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Abstract: Resource constraint Consumer Internet of Things (CIoT) is controlled through gateway
devices (e.g., smartphones, computers, etc.) that are connected to Mobile Edge Computing (MEC)
servers or cloud regulated by a third party. Recently Machine Learning (ML) has been widely used
in automation, consumer behavior analysis, device quality upgradation, etc. Typical ML predicts
by analyzing customers’ raw data in a centralized system which raises the security and privacy
issues such as data leakage, privacy violation, single point of failure, etc. To overcome the problems,
Federated Learning (FL) developed an initial solution to ensure services without sharing personal
data. In FL, a centralized aggregator collaborates and makes an average for a global model used for
the next round of training. However, the centralized aggregator raised the same issues, such as a
single point of control leaking the updated model and interrupting the entire process. Additionally,
research claims data can be retrieved from model parameters. Beyond that, since the Gateway
(GW) device has full access to the raw data, it can also threaten the entire ecosystem. This research
contributes a blockchain-controlled, edge intelligence federated learning framework for a distributed
learning platform for CIoT. The federated learning platform allows collaborative learning with users’
shared data, and the blockchain network replaces the centralized aggregator and ensures secure
participation of gateway devices in the ecosystem. Furthermore, blockchain is trustless, immutable,
and anonymous, encouraging CIoT end users to participate. We evaluated the framework and
federated learning outcomes using the well-known Stanford Cars dataset. Experimental results prove
the effectiveness of the proposed framework.

Keywords: federated machine learning; deep learning; blockchain; distributed learning; distributed
edge computing; information security; privacy-preserving computing

1. Introduction

The Internet of Things (IoT) is an integral part of consumers’ modern lifestyle, which is
constantly increasing. According to statistics, the number is estimated to reach 14 billion by
2025, and the market will reach USD 142 billion by 2026. Data from these devices is expected
to reach 73.1 ZB (zettabytes) by 2025 [1–3]. Managing so much data and maintaining every
security and privacy of users is very challenging. However, nearly 94% of retailers agree
that the benefits of implementing IoT outweigh the risks [2].

CIoT uses smart systems coupled with several advanced technologies such as wireless
communication, cloud computing, edge computing, big data analytics, artificial intelli-
gence (AI), etc. Such intelligent systems generate large amounts of data that can be a
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significant asset in predicting upcoming challenges. Additionally, they can help improve
existing systems through smart big data analytics and machine learning. However, both
technologies analyze stacked data from a centralized system, raising security and privacy
concerns; leading technologists came up with federated learning technologies. Local nodes
in FL train a model locally using self-training data and share the learning results as model
parameters to the aggregator instead of sharing the raw data. It overcomes the challenges
of sharing local data on a centralized server and enables learning through decentralized
analysis of locally generated data. At the end of every round of training, all FL servers
share their model to a centralized aggregator, which makes them average and creates a
global model. Consequently, the global model is used for the next round of training.

However, many studies have recently been published on data security and privacy
vulnerabilities in FL technology [4]. For example, authors [5,6] claim intruders can retrieve
raw data (i.e., training data) from gradients processed in a centralized aggregator. Moreover,
many intermediary devices (e.g., smartphones, Edge Server (ES), etc.) between the data
source and the aggregator play the role of a gateway in the CIoT system. These gateways
can be another leakage point of data. Third-party MEC servers and smartphone applications
as a gateway can leak CIoT raw data by abusing its permission system [7]. Although FL
was introduced to stop data leakage, gateways in an ecosystem can leak raw data, and FL’s
centralized aggregation policy can lead to model poisoning attacks [8].

Many recent contributions suggested a blockchain-based decentralized model ag-
gregation platform instead of a centralized aggregator. For example, ref. [9] proposed a
blockchain-based FL platform for learning IoT features. Similarly, BC-based FL is proposed
in [9] to prevent industrial data leakage. It is a fact that BC can overcome the centralized av-
eraging issues. However, the CIoT platform is quite different than any typical IoT. Whether
CIoT is a resource constraint and data is carried over the gateway is another IoT but more
resource intensive. Data leakage prevention from any point, including the gateway, is also
essential to ensure security and privacy in an ecosystem. Therefore, it is crucial to design a
non-interactive and privacy-preserving FL scheme to create a secure ecosystem that can
prevent privacy leakage from every connection from data acquisition to final prediction,
including local gradients, aggregators, etc.

