

City, University of London Institutional Repository

Citation: Popov, P. T., Povyakalo, A. A., Stankovic, V. & Strigini, L. (2014). Software

diversity as a measure for reducing development risk. Paper presented at the Tenth
European Dependable Computing Conference - EDCC 2014, 13 - 16 May 2014, Newcastle
upon Tyne, UK.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3226/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Software diversity as a measure for
reducing development risk

Peter Popov, Andrey Povyakalo, Vladimir Stankovic, Lorenzo Strigini
Centre for Software Reliability

City University London
Northampton Square, London EC1V 0HB, U.K.

{ptp, andrey, v.stankovic, l.strigini}@csr.city.ac.uk

Abstract—Despite the widespread adoption of software diversity in some industries, there is still
controversy about its benefits for reliability, safety or security. We take the prospective of diversity as a
risk reduction strategy, in face of the uncertainty about the dependability levels delivered by software
development. We specifically consider the problem faced at the start of a project, when the assessment
of potential benefits, however uncertain, must determine the decision whether to adopt diversity. Using
probabilistic modelling, we discuss how different application areas require different measures of the
effectiveness of diversity for reducing risk. Extreme values of achieved reliability, and especially, in
some applications, the likelihood of delivering “effectively fault-free” programs, may be the dominant
factor in this effect. Therefore, we cast our analysis in terms of the whole distribution of achieved
probabilities of failure per demand, rather than averages, as usually done in past research. This
analysis highlights possible and indeed frequent errors in generalizations from experiments, and
identifies risk reduction effects that can be proved to derive from independent developments of diverse
software versions. Last, we demonstrate that, despite the difficulty of predicting the actual advantages
of specific practices for achieving diversity, the practice of “forcing” diversity by explicitly mandating
diverse designs, development processes, etc., for different versions, rather than just ensuring separate
development, is robust, in terms of worst-case effects, in the face of uncertainty about the reliability
that the different methods will achieve in a specific project, a result with direct applicability to
practice.

Keywords- software diversity; multiple version software; software fault tolerance; forced diversity;
diversity-seeking decisions; distribution of reliability; fault-freeness

I. INTRODUCTION
In fault-tolerant systems, the risk of design faults, replicated in the redundant

components, causing common failures can be reduced by diversity among the redundant
components. In the simplest case, two or more versions of these components are built
independently, and connected in an architecture such that the system will perform
correctly, or safely, if a certain quorum of them does. In addition to trying to ensure
independence between the developments of the version, measures are usually applied for
making the development processes and the designs of diverse programs as different as
possible [1-4]. We will call these latter techniques, collectively, “forcing” diversity, and
diversity obtained by just keeping the version developments separate, “unforced”
diversity.

Diversity is an established principle in some critical applications of computers, e.g. in
nuclear safety and in aviation; the recent automotive safety standard ISO26262 [5] lists
“diverse design” as “highly recommended” as a “Mechanism for error detection at the
software architectural level” at ASIL D (the highest “Automotive Safety Integrity Level”).
There have been extensive studies about its effectiveness, to address questions like: how
much advantage can one expect from a redundant configuration using diversity, compared
to a single program? However, the usefulness of software diversity is still a controversial
topic in many forums.

There are really two, quite distinct, decision problems with any technique for
improving dependability:

• deciding which techniques to apply, in which form. That is, predicting what results
should we expect from applying the technique. The actual dependability of the

final product is a priori uncertain, but do the likely results – e.g. the range of likely
improvement – justify “betting” the cost of applying a specific technique (as an
additional cost, or rather than spending on another dependability-enhancing
technique – e.g., choosing between investing in massive extra V&V of a single
program, or in multiple versions)?

• once a product is finished, when assessing how dependable this specific product is,
how can we use the fact that the technique was applied to improve our confidence
in the product’s dependability, or reduce the cost of achieving this confidence?

The two questions are obviously related. For critical applications, no developer would
make important design choices without an expectation that the end client, and/or the
regulators for the application sector, will accept them; the developer will generally try to
make choices that will gain “credit” with these judges, e.g. choices recommended by
safety-related standards. In the probabilistic assessment of the final product, if applying a
rigorous Bayesian process a pre-development assessment would contribute to prior
distributions, to be updated with detailed knowledge about the final product. However, this
pre-development assessment can only be imprecise. Establishing a software development
process, a set of techniques to apply, and a product architecture and even choosing the
development team and organisation does not determine the exact level of dependability of
the final product. There are known counterexamples to the hypotheses that additional
dependability techniques always reduce bugs, improve dependability, or achieve the
dependability levels they are meant to achieve [6, 7]. To be considered good for
dependability, a software engineering technique should certainly deliver an improvement
in the statistics of achieved dependability, but cannot reasonably be expected to deliver a
specific level, or specific degree of improvement, at every use.

Developers have to live with the impossibility of precise answers, “applying this
technique, in this organization, will deliver this failure rate”, to the first question; but even
rather imprecise answers will often be enough. For instance, knowing that a technique
tends to achieve its intended result in 99 out of 100 products may be enough to justify the
cost of using it, e.g. because the gamble is no worse than other business gambles; or
because the extra cost of the 1 product in 100 that requires extra work to satisfy its
customers can be subsidized by the successful ones.

Here we address this first question: what reliability improvements will diversity
deliver? As often with techniques for high reliability, an empirical, usefully precise answer
is now unfeasible: there are not enough data. Even less feasible would be an empirically
based answer for those “u-high reliability” products [8, 9], for which estimating the
reliability of even one product with the desired precision is unfeasible, and which are one
of the intended areas of application for diversity. We describe instead mathematical
considerations that we believe useful for practitioners, although – obviously –
mathematical truths can only be trusted to apply if the assumptions on which they are
based are true.

We aim to achieve various benefits: gaining clarity about the relationship between
commonly used estimates of the benefits of diversity and the risk measure of actual
interest; improving the methodological approach to analyzing experimental results in this
area; and direct indications to help decisions about whether and how to apply diversity.

For a start, how should one describe the range of improvement from diversity: which
measures should one use? A good way of framing the problems is that of the risk that the
developer takes, and how much this risk is reduced by precautions like diversity.
Uncertainty about what the development will produce naturally leads to seeing product
development as a stochastic process, followed by operation, another stochastic process.
One invests in dependability-enhancing techniques to reduce the probability of undesired
events, e.g., of experiencing too many system failures in operation.

The early proposals for software diversity did not attempt to quantify the advantages to
be expected, but some claims were made that independent development of the versions
would produce independence between their failures [10]. In the 1980s, an important

experiment by Knight and Leveson [11] proved this wrong by showing a counter-example,
and probabilistic models developed by Eckhardt and Lee [12] and Littlewood and Miller
[13] explained this lack of independence as a general pattern. These models consider that
there is uncertainty about both the reliability of the individual programs that can be
combined into fault-tolerant systems, and about that of the fault-tolerant systems
themselves. Their probabilities of failure are thus random variables. If we call qsingle the
probability of failure per demand (pfd)1 of a program, and qpair the probability of common
failure (i.e., of both versions in the system failing on the same demand) of a “1-out-of-2”
pair of programs (the pair fails only if both programs fail2), Eckhardt's and Lee's result was
about the expected values of these two random variables, and stated E(qpair)>(E(qsingle))2. If
all pairs of versions failed independently, we would instead have E(qpair)=(E(qsingle))2. The
result that E(qpair)>(E(qsingle))2 is explained by similarities between which demands are
“difficult” for the developers of the diverse versions. Littlewood and Miller pointed out
that it was possible for such similarities of “difficulty” not to exist, and actually this is the
goal of the many ways that diversity is pursued [1, 4]. It is possible in principle not only
to achieve E(qpair)=(E(qsingle))2 but even better results, with diverse versions usually having
negatively correlated failures, even to the point of no two versions ever failing on the same
demand, so that E(qpair)=0. However, it is not feasible to tell a priori that the means
applied to achieve diversity have been so successful, or even successful enough to achieve
E(qpair)=(E(qsingle))2, and thus it would be prudent (pessimistically) to expect
E(qpair)>(E(qsingle))2.

