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PARABOLIC INDUCTION FOR SPRINGER FIBRES

NEIL SAUNDERS AND LEWIS TOPLEY

Abstract. Let G be a reductive group satisfying the standard hypotheses,
with Lie algebra g. For each nilpotent orbit O0 in a Levi subalgebra g0 we can
consider the induced orbit O defined by Lusztig and Spaltenstein. We observe
that there is a natural closed morphism of relative dimension zero from the
Springer fibre over a point of O0 to the Springer fibre over O, which induces an
injection on the level of irreducible components. When G = GLN the compo-
nents of Springer fibres was classified by Spaltenstein using standard tableaux.
Our main results explains how the Lusztig–Spaltenstein map of Springer fibres
can be described combinatorially, using a new associative composition rule for
standard tableaux which we call stacking.

1. Introduction

Modern representation theory is a harmonious confluence of algebra, geometry
and combinatorics. There are now many examples of algebraic problems which
exhibit complementary geometric and combinatorial solutions. In this article we
introduce a natural morphism between certain algebraic varieties which are ubiqui-
tous in representation theory, and we describe this morphism combinatorially, thus
continuing the trialogue between these fields.

The theory of Lusztig–Spaltenstein (LS) induction is a geometric process for con-
structing nilpotent orbits in the Lie algebra of a reductive group from the nilpotent
orbits in Levi subalgebras. Nilpotent orbits are one of the most pervasive geometric
objects appearing in representation theory, taking a starring role in:

(1) Springer’s construction of Weyl group representations [CG10]
(2) associated varieties of primitive ideals of enveloping algebras [Jan04, §9].
(3) conical symplectic singularities [Bea00].
(4) modular representation theory of Lie algebras [BMR08].

It is therefore unsurprising that LS induction has played a important role in these
theories, serving as a geometric analogue of parabolic induction of representations.

Let G be a reductive algebraic group over an algebraically closed field of any
characteristic and assume the standard hypotheses [Jan04, §2.9]. Perhaps the most
famous projective variety appearing in representation theory is the flag variety G/B

of a reductive algebraic group G. This is the base space of the Springer resolution
T

⇤
G/B, and can be identified with the set of Borel subalgebras in g. The fibres

of the resolution T
⇤
G/B ! N (g) are the Springer fibres: for e 2 N (g) the fibre is

described as
Be := {gB 2 G/B | e 2 Ad(g)b}
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2 NEIL SAUNDERS AND LEWIS TOPLEY

They carry a wealth of representation theoretic information, placing them at the
very core of geometric representation theory. We begin this paper by showing that
LS induction of orbits induces a morphism of relative dimension zero between the
corresponding Springer fibres (Proposition 3.3). Let us state this more precisely.

If g0 ✓ p ✓ g is a Levi factor of a parabolic, with n = Rad(p), and O0 ✓ N (g0)
is an orbit then for e0 2 O0 and e 2 (e0 + n) \ Indgg0

(O0) we define a morphism

LS : B0

e0
�! Be(1.1)

where B
0 is the flag variety for G0. Since this definition is elementary this con-

struction is probably well-known to experts, however we cannot find a reference in
the literature.

When G = GLN the theory of Springer fibres is especially nice. Spaltenstein
showed that there is a map � : Be ! Std(�) where � ` N and Std(�) denotes the
set of standard tableaux of shape �. For � 2 Std(�) the closure C� := ��1(�)
is an irreducible component of Be. Furthermore the combinatorics of the tableaux
control aspects of the geometry of the sets ��1(�) and their closures [Spa76, FM10].
We abuse notation viewing � as a bijection CompBe ! Std(�).

If g0 is a Levi subalgebra then g ⇠= gl
�1

⇥ · · · ⇥ gl
�n

for some � ✏ N , and the
nilpotent orbits in g0 are classified by a tuple of partitions (µ1, ..., µn) with µi ` �i.
If O0 ✓ N (g0) is classified by (µ1, ..., µn) then Spaltenstein’s construction gives a
bijection �0 : CompB0

e0
!

Q
n

i=1
Std(µi).

The purpose of this paper is to describe the combinatorics lying behind the
Lusztig–Spaltenstein morphism (1.1). In Section 2.1 we introduce a new map stk :Q

n

i=1
Std(µi) ! Std(�), combinatorially defined, which we call the stacking map.

This is our main result (Cf. Theorem 4.11).

The Stacking Theorem. The combinatorics of components of Springer fibres

under LS is determined by the stacking map, so the following diagram commutes

CompB0
e0

Q
n

i=1
Std(µi)

CompBe

Std(�).

�0

LS

stk

�

Springer fibres bear a very close relationship to orbital varieties (see [Jan04, § 9],
for example). In [FM20] Fresse and Melnikov explain that Lusztig–Spaltenstein
induction leads to a morphism of orbital varieties, similar to our construction. It
is natural to expect that our induction of Springer fibres is compatible with their
construction.

Acknowledgements. Many of the ideas which we present in this paper were ini-
tiated at the workshop “Springer fibres and Geometric Representation Theory”,
organised by the authors, and held at the University of Greenwich in 2019. The
authors would like to thank the Heilbronn Institute for Mathematical Research for
their generous support which made that event possible, and the participants for
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sharing their insights. We also thank Giovanna Carnovale for pointing out the in-
teresting parallels to [FM20], and Fran Burstall for suggesting some of the ideas
used in the proof of Proposition 3.3. The first author’s research is supported by
UKRI grant MR/S032657/1. The second author benefited from the LMS Scheme
4, grant number 42037. He also thanks the School of Mathematics and Statistics
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2. Combinatorics

2.1. Partitions, compositions and Young tableaux. Throughout the paper
N > 0. Let � = (�1, ...,�n) be a tuple of positive integers. If

P
i
�i = N then we

write � ✏ N and call � a composition of N , and if � is a non-increasing ordered
composition then we write � ` N and say that � is a partition of N . We write
`(�) = n for the length of �. Denote the set of partitions of N by PN .

