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This work considers the cooperative trajectory-planning

problem along a double lane change scenario for autonomous

driving. In this paper we develop two frameworks to solve

this problem based on distributed model predictive control

(MPC). The first approach solves a single non-linear MPC

problem. The general idea is to introduce a collision cost

function in the optimization problem at the planning task to

achieve a smooth and bounded collision function and thus to

prevent the need to implement tight hard constraints. The

second method uses a hierarchical scheme with two main

units: a trajectory-planning layer based on mixed-integer

quadratic program (MIQP) computes an on-line collision-

free trajectory using simplified motion dynamics, and a

tracking controller unit to follow the trajectory from the

⇤Corresponding author.

higher level using the non-linear vehicle model. Connected

and automated vehicles (CAVs) sharing their planned tra-

jectories lay the foundation of the cooperative behaviour.

In the tests and evaluation of the proposed methodologies,

MATLAB-CARSIM co-simulation is utilized. CARSIM

provides the high fidelity model for the multi-body vehicle

dynamics. MATLAB-CARSIM conjoint simulation exper-

iments compare both approaches for a cooperative double

lane change maneuver of two vehicles moving along a one-

way three-lane road with obstacles.

1 Introduction

Industrial as well as academic interest on advanced

driver assistance systems (ADAS) increases significantly as

1 Copyright © by ASME
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they can decrease road fatalities [1]. A higher level au-

tonomy such as crash mitigation, collision avoidance, au-

tonomous driving and autonomous platooning attract more

attention compared to conventional drive assist technologies

such as anti-lock braking systems (ABS), power-steering,

adaptive cruise controllers (ACC) and electronic stability

controllers (ESC) [2]. In general a hierarchical control ar-

chitecture is employed in a collision avoidance scheme: the

higher level layer generates a collision-free path, and the

lower level layer is a path tracking controller, and it follows

the planned path by controlling the actuators [3],[4].

From inter-vehicle communication (IVC) systems point

of view, the vehicle-to-everything (V2X) communication

technologies [5] provide the autonomous vehicles with the

capability to communicate with each other, and it is possible

now to transfer sensor data between vehicles and plan coop-

erative maneuvers. The cooperative path-planning problem

has been studied extensively in the literature [6],[7],[8].

Mixed-integer programming is proposed to generate the

optimal multiple vehicle path-planning [6]. In the work of

Frese and Beyerer [7], a comparison between several coop-

erative path planning algorithms is available. The authors

considered computation time and the quality of the path plan-

ner in dangerous traffic situations as the comparison mea-

sures for the elastic band method, the tree search algorithm,

a priority-based approach and mixed-integer linear program-

ming. For a cooperative lane change, Wang et al. [8] used

model predictive control (MPC) to attenuate the inauspicious

effects during the lane change maneuver in traffic.

Alternative to the hierarchical schemes, an integrated

trajectory planning and tracking controller approach is also

possible. In such a scheme, the integrated controller will di-

rectly optimise the driving forces and the steering angles for

cooperative collision avoidance. Yuan et al. proposed a uni-

fied path-planner and tracking controller and in the quadratic

programming form, they used a simple formulation of MPC

[9]. The collision avoidance is achieved simply by imposing

constraints on the vehicle position. However, in the case of

dynamic obstacles, as the scenario gets more complex, the

performance of the MPC optimiser is usually not adequate.

Furthermore, the approach is not applicable to the problem

of multiple vehicles.

In [10], a proactive collision avoidance scheme was pro-

posed. In this work, a mixed-integer quadratic programming

(MIQP) formulation is utilised to achieve the collision avoid-

ance via hard constraints imposed in the optimisation prob-

lem. In [11], a potential field-like term is introduced to the

cost function to handle the collision avoidance requirements.

This is an example of soft constraints where inequality con-

straints are defined indirectly with penalty functions [12]. In

[13], it is stated that a penalty term is advantageous compared

to an additional inequality constraint.