This paper contributes a blockchain-based federated learning framework for a con-
sumer IoT ecosystem that ensures consumers’ privacy-preserving and facilitates future
prediction for system advancement. The proposed FL system builds the machine learn-
ing model to help CIoT manufacturers improve their service quality and optimize their
functionalities. Furthermore, blockchain opens a secure access channel for smart system
users and intelligent systems controllers or stack holders by controlling the authentication
of every component, such as gateway, ES, etc. Moreover, a BC-based system prevents
malicious model updates by ensuring that all model updates are held accountable. The core
contribution of this research includes:

• A blockchain-based privacy-preserving FL learning framework for IoT ecosystem that
leads the future prediction from the features of CIoT data.

• A secure decentralized secured model aggregator instead of centralized that overcomes
the single point of failure.

• A secure access channel protects against man-in-middle attack issues.
• A testbed implementation using a popular public Stanford Cars dataset, and the

evaluation result proves the proposal’s effectiveness.

The rest of the sections of this article elaborates on the details of implementations.
More specifically, Section 2 presents related recent contributions in blockchain-integrated
FL. Proposed architecture details are depicted in Section 3. Section 4 presents technical
details of core contributions including Security discussion. Testbed setting, implementation
parameters, and results analysis are presented in Section 5. Finally, Section 6 concludes the
overall contribution.
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2. Related Work

Blockchain and FL techniques are widely considered for the security and privacy of
data independently where focused on distributed execution. Both private blockchain and
federated learning emerged around 2016. Google introduced federated machine learning
technology for decentralized training, replacing typical centralized training strategies
with user data protection in mind [10]. They suggested combining each local model on a
centralized server to create a global model with their average and use it for the next training
step. From a security standpoint, this centralized coordination of the FL is recognized
as one of the downsides in [11]. The prime objective of FL is data security and privacy,
which was investigated in [12], where they considered the model’s safety at updating
the aggregator. In [13], authors contributed artificial intelligence for ensuring efficient
and privacy-enhanced federated learning (PEFL) for IIoT. They solved various industrial
challenging problems in Industry 4.0. Likewise, privacy issues at sharing model updates in
FL were investigated in [14] contributing to a sketching-based FL. Protecting the user-level
privacy leakage in FL against attack from a malicious server has been studied in [15] where
they considered A generative adversarial network.

Business blockchain introduced for eliminating centralization problem in a private
network [16]. Initially, blockchain is mainly considered for secure distributed ledger and
FL for distributed training in the ML domain. For example, Deep-Chain proposed for
collaborative learning in [17]. They provided blockchain to force the participants to behave
correctly and focused on ensuring audibility for the whole training process targeting data
privacy for each participant. However, how updated models will be uploaded is not clear.
Similarly, the authors [11] propose a blockchain-based decentralized approach to local
gradient sharing where blockchain stores models. The challenge is how a block with weight
limitations can adopt such a heavy model. Blockchain was also considered for improving
the training process in many articles [18,19]. The smart contract-based data model prove-
nance registry framework was proposed to ensure accountability and fair distribution of
user data in [18]. In addition, they have used a weighted fair data sampler algorithm to in-
crease the training data’s fairness to improve the training quality. Authors [19] contributed
to a blockchain-based framework to influence high-quality data owners in FL by providing
a reward allocation mechanism. To speed up the training process and minimize the compu-
tation cost, the blockchain-based secure model migration technique was introduced in [20].
Technically, the blockchain-focused reputation mechanism produces high-quality model
aggregation transparently. Like other contributions, BC plays a reward and credit point
calculation role.

Many of them have raised these general issues of FL, its limitations for different ap-
plications, and suggested bridging FL and blockchain. Combining these two technologies
to preserve decentralized and heavy exchange models for consensus processes is more
challenging. Moreover, saving extensive data in the block is another challenging task.
The article [21] tried to touch on these (i.e., storage and consensus) issues and proposed a
committee consensus for collaborative decisions in the blockchain network. They recom-
mended partial nodes for storing abandoned historical blocks to release the storage space,
and a committee for consensus helps to reduce the chances of malicious attacks. In reality,
storing models in the active chain and the continuing consensus is more challenging and
raises scalability and bandwidth issues.