When � ` N , a Young diagram of shape � is an array of boxes where the i-th
row consists of �i boxes (the top row is the first and the bottom row is the n-th).
A standard tableau of shape � is a filling of a Young diagram of shape � with the
alphabet {1, 2, . . . , N} in such a way that the numbers are increasing along rows
and down columns. The set of standard tableaux of shape � is denoted Std(�). For
T

�
2 Std(�) we write t�

i,j
for the (i, j) entry of T�, for 1  i  `(�) and 1  j  �i.

2.2. Ordering on tableaux. For this section, we follow the notational convention
of Spaltenstein [Spa76]. Fix � ` n and let � denote a standard Young tableau of
shape �. For each i 2 {1, . . . , n}, let �i denote the column of � in which the entry
i occurs. Observe that � is completely determined by the sequence �1, . . . ,�n.

For �, ⌧ 2 Std(�) declare that � < ⌧ if for some 1  i  n, we have �i < ⌧i and
for each i  j  n, �j = ⌧j . This defines a total ordering on Std(�).

Example 2.1. For � = (3, 2), the following represents the total ordering:

1 2 3
4 5

<
1 2 4
3 5

<
1 3 4
2 5

<
1 2 5
3 4

<
1 3 5
2 4

2.3. Stacking tableaux. Let � = (�1,�2, · · · ,�n) ✏ N . Now for each i = 1, ..., n
we pick a partition µi = (µi,1, ..., µi,mi) of �i and write m := maxmi. Define a new
partition

µ
⌃ = (µ⌃

1
, µ

⌃

2
, ..., µ

⌃

m
),(2.1)

µ
⌃

j
:=

mX

i=1

µi,j .(2.2)

where we adopt the convention µi,j = 0 for j > mi.

Now we define a map

stk :
nY

i=1

Std(µi) ,! Std(µ⌃)(2.3)

which we call the stacking map. This is the key new combinatorial construction of
this paper.

Now for � ✏ N and µi ` �i as above, let (Tµ1 , T
µ2 , . . . , T

µn) be a tuple of
tableaux in

Q
n

i=1
Std(µi). We describe the image of (Tµ1 , T

µ2 , . . . , T
µm) under the
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stacking map by determining its (i, j)-th entry, as follows: for a fixed 1  i  m

and 1  j  µ
⌃

i
let k be the maximal index such that µ1,i + µ2,i + . . .+ µk�1,i < j

(once again µi,j = 0 for j > mi). Put

(2.4) j̃ := j � (µ1,i + µ2,i + . . .+ µk�1,i).

Then define

(2.5) t
⌃

i,j
:= t

µk

i,j̃
+

k�1X

l=1

�l

to be the (i, j)-th entry of the tableau T
⌃, and we set

stk(Tµ1 , T
µ2 , . . . , T

µm) := T
⌃
.

Since each T
µi is standard, it follows that T⌃ is standard of shape µ

⌃.

Example 2.2. Let N = 15 and consider the partition � = (6, 5, 4). Define three
further partitions of the parts of � as follows: µ1 = (3, 3), µ2 = (2, 2, 1) and µ3 =
(14); and now consider three standard Young tableaux of shape µi for i = 1, 2, 3.

0

B@ 1 3 4
2 5 6

,

1 3
2 5
4

,

1
2
3
4

1

CA

Then the new partition µ
⌃ is (6, 6, 2, 1) and the image under the stacking map will

be

T
⌃ =

1 3 4 7 9 12
2 5 6 8 1113
1014
15

Proposition 2.3. The tableau T
⌃ = stk(Tµ1 , T

µ2 , . . . , T
µm) is standard.

Proof. We first show that T
⌃ is increasing along columns. Fix i, j and j

0 in the
appropriate range and suppose that j < j

0. Let k be maximal such that µ1,i +
. . . + µk�1,i < j and let k

0 be maximal such that µ1,i + . . . + µk0�1,i < j
0. Since

j < j
0, it follows that k  k

0. Suppose that k = k
0. Put j̃ = j �

k�1X

l=1

�l and

j̃0 = j �
P

k
0�1

l=1
�l. It is clear that j̃ < j̃0 and since T

µk is standard, we have
t
µk

i,j̃
< t

µk

i,j̃0
and so t

⌃

i,j
< t

⌃

i,j0 . If k < k
0, then since 1  t

µk

i,j̃
 �k we have:

t
⌃

i,j
= t

µk

i,j̃
+

k�1X

l=1

�l <

k
0�1X

l=1

�l < t
µk0

i,j̃0
+

k�1X

l=1

�l = t
⌃

i,j0

Hence T
⌃ is increasing along columns.

We now show that T⌃ is increasing down rows. Now fix i, i
0 and j in the appro-

priate range and suppose that i < i
0. Then k  k

0. If k = k
0, then since T

µk is a
standard tableau, it follows that tµk

i,j
< t

µk

i0,j . If k < k
0 then again since 1  t

µk
i,j

 �k,
we have:

t
⌃

i,j
= t

µk

i,j̃
+

k�1X

l=1

�l <

k
0�1X

l=1

�l < t
µk0

i0,j̃
+

k�1X

l=1

�l = t
⌃

i0,j

and so T
⌃ is increasing down rows. Hence T

⌃ is a standard tableau. ⇤
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3. Lie algebras and Springer fibres

3.1. Lie algebras of reductive algebraic groups. Fix a p � 0 either zero or
prime. Pick once and for all an algebraically closed field of characteristic p. All
vector spaces, algebras and algebraic varieties will be defined over . If X is any
variety over then we write Comp(X) for the set of irreducible components. Let G
be a reductive algebraic group over and assume the standard hypotheses ([Jan04,
§2.9]) so that, in particular, p is either zero or a good prime for the root system of
G.

