
              

City, University of London Institutional Repository

Citation: Serramia Amoros, M., Criado, N. & Luck, M. (2024). Multi-user norm consensus. 

In: AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents 
and Multiagent Systems. (pp. 1683-1691). New York, USA: UNSPECIFIED. ISBN 
9798400704864 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/32248/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Multi-user Norm Consensus
Marc Serramia

King’s College London
City, University of London
London, United Kingdom

marc.serramia-amoros@city.ac.uk

Natalia Criado
Universitat Politècnica de València

València, Spain
nacrpac@upv.edu.es

Michael Luck
University of Sussex

Brighton, United Kingdom
Michael.Luck@sussex.ac.uk

ABSTRACT
Many agents act in environments with multiple human users, from
care robots to smart assistants. When interacting in multi-user en-
vironments it is paramount that these agents act as all users expect.
However, it is not always possible to have well-defined collective
preferences, nor to easily infer them from individual preferences.
This is especially true in fast changing environments, like a device
placed in a public space where users can enter and exit freely. In
response, this paper proposes a model to represent individual pref-
erences about the behaviour of an agent and a mechanism to find
multi-user consensuses over these preferences. Norms can then
be generated to ensure that when the agent follows them it will
act according to the preferences of all users. We formalise what a
consensus norm is and what properties the set of consensus norms
should satisfy (i.e. generate the minimum number of norms while
maximising the coverage of user preferences). We provide an op-
timisation approach to find this set of norms and show that our
approach satisfies the aforementioned properties.
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1 INTRODUCTION
The advent of AI and IoT technologies has allowed humans to easily
interact and communicate with many intelligent agents (like smart
devices and services). While these technologies have undoubtedly
simplified our lives, they present new challenges. Many of these
agents interact with multiple human users, for example, smart
assistants [17], or care robots [8]. When these agents act in multi-
user environments it is paramount that they act in accordance to
all users’ preferences; this is especially important for environments
where users may enter and exit freely. Consider the following case:
a nursing home has a care robot in its common room, and the care
robot can do multiple actions (e.g. talk or assist residents, interact
with other devices, etc.). For this example we focus on the action of
playing music. Some residents like listening to music, while others
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prefer to have silence to do other activities. Depending on which
residents are in the room the robot should decide whether to play
music or not.

Appropriateness of actions is strictly linked to their context, so
that laughing at a social gathering can be appropriate at a birthday
party or inappropriate at a funeral. Therefore, user preferences
establish the appropriateness or inappropriateness of actions per-
formed in a particular context. In multi-user settings an agent must
guide its behaviour following consensus among all user preferences.
Our vision is that when a group of users approaches an agent,
the agent receives their preferences (which could, for example, be
transmitted from their smartphones via Bluetooth), determines the
consensus on the spot and acts accordingly. Importantly, however,
contexts may not be independent; the contexts “social gathering”
and “birthday” or “funeral” are not independent, with the first being
a generalisation of the other two. Hence, users may define prefer-
ences at different levels of generalisation and this must be taken
into account when detecting consensus.

Agents act in a multiagent system populated by other agents (e.g.
a smart assistant may also interact with service providers, or other
assistants), hence we resort to norms to regulate their behaviour[7].
Normative multiagent systems and methods to engineer norms
have been widely studied (e.g., norm synthesis [19], norm emer-
gence [21], norm programming [10, 25]...), norms are naturally
understood by humans, and they can be simplified and generalised
which is helpful to communicate system behaviour.Our aim in this
paper is therefore to define a process that can detect consensus and
generate norms off-line, and satisfying two desirable properties:
minimality and maximal regulation. First, with a focus on human
comprehension, the property of minimality becomes essential. Fi-
toussi et al. [12] envisioned this as minimising the set of constraints
that agents ought to follow, and the reasoning necessary to process
them respectively. Minimality was also addressed by [20] in relation
to minimising the number of norms to regulate a particular scenario,
which is especially attractive to better communicate regulations
to people and for explainability. Second, since we want the system
to act according to user preferences, we also seek to satisfy the
property of maximal regulation with regard to user consensus. This
ensures the system respects consensus preferences whenever they
exist. To the best of our knowledge this has not been considered in
the context of norms, in contrast to the complementary property
of allowing maximal freedom to agents [24].

The paper therefore advances the state of the art by providing
the following key contributions.

• A novel formalisation for the set of consensus norms and the
properties it should satisfy.

• A novel data structure, the preference graph, to represent
user preferences and to search for consensus among users.
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• A resolution of the norm consensus problem (i.e. finding
the set of consensus norms) as an optimisation problem,
a formal validation of the solution, and an analysis of its
computational cost.

The paper is structured as follows: Section 2 motivates norm
consensus in terms of privacy preferences and introduces a running
example to illustrate our findings. Section 3 formally defines the
norm consensus problem. In Section 4 we describe how to solve
this problem, Section 5 discusses related work and in Section 6 we
provide conclusions and paths to continue the research.

2 MOTIVATION: PRIVACY AND SMART
ASSISTANTS

People are often worried about how their personal data is shared,
used and stored by different services and devices [16]. Yet, while
most people consider privacy to be important, they have different
privacy preferences. Like in many other areas, in privacy, appropri-
ateness of actions is linked to contextual integrity (i.e. the context
and what that context means for those affected) [23]. While the is-
sue of understanding individual user privacy preferences (from the
perspective of contextual integrity) has recently received attention
[29], to the best of our knowledge multi-user privacy consensus
has not yet been addressed. We therefore motivate our work with
a running example on smart assistants and privacy.

Smart assistants are usually placed in common areas, and com-
mands are sent by voice, facilitating interaction with multiple users
[17]. These devices (e.g. Alexa) only allow one user to define their
preferences and are unable to distinguish different users [11] mak-
ing multi-user privacy preference management already a problem.
Members of a family might have different privacy preferences for
their smart assistant, for example, elders may be more cautious
than youngsters. These issues transcend the home assistant en-
vironment; smart assistant devices are even now being placed in
meeting rooms, raising the question of how the device should re-
spect the privacy of all participants in a group meeting. In other
words, how the device should act in a way that is aligned with the
consensus privacy preferences. This example shows the need to ad-
dress multi-user privacy preference consensus and the complexities
it can bring.

Example 1. Imagine a company where three co-workers, Anna,
Ben, and Claire, are due to meet. The company’s meeting room has
a smart assistant that can help them in their work, but it must also
comply with their personal privacy preferences. We consider prefer-
ences with regard to sharing files and, in particular, voice recordings.
An additional preference requires the co-workers be notified when
sharing any type of data. We only have partial knowledge of each of
the user’s privacy preferences, as indicated in Table 1.

Files Voice recordings Notified
Anna ✓ ×
Ben ✓
Claire ✓

Table 1: Preferences of the running example. ✓ represents
approval, while × represents disapproval.

3 NORM CONSENSUS PROBLEM
Let 𝐴𝑔 be a set of agents in a multi-agent system (MAS), and let 𝐴
be the set of actions the agents in 𝐴𝑔 can perform. These actions
will be appropriate or inappropriate depending on the context in
which they are performed. While in general we express contexts as
logic formulas, we first formalise the building blocks of contexts,
which we call our base contextual knowledge.