Valuable as the insight from such models is, both to an assessor and in suggesting ways
of making diversity more effective [14],[15], they do not go very far in addressing the
developer’s decision problem. If for instance we were to combine two versions with
qsingle=10-4 pfd into a 1-out-of-2 system, the inequality above leaves open a range of
possibilities, from diversity being extremely useful (e.g., qpair=10-7), to it being useless
(e.g., qpair=10-4).

Several authors have tried to extrapolate from the results of experiments the size of
likely gains in industrial use. We will discuss serious difficulties with such generalization.
The problem is not just whether an experiment can be trusted to be representative of the
industrial application about which we wish to learn. More importantly, it is unclear which
measures of the effects of diversity in one experiment should be chosen as likely to hold in
other projects. In looking at these results, it is easy to rely on intuitions that are only
appropriate for simple distributions of the variables involved, like narrow bell-shaped
curves; but in reality these distributions are likely to be discrete and irregular. Instead of
trying to generalize from these data, we state purely mathematical results, that are true if
the assumptions used are true. We use an example data set from an experiment just to
illustrate these mathematical facts.

 In the rest of this paper, we discuss these issues with reference to 1oo2 architectures,
which despite their simplicity are widespread in practical applications, e.g. self-checking
pairs in safety critical architectures or duplex servers with fail-silent elements. Section II
proposes various measures of risk, applied to different environments, and introduces a
number of probabilistic results, illustrated on the data from a well-known experiment on
diverse software. Section III focuses on the effects of “forcing” diversity, introducing a
useful theorem about its effect on the likelihood of achieving target levels of reliability.
Section 0 sketches scenarios of how the statistics of the pfd distribution affect the gains
from diversity and their predictability. Our conclusions follow in the last section.

II. RISK AND DIVERSITY. AN EXAMPLE
To illustrate the motivations of this paper, we take a set of experimental data and

subject them to some new analyses. For this example we use the published numerical data

1 These models refer to “on demand” operation, where the probability of failure concerns a single call
or “demand” on the system considered – the probability of interest is thus the pfd – although extensions to the
continuous-time case are not problematic. We also use the “on demand” scenario.

2 We will use the abbreviation 1oo2 for “1-out-of-2”.

from Knight’s and Leveson’s widely cited experiment (which we will call “the KL
experiment” for brevity), funded by NASA to check the conjecture that diverse software
versions, independently developed for the same specification, would fail independently
[11], a claim that if true would certainly support the usefulness of diversity. In this
experiment, 27 program versions, required to recognize in a set of radar echoes the
presence or absence of an incoming missile (the “launch interceptor” problem), were
developed independently (9 versions developed at the University of Virginia (UVA) and
18 at the University of California at Irvine (UCI)), and then tested on 1 million random test
cases. The test results refuted with high confidence the conjecture that all software
versions failed independently. Our calculations below use the published data [11].

If we look at how these results are interpreted by those quoting them, we see multiple
viewpoints:

• many (simplistically and wrongly) believe that the experiment proved software
diversity useless, e.g.: “N-version programming rests on the assumption that
software bugs in independently-implemented programs are random, statistically-
uncorrelated events. Otherwise, multiple versions are not effective at detecting
errors [...] John Knight and Nancy Leveson famously debunked this assumption on
which N-version programming rested”
[http://leepike.wordpress.com/2009/04/27/n-version-programming-for-the-nth-
time/];

• some point out that the reported results showed the average frequency of common
failures of two versions was about 60 times less than that of an individual version,
a massive improvement, and roughly in line with measures in some other
experiments;

• some tried to extrapolate to the probability of masking all faults, discussing which
specific features of the ‘‘launch interceptor’’ problem could enhance or reduce the
benefits of diversity [16]; or reasoned about likely effects of diversity given more
or less reliable versions, with a model based on the fault density of the versions
[17].

We will not use the data to claim any general property of diversity, but to illustrate
general mathematical facts, and some possibly surprising consequences, on a real example.

A. Generalizations about pfd
As Knight and Leveson themselves pointed out, all generalizations from a single

experiment, or few experiments, are suspicious. First, one may doubt whether the
conditions of the experiments are representative of those of the projects for which
predictions are sought. Secondly, there is no theory for deciding what we should
generalize, if we wished to do so. We are in the same situation as an aeronautical engineer
would be who tried to predict an aircraft’s performance from wind tunnel tests on small
scale models, without a theory about how the results scale up. For instance, in this
experiment the average pfd of a version3 was 7.02×10-4 (4.33×10-4 for the UVA subset and
8.37×10-4 for the UCI subset); for pairs formed from one version from each subset, the
average pfd was 1.09×10-5. This could be seen as “30 times worse than independence”
(i.e., than the product of the average pfds of the two subsets), or “64 times better than the
average for a single version”. Such ratios are sometimes cited as indicative of the likely
results of applying N-version programming; but they really only show that such results
can be achieved (because they were, in the experiment). There is no theory to justify using
them as a likely prediction, even as order-of-magnitude guidance. They certainly cannot
both be given this status (be considered invariant characteristics of the technique), because
this would be self-contradictory: the first makes the expected system pfd proportional to

3 When referring to measures of pfds in this experiment, we will use the “observed” pfd values, i.e.,

empirical frequencies of failures, unless otherwise noted. In assessing a safety-critical system, instead, one
would want a pessimistic confidence bound. We will highlight which steps of reasoning are affected by
choosing one or the other of these measures.

the product of the versions’ expected pfds; the second to their average. If, as a thought
experiment, we improve the processes producing the two versions in a system so that both
have expected pfd 100 times better than the two subsets in this experiment, the expected
pfd of the system would become 10-9 based on the first assumed invariant, or 10-7, based
on the second. There is no clear theory to justify a choice between the two, or indeed a
belief that either is the sought-for invariant.4 All experiments have shown diversity to
improve average reliability in 1ooN systems. This is an invariant, because it can be
mathematically proved to be, without empirical support.

B. Measures of risk and of risk reduction
However, in interpreting the results of experiments, we should also ask whether the

average pfd is indeed the measure of interest. We are interested in how the decision
whether to apply diversity affects the (dependability-related) risk accepted in developing
the system. We now discuss how the undesired event to be avoided differs between
different application scenarios: its probability is what diversity mainly attempts to reduce,
and thus the way we assess the risk reduction that can be achieved must also change
between these scenarios. We reason about three types of undesired event: failures; the
event of having a least one failure in a mission or operational lifetime; and the production
of a system with pfd exceeding a required upper bound.

The real-life random process in which the risk is incurred is as follows: if a 1oo2
system is needed, two versions are developed or bought; they are combined into a system;
the system is then operated, receiving a sequence of random demands, with probabilities
defined by the operational profile under which it operates. Given this operational profile,
the system has a certain pfd.

The results of the development – the specific two programs developed, their pfds and
the pfd of the resulting 1oo2 system – would vary from case to case, according to some
probability distribution; therefore, in software engineering experiments numerous versions
are developed, to obtain a sample from this distribution. The statistics of this sample are
used to estimate the probabilities of various outcomes when developing a single 1oo2
system.

