proved in a similar way. In this case, ρXY = ρX and AXY = AX .

Write UF (·) = F←(1− 1/·) and UG(·) = G←(1− 1/·). We have that, for q ∈ (0, 1),

F̄←t (q) = F̄←
(
F̄ (t)q

)
= UF

(
1

F̄ (t)q

)
and Ḡ←t (q) = Ḡ←

(
Ḡ(t)q

)
= UG

(
1

Ḡ(t)q

)
.

Consider the ratio of

dW,p (PX,t,PY,t)p

tp |AX(t)|p
=

∫ 1

0

∣∣F̄←t (q)− Ḡ←t (q)
∣∣p

tp |AX(t)|p
dq

=

∫ 1

0

∣∣∣∣ F̄←t (q)− Ḡ←t (q)

tAX(t)

∣∣∣∣p dq
=

∫ 1

0

∣∣∣∣∣ F̄←t (q)− tq−1/ν

tAX(t)
− Ḡ←t (q)− tq−1/ν

tAY (t)

AY (t)

AX(t)

∣∣∣∣∣
p

dq. (D.5)

Note that, by the Cr inequality, there exists some constant Cp > 0, such that the integrand

above is bounded by

Cp

∣∣∣∣∣ F̄←t (q)− tq−1/ν

tAX(t)

∣∣∣∣∣
p

+ Cp

∣∣∣∣∣Ḡ←t (q)− tq−1/ν

tAY (t)

AY (t)

AX(t)

∣∣∣∣∣
p

. (D.6)
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Further note that, with s := 1/F̄ (t) and z = 1/q, there exists some constant C ′p > 0, such that

∣∣∣∣∣ F̄←t (q)− tq−1/ν

tAX(t)

∣∣∣∣∣
p

=

∣∣∣∣∣∣
UF (sz)
UF (s)

UF (s)
t − z1/ν

AX(t)

∣∣∣∣∣∣
p

=

∣∣∣∣∣∣
UF (s)
t

(
UF (sz)
UF (s) − z1/ν

)
+
(
UF (s)
t − 1

)
z1/ν

AX(t)

∣∣∣∣∣∣
p

≤ C ′p

∣∣∣∣∣∣
UF (s)
t

(
UF (sz)
UF (s) − z1/ν

)
AX(t)

∣∣∣∣∣∣
p

+

∣∣∣∣∣
UF (s)
t − 1

AX(t)
z1/ν

∣∣∣∣∣
p
 .

Fix ε, δ > 0 such that p/ν + δp < 1. By Lemma 7b), for t large enough, the second term in

the parenthesis above is bounded by εzp/ν = εq−p/ν , which is integrable over q ∈ (0, 1] because

ν > p. Moreover, write aX(·) = ν−2AX(UF (·)). By Lemma 7a) and Proposition 5, there exists

s0 = s0 (ε, δ, ν, ρX), such that, for all t large with s > s0, it holds that∣∣∣∣∣∣
UF (s)
t

(
UF (sz)
UF (s) − z1/ν

)
AX(t)

∣∣∣∣∣∣ ≤ (1 + ε)

∣∣∣∣∣∣
UF (sz)
UF (s) − z1/ν

aX(s)

∣∣∣∣∣∣
∣∣∣∣ aX(s)AX(t)

∣∣∣∣
≤ (1 + ε)2ν−2

∣∣∣∣∣∣
UF (sz)
UF (s) − z1/ν

aX(s)

∣∣∣∣∣∣
≤ (1 + ε)2ν−2

(
(1 + ε)

∣∣∣∣∣z1/ν zρX/ν − 1

ρX/ν

∣∣∣∣∣+ εz1/νzδ

)
,

where in the second step we used the fact that UF (s) ∼ t and in the third step we used (D.3).

Therefore, using Cr inequality again, we have∣∣∣∣∣∣
UF (s)
t

(
UF (sz)
UF (s) − z1/ν

)
AX(t)

∣∣∣∣∣∣
p

≤ (1 + ε)2pν−2pC ′′p

(
(1 + ε)p

(ρX/ν)
p

∣∣∣z1/ν (zρX/ν − 1
)∣∣∣p + εzp/ν+δp

)

holds for some constant C ′′p > 0. Since

(1 + ρX) p

ν
< 1,

p

ν
< 1, and

p

ν
+ δp < 1,

the right-hand side above as a function of q = 1/z is integrable over q ∈ (0, 1]. Similar arguments

can be made for the second term in (D.6) by further using the fact that AY (t)/AX(t) → 0.