Def. 1 (Base contextual knowledge). The base contextual
knowledge is a structure K𝑏 = {𝐶𝑏 , 𝑔𝑏 }, where 𝐶𝑏 is a set of atomic
propositions representing contexts and 𝑔𝑏 is a generalisation relation,
so that if 𝑐1, 𝑐2 ∈ 𝐶𝑏 and 𝑐1 𝑔𝑏 𝑐2, then 𝑐1 generalises 𝑐2. For each
context 𝑐 ∈ 𝐶𝑏 we require its negation to also be in the knowledge
¬𝑐 ∈ 𝐶𝑏 . We also require 𝑔𝑏 to be a transitive relation, so if 𝑐1, 𝑐2, 𝑐3 ∈
𝐶𝑏 , then 𝑐1 𝑔𝑏 𝑐2, 𝑐2 𝑔𝑏 𝑐3 ⇒ 𝑐1 𝑔𝑏 𝑐3. We denote the set of contexts
that generalise 𝑐 ∈ 𝐶𝑏 as 𝑔𝑏 (𝑐).

We illustrate the base contextual knowledge in Example 2 using
the contexts in the motivating example of Section 2.

Example 2. Following the earlier example, we have 𝐶𝑏 = {𝑓 𝑖𝑙𝑒𝑠,
𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ,𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑 ,¬𝑓 𝑖𝑙𝑒𝑠,¬𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ,¬𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑}.
In this case, for example, 𝑓 𝑖𝑙𝑒𝑠 generalises the 𝑣𝑜𝑖𝑐𝑒_ 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 file
types.

The base contextual knowledge only contains atomic contexts,
but preferences may be defined over more complex contexts. For
example, in Section 2 we considered Ben approved sharing files
if notified, yet as shown in Example 2 𝑓 𝑖𝑙𝑒𝑠 and 𝑛𝑜𝑡𝑖 𝑓 are two
different contexts. In order to define preferences over these more
complex contexts we expand the contextual knowledge allowing
compositions.

Def. 2 (Contextual knowledge). Given a base contextual knowl-
edge K𝑏 = {𝐶𝑏 , 𝑔𝑏 }, we define the contextual knowledge K = {𝐶,𝑔},
where 𝐶 is the set of formulas of the propositional logic P derived
from the language that has the contexts in𝐶 as terms and the operator
∧1, and 𝑔 is the generalisation relation, where:

• ∀𝑥,𝑦 ∈ 𝐶𝑏 , 𝑥 𝑔𝑏 𝑦 ⇒ 𝑥 𝑔 𝑦.
• ∀𝑥,𝑦 ∈ 𝐶𝑏 , 𝑥 𝑔 (𝑥 ∧ 𝑦) and 𝑦 𝑔 (𝑥 ∧ 𝑦)
• 𝑔 satisfies the transitive property, 𝑥 𝑔 𝑦 and 𝑦 𝑔 𝑧 ⇒ 𝑥 𝑔 𝑧.

Contextual knowledge covers all possible contexts and their
relations. Of course, in real applications we might only have partial
preference information over a subset of these contexts.

As mentioned above, user preferences stipulate whether or not
an action is appropriate in a given context, so preferences act over
pairs of action and context. We call the set containing the pairs of
action and context the domain, but because not all actions can be
performed in all contexts, we formalise this as follows.

Def. 3 (Domain). Given a set of actions 𝐴 and contextual knowl-
edge K = {𝐶,𝑔}, a domain is a set D ⊆ 𝐴 ×𝐶 .

1We do not consider the ∨ operator to avoid disjunctions that can capture many
independent contexts into one single logical formula. For the same reason, we do not
consider the ¬ operator (disjunctions can be defined with ¬ and ∧). Note though, we
will use the notation ¬𝑐 to refer to the negation of context 𝑐 in the base contextual
knowledge (see Def. 1), but this notation should not be confused with the negation
operator which, for example, can be used to negate complex logic sentences.



Example 3. Following the running example, our domain consists
of the pairs of the action 𝐴 = {𝑠ℎ𝑎𝑟𝑒} and the contextual knowledge
K composed of the logical formulas of the contexts in Example 2.

Consider𝑈 to be a set of users, where different users have dif-
ferent preferences over which actions are appropriate under which
contexts. Our aim in this paper is to find the consensus among
all users. We define users’ preferences as the appropriateness of
actions in certain contexts. Thus, for each user we consider their
preferences in a preference profile, which we define as follows.

Def. 4 (Preference profile). Let D be a domain, we define the
preference profile of user 𝑢 ∈ 𝑈 as a function 𝑝𝑢 : D → {−1, 0, 1},
where for each pair (𝑎, 𝑐) ∈ D, 𝑝𝑢 (𝑎, 𝑐) = 1 means that user 𝑢 thinks
𝑎 is appropriate in context 𝑐 , 𝑝𝑢 (𝑎, 𝑐) = −1 means the user thinks it
is inappropriate, and 𝑝𝑢 (𝑎, 𝑐) = 0 means we do not know the user’s
preference.

While we would ideally like complete knowledge of each user’s
preference profile, in real cases we cannot guarantee this (since
users are not willing to be involved in defining their preferences
[13]), so we do not assume complete knowledge of 𝑝𝑢 .

Example 4. Following the earlier example, the preference profiles
for the three users would be as follows (we omit unknown preferences
for clarity):

Anna: 𝑝𝐴 (𝑠ℎ𝑎𝑟𝑒, 𝑓 𝑖𝑙𝑒𝑠) = 1, 𝑝𝐴 (𝑠ℎ𝑎𝑟𝑒, 𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔) = −1.
Ben: 𝑝𝐵 (𝑠ℎ𝑎𝑟𝑒, 𝑓 𝑖𝑙𝑒𝑠) = 1.
Claire: 𝑝𝐶 (𝑠ℎ𝑎𝑟𝑒, 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑) = 1.

Since the aim of this paper is to find the point at which users
reach consensus among their preferences and ensure that agents
(devices, services, etc.) act with respect to this consensus, we must
first define what we understand by consensus. Considering several
user preference profiles, a pair (𝑎, 𝑐) ∈ D of action and context in
the domain can be one of the following.

• Consensual: All users agree that the action is appropriate
(or all agree it is inappropriate) in the context.

• Non-consensual: There are some users who think the ac-
tion is appropriate in the context, while others think it is
inappropriate.

• Unknown: The pair (𝑎, 𝑐) is neither consensual nor non-
consensual. In other words, all users for which we know the
preferences agree that (𝑎, 𝑐) is appropriate (or all agree it is
inappropriate), but we do not have all users’ preferences.

Importantly, not all users might specify preferences for the same
pair of action and context (𝑎, 𝑐), yet this does not mean that a
non-consensus or a consensus does not exist. First, non-consensus
will also happen where there are two users who disagree on the
appropriateness of an action in related contexts. For example, in a
family one user thinks the smart assistant should be able to share
everything while another user thinks it should not share banking
details, even if the first user did not directly specify their preference
for banking details, the action of sharing in the context banking
details is non-consensual. If we discard a non-consensus, then a
consensus can happen in three cases:

• When all users approve (or all disapprove) performing an
action in different related contexts (in terms of generalisation
relations);

• When all users approve (or all disapprove) performing an
action in different unrelated contexts.