Write g = Lie(G). When p > 0 we write x 7! x
[p] for the natural G-equivariant

restricted structure on g. The definition of a nilpotent element of g depends on
whether or not p = 0. For p = 0 a nilpotent element e 2 g is one which acts
nilpotently on every finite dimensional representation. For p > 0 a nilpotent element

is one satisfying e
[p]

i

= 0 for i � 0. For example when G = GLN nilpotent elements
are just the matrices which act nilpotently on the natural representation N of g
(this description is independent of p). Write N (g) ✓ g for the nilpotent cone,
defined to be the closed algebraic subvariety consisting of nilpotent elements.

When x 2 G we write G
x and gx for the stabiliser and centraliser respectively.

By [Jan04, §2.9] we have

Lie(Gx) = gx(3.1)

for all x 2 g.
As usual B denotes the projective algebraic variety consisting of all Borel subal-

gebras of g, the flag variety of g. If we pick a Borel subgroup B = T nN , maximal
torus T and unipotent radical N , and Lie algebra b = t � n then we may identify
G/B

⇠
�! B via the morphism of varieties gB 7! g ·b (see [Jan04, §10] for example).

If e 2 g is nilpotent then the Springer fibre of e is the closed subvariety

Be := {b 2 B | e 2 b}(3.2)

Identifying with G/B this is equal to {gB 2 G/B | e 2 Lie(g · b)}. This is equal to
the fibre over e of Springer’s resolution eN (g) ⇣ N (g) of the nilpotent cone. The
dimensions of Springer fibres are conveniently described as follows.

Theorem 3.1. [Jan04, Theorem 10.11] Be is of pure dimension, and every irre-

ducible component has dimension

dimG/B �
1

2
dim(G · e) =

1

2
codimN (g)(G · e).

The goal of this paper is to study the combinatorics of Comp(Be) for G = GLn

using the theory of induced nilpotent orbits.

3.2. Lusztig–Spaltenstein induction for Springer fibres. The theory of (Lusztig–
Spaltenstein) induced unipotent classes was first introduced in [LS79] over C. In
this section we recap properties of induced nilpotent orbits for the Lie algebra of
a reductive group, under the standard hypothesis, following [PS18]. We go on to
explain how induction of orbits gives rise to a closed morphism of relative dimen-
sion zero between Springer fibres (Proposition 4.10); this result was presumably
well-known to experts.

A Levi subalgebra of g is the Lie algebra of a Levi factor of a parabolic subgroup
of G. Let g0 ✓ g be a Levi subalgebra and let p be a parabolic subalgebra admitting
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g0 as a Levi factor. Write p = g0 � n for a Levi decomposition of p, where n is the
nilradical of p.

If O0 is any nilpotent orbit in g0 then it is easily seen that Ad(G)(O0 + n)
contains a unique dense G-orbit which we denote Indgg0

(O0), and call the induced

orbit from (g0,O0). As the notation suggests it only depends on the G-orbit of the
pair (g0,O0) and not on the choice of parabolic p containing g0 as a Levi factor.

Now pick a nilpotent orbit O0 ✓ g0 and write

Op = (O0 + n) \ Indgg0
(O0)(3.3)

Induction satisfies the following three important properties:

Lemma 3.2. (1) (Transitivity) If g0 ✓ g1 ✓ g are Levi subalgebras and O0 ✓

g0 is a nilpotent orbit then Indgg(O0) = Indg1
g0

Indgg1
(O0).

(2) (Preservation of codimension) With O0 ✓ g0, e0 2 g0 and e 2 Indgg0
(O0)

we have dim ge0
0

= dim ge.

(3) Op is a single P -orbit.

Proof. The first two parts were first observed under the standard hypotheses in
[PS18, §2.5]. The third part was proven by Lusztig–Spaltenstein [LS79, Theo-
rem 1.3(c)] in the setting of complex algebraic groups, and the same proof works
in our setting, applying [Pre03, Theorem 2.6(iv)]. ⇤

Retain the setup and notation introduced before the Lemma. Pick an element
e 2 Op and write e = e0 + e1 for the decomposition of e across p = g0 � n. In this
paper we study the following map

LS : B
0
�! B,

b0 7�! b0 � n.
(3.4)

We call this the Lusztig–Spaltenstein morphism of Springer fibres. Some basic
properties are listed here.

Proposition 3.3. (1) LS is well-defined G0-equivariant morphism of algebraic

varieties.

(2) LS restricts to a map B
0
e0

! Be which is closed and of relative dimension

zero.

Proof. Let B ✓ P be any Borel subgroup and pick a torus T ✓ B. Let � ✓ X
⇤(T )

be the corresponding root system and � ✓ � the set of simple roots corresponding
to B. Thanks to the classification of parabolic subgroups and their Levi factors
(see [Hum75, Theorems 30.1& 30.2], for example) we can choose T so that P is a
standard parabolic with respect to �. This means that after choosing a Levi factor
G0 containing T , and writing �0 ✓ � for the root system of G0, we have that
�0 := �0 \� is a set of simple roots in �0.