However, the ultimate goal of most of these articles was to overcome the problem of
centralization at model aggregation using blockchain technology. Contrarily, the role of
blockchain and how it can ensure the most technologically advanced benefits, such as access
control, the overall security of the ecosystem, man-in-the-middle attack, consent, ledger
maintenance, etc., has not yet been precisely defined. Although blockchain for protecting
against man-in-the-middle (MIM) attack in GW has been studied in [22,23]. They focused
on how differently Man-In-the-Middle (MIM) attacks can happen in domains other than
ML. To the best of our knowledge, a MIM attack is not considered in a blockchain-controlled
ML-based IoT ecosystem.
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This research focuses on an FL learning compatible BC network that introduces a
customized block structure and multi-chain. The Table 1 presents the summary of the
differences between these contributions with contemporary contributions. Block stores
model file reference instead of the original file, and organization-specific off-chain storage
holds the original file. While blocks carry only a model file pointer instead of the original
file, it resolves the overburdened issue of blocks and enhances security. Furthermore,
a certificate authority-controlled security architecture ensures the security and privacy of
the overall ecosystem, including the protection of MIM.

Table 1. Summary of related contributions.

Reference Contribution Distributed
Training

Access
Control

Ecosystem’s
Security

[17] Secure model sharing X X X

[20] Acceleration of training X X X

[12] provenance of model X X X

[13] Securing training X X X

[18] accountability and fairness in training X X X

[21] Consensus-based model aggregation X X X

Our works Secure Ecosystem X X X

3. System Architecture

The basic architecture of the ecosystem has been presented in Figure 1, where real-life
devices are introduced as CIoT. These resource constraints CIoT are connected with ES
via GW. Finally, the blockchain Network (BCN) links to each ES and controls the overall
access policy of the ecosystem. System architecture comprises system overview, features
extraction of source data, task offloading, and learning process. The system overview
briefly summarizes the overall system components’ connectivity and execution. Feature
extraction presents data origination to feature extraction for learning features, offloading
detailing run-time obstacles or errors. Overall, FL execution processing is described in the
learning process.

BC 
Network 

ES1

ES2

ES3

ESn

CIoTs

CIoTs

CIoTs

CIoTs

GW1

GW2

GW3

GWn

Figure 1. Basic connectivity of components in the proposed ecosystem.

3.1. System Overview

An overall ecosystem with details of the connection of components is presented in
Figure 2. It shows how a group of IoT (e.g., wearables, home appliances, Internet of
Medical Things (IoMT), etc.) is controlled through a consumer gateway and stores the
raw data. Since most CIoT’s resource-constrained, users access, control, and monitor them
through a gateway that belongs to the user’s personal property, such as a laptop, personal
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system, advanced network router, etc. It is assumed that any cloud services integrated
with CIoT services are also agreed to exchange CIoT data with ES that acts as a learning
node (e.g., machine learning compatible server). Due to security reasons, GW executes
Convolutional Nural Network (CNN) layers of an ML algorithm and extracts the features;
consequently, connected layers are executed in LN. LN is authorized by the BC network
and collaboratively operates the machine learning process. LN node updated model is
aggregated in the blockchain network, a separate distributed network. BC network is also
responsible for maintaining authentication of LN [24], GW, and CIoT.
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Figure 2. Blockchain-based federated learning framework for CIoT ecosystem.

3.1.1. Federated Learning Network

The FL network consists of independent learning networks. Each learning network
represents an independent organization that leads by a Learning Node (LN). The Edge
Server (ES) of an MEC network functions as an LN also. Each network shown in the
Figure 2 has an Edge Server (ES), off-chain storage, and a Certificate Authority (CA). CA
and off-chain storage have been added for secure collaboration between networks and
storing physical model files.

• Learning Node: A learning node represents the central coordinator of an independent
learning network and an MEC network. The ES in the MEC network controls the
remote devices through a gateway device. It is assumed that each GW has at least one
LN. LN learns from connected layers and trains a local model where its integrated
GPU executes ML algorithms and CPU functions as an ES. LNs collaborate through
BCN and form a learning consortium where the CA confirms their authentication.