The objective of this paper is to extend the work pro-

posed by the authors in [11] by comparing the unified con-

trol approach with a hierarchical scheme for cooperative

trajectory-planning. This work defines a single constrained

non-linear optimisation problem and the control commands

of the actuators are attained directly instead of using a sep-

arate path-tracking controller. The baseline approach gen-

erates plans based on receding-horizon mixed-integer pro-

gramming, similar to the approaches presented in [6]. This

contribution compares both algorithms in terms of their func-

tionalities and computation costs, discussing the advantages

and limitations of the proposed methodologies.

The rest of the text is organized as follows: Section 2

presents an overview of the available literature in cooperative

trajectory planning. Section 3 describes the vehicle model.

Section 4 formulates the cooperative trajectory-planning

problem using a non-linear model predictive controller. Sec-

tion 5 presents the cooperative trajectory-planning approach

based on receding-horizon mixed-integer quadratic program-

ming. Section 6 includes the results from the MATLAB-

CARSIM co-simulation framework in a two-vehicle obstacle

avoidance scenario. Finally, Section 7 concludes the paper

with future work suggestions.

2 Related Works

With increasing intelligent road and vehicle-to-vehicle

(V2V) communication systems, cooperative path planning

concept extensively studied in the literature has been vali-

dated in experimental works. Ji et al. used multi-constrained

model predictive control (MMPC) for path planning and

tracking control for vehicle collision avoidance problem and

validated their approach in Simulink and Carsim simulations

[14]. Shibata et al. used velocity potential fields to study

steering-based collision avoidance solution in simulations

[15].

Trajectory planning for autonomous lane changing ma-

noeuvre in smart roads is among the most studied prob-

lems in vehicle control. You et. al used a polynomial

and back-stepping approach to tackle trajectory planning and

tracking problems, and with simulations and experimental

results, they demonstrated the feasibility of their approach

[16]. Nilsson and Sjoberg used model predictive control in

decision making for benefits of lane change manoeuvre [17].

Schildbach and Borelli utilized model predictive control de-

sign for lane change in traffic [18]. Wang et al. used model

predictive control in cooperative lane change problem to im-

prove the traffic flow by reducing the deceleration of the fol-

lowing vehicle [8].

Alternative approaches based on elastic bands [19], a

technique between global path planning and real-time mo-

tion control have been studied in vehicle motion control as

well [20]. Gehriq and Stein used elastic bands in colli-

sion avoidance for vehicle-following systems along the lat-

eral direction, and in simulations and real-world results they

demonstrated the efficiency of their proposal [21]. As an

interesting extension, cooperative trajectory planning for ve-

hicles in the absence of the speed lanes using elastic strips is

also available [22].

The literature of vehicle trajectory planning uses another

widely-utilized technique: approaches based on tree-search.

Lenz et al. used Monte-Carlo tree search in tactical coop-

erative planning with possible actions of lane change, accel-

erate, brake and stop [23]. Kurzer et al. showed the effec-

2 Copyright © by ASME



tiveness of decentralized cooperative path planning achieved

with continuous Monte Carlo tree search compared to ego-

centric planning [24].

Optimization based approaches have been utilized in so-

lution of vehicle path planning and obstacle avoidance prob-

lems as well. Different optimization objective criteria such

as minimum time [25], minimum kinetic energy [26], mini-

mum covered distance [27], maximum safe distance [28] and

maximum comfort [29] have been employed. Gabarron et al.

used multi-objective vehicle trajectory optimization process

along lateral direction only, for cooperative collision avoid-

ance in high-speed vehicles [30].

Eilbercht and Strusberg formulated manoeuvres in co-

operative motion plans as discrete time hybrid automation

and used mixed integer quadratic programming (MIQP) to

find a solution to the optimization problem [31]. Similarly,

Burger and Lauer used MIQP in cooperative multiple vehi-

cle trajectory planning and in numerical experiments they

showed the advantages of this approach over priority-based

and non-cooperative individual motion planning [32]. MIQP

have been utilized in robot motion planning and trajectory

optimization for goal assignment as well [33].