We have implicitly chosen positive roots �+

0
,�+. Write �+

1
= �+

\ �+

0
. Pick a

set {x↵ | ↵ 2 g} ✓ � of root vectors. Since P is standard with respect to � we
have p = b+ g0 and so n =

P
↵2�

+
1

x↵.
Since G0 preserves n it follows from the definition of LS that for any Borel

b0 ✓ g0 we have LS(g · b0) = g · LS(b0) for all g 2 G0. So LS is a G0-equivariant
map sending vector spaces of g0 to subspaces of g.
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Now let b0 ✓ g0 be the unique Borel subalgebra containing t and {x↵ | ↵ 2 �+

0
}

for ↵ 2 �+

0
. By construction LS(b0) = b. Since B

0 = G0 · b0 the G0-equivariance
implies that LS(B0) ✓ B. So LS is well-defined.

We now check that LS is a morphism. Let B0 be the Borel subgroup of G0

with Lie algebra b0 chosen in the previous paragraph, and B
�
0

✓ G0 be the Borel
subgroup of G0 opposite to B0. Write U

�
0

for the unipotent radical. Recall that
the big cell ⌦0 ✓ B0 is the image of U�

0
under the map G0 ! B

0 given by g 7! g ·b0
(see [Hum75, 28.5] for example), and that the map U

�
0

! B
0 is injective. Since

LS is G0-equivariant and B
0 has an a�ne cover by G0-translates of ⌦0 it will

su�ce to show that LS |⌦0 is a morphism. Writing U
� for the unipotent radical

of the opposite Borel to B we have a similar description of the big cell ⌦ ✓ B. It
follows from B0 ✓ B that LS(⌦0) ✓ ⌦ and so it su�ces to show that the pullback
LS

⇤ : [⌦] ! [⌦0] is a homomorphism.
For ↵ 2 � let u↵ : ! G be the corresponding 1-parameter subgroup. For a

fixed total order on � we have isomorphisms A�
+ ⇠
�! U

� and A�
+
0

⇠
�! U

�
0

given
by (t↵)↵2�+ 7!

Q
↵2�+ u�↵(t↵), and similar for U�

0
. Now after identifying through

the isomorphism ⌦ ⇠= U
� ⇠= A�

+

and ⌦0
⇠= U

�
0

⇠= A�
+
0 we see that LS

⇤ is just

the projection homomorphism [A�
+

] ⇣ [A�
+
0 ] corresponding to the inclusion

�+

0
✓ �0. Thus LS is a morphism.
The relative dimension of B0

e0
! Be is zero thanks to (3.1), Theorem 3.1 and

Lemma 3.2(2). Since LS is a morphism of projective (hence complete) varieties,
it follows from [Hum75, Proposition 6.1] that it is closed. This completes the
proof. ⇤

Corollary 3.4. The map on Springer fibres induces a map on the sets of compo-

nents: for every C 2 Comp(B0
e0
) we have LS(C) 2 Comp(Be).

Remark 3.5. One of the most surprising features of Lusztig–Spaltenstein induc-

tion of nilpotent orbits is that it depends on the conjugacy class of g0, not on the

conjugacy class of p. It would be interesting to know whether a similar independence

statement can be formulated for (3.4).

4. General linear lie algebras

For the rest of the paper keep N > 0 fixed and choose an algebraically closed
field of any characteristic p � 0. Let G = GLN ( ) and g = Lie(G) = gl

N
( ). Let

 denote the trace form associated to the natural representation V = N . We note
that the standard hypotheses are satisfied for G.

4.1. Nilpotent Orbits, Levi subalgebras and induction. The nilpotent ele-
ments of g are those which act nilpotently on the natural representation, and we
denote the set of such elements N (g). If e 2 N (g) then we can decompose V

non-uniquely into indecomposable [e]-modules V =
L

n

i=1
Vi which we refer to as

(a choice of) Jordan block spaces for e. A Jordan basis for e is a basis {vi,j | i =
1, ..., n, j = 1, . . . , dimVi} such that Vi has basis {vi,j | j = 1, . . . , dim(Vi)}

evi,j =

⇢
vi,j�1 if j > 1
0 if j = 1
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The G-orbits on N (g) are classified by partitions: for each � = (�1, ...,�n) ` N

we let O� denote the G-orbit consisting of elements with Jordan block spaces of
dimension �1,�2, ...,�n.

The Levi subalgebras of g are also classified by partitions of N : for � ` N choose
any vector space decomposition V =

L
n

i=1
Vi where dimVi = �i, let g� ⇠=

L
gl

�i
be

the subalgebra of g which preserves each Vi. This defines a bijection from partitions
of N to conjugacy classes of Levi subalgebras (see [CM93, §7.2] for example).

Now we are in a position to describe Lusztig–Spaltenstein induction of nilpotent
orbits. Let � ` N and let g� be a choice of Levi subalgebra, as described above.
Suppose that G� ✓ G is a Levi subgroup with g� = Lie(G�). The basic result
for describing induced nilpotent G-orbits is due to Kraft and Ozeki–Wakimoto,
independently.

Lemma 4.1. [CM93, 7.2.3] If O0 is the zero orbit in g� then the partition associated

to Indgg�
(O0) is the transpose �

>
.

We need to upgrade this result to describe induction from non-zero orbits. For
each i = 1, ..., n choose a partition µi = (µi,1, ..., µi,mi) ` �i. By the above remarks
there is a nilpotent G0-orbit Oµ ✓ g0 such that the projection to the factor gl

�i
is

the GL�i -orbit classified by partition µi.
Recall the definition of µ⌃ from (2.1). The following result is due to Kemp-

ken (see [CM93, Lemma 7.2.5]) however we provide a full proof for the sake of
completeness.