C. Measures of risk: expected pfd
In the experiment just outlined, the mean pfd of a 1oo2 system from the population of

versions produced estimates the probability of failure in a real-life “experiment” consisting
of developing two versions (“randomly sampled” from the probability distributions
describing the development processes for the two versions) and then testing the resulting
1oo2 system on a single demand (“randomly sampled” from the operational profile
assumed in the experiment). The mean pfd observed in an experiment with many versions
produced, multiplied by a future number of demands, predicts the expected number of
failures in operating the system over that many demands. If we do expect the system to fail
a number of times in its lifetime, and given a cost per failure, the mean pfd determines the
expected cumulative cost of failures (if faults are not corrected after each failure; cf [18]
for a more general treatment). In this limited sense, the reduction in average pfd between
the set of versions and the set of 1oo2 systems (built from these versions) is an indication
of risk reduction – in the KL data, by a factor of about 60.

D. Measures of risk: reliability
However, diversity is typically used for safety critical systems with requirements like

“[catastrophic failures must be] not anticipated to occur during the entire operational life
of all aircraft of one type” [19]. Then, what really matters is the probability of surviving
for the intended operational life without such failures – formally, a reliability function.
How did diversity improve this in the KL experiment?

4 Readers may object that this weakness is common to most extrapolation from experiments in

software engineering. We agree.

Referring again to the real-life random process in which the risk is incurred, the risk
that has to be controlled is that the one system developed fail in its lifetime. The systems
that may be produced may exhibit a broad range of pfd values, from some that will fail
almost certainly to some that will almost certainly not fail. To obtain the probability of no
failures over the system’s life, we need to extend the thought experiment of the previous
section to operating each system through future demands. If the i-th system, in the set of
all possible systems, has pfd qi and probability pi of being developed, the probability of this
i-th possible system surviving T demands (its reliability function) is

 𝑅𝑖 (𝑇) = (1 − 𝑞𝑖 �)𝑇 (1)

The risk from the uncertain process of developing and then using a system is then the risk
of the randomly selected system actually failing

 1 − 𝑅 (𝑇) = 1 − ∑ 𝑝𝑖(1 − 𝑞𝑖 �)𝑇𝑖 (2)

This calculation for the KL data set, taking the sample as representing the whole
population of possible versions, is shown in Figure 1. The solid lines represent the
probability that a version, or a 1oo2 pair, randomly chosen from this set, operates without
failures for T consecutive demands. In other words, they represent the average of the
reliability functions of all individual versions. We also show that averaging in the wrong
order would be misleading: the dashed lines represent the reliability that one would –
 wrongly – predict by assuming the average pfd: 7.02×10-4 for single-version systems and
1.09×10-5 for diverse 1oo2 systems.

Figure 1 Reliability curves (solid lines) for the set of programs developed in the Knigth-Leveson
experiment. The dashed lines instead represent the reliability of a (non-existent) “average” version or
“average” 1oo2 system.

These curves illustrate some important mathematical facts, and provide a few empirical
observations:

• each version and system that could be developed has in principle different pfd. A
reliability curve here does not represent the unknown reliability of the one system
developed; it represents the gamble taken in developing a system through a process
with inherently variable results, and then using this system.5 The graph compares
this risk when developing a two-version system with the risk when developing a
single-version system from the same development process;

5 The distribution that matters is that of the pfd of programs that reach the operational stage, that is,

takes into account the stringent V&V process, with possible rejections and modifications, that precedes
acceptance into service. In experiments this is typically simulated (and was in the KL experiment) by a
preliminary acceptance testing phase for each version. A real-life developer has also the extra risk of
producing a “dud” system that will not even pass the acceptance phase into operation, a generally low risk for
specialized developers. This economic risk actually increases with diversity, everything else being equal; for
the 1oo2 system to fail in operation, it is necessary that both versions fail, hence its advantage over a non-
diverse system; but for it to be accepted, in many regulatory regimes it would be necessary that both versions
pass. Using diversity trades a reduction in safety risk against a – possibly mild– increase in project (financial)
risk.

Reliability over T future demands

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
T

given mean pfd of programs given actual distribution of program pfds
given mean pfd of pairs given actual distribution of pair pfds

• given a system for which there is uncertainty about its pfd, assuming the average
pfd (as though the actual system were a hypothetical, and non-existent, “average”
system) always yields pessimistic reliability predictions [20], as shown here by the
dashed lines;

• indeed for the KL data, in the long run (for T tending to infinity), the hypothetical
version or version pair with average pfd (dashed lines in Figure 1) will fail, with
probability 1; in reality (solid lines in the figure), the probability of a randomly
chosen version ever failing is 0.78, while that of a randomly chosen pair ever
failing is 0.226: diversity increases the probability of never experiencing failures at
all on a long system lifetime from (1-0.78) to (1-0.22), or, equivalently, reduces the
risk of failures by a factor (0.78/0.22)=3.5;

• the average reliability over a set of programs (or a probability distribution of the
pfd) is heavily influenced by the fraction of programs that have low enough pfd
that they are very unlikely to fail over the number of demands of interest (and by
those that are almost certain to fail): the tails of the distribution of system pfd
matter;

• the pfd of a 1oo2 system can be no greater than that of any of its components, as
illustrated in Figure 2;

• so, given any required upper bound on pfd, the probability of achieving it is greater
for a 1oo2 (or, in general, 1ooN) system than for any of its component versions (cf
Figure 3). Given any distribution of pfd for the individual versions, the distribution
of pfd of 1oo2 systems obtained from them will be “compressed” towards lower
values;

• in particular, the worst-case probability of the pfd of a 1oo2 pair of independently
developed versions exceeding a given value is the product of the probabilities of
this value being exceeded by the two versions. Specifically, calling F the
cumulative distribution function of a pfd, we have for a 1oo2 system built from
versions A and B:

 𝐹1𝑜𝑜2(𝑞) ≥ 1 − *1 − 𝐹𝐴(𝑞),*1 − 𝐹𝐵(𝑞), (3)

Intuitively, this equation says that any version with high pfd has a good chance of
being paired with a version with lower pfd. In particular, any version with
unusually high pfd (say a pfd that occurs with a small probability ε) is very likely
to be paired with a lower-pfd version (since these occur with much higher
probability, 1 - ε): any “thin, long tail” of high pfd values that is present in the
distribution of pfd of individual programs will be much smaller in the distribution
of pfd of 1oo2 systems. In (3), the limiting case of equality gives a worst-case,
minimum assured improvement in risk. This worst-case improvement level due to
diversity is illustrated by dashed lines in Figure 37

6 Readers may notice that these two numbers add up to 1. This is just a coincidence. Out of 27

versions, 21 (7/9, or 0.777...) had observed pfd>0. The number of version pairs with observed pfd>0
happened to be 36 out of 162 pairs (2/9). But as we discuss later, this latter fraction could have been
anywhere between 0 and the product of the corresponding fractions of failing versions – 6 out of 9 UVA
versions and 15 out of 18 UCI versions – for the two sets from which the versions were selected
independently to form pairs: so, between 0 and (6/9)(15/18)=5/9.

7 That diversity guarantees improved pfd is true for all 1-out-of-N systems; the larger the value of N,
the greater the reduction in probability of high pfd. For a voted system, this is only true if the probability of a
version exceeding that pfd is below a threshold: e.g., for a 2-out-of-3 system where all versions’ pfds have the
same distribution, this threshold is 0.5.