Branca and Fierro proposed heuristics to improve the ef-

ficiency of the hierarchical and decentralized optimization

problem in cooperative trajectory planning of various num-

ber of vehicles equipped with mixed-integer linear program-

ming (MILP) and MPC path planning schemes in an environ-

ment with different number of obstacles [34]. Schouwenaars

et al. [6] used AMPL and CPLEX optimization tools for

mixed integer programming in multiple vehicle path plan-

ning. Miller et al. benefited from decomposing the mo-

tion and used MILP in longitudinal and lateral motion plan-

ning and proposed solution to eliminate infeasible trajecto-

ries [35].

3 Preliminaries and Vehicle Model

3.1 Notation

The block diagram of the two cooperative planning

frameworks is shown in Fig. 1. The first approach is a

NMPC-based trajectory planner designed with a non-linear

bicycle model. The second approach consists of a hierarchi-

cal architecture based on mixed-integer quadratic program-

ming (MIQP) for trajectory-planning and a linear MPC for

tracking purpose.

Assume V denotes the set of vehicles V , {1,2, ...,Nv}.

The trajectory-planner generates two-dimensional trajecto-

ries r
(e)
p , [r

(e)
p,x r

(e)
p,y]T 2 R

2 of an ego vehicle e 2 V in accor-

dance with a predetermined plan. The subscript p marks the

trajectories generated by the trajectory-planner. To plan the

collision-free trajectories, at each time step k 2 N, through

V2V communications, vehicles share their planned trajecto-

ries over a finite horizon N: r
(ν)
p , [r

(ν)
p,x r

(ν)
p,y]T 2 R

2. Here,

ν 2 V

{e} denotes the ν-th vehicle in communication. All the

vehicles are permitted to implement the optimization proce-

dure for planning concurrently at each time step.

The unified trajectory-planning computes the longitudi-

nal force Fx,r and δ f the steering angle at the same time in

which it generates its planned trajectories, while the hierar-

chical approach decomposes the control problem into a high-

level trajectory-planning and lower-level trajectory-tracking

problems. This lower-level layer is responsible to generate

the actuators signals and track the trajectory r
(e)
p planned by

the higher level trajectory-planning layer, in other words, the

output of the higher level layer becomes the reference tra-

jectory r̄
(e)
t for the lower level tracking controller layer. The

subscript t denotes the trajectories of the trajectory controller

in the hierarchical unit.

Assumption 1. The route starts with the initial point; it con-

tinues to provide the information each time step over a pre-

diction horizon, and it stops providing information at the fi-

nal point.

Assumption 2. All of the network connections must be bidi-

rectional. The MPC is a well-known method to handle the

expected latencies, however, for simplification, we assume

no latency in V2V communication.

Assumption 3. The vehicle state is estimated using the mea-

surements from the on-board sensors and they can be used

for feedback. A GPS-aided inertial navigation system is ad-

equate to satisfy this assumption.

Plans of
other
vehicles

Fx,r, δf

Vehicle

Trajectory-
Planning 

Sensor 
Measurements

!p
ν

(a) - NMPC

Reference Trajectory

Route
(Navigation System)

Scenario
Specification

Tracking 
Controller

Trajectory-
Planning Obstacle 

Information
!p
o

(b) - MIQP MPC

Fig. 1: Overview of the two cooperative planning and control

frameworks: a) unified trajectory-planning using non-linear

MPC; b) hierarchical unit with a mixed-integer quadra-

tric programming trajectory-planning and a linear MPC for

trajectory-tracking.

3.2 Bicycle Model

In inertial frame, the non-linear state-space representa-

tion of the bicycle dynamic model in continuous time [36]

(see Fig. 2) is given in (1).

3 Copyright © by ASME



Ẋ = fc(X ,U), (1)

with,

Ẋ =

2

6

6

6

6

6

6

4

vx cosψ� vy sinψ
vx sinψ+ vy cosψ

ω
1
m
(Fx,r �Fy, f sinδ f +mvyω)

1
m
(Fy,r +Fy, f cosδ f �mvxω)

1
Θ (Fy, f l f cosδ f �Fy,rlr)

3

7

7

7

7

7

7

5

. (2)

Let X denotes the vehicle state vector and U denotes the

control input vector:

X , [rx ry ψ vx vy ω]T 2 R
n
, U , [Fx,r δ f ]

T 2 R
m
. (3)

In the vehicle model of (2), rx and ry denote the coordi-

nates of the center of mass represented in the inertial frame,

vx and vy are the vehicle velocities represented in the body-

fixed coordinate frame. Moreover, ψ and ω denote the vehi-

cle heading angle and its rate of change, respectively. lr and

l f are the geometric parameters that describe the distance be-

tween the center of mass of the vehicle and the rear and front

axles, respectively.