• A mix of both of the above two points.
In more detail, consider two users 𝑢1 and 𝑢2, and consider con-

texts 𝑐1 and 𝑐2, with 𝑐1 𝑔 𝑐2. On the one hand, if 𝑢1 thinks 𝑎 is
appropriate in 𝑐1 and 𝑢2 thinks 𝑎 is appropriate in 𝑐2, we can say
that their consensus is that 𝑎 is appropriate in the most specific
context out of the two (𝑐2). We call this a positive consensus. Fur-
thermore, consider another user 𝑢3 and a context 𝑐3 unrelated to 𝑐1
or 𝑐2. If𝑢3 thinks 𝑎 is appropriate in 𝑐3, then the consensus between
𝑢1 and 𝑢3 would be to perform 𝑎 when both of their approved con-
texts apply (𝑐1∧𝑐3). This is because 𝑐1∧𝑐3 is generalised by both 𝑐1
and 𝑐3, so it becomes the context in which both users agree. Finally,
these two clear-cut cases can be mixed with one another; for exam-
ple, if 𝑢1 thinks 𝑎 is appropriate in 𝑐1, 𝑢2 thinks 𝑎 is appropriate in
𝑐2, and 𝑢3 thinks 𝑎 is appropriate in 𝑐3, then the consensus between
the three users is that 𝑎 is appropriate in 𝑐2 ∧ 𝑐3. We formally cate-
gorise each pair of action and context as follows. Plus, all of these
cases can be analogously defined for inappropriateness, and in that
case we would call them negative consensus.

Def. 5 (Consensus types). Given a set of users 𝑈 with their
corresponding preference profiles 𝑝𝑢∀𝑢 ∈ 𝑈 , and given (𝑎, 𝑐) ∈ D,
we say there is a:

• Non-consensus: If ∃𝑢,𝑢′ ∈ 𝑈 and 𝑐′, 𝑐′′ ∈ 𝐶 , where 𝑐′ gener-
alises or is equal to 𝑐 (𝑐′ = 𝑐 or 𝑐′ 𝑔 𝑐) and 𝑐′′ is more specific
or equal to 𝑐 (𝑐′′ = 𝑐 or 𝑐 𝑔 𝑐′′), such that 𝑝𝑢 (𝑎, 𝑐′) = 1 and
𝑝𝑢′ (𝑎, 𝑐′′) = −1.

• Positive Consensus: If non-consensus does not hold and ∀𝑢 ∈
𝑈 , either 𝑝𝑢 (𝑎, 𝑐) = 1 or ∃𝑐′ that generalises 𝑐 (𝑐′ 𝑔 𝑐) and
𝑝𝑢 (𝑎, 𝑐′) = 1.

• Negative Consensus: If non-consensus does not hold and ∀𝑢 ∈
𝑈 , either 𝑝𝑢 (𝑎, 𝑐) = −1 or ∃𝑐′ that generalises 𝑐 (𝑐′ 𝑔 𝑐) and
𝑝𝑢 (𝑎, 𝑐′) = −1.

• Unknown consensus: If (𝑎, 𝑐) is neither consensual nor non-
consensual.

Example 5. Following Example 4, we can see that (𝑠ℎ𝑎𝑟𝑒, 𝑓 𝑖𝑙𝑒𝑠)
is non-consensual because for Anna and Ben we can take 𝑐′ = 𝑓 𝑖𝑙𝑒𝑠 ,
𝑐′′ = 𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 and 𝑝𝐵 (𝑠ℎ𝑎𝑟𝑒, 𝑓 𝑖𝑙𝑒𝑠) = 1, and 𝑝𝐴 (𝑠ℎ𝑎𝑟𝑒 ,
𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠) = −1. On the other hand, 𝑓 𝑖𝑙𝑒𝑠 ∧ ¬ 𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐
𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ∧ 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑 is consensual as it is not non-consensual and is
generalised by both 𝑓 𝑖𝑙𝑒𝑠 and 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑 for which we have approval
from all users (because 𝑝𝐴 (𝑠ℎ𝑎𝑟𝑒, 𝑓 𝑖𝑙𝑒𝑠) = 1, 𝑝𝐵 (𝑠ℎ𝑎𝑟𝑒, 𝑓 𝑖𝑙𝑒𝑠) = 1,
and 𝑝𝐶 (𝑠ℎ𝑎𝑟𝑒, 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑) = 1).

To ensure the agents respect all users preferences, we encode
the reached consensus as norms, which regulate the actions that
the agents can or cannot perform in each context. While several
definitions of norms have been proposed in the literature (see [5] for
a discussion), for simplicity and since we only consider contextual
knowledge to encode them we favour a minimal definition. This
formalisation considers three elements: the norm’s precondition,
the action being regulated, and the deontic operator stating if the
action should or should not be performed when the precondition is
true.

Def. 6 (Norm). A norm is a structure 𝑛 = ⟨𝜑, 𝜃 (𝑎)⟩, where 𝜑 ∈ 𝐶

is a context acting as the precondition, 𝑎 ∈ 𝐴 is an action, and 𝜃 ∈



{𝑃𝑟ℎ, 𝑃𝑒𝑟 } is a deontic operator, where 𝑃𝑟ℎ denotes a prohibition and
𝑃𝑒𝑟 a permission2.

Example 6. As explained in Example 5, there is a consensus among
users in files other than voice recordings if they get notified. Thus, a
norm regulating this pair of action and context, would be: ⟨𝑓 𝑖𝑙𝑒𝑠 ∧
¬𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ∧ 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑, 𝑃𝑒𝑟 (𝑠ℎ𝑎𝑟𝑒)⟩.

Given our definition of a norm, we can informally introduce the
norm consensus problem. Considering several users 𝑈 and their
respective preference profiles 𝑝𝑢 , the norm consensus problem
corresponds to finding the set of norms satisfying three conditions:
preference alignment, maximum regulation, and minimality. Thus,
to formally define the problem we must first formally define these
properties. Firstly, preference alignment ensures that any of the
consensus norms regulates an action in a way all users would agree;
in other words, the norm stems from a consensus. Formally:

Def. 7 (Preference aligned norms). Given domain D with
users𝑈 and preferences 𝑝𝑢 , we say the set of norms 𝑁 is preference
aligned if ∀𝑛 = ⟨𝜑, 𝑃𝑒𝑟 (𝑎)⟩ ∈ 𝑁 there is a positive consensus over
(𝑎, 𝑐) and ∀𝑛 = ⟨𝜑, 𝑃𝑟ℎ(𝑎)⟩ ∈ 𝑁 there is a negative consensus for
(𝑎, 𝑐).

Secondly, we want the agents to adhere to the users’ preferences,
hence we want to restrict the freedom of action of agents as much
as possible considering the knowledge we have. Therefore, we
require that there is a norm regulating any situation for which
users have a consensus preference. Note this requirement is the
reverse implication of preference alignment, so we can formalise it
as follows.

Def. 8 (Maximally regulatory norms). Given domain D with
users 𝑈 = {𝑢1, . . . , 𝑢𝑘 } and their preferences 𝑝𝑢𝑖 , we say the set
of norms 𝑁 is maximally regulatory if ∀(𝑎, 𝑐) over which there is
a positive (resp. negative) consensus ∃𝑛 = ⟨𝜑, 𝑃𝑒𝑟 (𝑎)⟩ ∈ 𝑁 (resp.
∃𝑛 = ⟨𝜑, 𝑃𝑟ℎ(𝑎)⟩ ∈ 𝑁 ) such that 𝜑 ⊨ 𝑐).