Figure 2 Possible relationships between non-null failure sets, FA and FB, of two versions A and B. A
fifth case (e), in which FA and/or FB is the empty set, turns up frequently regarding observed failures
in experiments.

Figure 3 Cumulative distribution functions (cdfs) of the observed version pfds in the KL experiment.
The dashed lines are pessimistic bounds for the cdfs of pfds of 1oo2 systems obtained from these
versions (eq. (3)), both when combining two versions from the same “process” (university), and when
“forcing” diversity by choosing one from each. The top solid line represents the distribution of 1oo2
pfds actually observed in the experiment. All observed pfd values to the left of 10-6 are 0.

• this worst case assumes that in every possible pair of versions, whenever the better
version fails, the other one also fails on the same demand: the “unlucky” cases (c)
or (d) in Figure 2. In reality, one hopes often to observe cases (a) or (b), which
would yield higher reliability for the pair. Empirically in the KL experiment, for
inter-university pairs the distribution of pfd was as the top solid line in Figure 3,
indeed much better than the worst-case curve, also shown;

• with this measure of risk, the risk reduction achieved varies with the ”projected
lifetime” (here measured in number of demands). The reduction observed in this
experiment is by a factor of 64 for one demand, as mentioned, of 50 over 100
demands, 10 over 10,000 demands, and tends to 3.5 at infinity (Figure 1);

• another factor to consider is “forced” diversity. The KL data concern 1oo2 systems
made from “heterogeneous” pairs (one version produced at UCI and one at UVA).
This is a very weak form of "forced" diversity. In industrial practice, much stronger
measures are applied to "force" diversity, hoping to achieve lower probability of
common failures [4]). We will study the role of forced diversity in Section III.

We briefly discuss some assumptions made above:

1) Role of probability of fault-freeness or very low pfd
In Figure 1, the reliability tends to a non-zero asymptote due to a non-zero probability

of the pfd being 0. Some may question the plausibility of pfd=0: software, they would
maintain, always has bugs. But what matters here is simply having versions with low
enough pfd to imply probability close to 0 of failures over the ”projected lifetime”
(number of demands here; time, for continuously operating systems) of interest. We could
call these “effectively fault-free” with reference to this ”projected lifetime”. For instance,
if here we attributed to those versions that never failed a pfd that equals not the observed

Cumulative distribution function of the pfd

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02pfd

cd
f

single
programs,
all
single
programs,
UVA
single
programs,
UCI
UVA-UCI
pairs

UVA-UCI
pairs, worst
case
UVA pairs,
worst case

UCI pairs,
worst case

frequency of failure, 0, but a one-sided 95% confidence bound on this probability, 3×10-6,
then for what concerns the first few thousand demands, these versions would be
“effectively fault-free”: Figure 1’s reliability function would not change significantly.8

Achieving such low pfd values with non-negligible probability is a plausible scenario
for systems that are made simple by construction for the sake of safety, and developed
according to stringent standards, and if one considers only those faults that are likely to
endanger safety. Various authors have studied how to assess and exploit the probability of
pfd=0 [21 , 22-25] towards demonstrating extremely high reliability for critical
applications.

If such low pfd values can be achieved with reasonable probabilities, it is then an
important fact that the probability of achieving them in a diverse system is substantially
higher than in the individual versions. E.g., if the requirement “not anticipated to occur
during the entire operational life” is formalized as “the probability of occurrence over the
operational life must not exceed 10%”, one way of ensuring this is to have at least 90%
probability of a pfd equal to 0 or so low that it ensures practically certain survival over the
operational life of the system. This goal may be challenging; however, if the system can be
developed as a 1oo2 system with independently developed versions, that goal can be
attained if we achieve 68% in each version; or if we achieve 46% per version in a 1oo3
system; or 80% in a voted, 2-out-of-3 system; etc.9 These targets may or may not be
attainable, but they are more so than the initial 90%.

2) Independence between pfds
While we believe that failures of two faulty versions are typically not independent, we

assumed above that the pfds achieved in developing two versions are independent random
variables; a scenario of independent developments. Studying diversity has made us wary of
blanket assumptions of independence: we should examine this one carefully. “Independent
developments” means that if we consider, for instance, the project that develops one of the
two specific versions that will be used in this specific system – say, project A –the
probability of this project achieving a certain version pfd is the same irrespective of
exactly what value of pfd is achieved by project B, developing another version. This seems
reasonable when both projects are in the past and we are buying from independent vendors
that can prove the two products to have separate histories. With bespoke procurement, still
if the developments are carefully isolated, the assumption would be easily believable with
respect to the parts of the process that can be kept isolated (for instance, this independence
would only be believable conditional on a specific set of high-level requirements10 [15]).

To conclude the observations on this example, we cover two more viewpoints from
which a system can be assessed.

E. Measures of risk: risk of exceeding a required pfd
In many applications, a reliability or safety requirement is stated simply as a pfd level

that must not be exceeded. It makes sense to ask what this requirement means, in view of
the uncertainty that affects any assessment [26]. Supposing that the requirement is for a
pfd not exceeding 10-5, does it mean that the mean pfd should be 10-5 or lower? Or is this

8 This “few thousand demands” limit does not mean that these versions will later fail: they could have

pfd=0. It is just an acknowledgment of the limits of statistical inference from any finite experiment. If fault-
free versions exist, they will indeed never fail. If they existed in a set of programs subjected to statistical
testing on a finite number N of tests, we could never infer from testing that they are actually fault-free with
certainty. We could however conclude that their pfd is so close to 0 that for predicting reliability over some
number N’<N of future demands, they can be assumed 0 without substantial error. For a more complete
study of “effective fault-freeness” see [21].

9 These numbers are obtained by solving the familiar formulas for the probability of failure of
redundant systems with independent failures, applied to independent processes of version development rather
than to the versions themselves. For the three scenarios listed, if the probability of a single version being too
unreliable is pV, the probabilities of the system produced being too unreliable are respectively pV

2, pV
3, (3pV

2-
2pV

3).
10 This independence is conditional on these requirements being set, not on their being correct. [15].

interpreted as a (Bayesian) confidence bound – “the pfd should be 10-5 or lower with high
probability” – and if so, what is this required high probability: 90%, 95%?

For the KL data, the improvement in mean pfd has been quoted before; the effect of
diversity on the probability of satisfying a certain bound on system pfd is fully described
by the cdfs in the above plots; the gain varies with the bound chosen. This is evident in
Figure 4, showing the reduction in the risk of producing a system that is too unreliable.11 .

F. Probability of failure independence
 Independence between failures of diverse versions is still frequently discussed or
sometimes claimed. Indeed, being able to claim independence of failures would be
extremely useful in assessment of a system: after paying for the separate assessment of the
pfds of the diverse versions in it, the system pfd would come at no extra cost as a simple
function of these pfds, and would be very good. But since independence is impossible to
believe a priori, discussing the chances of achieving it is just like discussing the chances
of achieving any other, arbitrarily chosen value of pfd. What matters is the pfd of the
system delivered, not whether it is more or less than this arbitrary point. E.g., in the KL
data, a mean 1oo2 pfd “30 times worse than independence” is a substantial improvement
over a single version; in a system of two versions with pfd=10-6, it would deliver a quasi-
unbelievable system pfd of 3×10-11. Lack of independence is irrelevant.

Figure 4 Reduction in risk of violating a requirement on pfd, in the KL data. Some curves shoot to
infinity towards the right end of the plot because in this data sample no 1oo2 pair had pfd>0.000323:
for required bounds greater than this value, the probability of failing to satisfy them is 0.