Assuming a rear-wheel drive, U , the control vector is

composed by the steering angle δ f of the front wheel and

the longitudinal force Fx,r at the rear wheel. Fy, f and Fy,r are

the lateral tire forces acting at the front and rear wheels, re-

spectively. A linear tire model is adopted by assuming small

side-slip angles. The lateral tire forces Fy,i can be approxi-

mated according to [37],

Fy,i =Cαi
αi, (4)

where i 2 { f ,r} and Cαi
is the tire cornering stiffness.

The front and rear side-slip angles α f and αr are, re-

spectively, given by

α f = δ� arctan

✓

l f ω+ vy

vx

◆

, (5)

and,

αr = arctan

✓

lrω� vy

vx

◆

. (6)

ψ

δ
f

v

Y
I

X
I

l f

l r

l

α
f

α
r

F
y,f

F
y,r

ω

O

x

y

δ
f

F
x,r

Fig. 2: fig2.eps

The continuous-time dynamics in (1) can be discretized

using the Runge-Kutta method leading to a discrete-time dy-

namical system of the form,

Xk+1 = fk(Xk,Uk). (7)

The model in (1)-(7) account for the non-linear vehicle

dynamics and are used in the following NMPC trajectory-

planner design.

In the hierarchical scheme, to design the lower-level

layer MPC tracking controller, the vehicle dynamical model

(2) is linearised around an equilibrium point (Xe,Ue):

Ẋe +∆Ẋ = f (Xe,Ue)+
∂ f

∂X
∆X +

∂ f

∂U
∆U. (8)

The time-invariant linearised system matrices generated

from the Jacobian matrix are,

A ,
∂ f

∂X

�

�

�

�X=Xe
U=Ue

2 R
n⇥n

, B ,
∂ f

∂U

�

�

�

�X=Xe
U=Ue

2 R
n⇥m

. (9)

3.3 CarSim Model

Regardless of vehicle model selected for the design of

the NMPC trajectory-planner, to assess the performance of

an architecture, the actuator commands are sent to a high

fidelity model developed in CARSIM. This model emulates

vehicle dynamics characteristics that can be encountered in

real world with a 50+ degree of freedom simulation [38].

The vehicle model was built for a prototype Westfield

Sports Car [39], the manufacturer of the vehicle used during

trials carried out for the MuCCA project [40]. The mass of

the vehicle m, and its yaw inertia, Θ center of gravity (CG)

location of the vehicle as well as suspension and steering

properties are obtained from measurements. The values for

the parameters used to develop the 50+ degree of freedom

4 Copyright © by ASME



model are found in [41].

The CARSIM model is then exported in SIMULINK

and through the co-simulation interface, the performance of

the designed cooperative trajectory-planning framework is

assessed. In the co-simulation the steering angle of the front

wheel δ f and the longitudinal force Fx,r are transformed to

the control inputs of the CARSIM model: the engine torque

T and the steering hand-wheel angle δSW. In our case, the

engine torque T is equally distributed to both the rear wheels

as the vehicle considered for test is a rear-wheel-driven car

with an open differential of gear ratio τ = 1. The steering

ratio (SR), used to transform δ f to δSW, is found to be equal

to 13.

4 Unified Cooperative Trajectory-Planning Using

NMPC

In this section, we present the unified trajectory-planner

and controller architecture which generates the optimal tra-

jectories as well as the control signals for the actuators di-

rectly, employing a non-linear model predictive controller

NMPC that considers the non-linear bicycle dynamic model.

The proposed method is designed for the cooperation of mul-

tiple vehicles.