• Certificate Authority (CA): The Certification Authority is responsible for issuing
unique certificates for each component of an organization (e.g., LN, GW, edge compo-
nent, user, remote device, etc.). Each organization belongs to a CA that collaborates
with others to exchange their certificates. In addition, CA is responsible for ensuring
the enrollment of new peers and LNs in the BCFL network. Finally, the BC peers
justify the issuer’s credentials before approving the transaction.

• Off-chain Storage: Each network has off-chain storage that stores model update files.
LN can carry off-chain data in real life. Usually, off-chain data is any nontransnational
data that is too large to be stored in the blockchain efficiently and requires the ability to
be changed or deleted [25]. FL-compatible blockchain is not like a conventional public
blockchain network (e.g., Bitcoin, Ethereum, etc.) considering transaction nature.
The model with the update parameters generated after each round is too heavy to
fit the block. Instead, the off-chain storage model carries the file and issues a file
reference. The reference is attached to a block as a file pointer and is executed as a
regular blockchain transaction.
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3.1.2. Blockchain Network

The overall network architecture comprises a federated learning network where
a blockchain network functions as a distributed aggregator and access controller. The
blockchain network maintains permissioned blockchain in principles where CA controls
the permissions [1,26]. Different consumer CIoTs are connected to BCN through their GWs.
Blockchain network-centric collaborative learning networks form a learning consortium
where the BC network provides an autonomous service for collaborative learning out-
comes. The BC network consists of peers (P) and a Certificate Authority (CA). Peers are
interconnected and form a Peer-to-Peer (P2P) network. In this P2P network, peers bridge
independent ES and open the scope of collaboration that ultimately forms a consortium.
The core component of the network P handles the consensus process and stores global
model references in the ledger. P adds consensus participating blocks to its local ledger at
the end of a consensus session. CABC in the blockchain network is also interconnected with
the CALN of the local learning network. Before any device integration to the network CABC,
create unique credentials for the device and exchange them with all CALN. They create a
compound key for their mutual agreement (details in Section 4). Devices or components
use their keys for any transactions. As shown in Figure 2, CAs’ connectivity (’red’ line)
forms an independent network. It also maintains a 51% consensus for adding or discon-
necting any devices. So, if somehow any of the CA is out of order, the system can issue the
required credentials.

3.2. Features Extraction

Various terminal devices and communication nodes (i.e., CIoT, cameras, GPS devices,
etc.) periodically perceive home appliances’ parameters. Collected data forwarded to
gateway devices via network layer after analog-to-digital conversion. The home user starts
training the model using collected data. The Convolution Neural Network (CNN) is the
feature extractor to extract features from the original data in the gateway. Consequently,
fully connected layers are uploaded to the ES server. For experimental purposes, we
have used a generic computer for adopting the partitioned deep learning model training
approach [27]. In real-life scenarios, the powerful latest smartphone can be used as a
gateway for feature extraction and partial training. Ensuring gateway security, we have
used a CA-issued certificate for secure connectivity (details in Section 4.4).

3.3. Local Training

It is assumed that each ES agrees to be governed by the BC access control policy
through a smart contract. CA initiates the required credentials for authentication and
secured access. Blockchain-controlled ES joins the local training process by maintaining the
following steps.

• Initialization: any gateway device under the full control of a home user is decided to
join the FL training session. Interested customers download the initial model from the
blockchain network.

• Training: Gateway offloads the privacy-preserving features to the ES that helps train
the fully connected layers. The edge server completes the local training rounds and
produces loss and a local model. The local model is stored in off-chain storage, which
Inter-Planetary File System maintains (IPFS) [1]. The details of model offloading and
local training procedures have been discussed in the next sections.

• Block Creation: A block creates with training loss of the last epoch, a hash of the model,
and a hash of the physical location of the model. Consequently, a newly generated
block is transmitted to the gateway, which the consumer controls.