However, if we did know what relationship to expect between the average true system
pfd and that which would follow from failure independence, this knowledge would be
useful. In the KL data, the former was much higher than the latter.

A reasonable position, in view of the probabilistic models [14], is that a conservative
assessor has no choice but to assume positive correlation between failures of the versions
in a 1oo2 system. However, this does not mean that positive correlation is the norm or that
achieving, or doing better than, independence of failures will be rare. In fact, in the KL
data, “independence or better” between failures of two versions occurs often. The
observed frequencies are in Table I. Only 2/9 of the pairs had positive observed
correlation between failures12. All cases of negative correlation had disjoint failure sets:
the two versions never failed together. These data show how misleading it may be to

11 One can choose to describe the reduction in risk of failure or the increase in chance of success. We

show the former because it is the usual way of reasoning about small risks. Of course describing the increase
in chance of success would show smaller increases. Reducing a probability of failure from – say 0.1 by a
factor of 106 only increases the chances of success by a factor of roughly 1.1, from 0.9 to 0.999999.

12 We note again that this table refers to observed frequencies of failures, as estimators of probabilities.
Again, we are not doing hypothesis testing on probabilities of common failure: as some versions have
individual failure rates in the order of 10-5, an experiment with 1 million test cases is still too small to
discriminate with any confidence, if two such versions exhibit no common failures, between the hypotheses
that the pfd for common failures is less or more than 10-10 (better or worse than independence).

Risk reduction: ratio between pr obabi lities of exceeding a pfd bound

0

10

20

30

40

50

60

70

1.E -06 1.E -05 1.E -04 1.E -03

required pfd bound

ra
ti
o

be
tw

ee
n
 p

ro
ba

b
il i

ti
es

 o
f

sa
ti
s f

y i
ng

 b
ou

n
d

UVA-UCI pair
vs single
program

UVA-UCI pair
vs UVA

UVA-UCI pair
vs UCI

UVA pairs,
worst case vs
UVA

UCI pa irs,
worst case vs
UCI

reason on the basis of the means alone. Of course, we do not recommend that one assume
similar frequencies to apply in general.

TABLE I FAILURE CORRELATION IN 1OO2 PAIRS FROM KL EXPERIMENT

class of failure correlation number of pairs in class %
independent 72 44.44%
positively correlated 36 22.22%
negatively correlated 54 33.33%

III. EFFECTS OF FORCED DIVERSITY
We now study further, from the viewpoint of reducing risk, the common notion of the

desirability of “forcing” diversity, i.e., choosing products with different designs, produced
with different development methods and tools, rather than just products that were
developed independently ("unforced" diversity in our terminology). The advantages one
can hope to achieve by forcing diversity have two aspects:

• the diversity of process and designs may well have the result that the errors most likely
to be made in developing the versions will be different; that these will cause faults that
affect different demands; and thus that (with reference to Figure 2) cases (c) or (d) are
less probable than cases (a) and (b), and within case (b), the intersection of the two
failure sets is likely to be smaller (all in comparison with what these probabilities
would be with "unforced" diversity). However all this is a plausible (possibly
common) scenario of advantages; perhaps instead, in a specific project, the differences
that we "force" have no effect on which errors are likely at all; or perhaps there is only
one error that in the production of either version is likely enough to have an effect on
risk, and scenarios (c) or (d) are the norm;

• more subtly, equation (3) indicates that even in the worst case just highlighted, there is
a guaranteed worst-case level of stochastic improvement. This is present irrespective
of whether the diversity is "forced" or "unforced". That is, whether the distributions
FA(q) and FB(q) are identical or different does not affect the existence of this
guaranteed advantage of a two-version system over the a single-version system; but
we can show that it affects its size.

We now first consider this worst-case improvement, from equation (3), in the chance of
achieving a certain pfd. This matters for both the measures of risk considered in sections
II.D and II.E, the former in view of how the probability of “effectively fault free” systems
affects the lifetime risk of failure. We prove that forced diversity is a remarkably effective
strategy over a broad range of scenarios. We then discuss what can be said about risk
reductions outside the worst-case scenario.

A. Forced diversity, worst-case distribution and probability of fault-
freeness

We refer to previously described models of multiple-version programming [12 , 13]:
two versions are sampled independently, from a “population of all possible versions”,
according to a single probability distribution, in the case of “unforced” diversity, but
according to two distributions, produced by the development processes A and B, in the
case of “forced” diversity.

As pointed out earlier, the probability of a 1oo2 system, with independent
developments of the component versions, exceeding any given bound on pfd is at worst
(i.e., at most) the product of the corresponding probabilities for the two processes (cf.
equation (3) and cases c and d in Figure 2).

With “forced” diversity, these two probability distributions (normally unknown, when
one makes the choice between forced and unforced diversity) are different. Forced
diversity is known to improve mean pfd under certain conditions of indifference between
processes A and B [13]. We ask whether, without this assumption, it improves the
probability of satisfying a bound on pfd. In view of the importance of “fault-free” or
“effectively fault-free” systems, we study in what follows the probability of not exceeding

the bound pfd=0: “fault-free” pairs, i.e., 1oo2 pairs in which at least one member is fault-
free. However, the proofs do not depend on which pfd bound one considers.

We first introduce our notation. Without a policy of forced diversity, developers will
have their own preferences and thus probabilities of choosing either process. We call α this
“unforced” probability of developers choosing process A, so their probability of choosing
process B will be (1-α).13 We call qA the probability of process A producing a faulty
program, i.e., a program with pfd>0, qB the same probability for process B, and for
convenience parameterize by setting:

 𝑞𝐴 = 𝑘𝑞𝐵 (4)

Without loss of generality, we assume !! ∈ [0, 1]! : B is the "worse" process. The
decision maker does not know k, which describes how well the two processes A and B
perform on the current development; and α is also often unknown. With forced diversity,
the probability of a randomly chosen pair being faulty is:

 𝑞𝑓 = 𝑞𝐴𝑞𝐵 = 𝑘𝑞𝐵2 (5)

while with unforced diversity, the probability of a randomly chosen pair being faulty is the
probability of selecting a faulty program, squared:

𝑞𝑢 = (𝛼𝑞𝐴 + (1 − 𝛼)𝑞𝐵)2 = 𝑞𝐵2(𝛼𝑘 + 1 − 𝛼)2 (6)

Forced diversity guarantees better worst-case probability of fault-freeness than
unforced diversity iff 𝑞𝑓 < 𝑞𝑢 . One can note that:

• if process A only produces fault-free programs (k=0), then qf=0, and thus unforced
diversity can only be as good as forced diversity if developers always choose the
“perfect” process A (α=1).

• If processes A and B give the same probability of fault-free programs (k=1), then
unforced and forced diversity give the same probability of faulty pairs.

• In the general case, the decision maker may not know α or k and may be concerned
that forcing diversity might make things worse. Indeed, if developers - left free to
choose - tended to choose the “better” process A over process B often enough, the
resulting frequency of pairs with at least one A program might guarantee a higher
frequency of fault-free pairs than guaranteed by forced diversity, i.e., by requiring
each pair to contain one A and one B program. Of course, for any given α < 1 , we
have seen that as 𝑘 → 0 , forced diversity will eventually become the better choice.

We measure the advantage of forced diversity via the ratio 𝑞𝑢 𝑞𝑓⁄ (so that a larger ratio
indicates a larger advantage). Figure 5 shows plots of 𝑞𝑢 𝑞𝑓⁄ for a range of scenarios,
which illustrate how forced diversity is a guarantee against surprises in the quality of one
of the processes used.