4.1 Optimization Problem

In the design, soft constraints will be used to ensure

multi-vehicle collision avoidance. Hence, at each time step

k, the following objective function is to be minimized:

min
U,X

J(k) =
N

∑
j=1

[Xk+ j|k � X̄k+ j|k]
TQ[Xk+ j|k � X̄k+ j|k]

+
M

∑
j=1

[Uk+ j�1|k]
TR[Uk+ j�1|k]+

N

∑
j=1

Jc
k+ j|k +

N

∑
j=1

Jo
k+ j|k

,

(10)

subject to,

Xk+ j|k = fk(Xk+ j�1|k,Uk+ j�1|k)

Uk+ j�1|k 2 U

Xk|k = Xtk

, (11)

where fk is composed of (7). The index k+ j|k denotes

a prediction of a quantity for time instant k + j, made at

time instant k. The difference between the state sequence

X := {Xk+1|k Xk+2|k ... Xk+N|k} and the reference trajectory

X̄ := {X̄k+1|k X̄k+2|k ... X̄k+N|k} is obtained over a prediction

horizon of length N 2 N>0.

The matrices Q 2 R
n⇥n and R 2 R

m⇥m are the symmet-

rical state and control weighting matrices, respectively. Note

that Q � 0 and R > 0. In this work, we take Q = η⇥ I6N and

R = ρ⇥ I2M .

The input sequence U := {Uk|k Uk+1|k ... Uk+M�1|k} is

the control input vector obtained along a control horizon of

length M, where U⇤
k|k is the first control vector applied to the

vehicle system at time instant k. At instant k+ 1, the opti-

mization routine re-initiated for the problem over the shifted

prediction horizon. Set U represents box constraints of the

form U = {Umin Uk+ j�1|k Umax}.

Jc and Jo are the collision cost and the obstacle avoid-

ance cost, respectively. In the following, we describe in de-

tails these components of the cost function presented in (10).

4.2 Collision Avoidance Cost

A possible collision between the ego vehicle e and all

others surrounding vehicles ν is avoided simply by adding a

penalty term to cost function of NMPC in (10) at every time

step k:

for j = {1, ...,Nv} :

Jc(X) =
Nv

∑
j=1

κd

1+ expκ j
�

d j(k)� rth, j

�

, (12)

where d j(t) is the Euclidean distance between the ego-

vehicle and the j-th surrounding vehicle given by d j(k) =

kr
(e)
p (k)� r

(ν)
p (k)k2. κ j is a positive constant defining the

steepness of the sigmoid curve or the logistic growth rate.

rth, j denotes the threshold distance between any vehicles, i.e.

the safety region. Fig. 3 shows the logistic cost function for

different κ parameters.

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3: Activation function for different steepness parameter

κ.

Assumption 4. At each time instant k, the vehicle ν commu-

nicates its trajectory plans over a prediction horizon, using in

the inter-vehicle communication network.
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4.3 Obstacle Avoidance Cost

Similar to what is done for collision avoidance, the ob-

stacle avoidance is achieved by adding a cost term to NMPC

objective function. In (12), the planned trajectories r
(ν)
p are

simply replaced with the coordinates of the obstacles O 2R
2

to generate the obstacle avoidance cost term:

for j = {1, ...,No} :

Jo(X) =
No

∑
j=1

κd

1+ expκ j
�

d j(k)� rth, j

�

, (13)

where d j(k)= kr
(e)
p (k)�r

(o)
p (k)k2 denotes the Euclidean dis-

tance to the j-th obstacle to the vehicle.

Assumption 5. The positions of the obstacles on the road

are known. Using on-board sensors such as cameras or light

detection and ranging (LiDAR) systems with range at least

10 meters, it is possible to satisfy this assumption [42].