Corollary 4.2. The partition of Indgg�
(Oµ) is µ

⌃
.

Proof. Writing g� =
L

n

i=1
gl

�i
we pick a Levi subalgebra g

µ
>
i

of gl
�i

which has

partition of type µ
>
i
. Write gµ> =

L
n

i=1
g
µ
>
i

✓
L

n

i=1
gl

�i
and note that gµ> is

a Levi subalgebra of g. Write O0 for the zero orbit in gµ> . Then according to
Lemma 4.1 Oµ = Indg�

gµ>
(O0). Now by the transitivity of induction (Lemma 3.2)

we see that Indgg�
(Oµ) = Indggµ>

(O0).

Now observe that if we concatenate µ>
1
, µ

>
2
, ..., µ

>
n
and reorder to make a partition

⌫ ` N then ⌫
> = µ

⌃. The proof concludes by applying Lemma 4.1 once more, to
show that the partition of Indggµ>

(O0) is ⌫>. ⇤

4.2. A representative for the induced orbit. In this Section we indicate a nice
choice of representative for a nilpotent orbit O0 ✓ g0 in a Levi subalgebra, and for
the induced orbit O := Indgg0

(O0). This will be useful for illustrating some of our
arguments below.

Fix a composition � = (�1,�2, · · · ,�n) of N . For each i = 1, ..., n we pick a
partition µi = (µi,1, ..., µi,mi) of �i. Now from this data we define a set

I = {(i, j, k) | i = 1, ..., n, j = 1, ...,mi, k = 1, ..., µi,j}(4.1)

and we let V be the N -dimensional complex vector space with basis {vi,j,k |

(i, j, k) 2 I}. We identify V with the natural representation of the general lin-
ear Lie algebra g := gl

N
, and so g admits a basis

{ei1,j1,k1;i2,j2,k2 | (i1, j1, k1), (i2, j2, k2) 2 I},(4.2)

ei1,j1,k1;i2,j2,k2vi3,j3,k3 = �i2,i3�j2,j3�k2,k3vi1,j1,k1 .(4.3)
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Now we define the Levi subalgebra g0 ✓ g to be the subalgebra spanned by
elements {ei,j1,k1;i,j2,k2 | i = 1, ..., n, (i, j1, k1), (i, j2, k2) 2 I}. This algebra is
isomorphic to gl

�1
� · · ·� gl

�m
.

There is a corresponding decomposition of V : for i = 1, ..., n fixed we let Vi be
the subspace spanned by vi,j,k, allowing j, k to vary. Then we have V =

L
i
Vi, and

Vi identifies with the natural representation of gl
�i

There is a parabolic subalgebra p ✓ g admitting g0 as a Levi factor, which is
spanned by elements ei1,j1,k1;i2,j2,k2 where i2 � i1. The nilradical n ✓ p consists of
elements with i2 > i1.

Now we define some nilpotent elements. We let

e0 :=
mX

i=1

miX

j=1

µi,j�1X

k=1

ei,j,k;i,j,k+1 2 g0.(4.4)

This is a nilpotent element of g0. When restricted to the subspace Vi the associated
nilpotent operator has partition µi. Now we define an element e1 2 n. Let dj be

the number of indexes 1  i  n such that mi � j and let {ij
1
, ..., i

j

dj
} ✓ {1, ..., n}

be the indexes satisfying mik � j for k = 1, ..., dj . Now we let

(4.5) e1 :=
X

j>0

dj�1X

k=1

e
i
j
k,j,µi

j
k
,j
;i

j
k+1,j,1

and define

e := e0 + e1.(4.6)

The elements e0, e1 are easily understood pictorially, identifying the elements of
the Jordan basis with the boxes in a tuple of Young diagrams. We illustrate this
with an example.

Example 4.3. Let � = (7, 5, 12) be a composition of 24 and let

(µ1, µ2, µ3) = ((4, 2, 1), (3, 2), (32, 22, 12)).

In the following diagram, the elements of the Jordan basis vi,j,l are identified with
the boxes of the Young diagrams in the obvious manner. The action of e0 is
illustrated in black, and e1 in blue, as follows:

e00 e00 e00

e1 e1

0

0

0

Diagram 1: The action of e0 and e1 on the natural representation.

Hence we may think of e0 and e1 as acting on the boxes where:

• e0 moves a box in a given Young diagram to the box immediately to its
left, unless it is in the first column of a Young diagram, in which case it
sends it to 0; and
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• e1 sends a box in a given Young diagram to 0 unless it is in the first column
and there exists a box in the Young diagram immediately to to the left, in
which case it sends it to the box to its immediate left.

At this point, it is also worth illustrating how e := e0 + e1 acts on the N -
dimensional space V , via the ‘stacked’ Young diagram. We picture the action as
follows:

e

Diagram 2: The action of e on the natural representation.

Hence we may see that for each 1  j  10 =
P

3

k=1
µk,1, we may picture ker(ej)

as the span of the boxes in the first j columns of the stacked Young diagram. The
colours of the boxes will be useful for illustrating certain arguments later on.

We remind the reader that Op is defined in (3.3).

Lemma 4.4. e 2 Op.