The more process B is “worse” than process A (the smaller k is), the more the gain
from ensuring – by “forcing” diversity – that every pair contains an “A” version. The
curves can be read as follows: if “unforced” developers have a 50-50 chance of choosing
the process with the higher probability of faulty programs (process B), then forcing
diversity always has an advantage over not forcing it; even more so if developers tend to
choose the worse process, B, more frequently than the better process, A.

13 When selecting off-the-shelf products, “unforced” diversity amounts to choosing randomly among

all those that appear to satisfy the requirements (functional requirements, required safety or quality
certification, etc). If e.g. 10 such products are available, 7 of which were produced by process A, then if the
customer chooses with uniform distribution, α=0.7; forced diversity means choosing separately one product
from the 7 type A products, and another one from the 3 type B products.

Figure 5. Ratio between worst-case probabilities of non-fault-free systems with unforced (qu) and
forced (qf) diversity, for different values of i) the probability α of developers choosing the
development process, A, that is better at producing fault-free programs; ii) the ratio k between the
probabilities of faulty programs from process A and from process B. Points above the horizontal line
qu/qf=1 indicate situations in which forced diversit gives better worst-case probability than unforced
diversity.

The plots also show that even if developers “favour” the better process, A (that is, if α
> 0.5), forcing diversity has potentially large advantages, for ranges of values of α and k
(or comparatively moderate disadvantages for other ranges). This is because if k is small –
 the “worse” process B is substantially worse than the “better” process A – then even a
small risk (1-α)2 of ending up with a pair of versions from process B makes qu/qf >1:
unforced diversity incurs a greater worst-case risk (of producing a system with pfd>0) than
forcing every pair to contain one version from the “better” process and one from the
“worse” process. The worse B is, the higher α must be for unforced diversity to “beat”
forced diversity from this viewpoint.

In other words, forced diversity tolerates undesired outcomes – choices of development
process or design that happen to perform badly on a specific project – that we cannot
predict and avoid. It is true that this protection has a possible “flip side”: if we knew that
developers “wisely” tend to prefer process A, that produces fewer faulty versions, then not
forcing diversity could be advantageous; but we would need to know that developers'
preferences are commensurate to the actual difference between the two processes. The
required preference level is obtained by solving the equation

 𝑞𝑢 = 𝑞f (7)

with the results that unforced diversity yields better worst-case probability of fault-free
pairs than forced diversity if developers choose the “better” process A with probability:

𝛼 >
−1 + √𝑘
𝑘 − 1

=)1 + √𝑘*
−1
= ,1 + -qA qB⁄ 2

−1
 (8)

For instance, if process B produces faulty versions with probability 10 times lower than
process A (k= qA/qB =0.1), Figure 5 shows that for α=0.7, forced diversity is still the better
choice (qu/qf >1). That is, if developers choose the better process A 70% of the time, this is
still not enough to make unforced diversity superior; from (8), we can calculate that for
qA/qB =0.1, the minimum required “preference” for process A is α=0.76. Another way of
reading the equations and plots is: if developers use the “better” process A with probability

α=0.7, we see that the curve labelled α=0.7 reaches the value 1 for k=0.2. This tells us that
α=0.7 only makes “unforced” diversity superior (in terms of worst-case risk of system
pfd>0) if process B is no more than “5 times worse” than process A: qB <5 qA.

We also note the asymmetry of the consequences of developers “preferring” one or the
other process: strong preferences for A, the “better” process, make the worst-case for
forced diversity mildly worse than for unforced diversity (see the minima on the curves for
α<0.5); strong preferences for B, the “worse” process, make the worst case for unforced
diversity radically worse than for forced diversity. So, the desirability of forcing diversity
(from this viewpoint of worst-case improvement in the risk of producing a faulty system)
seems a remarkably robust property, over a broad range of situations (the values of α and
k, generally unknown). Of course, in the extreme case α=1 (any system developed
contains two versions from the “better” process A, unless we “force” each to include one
version from process B), qu/qf =1/k<1. We discuss this scenario in the next section.

Last, we recall that these results apply for any bound on pfd, that is, not only for the
case of fault-freeness or “effective fault freeness” for a given lifetime (or mission) number
of demands, but for the whole curve of worst-case cdf. In other words, these results hold if
by qA, qB, qu and qf we designate not probabilities of certain pfds not exceeding 0, but
probabilities of their not exceeding any specific bound of interest (for instance, one
required as the maximum acceptable pfd for an application). Recall that this is a worst case
in that the advantage proved for forced diversity if inequality (8) holds will apply, even if
the intended main advantage of forced diversity – that of “diversifying faults”, making
cases (c) and (d) in Figure 2 less likely than with “unforced” diversity – failed to
materialize in a specific project. If inequality (8) holds, for the probabilities qA and qB of
the two processes producing versions that exceed the required bound on pfd, all the
equations and graphs in this section apply to the worst-case probability of diverse pairs of
versions exceeding that bound, and “forcing” diversity is still the preferred choice unless
the developers “preferred” the “better” process with the probability given by (8).

B. Departures from the worst case
The discussion above concerns how forcing diversity affects a pessimistic bound on

the probability of satisfying any given requirement on the pfd (and therefore also
pessimistic bounds on lifetime reliability). The actual pfd achieved cannot be worse, but
may often be better than this: the pessimistic bound assumes case (c) or (d) in Figure 2,
but the goal pursued via “forced diversity” is to avoid common failure points as far as
possible, making case (a), or at worst (b), the likely outcomes (if both versions have
faults). Indeed, in the KL data, for instance, 1/3 of the inter-university pairs (or 3/5 of
those with two faulty programs) exhibit behavior (a), and this produces the top cdf curve
in Figure 3, substantially better than the worst case.

So, a conclusion about forced diversity is that if it were to achieve its primary goal
(making case (a) of Figure 2 the most likely case) it is to be preferred to unforced
diversity. If it failed in this primary goal, it would still deliver, as shown in the previous
section, protection against the risk that one of the two processes happens to be especially
ineffective at achieving low pfd for this project. The system designer should always, it
seems, choose to force diversity.

A dilemma arises in the special case of knowing (or, more realistically, having strong
evidence about) which process has the lower risk of high version pfd – which one is
process A. Should one still choose to combine a version from the “better” process with
one from a “worse” process? This gives a hope of high probability of case (a), disjoint
failure sets. By contrast, combining instead two versions from process A (we can see this
as “unforced diversity” with α=1) would reduce by a factor k the worst-case risk of a high
pfd: a tempting, seemingly risk-averse choice if one is unsure about the effectiveness of
the ways of “forcing” diversity available for the current project, and suspected that k may
be small.

We have no mathematical theory to predict the magnitude of the departure from the
worst case. The insight from probabilistic models [13 , 27] is simply that it depends on

whether the different processes share some area of “high-difficulty” (and frequently
occurring) demands for the application being developed.

“Unforced” diversity data for the KL experiment are not published; we give just one
example from another, recent set of empirical data [28] from programs developed in an
open programming context.