The cooperative trajectory-planning algorithm produces

the optimal trajectories r
(e)
p (k) minimizing (10), using the

planned trajectories of other vehicles r
(ν)
p (k) through the cost

term (12) and adding the obstacle coordinates r
(o)
p (k) as in

(13). This non-linear optimization problem is tackled us-

ing the fmincon command in MATLAB, with the sequential

quadratic programming algorithm. The distributed NPMC

algorithm to solve this problem is summarized as follows:

5 Hierarchical Cooperative Trajectory-Planning Using

MIQP

In this section, we present the cooperative trajectory-

planning approach based on receding-horizon mixed-integer

quadratic programming. This solution incorporates integer

constraints into a linear MPC-based formulation. Once cal-

culated the optimal solution, the planned trajectory is then

converted to the reference trajectory r̄
(e)
t for the tracking con-

troller represented by another MPC. The proposed hierarchi-

cal scheme uses parallel optimization of both MPCs to im-

prove global efficiency.

5.1 Point-Mass Model

Assumption 6. The curvature of the road is adequately

small. Similar to what one encounters in highways, a straight

road is considered.

According to Assumption 6, the trajectory can be

planned easily with the following differential equation,

ṙx = vx , v̇x = ax, ṙy = vy, v̇y = ay. (14)

(14) describes the double integrator vehicle dynamics

model. Accordingly, linear time-invariant state-space model

Table 1: Algorithm for cooperative trajectory-planning using

NMPC.

Distributed NMPC

Inputs: reference path X̄ , current states X, obstacle

information r
(o)
p and plans of the surrounding vehicles

r
(ν)
p

Outputs: the collision-free planned trajectories r
(e)
p

and the control signals Fx,r,δ f

1:

Acquisition through sensors of the current states Xk|k

and obstacle coordinates r
(o)
p (k).

2:

Obtain through the network the current planned

trajectories of every surrounding vehicles r
(ν)
p (k) over

a prediction horizon N.

3:

Find the optimal solution U⇤
k|k of the sub-problem (10)

with non-linear optimisation to account for the

non-linear dynamics (7).

4:

Apply the first control input U⇤
k|k of the optimal control

sequence to the ego vehicle e.

5:

Transmit the optimised planned trajectory r
(e)
p (k) to all

others connected vehicles ν.

6: repeat (Steps 1-5)

k = k + 1

in the discrete-time is taken into account,

Xk+1 = AdXk +BdUk

Yk =CdXk

, (15)

where the state vector X , [rp,x vp,x rp,y vp,y]
T 2R

4 describes

the position and velocity in both longitudinal direction x and

lateral direction y of the road in the inertial frame. The con-

trol vector U , [ap,x ap,y]
T 2 R

2 consists of the longitudinal

and lateral acceleration.

5.2 Collision Avoidance Constraints

To achieve the collision avoidance among cooperative

vehicles, consider any pair of a ego and surrounding vehicles,

e and ν 2 V . The collision-free planned trajectories can be

ensured if, for every time step k, the coordinates r
(e)
p,x, r

(e)
p,y

of the ego vehicle are outside the bounding rectangles of all

other vehicles ν. This can be described by the following set

of logical constraints:

8k 2 {1, ..., t f �1} :

|r
(e)
p,x(k)� r

(ν)
p,x(k)|� lsafe

OR |r
(e)
p,y(k)� r

(ν)
p,y(k)|�W,

(16)

6 Copyright © by ASME



with lsafe = L+ v
(e)
p,x(k)∆T . This term includes a safety mar-

gin to the longitudinal dimension in dependency of the longi-

tudinal speed of the ego-vehicle. The value of the parameter

∆T determines the length of the safety distance. Hereby, L

and W are the longitudinal and lateral dimensions, respec-

tively, that approximate the shape of a vehicle by a rectangle

orientated along the x-axis.

The so-called Big-M method [43] is employed to trans-

form the logical constraints (16) into a set of linear inequality

non-convex constraints. This is achieved by introducing the

binary variables b
(e,ν)
p (k) 2 {0,1}, yielding

8k 2 {1, ..., t f �1} :

r
(e)
p,x(k)� r

(ν)
p,x(k)� lsafe �Mb

(e,ν)
1 (k)

AND, r
(ν)
p,x(k)� r

(e)
p,x(k)� lsafe �Mb

(e,ν)
2 (k)

AND, r
(e)
p,y(k)� r

(ν)
p,y(k)� W �Mb

(e,ν)
3 (k)

AND, r
(ν)
p,y(k)� r

(e)
p,y(k)� W �Mb

(e,ν)
4 (k)

AND,

4

∑
p=1

b
(e,ν)
p (k) 3,

(17)

where M � 0 is a large constant.