Proof. For j = 1, ...,maxmi fixed the basis vectors vi,j,l (allowing i, l to vary) span
a single Jordan block for e of size

P
n

i=1
µi,j = µ

⌃

j
. It follows that the G-orbit of e

has partition µ
⌃ and the Lemma follows, thanks to Corollary 4.2 ⇤

4.3. Flags and Spaltenstein’s description of the components of Springer

fibres. Let e be a nilpotent element in gl
N

of Jordan type � and let Be be the
corresponding Springer fibre over e. We recall that the points of B are described
in terms of full flags of V = N : a flag F• = (0 ( F1 ( · · · ( FN�1 ( N )
corresponds to the Borel subalgebra consisting of elements of g preserving each Fi.
Thus we may explicitly describe the Springer fibre in terms of flags as follows

Be = {0 ⇢ F1 ⇢ · · · ⇢ FN�1 ⇢ CN
| dim(Fi) = i, e(Fi) ✓ Fi�1}.

For a fixed flag F• 2 Be, by considering the Jordan type of e restricted to the
subspaces Fi, we obtain a natural map from the fibre to sequences of partitions:

� : Be �! P1 ⇥ P2 ⇥ . . .⇥ PN

F• 7�! (Type(e|F1
), . . . ,Type(e|FN

))
(4.7)

We identify partitions of N with their corresponding Young diagrams.

Lemma 4.5. Let e be a nilpotent of Jordan type � and let H be an e-stable hy-

perplane of
n
. Then Type(e|H) is obtained by removing the last box from the

j-column of � where j is maximal such that H ◆ ker(ej�1).

Proof. We may choose a Jordan basis for the nilpotent e on V such that H is
spanned by all but one of those Jordan basis vectors. The result follows. ⇤

By a nested sequence of partitions we mean a sequence of partitions, or Young
diagrams, for each 1  k  n such that each Young diagram is obtained from
the previous by adding a box to an available row, where available means that the
diagram obtained by adding the box is indeed a Young diagram.
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Lemma 4.5 shows that the image of � is the set of nested sequences of partitions
which are in bijection with Std(�). For instance, the standard tableau

1 3 4
2 5

(4.8)

corresponds to the nested sequence:
✓
?, , , , ,

◆

Hence we may identify the image of � with a subset of Std(�) and a simple induction
argument shows that � is a surjection onto Std(�) and we have the following due
to Spaltenstein:

Theorem 4.6. [Spa76] Let e be nilpotent of Jordan type �. Then:

(1) there is a bijection between Comp(Be) and Std(�) induced by � where for

any � 2 Std(�), ��1(�) is an irreducible component.

(2) (Cf. Theorem 3.1). Be is of pure dimension and for all � 2 Std(�),

dim(��1(�)) =
1

2

X

i�1

�
>
i
(�>

i
� 1).

For � 2 Std(�), put X� := ��1(�). Using the ordering on standard tableaux
given in Section 2.2 we have the following important property of closures.

Lemma 4.7. We have X� \X⌧ = ; for ⌧ > �.

Proof. By [Spa76, Proposition, (a)] we know that X� is locally closed and
S

⌧>�
X�

is closed in Be. Therefore X⌧ ✓
S

⌧ 0�⌧
X⌧ 0 and the lemma follows from the fact

that the fibres of Spaltenstein’s map are disjoint. ⇤

As we observed in Section 4.1 the G0-orbit O0 is determined by partitions
µ1, ..., µn such that µi ` �i. Note that Spaltenstein’s map gives a map �0 : B0

e0
!Q

n

i=1
Std(µi), and the fibre over a tuple (�(1)

, ...,�
(n)) of standard tableaux is de-

noted X�(1),...,�(n) .
The next Lemma, combined with Lemma 3.2(3), shows that in order to under-

stand LS for any element e 2 Op (see (3.3)) it su�ces to understand the morphism
for a single element. Thus our representative chosen above may be seen as a typical
element for our purposes. It follows directly from the definition of LS and �, see
(3.4) and (4.7).

Proposition 4.8. Suppose that p = Lie(P ), g 2 P and let g = g0u 2 G0U where

U = Rad(P ). Then we have commutative diagrams

B
0
e0

B
0
g0·e0

Be

Bg·e

g0

LS

LS

g

Be

Std(�)

Bg·e

�

g

�

Be0

Q
n

i=1
Std(µi)

Bg0·e0

�0

g0

�0
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4.4. The Lusztig–Spaltenstein map on fibres. Let p be a parabolic subalgebra
of g with n = Rad(p) and pick a Levi factor g0 ✓ p. Let � = (�1, ...,�n) denote
the ranks of the general linear factors of g0. Observe that the decomposition g0 ⇠=L

n

j=1
gl

�j
gives a decomposition N =

L
N

j=1
Vj where any Vj is stable under

the action of every gl
�k

and the restriction of gl
�j

to endomorphisms of Vj is an

isomorphism. We order the spaces Vj in such a way that p maps Vj to
L

j

k=1
Vj ,

and we note that � is a composition of N , not a partition in general.
We pick a nilpotent orbitO0 ✓ g0 and choose an element e 2 Indgg0

(O0)\(O0+n).
Let e = e0 + e1 be the decomposition of e across the direct sum p = g0 � Rad(p).
Now we can consider the map

LS : B0

e0
�! Be.

By our choices above we note that setting Wj =
L

j

k=1
Vk determines a partial

flag of N , and p is described by p = {x 2 g | xWj ✓ Wj for all j}. In the following
we regard the elements of B as full flags of N , and similarly we regard an element
of B0 as a tuple (F (1)

, ..., F
(n)) where each F

(j) is a flag of Vj . In order to describe
LS in this language we must rephrase the map in terms of flags.