TABLE II COUNTS OF FAILURE-FREE AND FAULTY PROGRAMS (WITH PFD ≤ 0.01) AND 1OO2 PAIRS FOR THE FACTOVISORS

PROBLEM:
 COMPARING “FORCED” AND “UNFORCED” DIVERSITY

 unforced forced

C Pascal
1oo2 pairs made up of
a failure-free and a
faulty program

9,504 1,686

Failure-free
single programs 172 26

1oo2 pairs made up of
two failure-free
programs

19,701 4,472

Faulty single
programs 45 3 1oo2 pairs made up of

two faulty programs 1,176 135

Total count of
single programs 217 29 Total count of 1oo2

pairs 30,381 6,293

One of the many scenarios analyzed concerns diversity between programs in C and

Pascal that solve a mathematical problem called Factovisors. Table II gives data about
failure-free and faulty single programs (among those with pfd≤0.01). Here, α=0.118, and
k=0.499; these values make the advantage of forced diversity qu/qf =1.8044 (cf the
topmost curve in Figure 5). In detail, the pessimistic bound analysis (III.A) gives worst-
case probabilities of a randomly chosen pair being faulty, given unforced and given
forced diversity, qu=0.0387 (1,176 pairs out of 30,381), and qf =0.0215 (135/6,293). The
actual, lower observed values were: qu=0.0232 (705/30,381); qf =0.0162 (102/6,293)
because only a fraction of 1oo2 pairs made of two faulty programs failed themselves
(Table II). One may note that while the ratio of the worst-case values would be qu/qf
=1.8044, that of the observed values gives a smaller gain, 1.4317: it so happened that
unforced diversity resulted in a higher fraction of failure-free 1oo2 pairs made up of
faulty programs (case (a) from Figure 2):~40% (471/1,176), than the corresponding value
with forced diversity: ~24% (33/135).

IV. DISCUSSION: EFFECTS OF THE DISTRIBUTION OF PFD
The example data that we used show but one of a broad range of possible scenarios.

We briefly discuss alternative scenarios about the distribution of the pfd values of single
versions and pairs. Any such distribution will be a set of discrete probability masses
rather than a continuous distribution, because there are only a finite number of possible
demands (any possible demand is a long digital number of finite length, because for any
digital system the number of input bits, the memory size and the lifetime are finite). In
practice this distribution might well approximate a continuous one, or, at the other
extreme, be reduced to a few discrete probability masses. If the distribution is very
sparse, the effects of diversity may well be especially dramatic. If we think of the process
that generates faults in each version and thus this probability distribution, we can identify
a range of possibilities between two extreme scenarios [27]:

• complex, good quality product scenario: many faults are possible, with low but
non-negligible probability of being present, each with a modest contribution to pfd.
Then, both versions are almost certain to be faulty, but it is unlikely that they share
many faults. This scenario is plausible for complex, mature, commercial quality
software, and some evidence for it has been observed in off-the-shelf DBMS
products, and in operating systems from the viewpoint of security flaws [29, 30].
Thanks to the central limit theorem, the distribution of pfd for these products would
resemble a continuous, bell-shaped, unimodal distribution, and the pfd for 1oo2
systems made from them would be similar, but narrower and shifted towards

pfd=0. With “forced diversity” (e.g. if the two versions belong to different product
families from different vendors) it is possible that although many likely faults are
common to the two versions, many are not, and it may well happen that
E(qpair)<(E(qsingle))2;

• simple, likely ultra-reliable product scenario: very high quality production
processes make fault-freeness achievable with non-negligible probability; very
few faults are practically possible. The distribution of pfd for the versions produced
is made up of very few discrete probability masses (one of them for pfd=0).
Combining two such versions produces another discrete distribution, and what
shape this distribution happens to take is unpredictable: it depends on the effects of
the individual faults on pfd and how many of these “least unlikely” faults are the
same for the two versions.

V. CONCLUSIONS
If we accept that software reliability techniques are a form of protection against the

variability of the software production process – a way of controlling the risk of an
individual development resulting in an inadequate product – we need to assess their effect
on the distribution of results achieved. We have moved a first step in this direction,
regarding software diversity.

Decisions about whether to use, and how to pursue, diversity are generally driven by
consensus within an industrial sector, or by judgment, or educated intuition. A proper
description of how the various measures one may consider are related to the risk measure
of interest will help to shape this judgment and intuition. To this end, we have shown a
number of mathematical results, and some empirical facts, that go beyond, and often
contradict, frequently voiced intuition.

Our summary of this paper’s contributions and conclusions includes:

• different application require different measures of development risk, which imply
quantitatively different benefits from diversity. Identifying this range of different
risk measures, appropriate for different scenarios of use, is useful and in particular
can avoid some wrong extrapolations from published results of experiment as
guidance to achievable risk reduction;

• extrapolation from experimental results must be taken with extreme caution, but
some experimental results are actually instances of mathematical truths that one
can trust to hold without empirical demonstration whenever certain sufficient
conditions hold;

• when the requirement is a low probability of a system ever failing, the measure of
interest is a reliability function rather than a reliability parameter (pfd);

• we have shown some aspects of how diversity reduces risk. Among these, the
probability of fault-free or “effectively fault-free” programs or pairs may have
great importance towards the likely reliability of the system; and diversity radically
“shrinks” the low-reliability tails of the distribution of system pfd;

• “forcing” diversity is a more robust strategy than usually acknowledged. Its
primary goal is “diversifying faults” (making it likely that any failures of the
diverse versions in a system are mutually exclusive, as in Figure 2a). Even in the
worst-case scenario that it does not succeed in this, it improves the chances of
meeting a bound on the pfd of a 1oo2 system (including a bound of pfd=0), for a
broad range of scenarios. This advantage in worst-case results holds if developers
choose between a better and a worse process with 50-50 probability; but even,
counterintuitively, in a range of scenarios in which they choose the better process
more often than the worse process;

• the actual (not worst case) effects of forcing diversity cannot be predicted from
existing models.

The models we have used give insight with practical consequences. They allow “what
if” analyses to compare options before developing a system. They do not predict
dependability figures for a specific system: one could not now estimate parameter values,
and derive such system-specific predictions with any confidence. Whether this may
become feasible after extensive empirical experience remains to be seen: there is now no
indication that some uniform pattern will emerge from empirical data.

On a related note, we have been asked whether our “mathematical facts” could be
validated for a specific real-world project. But the single data point provided by one
project cannot validate or reject a probabilistic prediction, no matter whether generated by
theorems or by extrapolating from empirical data. The advantage of theorems is that they
can be trusted without empirical validation, provided that their assumptions (here, for most
results, independence between development processes and true 1-out-of-2 behavior of the
architecture) hold.

The details of our mathematical results depend on the specific architecture (1-out-of-2)
examined. We expect that most results will extend rather directly to 1-out-of-N systems;
and many observations, e.g. about the importance of the probability of “effectively fault-
free” versions and systems, are valid in general. On the other hand, K-out-of-N systems,
e.g. a triple modular redundant, 2-out-of-3 voted system, will require more complex
models.

We have not considered the problem of assessing the reliability of a specific system.
Our results are about probability distributions over the possible outcomes of a
development project, important for decision before and during development. For the client
adopting one product, instead, or the regulator approving it, what matters is the
dependability of that one product. Especially with critical applications, one wants high
confidence that sufficient dependability has been achieved. Although, with stringent
dependability requirements, acquiring this confidence may be difficult [8, 9], about the
finished product the client or regulator can rely on detailed specific evidence. They can
examine the finished product itself and, perhaps most importantly, they can run
operational testing. The risk reduction considerations we have discussed may contribute to
form prior probability distributions that an assessor combines with new evidence, possibly
exploiting techniques for simplifying their combinations with the results of testing [21, 25
, 31, 32].

ACKNOWLEDGMENT
This work was supported in part by the Artemis Joint Undertaking and the U.K.

Technology Strategy Board (ID 600052) through the SeSaMo project, and by the DISPO
project, funded under the CINIF Nuclear Research Programme by EDF Energy Limited,
Nuclear Decommissioning Authority (Sellafield Ltd, Magnox Ltd), AWE plc and Urenco
UK Ltd. ("the Parties"). The views expressed in this paper are those of the author(s) and
do not necessarily represent the views of the members of the Parties. The Parties do not
accept liability for any damage or loss incurred as a result of the information contained in
this paper.