Finally, we want to have the least amount of norms possible,
making the functioning of the system easier to understand for
humans and more efficient for the agents. If we consider all sets of
norms that imply the same action regulations (be it permission or
prohibition) under the same contexts, the minimal set of norms is
the one that contains the least amount of them. Formally:

Def. 9 (Minimality). Given a domainD, and given a set of norms
𝑁 , we say𝑁𝑚 is minimal over𝑁 if it is the smallest set of norms3 such
that ∀𝑐 ∈ 𝐶 that activates 𝑛 = ⟨𝜑, 𝜃 (𝑎)⟩ ∈ 𝑁 , ∃𝑛′ = ⟨𝜑 ′, 𝜃 (𝑎)⟩ ∈
𝑁𝑚 , that is also activated by 𝑐 , and vice versa.

With these preliminary definitions we can now tackle the for-
malisation of the problem we aim to resolve in this paper.

Def. 10 (Consensus norms and norm consensus problem).
Let𝑈 be a set of users with preference profiles 𝑝𝑢 over domain D, the
set of consensus norms is that whose norms are preference aligned,
maximally regulatory, and minimal. The norm consensus problem
consists in finding the set of consensus norms.
2Note that we only consider permissions and not obligations as the preferences we
consider only tell us if actions are appropriate, but that is not enough to discern
whether they should be obliged or not.
3Note that if the context logic used the ∨ or ¬ operators, all consensuses could be
defined in just one formula, rendering minimality useless

The norm consensus problem aims at first finding maximal reg-
ulatory norms over the actions for which we have sufficient knowl-
edge, and second having the minimal set of these norms possible.
The latter, minimality, favours norms with more general precondi-
tions. This is because the minimal set of norms must regulate all
situations that could be regulated with more norms, so each norm
will have the most general precondition that can be drawn from
user consensus. The former aspect implies that non-consensual
pairs remain unregulated.

4 SOLVING THE NORM CONSENSUS
PROBLEM

The difficulty of solving the norm consensus problem lies in the
gap between user-specified preferences and what these preferences
mean in logic terms. As we have seen, users may define their pref-
erences over different contexts, yet these preferences might imply
a consensus over another context. If we consider a general context
and multiple more specific contexts, a user that approves the ac-
tion in more specific contexts might not define these preferences
directly. Instead, the user might express approval for the general
context but ruling out those contexts in which they think the action
is inappropriate. This preference specification is not coherent in
terms of logic as approving a general context means approving any
more specific related context. Hence, we want our norm consensus
problem solution to be resilient to human preference specifications.

Our proposed solution for the norm consensus problem is divided
into three steps: information propagation, consensus detection, and
norm generation. We consider each in the following subsections.

4.1 Information propagation
The goal of information propagation is twofold: to build a data
structure for later steps from the input, and to make it logically
coherent. First, we build a graph representing both user preferences
and generalisation relations between contexts.

Def. 11 (Preference graph). Consider a norm consensus problem
with domain D, contexts in K = {𝐶,𝑔}, users𝑈 , and preferences 𝑝𝑢
∀𝑢 ∈ 𝑈 . Given an action 𝑎 ∈ 𝐴, we call the directed graph 𝐺 (𝑎) =
{𝑁𝑜, 𝐸𝑑, 𝑎𝑝𝑝, 𝑖𝑛𝑎𝑝𝑝} a preference graph, where each of the nodes
represents a context over which some user has defined a preference
(𝑁𝑜 = {𝑐 ∈ 𝐶 , s.t. ∃𝑢 ∈ 𝑈 , 𝑝𝑢 (𝑎, 𝑐) ≠ 0}), the directed edges represent
the generalisation relations between the context nodes (𝐸𝑑 = {(𝑐, 𝑐′) ∈
𝑔, s.t. 𝑐, 𝑐′ ∈ 𝑁𝑜}), each of the nodes 𝑐 ∈ 𝑁𝑜 has a set 𝑎𝑝𝑝 (𝑐) with the
users that find (𝑎, 𝑐) appropriate (𝑎𝑝𝑝 (𝑐) = {𝑢 ∈ 𝑈 , s.t. 𝑝𝑢 (𝑎, 𝑐) =
1}) and a set 𝑖𝑛𝑎𝑝𝑝 (𝑐) with the users that find (𝑎, 𝑐) inappropriate
(𝑖𝑛𝑎𝑝𝑝 (𝑐) = {𝑢 ∈ 𝑈 , s.t. 𝑝𝑢 (𝑎, 𝑐) = −1}).

The preference graph represents the input of the problem, and
contains the relevant contextual knowledge (restricted to the con-
texts over which we have preference information4) and the known
preferences over these contexts.

Example 7. Figure 1a represents the preference graph of our run-
ning example.

4We make this restriction as the number of contexts in the contextual knowledge is
2𝐶𝑏

, so in practical cases with enough base contexts it would be unfeasible to build
the whole graph. Furthermore, we will not need the whole graph.
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Figure 1: Preference graphs for the action share and the raw
preferences for the running example (those in Table 1), each
node represents a context and contains the lists of users
that deem the context appropriate and inappropriate for the
action, the arrows show generalisation relations (from the
specific to the general context).

This graph serves to propagate knowledge (e.g. appropriateness
of an action in a general context means appropriateness in a more
specific context) and to make it coherent. We must therefore define
coherence.

Def. 12 (Coherence). A preference graph 𝐺 (𝑎) = {𝑁𝑜, 𝐸𝑑, 𝑎𝑝𝑝 ,
𝑖𝑛𝑎𝑝𝑝} is coherent if ∀𝑐 ∈ 𝑁𝑜 context node, and ∀𝑐′ ∈ 𝑁𝑜 such that
𝑐 𝑔 𝑐′, then 𝑎𝑝𝑝 (𝑐) ∩ 𝑖𝑛𝑎𝑝𝑝 (𝑐′) = ∅ and 𝑖𝑛𝑎𝑝𝑝 (𝑐) ∩ 𝑎𝑝𝑝 (𝑐′) = ∅.

Example 8. The preference graph of our running example shown
in Figure 1a is not coherent; note that 𝑓 𝑖𝑙𝑒𝑠 𝑔 𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 and
𝑎𝑝𝑝 (𝑓 𝑖𝑙𝑒𝑠) ∩ 𝑖𝑛𝑎𝑝𝑝 (𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠) = {𝐴𝑛𝑛𝑎}.

As previously mentioned, human input might not be coherent
(e.g. a human may find it appropriate to share information “with
their family, but not with their father”, but this statement is not co-
herent in logical terms as the father is part of the family). However,
by carefully designing the propagation of preferences we can both
propagate preferences and make the preference graph coherent.
First, and as hinted in the previous section, preference informa-
tion is propagated from general contexts to more specific ones. If
a user thinks performing an action is appropriate/inappropriate
in a general context, they will also agree that the action remains
appropriate/inappropriate in a more specific context. Therefore, we
can propagate appropriateness/inappropriateness preferences from
general to specific contexts.Note though, that this propagation can-
not overwrite other more specific user-specified preferences (nor
those of the siblings of these contexts). Considering the preferences
of our running example (see Figure 1a), when propagating the ap-
proval of sharing any files we cannot overwrite Anna’s disapproval
of sharing voice recordings.

It is also important to note that some contexts may be generalised
by both appropriate and inappropriate contexts, in these clashing
cases we leave the preference unspecified.