Lemma 4.9. We have

LS(F (1)

• , . . . , F
(n)

• ) := F̄• = (0 ⇢ F̄1 ⇢ F̄2 ⇢ · · · ⇢ F̄N�1 ⇢
N )

where

F̄i =

8
><

>:

F
(1)

i
for 1  i  �1

Wj�1 + F
(j)

k
for i > �1 where j is maximal such that

j�1X

l=1

�l < i and k = i�

j�1X

l=1

�l.

As we observed in Section 4.1 the G0-orbit O0 is determined by partitions
µ1, ..., µn such that µi ` �i. Note that Spaltenstein’s map gives a map �0 : B0

e0
!Q

n

i=1
Std(µi), and the fibre over a tuple (�(1)

, ...,�
(n)) of standard tableaux is de-

noted X�(1),...,�(n) .
Our Main Theorem will follow fairly quickly from the next Proposition.

Proposition 4.10. For each i = 1, ..., n we choose a standard tableau �
(i)

for µi.

Then

LS(X�(1),...,�(n)) ✓
[

⌧�stk(�(1),...,�(n))

X⌧ .

Proof. Let (F (1)
, · · · , F

(n)) 2 B
0
e0
, and suppose that (F (1)

, · · · , F
(n)) 2 ��1

0
(�(1)

, ...,�
(n)).

Let LS(F (1)
, ..., F

(n)) = F̄•, which is described explicitly in Lemma 4.9. Suppose
that F̄• 2 ��1(⌧) for some ⌧ 2 Std(�). Put �

⌃ = stk(�(1)
, ...,�

(n)). In order to
prove the proposition we must show that ⌧ � �

⌃. If ⌧ = �
⌃ then we are done, so

we may assume that ⌧ 6= �
⌃.

Recall that ⌧i is the column of ⌧ where i occurs. To establish the Proposition,
we need to show that there exists an index i 2 {1, . . . , N} such that ⌧i > �

⌃

i
and

⌧k = �
⌃

k
for k > i. Let i be the maximal index such that ⌧i 6= �

⌃

i
. Now define

V
0 := F̄i and we consider g0 = gl(V 0), e0 := e|V 0 2 g0, g0

0
:= g0|V 0 , G0

0
:= G0|V 0

and p0 := p|V 0 . Also write F̄
0
• = (0 ✓ F̄1 ✓ · · · ✓ F̄i�1 ✓ V

0) which is a full flag
of V 0. Write B

0 for the flag variety of g0 and B
0
e0 for the Springer fibre, and �0 for
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Spaltenstein’s map. Note that F̄ 0
• 2 B

0
e0 and that �0(F̄ 0

•) consists of the boxes of ⌧
with labels 1, ..., i.

Now let j 2 {0, ..., n � 1} be the largest index such that
P

j

k=1
�k < i, and set

d := i �
P

j�1

k=1
. By Lemma 4.9 we know that V1, ..., Vj�1 ✓ V

0 and Ṽj := F̄i \ Vj

satisfies V1� · · ·Vj�1� Ṽj . Therefore p0 is the parabolic subalgebra of g0 stabilising
the partial flagW 0

• of V
0 given byW

0
k
= Wk for k = 1, .., j�1 andW

0
j
= V

0, whilst g0
0

is a Levi factor of p0. It follows that the projection e
0
0
of e0 across p0 = g0

0
� nil(p0)

is equal to the restriction e0|V 0 . The G
0
0
-orbit of e0

0
is determined by partitions

µ
0
1
, ..., µ

0
j
which are described as follows: µk = µ

0
k
for k = 1, ..., j � 1 and µ

0
j
is the

shape of the tableau �
(j)0 obtained from �

(j) by considering only the boxes labelled
1, 2, ..., d.

We claim that e
0 lies in the nilpotent orbit in g0 induced from (g0

0
, G

0
0
· e

0
0
). To

see this write �
⌃0 for the tableau formed from �

⌃ by considering only the boxes
with entries 1, ..., i. Similarly define ⌧

0. Using Corollary 4.2 and the remarks of
the previous paragraph we see that the shape of �⌃0 is the Young diagram of the

induced orbit Indg
0

g0
0
(G0

0
·e

0
0
). On the other hand the shape of ⌧ 0 is the Young diagram

of the orbit of e0. Since we assumed that ⌧j = �
⌃

j
for j = i+1, ..., N it follows that

the shape of ⌧ 0 is the shape of �⌃0, and this confirms the claim.
Let F (1)0

•, ..., F
(j)0

• be the collection of flags of V1, ..., Vj�1, Ṽj given by F
(k)0

• :=

F
(k)

• for k = 1, .., j � 1 and F
(j)0

• := (0 ✓ F
(j)

1
✓ · · · ✓ F

(j)

d�1
✓ Ṽj). By Lemma 4.9

the Lusztig–Spaltenstein map on fibres sends (F (1)0
•, ..., F

(j)0
•) 2 B

0

e
0
0

0 to F̄
0
• 2 B

0
e0 .

The standard tableau �
(1)0

, ...,�
(j)0 corresponding to F

(1)0
•, ..., F

(j)0
• are determined

from �
(1)

, ...,�
(j) in the obvious manner. The tableau �

⌃0 := stk(�(1)0
, ...,�

(j)0)
is the numbered diagram obtained from �

⌃ by considering only the boxes labelled
1, ..., i. Since we have assumed �

⌃

i
6= ⌧i, it follows that �

⌃

i

0
6= ⌧

0
i
. To prove the

Proposition we must show that �⌃

i

0
> ⌧

0
i
.

Since we are in precisely the same situation as the start of the proof, we might as
well simplify our notation by assuming that i = N , and working with g, p, e, g0, e0
rather than g0, p0, e0, g0

0
, e

0
0
. We shall assume �

⌃

N
6= ⌧N to prove �

⌃

N
> ⌧N .