Hence, by (D.5) and the Dominated Convergence Theorem, we have

lim
t→∞

dW,p (PX,t,PY,t)p

tp |AX(t)|p
=

∫ 1

0
lim
t→∞

∣∣∣∣∣ F̄←t (q)− tq−1/ν

tAX(t)
− Ḡ←t (q)− tq−1/ν

tAY (t)

AY (t)

AX(t)

∣∣∣∣∣
p

dq

=

∫ 1

0

∣∣∣∣∣ limt→∞

F̄←t (q)− tq−1/ν

tAX(t)

∣∣∣∣∣
p

dq
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=

∫ 1

0

∣∣∣∣∣∣ limt→∞

UF (1/(F̄ (t)q))
t − q−1/ν

AX
(
UF
(
1/F̄ (t)

))
∣∣∣∣∣∣
p

dq

=

∫ 1

0

∣∣∣∣∣∣∣ limt→∞
ν−2

UF (1/(F̄ (t)q))
UF (1/F̄ (t))

− q−1/ν

aX
(
1/F̄ (t)

)
∣∣∣∣∣∣∣
p

dq

=

∫ 1

0

∣∣∣∣∣ν−2q−1/ν q−ρX/ν − 1

ρX/ν

∣∣∣∣∣
p

dq

=
1

νp |ρX |p
∫ ∞
1

(
z1/ν−2 − z(1+ρX)/ν−2

)p
dz.

It is straightforward to see that the integration on the right-hand side above is finite. Taking

1/p-th power on both sides completes the proof.

Appendix D.4. Proof of Lemma 10

Write h∗(t) =
∫∞
t h(x) dx. By Proposition 6 of Hua and Joe (2011), h∗(t) ∈ 2RV−α+1,ρ with

the auxiliary function defined as above, and it holds that

h∗(t) = th(t)

(
1

ν
+
A(t)

ρ

(
1

ν − ρ
− 1

ν

)
+ o (A(t))

)
,

which implies

h∗(t) =
th(t)

ν

(
1 +

A(t)

ρ

(
ν

ν − ρ
− 1

)
+ o (A(t))

)
=
th(t)

ν

(
1 +

A(t)

ν − ρ
+ o (A(t))

)
.

Therefore,

th(t)− νh∗(t)

h∗(t)
=

th(t)− th(t)
(
1 + A(t)

ν−ρ + o (A(t))
)

th(t)
ν

(
1 + A(t)

ν−ρ + o (A(t))
)

= −
ν
(
A(t)
ν−ρ + o (A(t))

)
1 + A(t)

ν−ρ + o (A(t))

= − ν

ν − ρ
A(t) + o (A(t)) ,

which completes the proof.

Appendix D.5. Proof of Theorem 11

Recall equation (3.3). We have

dϕ (PX,t,PY,t) =
∫ ∞
t

ϕ

(
f(x)

g(x)

Ḡ(t)

F̄ (t)

)
g(x)

Ḡ(t)
dx

=

∫ ∞
1

ϕ

(
f(zt)/F̄ (t)

g(zt)/Ḡ(t)

)
tg(zt)

Ḡ(t)
dz

=

∫ ∞
1

ϕ (1 + h(z, t))
tg(zt)

Ḡ(t)
dz,
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where

h(z, t) =
f(zt)/F̄ (t)− g(zt)/Ḡ(t)

g(zt)/Ḡ(t)
.