Given a preference graph 𝐺 (𝑎) = {𝑁𝑜, 𝐸𝑑, 𝑎𝑝𝑝, 𝑖𝑛𝑎𝑝𝑝}, and a
node 𝑛𝑜 ∈ 𝑁𝑜 , we note 𝑆𝑖𝑏 (𝑛𝑜) = {𝑛𝑜′ ∈ 𝑁𝑜, 𝑠.𝑡 .𝑛𝑜 𝑔 𝑛𝑜′} the sib-
ling nodes of 𝑛𝑜 in𝐺 (𝑎), then we formalise preference propagation
as follows:

Def. 13 (Preference propagation). Given a set of users𝑈 , and a
preference graph𝐺 (𝑎) = {𝑁𝑜, 𝐸𝑑, 𝑎𝑝𝑝, 𝑖𝑛𝑎𝑝𝑝}, we define the prefer-
ence propagation of𝐺 (𝑎) as 𝐺𝑝𝑟𝑜𝑝 (𝑎) = {𝑁𝑜𝑝𝑟𝑜𝑝 , 𝐸𝑑𝑝𝑟𝑜𝑝 , 𝑎𝑝𝑝𝑝𝑟𝑜𝑝 ,
𝑖𝑛𝑎𝑝𝑝𝑝𝑟𝑜𝑝 }, where:

• 𝑁𝑜𝑝𝑟𝑜𝑝 = 𝑁𝑜 ∪ 𝑁𝑜𝑐𝑜𝑚𝑝 , where 𝑁𝑜𝑐𝑜𝑚𝑝 = {𝑐 ∧ ¬𝑐1 ∧ · · · ∧
¬𝑐𝑘 ,∀𝑐 ∈ 𝑁𝑜 , and 𝑆𝑖𝑏 (𝑐) = {𝑐1, . . . , 𝑐𝑘 }}, are the complemen-
tary nodes.

• 𝐸𝑑𝑝𝑟𝑜𝑝 = 𝐸𝑑 ∪ 𝐸𝑑𝑐𝑜𝑚𝑝 , where 𝐸𝑑𝑐𝑜𝑚𝑝 = (𝑐 ∧ ¬𝑐1 ∧ · · · ∧
¬𝑐𝑘 , 𝑐),∀𝑐 ∈ 𝑁𝑜 , and 𝑆𝑖𝑏 (𝑐) = {𝑐1, . . . , 𝑐𝑘 }}.

• For each user 𝑢 ∈ 𝑈 and for each node 𝑛𝑜 ∈ 𝑁𝑜𝑝𝑟𝑜𝑝 , if
𝑢 ∈ 𝑎𝑝𝑝 (𝑛𝑜), then 𝑢 ∈ 𝑎𝑝𝑝𝑝𝑟𝑜𝑝 (𝑛𝑜) and 𝑢 ∈ 𝑎𝑝𝑝𝑝𝑟𝑜𝑝 (𝑛𝑜′)
∀𝑛𝑜′ ∈ (𝑆𝑖𝑏 (𝑛𝑜) \{𝑛𝑜′′ ∈ 𝑆𝑖𝑏 (𝑛𝑜), 𝑢 ∈ 𝑖𝑛𝑎𝑝𝑝 (𝑛𝑜′′)})
\ ∪{𝑛𝑜 ′′∈𝑆𝑖𝑏 (𝑛𝑜 ),𝑢∈𝑖𝑛𝑎𝑝𝑝 (𝑛𝑜 ′′ ) } 𝑆𝑖𝑏 (𝑛𝑜′′).

• The analogous definition for 𝑖𝑛𝑎𝑝𝑝𝑝𝑟𝑜𝑝 .

First, for each node with siblings we add a complementary node
(representing the context not covered by its other siblings). Then,
the propagated appropriateness affects the original node and any
of its siblings except those that the user has deemed inappropriate
and the siblings of these inappropriate nodes.

Example 9. Figure 1b shows the preference graph in Figure 1a
after preference propagation.

Second, we must ensure the preference graph is coherent. To
do so, we perform preference cancellation, that is, if a general
context has appropriate and inappropriate sibling contexts, then
its preference must be unspecified. In our running example Anna
approves sharing files but disapproves sharing voice recordings,
what this means in reality is that Anna approves sharing any file
except for voice recordings, after propagating appropriateness to
this context (see Figure 1b) we have to cancel the preference for
Files. In general we make the graph coherent as follows.

Def. 14 (Coherent and propagated preference graph). Given
a set of users 𝑈 , and a propagated preference graph 𝐺𝑝𝑟𝑜𝑝 (𝑎) =

{𝑁𝑜𝑝𝑟𝑜𝑝 , 𝐸𝑑𝑝𝑟𝑜𝑝 , 𝑎𝑝𝑝𝑝𝑟𝑜𝑝 , 𝑖𝑛𝑎𝑝𝑝𝑝𝑟𝑜𝑝 }, we define the coherent and
propagated preference graph of𝐺𝑝𝑟𝑜𝑝 (𝑎) as𝐺∗ (𝑎) = {𝑁𝑜∗, 𝐸𝑑∗, 𝑎𝑝𝑝∗

, 𝑖𝑛𝑎𝑝𝑝∗}, where 𝑁𝑜∗ = 𝑁𝑜𝑝𝑟𝑜𝑝 , 𝐸𝑑∗ = 𝐸𝑑𝑝𝑟𝑜𝑝 and for each user
𝑢 ∈ 𝑈 and for each node 𝑛𝑜 ∈ 𝑁𝑜𝑝𝑟𝑜𝑝 , if 𝑢 ∈ 𝑎𝑝𝑝𝑝𝑟𝑜𝑝 (𝑛𝑜), then
𝑢 ∈ 𝑎𝑝𝑝∗ (𝑛𝑜) if∀𝑛𝑜′ ∈ 𝑆𝑖𝑏 (𝑛𝑜),𝑢 ∉ 𝑖𝑛𝑎𝑝𝑝𝑝𝑟𝑜𝑝 (𝑛𝑜′). The analogous
applies to 𝑖𝑛𝑎𝑝𝑝∗.

In plain words, in the coherent and propagated graph, a user
approves an action in a context if in the propagated graph the user
approves it and does not disapprove it for any more specific context.

Example 10. Figure 1c shows the preference graph after applying
preference cancellation to that in Figure 1b.

Although the definitions of preference propagation and cancella-
tion are rather verbose, in practice we can easily define algorithms
for both processes. On the one hand, appropriateness (inappropri-
ateness) preference propagation can be implemented by exploring
the graph in a depth first manner where we stop going deeper each
time we encounter inappropriateness (appropriateness). On the



other hand, preference cancellation starts from appropriate (inap-
propriate) nodes and changes the preference of any inappropriate
(appropriate) parent node to an unspecified preference. For brevity
we do not provide the full algorithms here, interested readers can
find an implementation in the code provided for the experiments
in Sec. 4.4.

At this point we have obtained a graph representing all appro-
priateness and inappropriateness information available coherently.
The next step is to detect consensus within this graph.

4.2 Consensus detection
Given an action 𝑎 ∈ 𝐴 and a coherent and propagated prefer-
ence graph 𝐺∗ (𝑎) = {𝑁𝑜∗, 𝐸𝑑∗, 𝑎𝑝𝑝∗, 𝑖𝑛𝑎𝑝𝑝∗} we are interested in
finding the contexts (if any) in which all users agree the action is
appropriate (or inappropriate). Once we have detected these con-
sensual contexts, we can generate norms regulating them to solve
the norm consensus problem. Since this requires norm minimality,
we aim for the most general contexts with consensus. This means
detecting consensus requires an intricate search in the graph. First,
however, we introduce some notation.