3.4. Global Model Selection

Consumers sign the block with their private keys and upload it to the blockchain
through their gateway. Blockchain nodes create a leader panel for every consensus session
randomly. The consensus session is based on time (e.g., one minute), defined by the
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blockchain network controller (i.e., IoT manufacturer). The top leader collects all blocks
coming to the network. If the top leader fails, BCN autonomously chooses the next leader
from the panel. Here, it is mentioned that all members are concerned about participating
blocks. The leader is responsible for averaging the models in the session, creating a new
block, and forwarding it to everyone with all blocks hash as metadata. Consensus member
verifies the block hash and signs on it by gossiping protocol. Finally, the leader ensures
two-thirds of the members sign on it and form a new block that holds a global model.
Consequently, it is transmitted to every member and is a gateway to starting the next round
of training.

4. Technical Details

This section summarizes the core technical implementation theory in ES and blockchain
networks.

4.1. Training Management

The ultimate goal of FL is robust learning of local users and aggregators without data
sharing from data owners. For leveraging the learning process user runs the local model
(Ml) using his data and forms a global model (Mg) with the collaboration of other users.
We used blockchain as a global model initiator, which transmits the parameters Mg of the
global FL model to GW (i.e., users), where the local training executions are performed on
behalf of users. Mg creates every round of training by averaging the local models, which is
presented in Equation (1).

MG
i =

1
D

n

∑
i=1

Ml
i (1)

For the learning process, we design a generic FL model where a user i collects and
process a input a matrix Xi = [xi1, xi2, . . . xidi

] of input data where xid is an input vector
of FL algorithm. Let consider Yid is the output of Xid and output data vector for training
using the FL algorithm of a local user GWi is yi = [yi1, yi2, . . . yidi

]. A vector wi determines
the parameters of the local FL model (Ml). For example, xT

idwi represents the predicted
output in a linear regression algorithm, where wi denotes the weight vector that determines
the performance of the linear regression learning algorithm. Aiming for training loss
minimization, local user i seeks to find the optimal learning model parameters wi. The
training process of an FL algorithm is performed by

MG =
1
D

u

∑
i=1

di

∑
d=1

f (wi, xi,d, yi,d) (2)

where D = ∑n
i=1 Di is the sum of training data of all participating users where 1

D used for
averaging, MG is the global model, and f (wi, xi,d, yi,d) is the loss function. As we know, the
FL algorithms’ performance varies on the loss function. Moreover, it varies for different
learning tasks. For example, for learning task prediction, the loss function captures the
prediction accuracy of FL. Contrary, the loss function captures the classification accuracy
for a classification learning task. Therefore, the algorithm-wise FL loss function can be
defined [28].

The performance of FL algorithms depends on both MG and Ml more clearly after
initialization. The update of each user i’s Ml’s weight parameter wi depends on MG

while the update of the global model MG also depends on all of the users’ local models.
The update of the local FL model wi depends on the learning algorithm and optimization
algorithm. We have used the Stochastic Gradient Descent (SGD) algorithm to update the
local FL model.
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4.2. Computational Convergence and Complexity

As different third parties operate edge servers, deploying them decentralized to ensure
the same level of security, transparency, and privacy preservation is hard and complex.
However, blockchain technology can essentially overcome the shortcomings. In addition,
edge computing can provide necessary local computing capabilities, which enable federated
learning facilities, and also allow computation tasks of blockchain systems, e.g., smart
contract execution and consensus procedure. Therefore, the convergence of blockchain
and edge computing paradigms can enable security, privacy, and scalability. An edge
server’s complexity is handling massive data volume coupled with advanced networking
technology (e.g., SDN, NFV, etc.) [29]. In addition to local model training and handling the
offloading task. Details of the offloading computation have been discussed in Section 4.3).

4.3. Offloading

It is assumed that n number of a gateway controls n group of CIoT, which can be
denoted as {GW1, GW2, . . . GWN} where m number of CIoT is active under a gateway
which can be expressed as D1

i , Di
2, Di

3 . . . Di
m ∈ GWi. n number of gateway connected

with n number of Edge nodes En which means GW ↔ En where {E1, E2, . . . En} ∈ ES are
blockchain controlled. For training, GW collects raw data from devices and continues fea-
ture extraction by the CNN process. Simultaneously, it takes the offloading decision based
on the computation capacity of the gateway. If the local gateway can do all computation, it
continues and sends the model to BCN. Otherwise, it offloads the connected layers to the
blockchain-controlled ES. It is assumed the offloading task Ti requires Ci CPU cycles and
α(α ∈ [0, 1]) denotes the offloading decision where α = 1 means offloading requires and
α = 0 express offloading does not require.