REFERENCES
[1] R. T. Wood, R.Belles, M. S. Cetiner, D. E. Holcomb, K. Korsah, A. S. Loebl, et al., "Diversity Strategies for

Nuclear Power Plant Instrumentation and Control Systems," NRC, U.S. Nuclear Regulatory Commission,
NUREG/CR 7007, 2010.

[2] G. G. Preckshot, "Method for Performing Diversity and Defense-in-Depth Analyses of Reactor Protection
Systems," NRC, U.S. Nuclear Regulatory Commission, NUREG 6303, 1994.

[3] P. Popov, L. Strigini, and A. Romanovsky, "Choosing effective methods for design diversity - how to progress
from intuition to science," in SAFECOMP '99, 18th International Conference on Computer Safety, Reliability
and Security, Toulouse, France, 1999, pp. 272-285.

[4] B. Littlewood and L. Strigini, "A discussion of practices for enhancing diversity in software designs," Centre for
Software Reliability, City University London, DISPO project technical report LS-DI-TR-04, 2000
http://openaccess.city.ac.uk/275/.

[5] ISO, "ISO 26262 Road vehicles -- Functional safety," ed, 2011.
[6] D. Niedermeier and A. A. Lambregts, "Fly-by-wire augmented manual control - basic design considerations," in

ICAS 2012, 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 2012.
[7] A. German and G. Mooney, "Air vehicle software static code analysis—Lessons learnt," in Ninth Safety-Critical

Systems Symposium, Bristol, U.K., 2001.

[8] B. Littlewood and L. Strigini, "Validation of Ultra-High Dependability for Software-based Systems,"
Communications of the ACM, vol. 36, pp. 69-80, November 1993.

[9] B. Littlewood and L. Strigini. (2011, May) 'Validation of ultra-high dependability...' - 20 years on. Safety
Systems, Newsletter of the Safety-Critical Systems Club. Available:
http://www.csr.city.ac.uk/people/lorenzo.strigini/ls.papers/2011_limits_20yearsOn_SCSC/

[10] L. J. Yount, "Architectural solutions to safety problems of digital flight-critical systems for commercial
transports," in 6th Digital Avionics Systems Conference, Baltimore, Maryland, December 1984, 1984, pp. 28-
35.

[11] J. C. Knight and N. G. Leveson, "An Experimental Evaluation of the Assumption of Independence in Multi-
Version Programming," IEEE Transactions on Software Engineering, vol. SE-12, pp. 96-109, 1986.

[12] D. E. Eckhardt and L. D. Lee, "A theoretical basis for the analysis of multiversion software subject to coincident
errors," IEEE Transactions on Software Engineering, vol. SE-11, pp. 1511-1517, December 1985.

[13] B. Littlewood and D. R. Miller, "Conceptual Modelling of Coincident Failures in Multi-Version Software,"
IEEE Transactions on Software Engineering, vol. SE-15, pp. 1596-1614, December 1989.

[14] B. Littlewood, P. Popov, and L. Strigini, "Modelling software design diversity - a review," ACM Computing
Surveys, vol. 33, pp. 177-208, June 2001.

[15] K. Salako and L. Strigini, "When does ‘Diversity’ in Development Reduce Common Failures? Insights from
Probabilistic Modelling," IEEE Transactions on Dependable and Secure Computing, vol. 99, (in print).

[16] P. G. Bishop, "Software Fault Tolerance by design diversity," in Software Fault Tolerance, M. Lyu, Ed., ed:
John Wiley & Sons, 1995, pp. 211-229.

[17] L. Hatton, "N-Version Design Versus One Good Version," IEEE Software, vol. 14, pp. 71-76, November-
December 1997.

[18] P. G. Bishop, "Does Software have to be Ultra Reliable in Safety Critical Systems?," in SAFECOMP 2013,
32nd International Conference on Computer Safety, Reliability and Security, Tolouse, France, 2013, pp. 118-
129.

[19] FAA, "Federal Aviation Regulations FAR 25.1309," Federal Aviation Administration, Advisory Circular AC
25.1309-1A, 1985.

[20] L. Strigini and D. Wright, "Bounds on survival probability given mean probability of failure per demand; and
the paradoxical advantages of uncertainty," City University London, Centre for Software Reliability Technical
Report, 2013 http://openaccess.city.ac.uk/1644/.

[21] L. Strigini and A. A. Povyakalo, "Software fault-freeness and reliability predictions," in SAFECOMP 2013,
32nd International Conference on Computer Safety, Reliability and Security, Tolouse, France, 2013, pp. 106-
117.

[22] W. E. Howden and Y. Huang, "Software Trustability Analysis," ACM Transactions on Software Engineering
and Methodology, vol. 4, pp. 36-64, 1995.

[23] A. Bertolino and L. Strigini, "Assessing the risk due to software faults: estimates of failure rate vs evidence of
perfection," Software Testing, Verification and Reliability, vol. 8, pp. 155-166, 1998.

[24] D. Hamlet and J. Voas, "Faults on Its Sleeve: Amplifying Software Reliability Testing," in 1993 International
Symposium on Software Testing and Analysis (ISSTA), in ACM SIGSOFT Software Eng. Notes, Vol. 18 (3),
Cambridge, Massachusetts, U.S.A., 1993, pp. 89-98.

[25] B. Littlewood and J. Rushby, "Reasoning about the Reliability of Diverse Two-Channel Systems in which One
Channel is 'Possibly Perfect'," IEEE Transactions on Software Engineering, vol. 38, pp. 1178 - 1194, Sept.-Oct.
2012.

[26] R. E. Bloomfield, B. Littlewood, and D. Wright, "Confidence: Its Role in Dependability Cases for Risk
Assessment," in DSN 2007, 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Edinburgh, U.K., 2007, pp. 338-346.

[27] P. Popov and L. Strigini, "The Reliability of Diverse Systems: a Contribution using Modelling of the Fault
Creation Process," in DSN 2001, International Conference on Dependable Systems and Networks, Goteborg,
Sweden, 2001, pp. 5-14.

[28] P. Popov, V. Stankovic, and L. Strigini, "An Empirical Study of the Effectiveness of 'Forcing Diversity' Based
on a Large Population of Diverse Programs," in 23rd International Symposium on Software Reliability
Engineering (ISSRE 2012), Dallas, Texas, USA, 2012.

[29] I. Gashi, P. Popov, and L. Strigini, "Fault Tolerance via Diversity for Off-The-Shelf Products: a Study with
SQL Database Servers," IEEE Transaction on Dependable and Secure Computing, vol. 4, pp. 280-294,
October-December 2007.

[30] M. Garcia, A. N. Bessani, I. Gashi, N. Neves, and R. R. Obelheiro, "OS diversity for intrusion tolerance: Myth
or reality?," in DSN 2011, 41st International Conference on Dependable Systems & Networks, Hong Kong,
2011.

[31] B. Littlewood, P. Popov, and L. Strigini, "Assessing the Reliability of Diverse Fault-Tolerant Software-Based
Systems," Safety Science, vol. 40, pp. 781-796, 2002.

[32] B. Littlewood and A. Povyakalo, "Conservative Bounds for the pfd of a 1-out-of-2 Software-Based System
Based on an Assessor's Subjective Probability of 'Not Worse Than Independence'," IEEE Transactions on
Software Engineering, vol. 39, pp. 1641-1653, December 2013.