Notation 1. Hereafter, we call appropriate contexts those that
were considered appropriate by some users and inappropriate by none,
while we call inappropriate contexts those that were considered inap-
propriate by some users and appropriate by none.

𝑁𝑜+/𝑁𝑜− : The set of appropriate/inappropriate contexts before pref-
erence propagation. 𝑁𝑜+ = {𝑐 ∈ 𝑁𝑜, 𝑎𝑝𝑝 (𝑐) ≠ ∅, 𝑖𝑛𝑎𝑝𝑝 (𝑐) =
∅}, 𝑁𝑜− = {𝑐 ∈ 𝐶, 𝑖𝑛𝑎𝑝𝑝 (𝑐) ≠ ∅, 𝑎𝑝𝑝 (𝑐) = ∅}.

𝑁𝑜+∗/𝑁𝑜−∗: The set of appropriate/inappropriate contexts after pref-
erence propagation and cancellation. 𝑁𝑜+∗ = {𝑐 ∈ 𝑁𝑜∗,
𝑎𝑝𝑝∗ (𝑐) ≠ ∅, 𝑖𝑛𝑎𝑝𝑝∗ (𝑐) = ∅}, 𝑁𝑜−∗ = {𝑐 ∈ 𝑁𝑜∗, 𝑖𝑛𝑎𝑝𝑝∗ (𝑐)
≠ ∅, 𝑎𝑝𝑝∗ (𝑐) = ∅}.

𝑁𝑜0: The set of contexts that are neither appropriate nor inappro-
priate after propagation. 𝑁𝑜0 = (𝑁𝑜 \ 𝑁𝑜+∗) \ 𝑁𝑜−∗.

Detecting positive and negative consensus follows the same
process, hence without loss of generality, in this section we will
only focus on positive consensus. We are interested in finding
positive consensus that maximise regulation while keeping the
number of different consensus to the minimum possible. Initially,
our search space is 𝑁𝑜+∗, comprising those contexts which, after
preference propagation, are considered appropriate by some users
and inappropriate by none. Thus, a positive consensus is one of
these contexts or a logical formula combining several of them.
For example, if there are two contexts 𝑐1, 𝑐2 ∈ 𝑁𝑜+∗, where 𝑐1 is
approved by half of the users and 𝑐2 is approved by the other half,
then 𝑐1∧𝑐2 is a positive consensus. While it is clear that all positive
consensus are in 𝑁𝑜+∗, we can further restrict our search space.
Since our aim is to find the most general contexts possible, we
can exclude any context of 𝑁𝑜+∗ that is completely generalised by
other contexts in 𝑁𝑜+∗. Therefore we must exclude the contexts
𝑐 ∈ 𝑁𝑜+∗ \ 𝑁𝑜+ for which ∀𝑐′ ∈ 𝐶, 𝑐′ 𝑔 𝑐 , either 𝑐′ ∈ 𝑁𝑜+∗ or
∃𝑐𝑚𝑖𝑑 ∈ 𝑁𝑜+∗, such that 𝑐′ 𝑔 𝑐𝑚𝑖𝑑 𝑔 𝑐 . In this case, any consensus
containing 𝑐′ (if 𝑐′ ∈ 𝑁𝑜+∗) or 𝑐𝑚𝑖𝑑 (otherwise) will be more general
and therefore more desirable for our purposes. Importantly, we can
only exclude contexts in𝑁𝑜+∗\𝑁𝑜+ because those in𝑁𝑜+ may have
more preferences than the more general contexts in 𝑁𝑜+∗, hence

excluding them could reduce the number of detected consensuses.
As we will later prove in Lemma 1, all consensuses before the
exclusion remain as the same or more general consensuses after
the exclusions. Thus, the search space for positive consensuses is:

𝐶𝑜𝑛+ = 𝑁𝑜+∗ \ 𝐸𝑥𝑐 where 𝐸𝑥𝑐 = {𝑐 ∈ 𝑁𝑜+∗ \ 𝑁𝑜+,∀𝑐′ ∈ 𝐶

𝑐′ 𝑔 𝑐 , either 𝑐′ ∈ 𝑁𝑜+∗ or ∃𝑐𝑚𝑖𝑑 ∈ 𝑁𝑜+∗, s.t. 𝑐′ 𝑔 𝑐𝑚𝑖𝑑 𝑔 𝑐}. (1)

Lemma 1. 𝐶𝑜𝑛+ is the smallest search space for positive consen-
suses.

Proof sketch5. Given 𝑎 ∈ 𝐴, we have to show that all consensus
are in 𝐶𝑜𝑛+ and that any subset of 𝐶𝑜𝑛+ cannot be a valid search
space. For the first part, if there is a consensus over a context 𝑐 ∉ 𝐶𝑜𝑛+

we divide the context into its atomic contexts joined by ∧ and see
that those atomic contexts that are not in 𝐶𝑜𝑛+ can be generalised by
others in 𝐶𝑜𝑛+ meaning it exists 𝑐′ ∈ 𝐶𝑜𝑛+ that generalises 𝑐 . The
second part can easily be proved by counterexample, providing a case
in which all contexts in 𝐶𝑜𝑛+ are part of consensus.

As stated in this lemma, 𝐶𝑜𝑛+ contains those contexts that can
be building blocks for consensus contexts. These contexts might be
approved by all users or might only be approved by a subset of users.
Therefore, consensus will occur for sets of contexts which have
joint approval of all users. The next step is to define a procedure
to find all subsets of 𝐶𝑜𝑛+ that satisfy this condition, while also
ensuring they produce maximally regulatory and minimal sets
of norms. Thus, we want positive consensuses to be as general
as possible, and also require that they cannot be generalised by
other sets of contexts in 𝐶𝑜𝑛+. Additionally, positive consensus
should not contain superfluous contexts (those that can be removed
and the consensus remains). In summary, the positive consensuses
𝑆 ⊆ 𝐶𝑜𝑛+ we aim at finding satisfy the following conditions:

- Coverage: ∪𝑐∈𝑆𝑎𝑝𝑝∗ (𝑐) = 𝑈 .
- Non-redundancy: �𝑆 ′ ⊆ 𝑆 , ∪𝑐∈𝑆 ′𝑎𝑝𝑝∗ (𝑐) = 𝑈 .
- Generality: �𝑆 ′′ ⊆ 𝐶𝑜𝑛+ with ∪𝑐∈𝑆 ′′𝑎𝑝𝑝∗ (𝑐) = 𝑈 , such that
∀𝑐′ ∈ 𝑆 ′′ \ 𝑆 , ∃𝑐 ∈ 𝑆 , 𝑐′ 𝑔 𝑐 .