The binary variables b
(e,ν)
p (k) become the additional de-

cision variables of the optimization problem. If b
(e,ν)
p (k) = 0,

this means the p-th constraint in (17) is activated. However,

when b
(e,ν)
p (k) = 1, this means that constraint is relaxed, be-

cause the constant M puts the upper bound outside of the

solution space. The last constraint in (17) guarantees that at

least one original OR-condition form of (16) is activated.

5.3 Obstacle Avoidance Constraints

Obstacle avoidance with static objects is modeled in the

same way as shown in (17), introducing the binary variables

b
(e,o)
p (k) for each obstacle o 2 O and replacing the planned

trajectories of the surrounding vehicle ν with the coordinates

of the obstacles r
(o)
p,x, r

(o)
p,y. The minimal obstacle bounding

rectangle is represented by [r
(o)
p,x � L(o),r

(o)
p,x + L(o)]⇥ [r

(o)
p,y �

W (o),r
(o)
p,y +W (o)].

This formulation can be also extended to include non-

cooperative vehicles. A human driver model (HDM) inte-

grated with the trajectory-planner is assumed to be capable to

obtain a prediction motion of a human driver vehicle (HDV).

5.4 High-Level Trajectory-Planning

The high-level cooperative trajectory-planning acquires

the optimal control vector U⇤
k|k by the minimization of the

following quadratic cost function of the form,

min
U,X

J(k) =
N

∑
j=1

[Xk+ j|k � X̄k+ j|k]
TQ[Xk+ j|k � X̄k+ j|k]

+
M

∑
j=1

[Uk+ j�1|k]
TR[Uk+ j�1|k]

, (18)

subject to,

Xk|k = Xtk

Xk+ j|k = AdXk+ j�1|k +BdUk+ j�1|k

Uk+ j�1|k 2 U

, (19)

8k 2 {1, ..., t f �1} :

rmin  r
(e)
p (k) rmax

, (20)

8k 2 {1, ..., t f �1},8v 2
V

{e}
:

r
(e)
p,x(k) r

(ν)
p,x(k)� lsafe +Mb

(e,ν)
1 (k)

AND, r
(e)
p,x(k)� r

(ν)
p,x(k)+ lsafe �Mb

(e,ν)
2 (k)

AND, r
(e)
p,y(k) r

(ν)
p,y(k)� W +Mb

(e,ν)
3 (k)

AND, r
(e)
p,y(k)� r

(ν)
p,y(k)+ W �Mb

(e,ν)
4 (k)

AND,

4

∑
p=1

b
(e,ν)
p (k) 3

, (21)

8k 2 {1, ..., t f �1},8o 2 O :

r
(e)
p,x(k) r

(o)
p,x(k)�L(o)+Mb

(e,o)
1 (k)

AND, r
(e)
p,x(k)� r

(o)
p,x(k)+L(o)�Mb

(e,o)
2 (k)

AND, r
(e)
p,y(k) r

(o)
p,y(k)�W (o)+Mb

(e,o)
3 (k)

AND, r
(e)
p,y(k)� r

(o)
p,y(k)+W (o)�Mb

(e,o)
4 (k)

AND,

4

∑
p=1

b
(e,o)
p (k) 3

. (22)

The linear convex inequality constraints in (20) are em-

ployed to model the straight road. The vectors rmin, rmax 2
R

2 contain boundaries of the road along each direction. This

optimization problem in MIQP formulation is solved with

the CPLEX IBM package [44].