It is straightforward to see that for every t,∫ ∞
1

h(z, t)
tg(zt)

Ḡ(t)
dz = 0. (D.7)

Hence, we have

dϕ (PX,t,PY,t)
|AX(t)|λ

=
1

|AX(t)|λ

∫ ∞
1

ϕ (1 + h(z, t))
tg(zt)

Ḡ(t)
dz

=
1

|AX(t)|λ

∫ ∞
1

(ϕ (1 + h(z, t))− ah(z, t))
tg(zt)

Ḡ(t)
dz

=

∫ ∞
1

ϕ (1 + h(z, t))− ah(z, t)

ζ (h(z, t))

ζ (h(z, t))

|AX(t)|λ
tg(zt)

Ḡ(t)
dz

=
|A∗X(t)|

λ

|AX(t)|λ

∫ ∞
1

ϕ (1 + h(z, t))− ah(z, t)

ζ (h(z, t))
ζ

(
h(z, t)∣∣A∗X(t)∣∣

)
tg(zt)

Ḡ(t)
dz, (D.8)

where A∗X(t) = AX(t)ν/(ν−ρX), in the second step we used (D.7), and in the last step we used

the fact that

ζ(ch) = ζ(h)cλ, h ∈ R, c > 0. (D.9)

By Karamata’s Theorem (see Resnick, 2007, Theorem 2.1) and Lemma 6,

tg(zt)

Ḡ(t)
=
ztg(zt)

Ḡ(zt)

Ḡ(zt)

zḠ(t)
∼ νz−(ν+1), (D.10)

where the asymptotic relation holds uniformly over z ∈ (1,∞). A similar conclusion can made

for tf(zt)/F̄ (t).

Recall A∗X(t) given above and write A∗Y (t) = AY (t)ν/(ν − ρY ). By (2.7) and Lemma 10, it

holds uniformly over z ∈ (1,∞) that

f(zt)

F̄ (t)
− g(zt)

Ḡ(t)

=
f(zt)

F̄ (zt)

F̄ (zt)

F̄ (t)
− g(zt)

Ḡ(zt)

Ḡ(zt)

Ḡ(t)

=
1

tz

(
ν − ν

ν − ρX
AX(tz) + o (AX(tz))

)(
z−ν + z−ν

∫ z

1
uρX−1 duA∗X(t) + o (A∗X(t))

)
− 1

tz

(
ν − ν

ν − ρY
AY (tz) + o (AY (tz))

)(
z−ν + z−ν

∫ z

1
uρY −1 duA∗Y (t) + o (A∗Y (t))

)
=

1

tz
(ν −A∗X(tz) + o (AX(tz)))

(
z−ν + z−ν

zρX − 1

ρX
A∗X(t) + o (A∗X(t))

)
− 1

tz
(ν −A∗Y (tz) + o (AY (tz)))

(
z−ν + z−ν

zρY − 1

ρY
A∗Y (t) + o (A∗Y (t))

)
=

1

tz

(
νz−ν

zρX − 1

ρX
A∗X(t)− z−νA∗X(tz) + o (A∗X(t))

)
, (D.11)
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which is interpreted as

lim
t→∞

sup
z>1

∣∣∣∣∣∣
f(zt)/F̄ (t)− g(zt)/Ḡ(t)− 1

tz

(
νz−ν z

ρX−1
ρX

A∗X(t)− z−νA∗X(tz)
)

A∗X(t)

∣∣∣∣∣∣ = 0. (D.12)

Dividing both the numerator and denominator of the left-hand side of (D.12) by g(zt)/Ḡ(t),

we obtain

lim
t→∞

sup
z>1

∣∣∣∣∣h(z, t)A∗X(t)
−
νz−ν−1 z

ρX−1
ρX

A∗X(t)− z−ν−1A∗X(tz)

A∗X(t)tg(zt)/Ḡ(t)

∣∣∣∣∣ = 0.

It follows that for fixed ε > 0, there exists a t1 = t1(ε), such that, for all large t > t1(ε) and all

z > 1, ∣∣∣∣h(z, t)A∗X(t)

∣∣∣∣ ≤
∣∣∣∣∣νz
−ν−1 zρX−1

ρX
A∗X(t)− z−ν−1A∗X(tz)

A∗X(t)tg(zt)/Ḡ(t)

∣∣∣∣∣+ ε

≤ (1 + ε)

∣∣∣∣∣νz
−ν−1 zρX−1

ρX
− z−ν−1A∗X(tz)/A

∗
X(t)

νz−ν−1

∣∣∣∣∣+ ε

≤ (1 + ε)

∣∣∣∣zρX − 1

ρX
−
A∗X(tz)

νA∗X(t)

∣∣∣∣+ ε

≤ (1 + ε)
zρX − 1

ρX
+ (1 + ε)

A∗X(tz)

νA∗X(t)
+ ε

≤ (1 + ε)
−1

ρX
+

1 + ε

ν
+ ε

:= Cε ∈ (0,∞), (D.13)

where in the second step we used (D.10) and in the last step used the fact that |A∗X(·)| ∈ RVρX .