4.3.1. Offloading Rate (RT)

The model offloading from the gateway to ES is a calculation of the uplink rate. We
have considered Shannon’s theorem [30] to rate offloading the tasks to ES.

RTi = B log2

(
1 +

CGWi
i

LGWi↔ESi

)
(3)

where B is the channel bandwidth, Ci is the computation capacity of the GWi, and latency
between GWi to ESi is denoted by LGWi↔ESi .

4.3.2. Computation

Task computation is the summation of local computation in GW and remote computa-
tion for offloading in FS. Based on the offloading decision, the local remaining computation
task will be (1− αi)Ci. Then, the local computation delay can be

δlocal
i =

(1− αi)Ci

λlocal
i

(4)

where λlocal
i denotes the CPU cycle frequency, in cycles/s.

For remote computation in ES, the overall computation is performed in two ways
such as data transmission and task computation. Data transmission delay depends on the
transmission rate. Data transmission delay is calculated by Equation (5).

δES
i,tran =

αiDi

RTi
(5)

where Di denotes the offloaded data size.
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One ES can be connected to multiple GWs and is required to process their data in
parallel. Therefore, the computation resources of ESi, CESi will be reasonable divided. So,
the weighted average division of resources based on the offloading tasks is calculated as:

CES
i = φiλ

ESi
αiCi

∑m
i=1 αiCi

(6)

where φi denotes the proportion of total resources occupied by the task offloading process.
Rest (1− φi) processed in the blockchain. Finally, Equation (7) calculates the computation
delay in ES.

δES
i,com =

αiCi

λES
i

(7)

Therefore the overall delay for task offloading in ES can be calculated by Equation (8)

δES
i = δES

i,tran + δES
i,com (8)

4.4. Blockchain for Access Control

Blockchain is widely used to enforce security, privacy, and access control, besides ledger
management [31]. In the blockchain, members’ access rights are verified and controlled
through smart contracts. We have proposed a channel-based access control policy in addi-
tion to smart contracts that protect against any unauthorized access to GW. Specifying a
channel per GW access is primarily controlled with a compound key, created using channel
members (i.e., user, GW, ES) public-private keys. A channel Ci ∈ C is created per GW
through a policy transaction approved by blockchain consensus, which is stored as config
block in CABC. The user owns the channel, while GW and ES are members Algorithm 1
shows the secret compound key (sck) generation process.

Algorithm 1: Compound Key Generation Process

Input : (Cid
i , Uid

i )
Output : (Compound.key(sck))

1 Initialize µUi [] a list
2 skUi

εnc , pkUi ← cryptogen(εnc()) // Generates unique key for users Ui
3 pkUi → ∀µi∈µUi [] // All public keys are grouped

4 Resp[], pkUi []← Response(µUi
i ) // Group keys return with approval

5 if all Resp[] are valid then
6 sck← Compound.key(pkUi , pkµx [], skUi

εnc) // Compound key generates
7 end
8 Return sck

In line 2, CABC generates key pairs by cryptogen() (which is a common tool used in
CA). Line 3–4 sends the public key of UserUi to every selected member (µ), which means
the user is authorizing them to access data. Members return their public key in response,
and a response value is recorded as a list. Finally, if all responses are accepted, then a
compound key is generated, a combination of all members’ public keys and secret keys
of Ui. It is then shared with all channel members. It is important to note that compound( )
generates an irreversible hash value as the compound key.

4.4.1. Distributed Ledger (DLT)

FL compatible block is very different than typical blockchain (i.e., Bitcoin, Ethereum,
etc.). Instead of any numerical data, it is required to store the model file as data that is
heavy in size in comparison to crypto-BC. As shown in Figure 3, a block is mainly formed
with a block header and transaction data in the body. Block header contains block hash
generated from a hash of a model file, timestamp, and file pointer of a model that indicates



Sensors 2022, 22, 6786 10 of 15

the physical location of the model and parameters. Every new model generated in the
consensus session, known as a global model, is also stored in a new block, maintaining
the same structure but with the consent of consensus participants. A newly created block
will be linked with the last generated block, so the overall process sequentially creates a
model chain.