Note that, each positive consensus in 𝐶𝑜𝑛+ is a set of contexts
whose joint set of approval users covers 𝑈 . Therefore, finding a
positive consensus is equivalent to resolving the set cover problem
[4] with some additional constraints. We must find the minimal
combination of contexts 𝑐 ∈ 𝐶𝑜𝑛+ whose set of approval users
{𝑎𝑝𝑝∗ (𝑐), 𝑐 ∈ 𝐶𝑜𝑛+} cover 𝑈 . Each positive consensus 𝑆 ⊆ 𝐶𝑜𝑛+

is a set of contexts that, combined, are approved by all users (and
disapproved by none). Therefore the contexts in each 𝑆 form a cov-
ering of𝑈 with regard to the users that approve each of the contexts
in 𝑆 or, in other words, with regard to the sets 𝑎𝑝𝑝∗ (𝑐) for each
𝑐 ∈ 𝑆 . Furthermore, we must consider constraints to ensure the
maximum generality of this set to satisfy the last property above.
As we aim to find all possible consensuses we must also recurrently
solve this problem (avoiding found consensus) until no new con-
sensus exist. The set cover problem is a classic NP-hard problem
whose solution and approximations have been long studied [9].
Finding all consensus is analogous to solving a set cover problem
for each of the consensus. Therefore we adapt the classic binary
integer program (BIP) used to solve the set cover problem for our

5We provide all full proofs in the supplementary material [26].



purposes. In terms of additional constraints, note that within 𝐶𝑜𝑛+
there might be contexts that generalise other contexts and, since
we want to find the most general consensuses possible, our target
function must benefit general contexts. Furthermore, to satisfy the
second condition of 𝐶𝑜𝑛+, we also want the minimum amount of
contexts. Therefore if we assign the binary variable 𝑥𝑖 ∈ {0, 1} to
each context 𝑐𝑖 ∈ 𝐶𝑜𝑛+, our target function is:

Minimise
∑︁

𝑐𝑖 ∈𝐶𝑜𝑛+
( |{𝑐′ ∈ 𝐶𝑜𝑛+, 𝑐′ 𝑔 𝑐𝑖 }| + 1)𝑥𝑖 (2)

This target function accomplishes two objectives: minimise the
number of contexts selected, while selecting the most general con-
texts possible (in line with the above-mentioned requirements of
non-redundancy and generality). Apart from this function, we must
consider constraints of three kinds, namely coverage, generalisa-
tion, and found consensus constraints. First the set of |𝑈 | coverage
constraints ensuring selected contexts are jointly approved by all
users:

𝐶𝑜𝑣𝐶𝑜𝑛𝑠𝑡 = {
∑︁

𝑐𝑖 ∈𝐶𝑜𝑛+ |𝑢∈𝑎𝑝𝑝∗ (𝑐𝑖 )
𝑥𝑖 > 0,∀𝑢 ∈ 𝑈 } (3)

As mentioned earlier this constraint aims to find consensus but
similar constraints can be defined for other types of agreement (for
example, if we define an agreement as having at least a threshold
𝜃 number of users agreeing, we could use the constraint6

∑
𝑢∈𝑈

min(∑𝑐𝑖 ∈𝐶𝑜𝑛+ |𝑢∈𝑎𝑝𝑝∗ (𝑐𝑖 ) 𝑥𝑖 , 1) > 𝜃 . Then, the generalisation con-
straints ensuring any two contexts that generalise each other are
not jointly selected:

𝐺𝑒𝑛𝐶𝑜𝑛𝑠𝑡 = {𝑥1 + 𝑥2 ≤ 1,∀𝑐1, 𝑐2 ∈ 𝐶𝑜𝑛+, s.t. 𝑐1 𝑔 𝑐2} (4)

Finally, for each found consensus, we must consider a new con-
straint to ensure the BIP will not find the same consensus again
nor any other consensus generalised by it; this will be done until
the resulting BIP cannot be solved. If we have obtained a consensus
of the form 𝑐𝑜𝑛 = {𝑐1, . . . , 𝑐𝑘 }, then the constraint to consider is6:

𝐹𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝐶𝑜𝑛𝑠𝑡 = {
∑︁

𝑐𝑖 ∈𝑐𝑜𝑛
min(𝑥𝑖 +

∑︁
𝑐 𝑗 ∈𝐶𝑜𝑛+, 𝑐𝑖 𝑔 𝑐 𝑗

𝑥 𝑗 , 1) < |𝑐𝑜𝑛 |

for each found consensus 𝑐𝑜𝑛 ⊆ 𝐶𝑜𝑛+} (5)

Note that the positive consensus contexts will be 𝑐1 ∧ · · · ∧ 𝑐𝑘 for
each found consensus {𝑐1, . . . , 𝑐𝑘 }.

Example 11. Following the running example, to detect the positive
consensuses we use the BIP encoding consisting of the binary decision
variables 𝑥 𝑓 (representing context 𝑓 𝑖𝑙𝑒𝑠), 𝑥𝑣𝑜 (for 𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠),
𝑥 𝑓 𝑛𝑣 (for 𝑓 𝑖𝑙𝑒𝑠 ∧ ¬𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠) and 𝑥𝑛𝑜𝑡 (for 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑), and
the target function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑥 𝑓 + 2𝑥𝑣𝑜 + 2𝑥 𝑓 𝑛𝑣 + 𝑥𝑛𝑜𝑡

with coverage constraints (for Anna, Ben, and Claire respectively):

𝑥 𝑓 𝑛𝑣 > 0, 𝑥 𝑓 + 𝑥 𝑓 𝑛𝑣 > 0, 𝑥𝑛𝑜𝑡 > 0

and generalisation constraints:

𝑥 𝑓 + 𝑥𝑣𝑜 ≤ 1, 𝑥 𝑓 + 𝑥 𝑓 𝑛𝑣 ≤ 1

The found consensus (the solution of the BIP) in this case is 𝑥 𝑓 = 0,
𝑥𝑣𝑜 = 0, 𝑥 𝑓 𝑛𝑣 = 1, and 𝑥𝑛𝑜𝑡 = 1, meaning that (as noted in previous

6For brevity we write these constraints in non-linear form, but note that they can be
linearised (or rewritten) in many ways (see [3, 6]).

examples) 𝑓 𝑖𝑙𝑒𝑠∧¬𝑣𝑜𝑖𝑐𝑒_ 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ∧ 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑 is a positive consen-
sus for the action 𝑠ℎ𝑎𝑟𝑒 . Once we have detected this consensus we add
the constraint 𝑥 𝑓 𝑛𝑣 +𝑥𝑛𝑜𝑡 < 2 and try to find other consensus solving
again the BIP. Here, however, 𝑓 𝑖𝑙𝑒𝑠 ∧¬𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ∧ 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑

is the only positive consensus.

To finish this section we remind the reader that while in this
section we focused on positive consensuses, detecting negative
ones follows an analogous process7.

4.3 Norm generation
Generating the consensus norms is straightforward; for each de-
tected positive (resp. negative) consensus {𝑐1, . . . , 𝑐𝑘 }, we gener-
ate the norm ⟨𝑐1 ∧ · · · ∧ 𝑐𝑘 , 𝑃𝑒𝑟 (𝑎)⟩ (resp. ⟨𝑐1 ∧ · · · ∧ 𝑐𝑘 , 𝑃𝑟ℎ(𝑎)⟩).
Importantly, we must prove that the resulting set of norms 𝑁 is
the solution of the norm consensus problem; that is, showing 𝑁

satisfies the preference representation, maximally regulatory, and
minimality properties.

Theorem 1. 𝑁 is the solution of the norm consensus problem.