Suppose that �n is in the (i, j)-th position of �(n) (so we have now fixed i and
j). Then by the formula in (2.4), N occupies the (i, j0)-th position in �

⌃, where
j
0 =

P
n�1

k=1
µk,i+j; that is, �⌃

N
= j

0. Hence we need to show that F̄N�1 ◆ ker(ej
0�1)

to deduce that ⌧N � j
0 = �

⌃

N
. From the outset we assumed that ⌧N 6= �

⌃

N
and so

this will imply that ⌧ > �
⌃ and complete the proof.

By Lemma 4.9, we have F̄N�1 = Wn�1�F
(n)

�n�1
and we have that j is the maximal

index such that F
(n)

�n�1
◆ ker(ej�1

0|Vn
). Thanks to Lemma 3.2(3) and Lemma 4.8, if

we prove the Proposition for a particular choice of e 2 (O0 + n) \ Indgg0
(O0) then

it will follow for every choice. This allows us to work with the explicit choice for e0
and e1 that comes with a Jordan basis as in Section 4.2.

Thus we picture the N -dimensional vector space as the span of all the boxes
in the tuple of Young diagrams corresponding to the partitions (µ1, . . . , µn), and
hence we may identify Wn�1 as the span of the boxes in the first n � 1 Young

diagrams and F
(N)

�n�1
as the span of all the boxes in the last Young diagram except

for the box in the (i, j)-th position (or the box at the bottom of column j in last
Young diagram). This pictorial interpretation is explained clearly in Example 4.3.
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Since may we diagrammatically represent ker(ej
0�1) as the span of the boxes

in the first j
0
� 1 columns of the stacked Young diagram (see Diagram 2 in Sec-

tion 4.2), it follows that ker(ej
0�1) ✓ Wn�1 � ker(ej�1

0|Vn
). Since ker(ej�1

0|Vn
) ✓ F

(n)

�n�1

by construction, it follows that

ker(ej
0�1) ✓ Wn�1 � F

(n)

�n�1
= F̄N�1.

Therefore ⌧N � j
0 = �

⌃

N
and so ⌧ > �

⌃, and the proof is complete. ⇤

It is possible to construct simple examples demonstrating that LS(X�1,...,�n) is
not contained in Xstk(�1,....,�n)

in general, and so the previous proposition is best
possible. We leave the details of such examples as an exercise for the interested
reader.

4.5. The stacking theorem. Retain the notation and choices made at the start
of Section 4.4. Let �(1)

, . . . ,�
(n) be a choice of standard tableaux of shape µ1, ..., µn

respectively. By Spaltenstein’s theorem, the closure X�(1),...,�(n) is an irreducible
component of B0

e0
which we denote C�(1),...,�(n) . Similarly for � a standard tableau

of shape µ
⌃ we write C� := X� ✓ Be, which is an irreducible component of Be.

The following is our main result.

Theorem 4.11. LS(C�(1),...,�(n)) = Cstk(�(1),...,�(n)).

Proof. The first step is to show that there is an element (F (1)

• , ..., F
(n)

• ) 2 B
0
e0

such

that LS(F (1)

• , ..., F
(n)

• ) 2 Xstk(�(1),...,�(n)). Notice that using the argument in the
eighth paragraph of the proof of Proposition 4.10 it su�ces to find such a flag for
a particular choice of e 2 Op (see (3.3)), and it will follow for all such elements.
Pick a basis {vj,l,m | j, l,m} for N such that {vj,l,m | l,m} spans the spaces Vj

described in Section 4.4 and then choose an element e = e0+e1 2 Op using formulas

(4.4) and (4.5). For each k = 1, ..., n we define a full flag F
(k) of Vj by letting F

(k)

j

be the span of those vectors vk,l,m such that the (l,m)-entry of �(k) is less than or
equal to j.

Claim. (F (1)

• , . . . , F
(n)

• ) 2 B
0
e0

and LS(F (1)

• , . . . , F
(n)

• ) 2 Xstk(�(1),...,�(n)).

The first part of the claim is obvious from the construction. To prove the second

part we describe the Jordan blocks of e|F̄j
where F̄• := LS(F (1)

• , ..., F
(n)

• ). For

j = 1, ..., N we let k � 0 be such that
P

k�1

i=1
�i < j 

P
k

i=1
�i. Write

Xj :=
n
(i, l,m) i<k or i=k and the (l,m)-entry of �

(k)

is less than or equal to j̃:=j�
Pk�1

r=1 �r

o
.

Then F̄j is spanned by {vi,l,m | (i, l,m) 2 Xj}. Now if we fix 1  i  max `(µs)
then the span of {vi,l,m | (i, l,m) 2 Xj} is a single Jordan block for e. We invite
the reader to check this claim using Diagram 2 in Example 4.3. Combining this
description of the Jordan blocks of e|F̄k

with the relationship between standard
tableaux and sequences of nested partitions given in Section 4.4 it follows that
�(F̄•) = stk(�(1)

, ...,�
(n)). This proves the claim.

By Corollary 3.4 and Proposition 4.10 we know that LS(X
(1)

�
) is equal to X⌧

for some ⌧ � stk(�(1)
, ...,�

(n)). Combining the above Claim with Lemma 4.7 we
deduce that ⌧ = stk(�(1)

, ...,�
(n)), which completes the proof. ⇤
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Remark 4.12. A direct consequence of the stacking theorem is that stk is an asso-

ciative operation on tableaux, which can also be checked directly by a combinatorial

argument.
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