B#0 B# n-1 B#n 

Block Hash
Previous

Hash
Parameters

Model Ref

Signatures Creator Timestamp

Block Header

Transaction Data

B#n 

Figure 3. Customized structure of Block used in blockchain.

4.4.2. Consensus Mechanism for Global Model

The main objective of consensus is to generate a global with the consent of a maximum
number of members. The global model is generated by averaging every local model on
a current consensus session. Every LN creates a new block at the end of every training
iteration and forwards it to BCN. BCN randomly initiates a consensus leaders panel using
gossip protocol [32]. The top leader from the panel starts a consensus session for a particular
time and waits for the local models (as a block). Member peers forward their model to
the leader. The leader verifies the credentials (i.e., sign, keys, etc.), calculates averages,
and adds to a new block. The global model file is stored in off-chain storage in IPFS, and a
hash of the model location pointer is added in a new block. Consequently, the leader invites
members to sign on to the new block. Peers justify the block hashes used for averaging,
the leaders’ signature, etc., and sign the block. Then, leaders wait for the consent of at least
51% of the total participants. While two-thirds of members sign on it, the block is added to
the ledger. Consequently, the block is shared with every peer for upgrading their ledger.
The leader also forwards the global model to the LNs for the next round of training.

4.5. Security Discussion

The malicious learning node and peer can influence the learning outcome in two ways:
an external node being a network member or the adversarial role of a member node. An LN
can poison the learning parameters and influence the global model. A malicious node must
be approved by CA being a member of the system, and CA can only allow membership
if 51% CA agrees on it. In addition, the peer node addition request is also approved by
the peer network as per the smart contract agreement. As a member of the ecosystem,
intruders can send a malicious model to influence the outcome. However, practically,
LN updates the model depending on a consensus outcome where every participant votes
by justifying every block sent from LN, verifies signatures, etc. Malicious nodes can be
successful if they are 51% in numbers and does several operations within a particular
consensus session. For example, they have to retrieve maximum private keys, control
off-chain storage, and break up the smart contracts installed in every peer with a consensus,
which is almost impossible. Usually, a consensus session is a tiny amount of time; in our
experiment, we used 60sec to 180sec. In real-life scenarios, it will be shorter. As the LN
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node stores data in its off-chain storage, and the LN itself owns the data. Therefore, model
sharing is restricted at consensus sessions in read-only mode. Moreover, smart contract
limits access within consensus purpose.

5. Evaluations and Discussion

To evaluate the effectiveness of our proposed blockchain-based FL framework, we
perform it on a Stanford Cars Dataset [33] that contains 16,185 images of 196 classes of
cars. The data is split into 8,144 training images and 8,041 test images. To understand
the proper method impact, we have equally distributed data from every class and formed
a customized dataset for every organization. The same customized dataset is used in
typical FL without blockchain for benchmarking. Furthermore, the experiment extends
using the same experimental setup with the entire dataset. Our designed CNN network
contains a hidden layer for feature extraction and fully connected layers for classification
(shown in Figure 4). Dimension is reduced for output by deploying the max-pooling
layer. Therefore, max-pooling layers accelerate the learning speed of the neural network.
After every CNN layer normalization is used, that enables the computation of sensitivity to
determine the amount of noise to add, speeds up the learning rate and regularizes gradients
from distraction to outliers.
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Figure 4. ResNet50 CNN network architectures.

5.1. Testbed Settings

We train our models with the PyTorch library, SGD optimizer, and a learning rate of
0.001. Each local organization (learning node) performs the classic image classification pre-
trained ResNet50 model. Each learning node is used on NVIDIA GeForce RTX 2080 GPU.
Initially, four private servers with four GPUs, which means 16 GPUs are used for multiple
local training environments. For experiment purposes, every GPU runs an independent
learning node. Simultaneously, the CPU of a private server performs as a blockchain
peer. The blockchain network consists of six peers running on four remote servers, each
configured with Intel Xeon E7 v3/, Core(TM) i7-5960X CPU @ 3.00 GHz 8 cores and 125 GB
RAM. The blockchain network and consensus process are simulated in Python 3.8.