Proof sketch5. To prove this theorem we have to show that
𝑁 satisfies preference representation, is maximally regulatory and
minimal. First, preference representation is naturally satisfied because
our norms always stem from detected consensus. Second, we assume
𝑁 is not maximally regulatory and there is a 𝑁𝑚𝑎𝑥 which is. Then,
there is a context 𝑐 ∈ 𝐶 which activates one norm in 𝑁𝑚𝑎𝑥 but not in
𝑁 . By the definition, the context and action of this norm must form a
consensus, but somehow it has not been found by our BIP approach. If
it is not a solution of some BIP, it must not be optimal which means
there is a more general consensus (contradiction), or it does not fulfil a
constraint, which in all cases leads to the same contradiction. Finally,
for minimality, assume there is an 𝑁𝑚𝑖𝑛 that satisfies the two previous
properties but has less norms than 𝑁 . Assume a regulated context 𝑐
and𝜑 the precondition of a norm in𝑁 regulating 𝑐 , we divide the proof
in two cases. If 𝜑 is the most specific logic formula that is consensual
we can follow a similar reasoning to that of maximal regulation to
arrive at contradictions. If 𝜑 is not the most specific logic formula and
a norm 𝑛 in 𝑁𝑚𝑖𝑛 has a precondition with this more specific formula.
We look at the other norm 𝑛′ in 𝑁𝑚𝑖𝑛 regulating the contexts that
are in 𝜑 but not in the more specific formula, we can show that then
either 𝑛 is redundant (contradiction) or using a similar reasoning as
for maximality that the precondition of 𝑛′ is not consensual.

Example 12. Following our running example and considering the
positive consensus found over the action 𝑠ℎ𝑎𝑟𝑒 in context 𝑓 𝑖𝑙𝑒𝑠 ∧
¬𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ∧ 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑 (see Example 11), here we generate
the norm ⟨𝑓 𝑖𝑙𝑒𝑠 ∧ ¬𝑣𝑜𝑖𝑐𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 ∧ 𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑, 𝑃𝑒𝑟 (𝑠ℎ𝑎𝑟𝑒)⟩.

4.4 Discussion on performance
Detecting all positive and negative consensuses is equivalent to
solving several set cover problems, which are NP-hard. Therefore
it is important to evaluate the computational feasibility of our ap-
proach. We have generated synthetic preference graphs and solved
them calculating the time it took8. Our experiments considered
7The formal process and proofs can be derived simply changing 𝑁𝑜+ , 𝑁𝑜+∗ ,𝐶𝑜𝑛+

𝑎𝑝𝑝 , and 𝑎𝑝𝑝∗ for 𝑁𝑜− , 𝑁𝑜−∗ ,𝐶𝑜𝑛− 𝑖𝑛𝑎𝑝𝑝 , and 𝑖𝑛𝑎𝑝𝑝∗
8Code available at [26], we solved the BIPs using CPLEX [14] on a standard 2018 13”
MacBook Pro (Intel Core i5-8259U processor, 8Gb of RAM, running Mac OS 12.6.)
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Figure 2: Average time in seconds for each problem configu-
ration. Note the logarithmic scale for better analysis.

several variables: number of nodes, number of users, generalisation
relation percentage (out of all possible), and percentage of known
preferences (out of all possible). In particular, we considered a fixed
number of 100 nodes (this number represents more contexts than
those considered in recent studies on norms for smart personal
assistants [1]) and 5 users (representative of a family or a meeting).
With these settings, we tested ranges of generalisation relation
densities between 0 to 100%9 in steps of 5. The ranges of prefer-
ence probabilities are between 5 and 100% in steps of 5. For each
configuration we synthesised and solved 10 graphs, giving a total
of 4200 preference graphs (over which we detected a total number
of 179296 consensuses). Figure 2 shows the average solving times
for each of these configurations.

Most problems, except those without generalisation relations,
are solved almost instantly. First, when there are close to no gen-
eralisation relations, the search space is larger (more nodes), and
we have no constraints apart from coverage. Therefore the prob-
lem is equivalent to that of finding all subsets of the search space
only requiring the coverage constraint. Conversely, problems with
generalisation relations not only have generalisation constraints,
but their found consensus constraints are stricter. Second, when
the known preference percentage is close to 20% the number of
consensus (and solving time) peaks; fewer preferences limit the size
of the search space, while more preferences lead to discrepancies on
the appropriateness of nodes, thus making more nodes ineligible.

To conclude, we see in our experiments that computation times
are mostly a consequence of the number of consensus, not the diffi-
culty of finding each of them individually. On average, finding one
of the 179296 consensuses we detected (solving its associated BIP)
took 0.03757 seconds (with a standard deviation of 0.04566, and a
maximum of 0.8804 seconds). We argue that in real cases it is unrea-
sonable that a domain can lead to this number of consensuses (e.g.
the individual problem that took the longest to solve had 7612 con-
sensuses). Plus, we have not considered domain knowledge, with
it we could add constraints to avoid finding consensus containing
contexts that cannot happen jointly (e.g. 𝑑𝑎𝑦𝑡𝑖𝑚𝑒 ∧ 𝑛𝑖𝑔ℎ𝑡𝑖𝑚𝑒).

9This percentage is over the maximum number of relations a preference graph (a DAG)
can have (which is |𝑛𝑜𝑑𝑒𝑠 | · ( |𝑛𝑜𝑑𝑒𝑠 |−1)

2 ).

5 RELATEDWORK
This paper is related to multi-party privacy conflicts, which have
been studied for a long time. Some works in this area include: Such
et al. [30] who propose a computational mechanism to resolve these
conflicts in online social networks; Ulsoy et al. [31] who consider
agents that bid in multi-user auctions to publish content online
about multiple users; and Mosca et al. [22] who consider ELVIRA
agents that help address multi-user privacy conflicts once detected.
However, these works aim at addressing (possible) multi-user pri-
vacy conflicts and the agents considered represent individual users.
In contrast, in our work, we aim at finding consensus among all
users before any conflict arises and to avoid them arising. Apart
from this, we are not only focused on privacy preferences. Our
problem is also close to the area of value alignment. While there
are normative solutions for alignment [18, 27, 28], these focus on a
set of values instead of preferences. Values are more abstract and
less specific than preferences, and different users may understand
values differently (as is usually the case with privacy), therefore we
argue that defining preferences over actions and contexts directly
will produce more accurate norms. Continuing in the area of norms,
Kafali et al. [15] propose a normative solution for privacy, but again
we aim at considering any type of preference over the behaviour
of agents. Also, Ajmeri et al. [2] consider agents reasoning about
multiple values and norms to make decisions on the actions to
perform, but this is focused on action decision-making, while we
want to establish consensus norms before any action is performed.

6 CONCLUSIONS
In this paper we have shown how to detect user consensus over
preferences on how an agent should act and generate norms to reg-
ulate them. This not only represents a novel approach to privacy for
smart assistants as we motivated, but also to resolve similar issues
in multi-agent systems in general. Importantly, our aim has been to
provide a well-founded model that can serve as a basis to be used in
more complex applications with only slight variations. For example,
while the approach as we have presented it requires consensus to
cover all users, this might be too strong a requirement for some real
world problems. In scenarios with many users, reaching a consen-
sus is more difficult than in cases with few users. Fortunately, this
and similar requirements can be easily relaxed by slightly changing
the constraints (in this case the coverage constraints) of our BIP
encoding. As for future work, while we have aimed to find all user
consensuses to then have maximally regulatory norms, this can
still be improved if we know of more preferences. An interesting
topic for future research is to smartly acquire new knowledge to
maximise consensus (and their derived norms).
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