Note that (D.13) implies

lim
t→∞

sup
z>1

h(z, t) = 0. (D.14)

Using (D.14), (3.4), (D.13), and (D.10), we see that, for large t, the integrand in (D.8) is

bounded above by

(1 + ε)max{
∣∣k+∣∣ , ∣∣k−∣∣}Cλε νz−(ν+1),

which is integrable over z ∈ (1,∞).

Applying the Dominated Convergence Theorem to (D.8), we have

lim
t→∞

dϕ (PX,t,PY,t)
|AX(t)|λ

= lim
t→∞

|A∗X(t)|
λ

|AX(t)|λ

∫ ∞
1

ϕ (1 + h(z, t))− ah(z, t)

ζ (h(z, t))
ζ

(
h(z, t)∣∣A∗X(t)∣∣

)
tg(zt)

Ḡ(t)
dz

=
νλ

(ν − ρX)λ

∫ ∞
1

lim
t→∞

ϕ (1 + h(z, t))− ah(z, t)

ζ (h(z, t))
ζ

(
h(z, t)∣∣A∗X(t)∣∣

)
tg(zt)

Ḡ(t)
dz

=
νλ

(ν − ρX)λ

∫ ∞
1

ζ

(
lim
t→∞

h(z, t)∣∣A∗X(t)∣∣
)
νz−(ν+1) dz (D.15)

where in the last step we used the continuity of ζ(·). Moreover, it is easy to derive from (D.11)

33



and (D.10) that, for every fixed z > 1,

h(z, t)

A∗X(t)
→ I(z),

where

I(z) =
zρX − 1

ρX
− zρX

ν
=
ν − ρX
−νρX

(
ν

ν − ρX
− zρX

)
. (D.16)

It follows from (D.15) and (D.16) that

lim
t→∞

dϕ (PX,t,PY,t)
|AX(t)|λ

=
νλ

(ν − ρX)λ

∫ ∞
1

ζ

(
lim
t→∞

h(z, t)∣∣A∗X(t)∣∣
)
νz−(ν+1) dz

=
νλ+1

(ν − ρX)λ

∫ ∞
1

ζ
(
I(z)sgn

(
A∗X(∞−)

))
z−(ν+1) dz

=
ν

(−ρX)λ

∫ ∞
1

ζ

(
sgn

(
A∗X(∞−)

)( ν

ν − ρX
− zρX

))
z−(ν+1) dz

<∞,

where the second last step is due to (D.9). It is not difficult to verify that
∫∞
1 I(z)z−(ν+1) dz = 0,

and hence, by Jensen’s inequality we can show that the constant C(ν, ρX , λ) is non-negative

regardless of the sign of AX . This completes the proof.
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Embrechts, P., Mikosch, T., and Klüppelberg, C. (1997). Modelling extremal events: for insur-

ance and finance. Springer-Verlag.

Endres, D. and Schindelin, J. (2003). A new metric for probability distributions. IEEE Trans-

actions on Information Theory, 49(7):1858–1860.

Fisher, G. S., Maymin, P. Z., and Maymin, Z. G. (2015). Risk parity optimality. The Journal

of Portfolio Management, 41(2):42–56.

35



Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,

and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes,

C., Lawrence, N., and Weinberger, K., editors, Advances in Neural Information Processing

Systems, volume 27. Curran Associates, Inc.

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral

methods. Econometrica: journal of the Econometric Society, 37(3):424–438.

Hallerbach, W., Ning, H., Spronk, J., and Soppe, A. (2004). A framework for managing

a portfolio of socially responsible investments. European Journal of Operational Research,

153(2):517–529.
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