5.2. Result and Discussion

This section presents overall learning outcomes related to the proposed blockchain-
based federated learning framework. We have used typical FL approaches as a baseline
for the bench-marking parameter. Since federated learning is still not mature enough,
experiments using the same dataset and testbed parameters are also unavailable to compare.
Table 2 presents a comparative analysis of training performance with state-of-art where the
contributions are evaluated using a different dataset.

Table 3 summarizes the time consumed at different process execution stages in the
ecosystem. It shows almost every execution time limit within Millisecond (ms) level except
training and aggregation. Local training time is 4–8 min (5280 ms on average) at every LN,
which can vary depending on the input data’s complexity and size. Similarly, averaging
also takes more time due to averaging of every local model and consensus process as
we have fixed different consensus times (3 5 min) for a different level of the experiment,
the execution is completed within the consensus time limit otherwise.
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Table 2. Training performance analysis.

Paper Dataset Baseline Train Accuracy

[20] MNIST 96.7% 97%

[20] MNIST 90% 85%

[13] MNIST - 92%

[18] COVID-19 Chestxray 86.80% 89.09%

[21] FEMNIST 90.20% 90.02%

Our Works Stanford Cars 98.8% 99%

Table 3. Various execution time.

Operations Time (ms)

Compound key Generation 6–10

Block creation (Avg) 3.37

Local Model Update 46

Local Training in a Single LN (avg) 5280

Blockchain Write for Gradient 360

Aggregation (including consensus) 3000–5000

BC write for Gradient Average 261

Global Model Update 79

We have employed 100 epochs on 8144 training images with 64 batch sizes to train
and validation the proposed model. The validation dataset and training dataset are created
from training images where 20% images are used for the validation process and the rest of
the images for training. We split training images into six learning nodes equally based on
their classes. Every LN continues training simultaneously without overlapping training
images. The Figure 5 illustrates the training outcome in detail. Training progress has been
depicted in Figure 5a where the learning rate was 0.01 and batch sizes 64. As shown in
Figure 5a, training loss decreases steadily in our proposed method compared to baseline
and typical ML, but it reaches the convergence point at almost the same time.

Training accuracy presented in Figure 5b. It shows the learning accuracy of the object
detection model in our proposed system, which is compared with typical federated learning
and stand-alone typical machine learning approaches. The simulation result shows that the
proposed framework converges with typical approaches almost at the same time.

Figure 6 presents how our proposed system can classify the images compared to typical
FL and stand-alone ML approaches. It illustrates that our proposed scheme can recognize
the images 92% cases, which is 35% better than the baseline approach. Although stand-
alone methods perform better than our proposed system, it is not significantly too high.
In terms of security, the proposed methods open up more opportunities than typical ML.

Moreover, the ultimate goal of this experiment is to improve FL in terms of users’
data security and privacy. Therefore, the overall performance of our proposed system is
relatively better than traditional FL approaches, which proves the efficiency of the proposed
system framework.
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Figure 5. Federated Learning Outcomes in the proposed framework.
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Figure 6. Validation Accuracy.

The performance of the blockchain network is evaluated in Figure 7. It shows that
every consensus round creates a block for the global model. The figure illustrates that
block creation times vary between 1–5 milliseconds. Block creation at a millisecond level
is satisfactory network performance and is almost consistent. We have set up a 3–5 min
consensus session to investigate the BC network’s performance with a number of partici-
pation of LN in consensus, such as participation of every LN node, maximum nodes, etc.
We have investigated that a global model can be generated with the participation of six
learning nodes within 3–5 min. Though the time can vary depending on the input size,
batch, bandwidth, etc.

Figure 7. Block Creation time.
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6. Conclusions

This article introduced a blockchain-based novel federated machine learning frame-
work for consumer IoT data analysis. We have considered every security challenge in
an ecosystem, such as data leakage scopes in the gateway. We recommend blockchain
for complete access control of the ecosystem besides distributed model aggregators. Fur-
thermore, using a consensus process for global model creation extends the security in
model sharing and accelerates the learning process. Extensive assessment findings from
real-world datasets illustrate that the best model selection technique based on consen-
sus enhanced safety and significant output differences from traditional FL approaches.
A blockchain protocol-independent framework for federated machine learning can be the
future challenge of this research.
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