5.5 Low-Level Trajectory-Controller

The linearized model in Section 3.2 is used in the design

of the MPC in the lower layer of the hierarchy, namely in the

tracking controller design. The linearization is necessary to

satisfy the computational requirements of the real-time ap-

plications.
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Control Constraints

The control constraints written in terms of U are incor-

porated in the scheme as given in (23):

Umin U  Umax, (23)

where Umin and Umax are the upper and lower boundary lim-

its on the control commands as in (24):

Umin = [Fx,r δ f ]
T
, Umax = [Fx,r δ f ]

T
. (24)

MPC for Tracking

The optimal control vector U⇤
k|k in the tracking control

layer is acquired with the same approach in (18), but this

time without the mixed-integer constraints. Additional con-

trol constraints are incorporated in the optimization problem

formulation in the form given in (25):

min
U,X

J(k) =
N

∑
j=1

kYk+ j|k � Ȳk+ j|kkQ +
M

∑
j=1

k[Uk+ j�1|kkR ,

(25)

subject to (23).

In this case the reference is given by the vector Ȳ ,

[r̄
(e)
t,x , r̄

(e)
t,y ]

T obtained from the high-level trajectory-planning

as shown in Fig. 1. This information is sufficient for the

tracking purpose. The prediction model uses the control vec-

tor U 2 R
2 and the state vector X 2 R

6 defined in (3).

6 Computational Evaluation

In this section, the introduced cooperative trajectory-

planning frameworks are applied to demonstrate the feasi-

bility in general on-road scenarios. A challenging traffic sce-

nario with two vehicles moving along a straight road with

one obstacle is presented. The name of the autonomous ve-

hicles here are MuCCA Electric Vehicles (MEVs) [45]. The

MEVs (vehicles 1 and 2) have a driving speed of 36 km/h

(10 m/s). The rectangular obstacle on the road is centered

at O = [20 4]T m. The problem of cooperative trajectory-

planning is solved employing the techniques described in

Sections 4 and 5.

The solver utilized in the simulations is Runge-Kutta 4

with the integration step of 0.001 s. Table I presents the pa-

rameters of the trajectory-planners. The tracking controller

on the lower-level layer in the hierarchical approach runs at

a high frequency with a sampling time of T = 0.01 s. A

relatively large prediction horizon N = 20 and small con-

trol horizon M = 5 produces less aggressive control, and in

turn a smoother vehicle motion. The actuator constraints are

set according to the saturation limits. MATLAB/Simulink

is the medium selected for the implementation of the pro-

posed algorithms, and the experiments are conducted on a

16GB RAM, Intel Core i7-6700U CPU computer clocked at

3.40GHz.

Table 2: Trajectory-Planner Optimisation Parameters

Variables Values

Sampling time T = 0.05 s

Prediction horizon N = 20

Control horizon M = 5

Control constraints: δsw =�630�, T = 0 N m

δsw = 630�, T = 400 N m

(a) NMPC

Controlled output weights η = [1 1 1 1 1 1]T

Control input weights ρ = [0.1 0.1]T

Tuning parameter κd = 1

Parameter for smoothness κ j = 2

Threshold distance rth = 2 m

(b) MIQP MPC

Controlled output weights η = [1 1 1 1]T

Control input weights ρ = [20 20]T

Longitudinal dimension L = 2.5 m

Lateral dimension W = 2 m

Safety parameter ∆T = 0.5

To asses the performances of the proposed two coop-

erative collision avoidance schemes, both algorithms were

tested in a co-simulation environment including CARSIM

2016.1 [46]. The car model in CARSIM follows the vehi-

cle parameters tabulated in Table II.

Table 3: Parameters of the Vehicle

Variables Values

Mass, m 950 kg

Yaw inertia, Θ 1200 kg m2

Wheelbase, l 2.5 m

Distance from front axle to CG, l f 1 m

Distance from rear axle to CG, lr 1.5 m

Cornering stiffness, c f ,cr 36000 N m/rad

Steering ratio, SR 13 N m/rad

Wheel radius, R 325 mm
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Fig. 4 illustrates the resulting planned trajectories along

with the actual vehicle trajectory. The initial positions of

the vehicles are r(1) = [0 0]T m, r(2) = [0 4]T m, and they

move along a horizontal straight road. Both Fig.4(a) and

Fig.4(b) demonstrates that the MEV-2 steers around the ob-

stacle successfully, and returns to its original path. In accor-

dance with the cooperative trajectory planning, the MEV-1

pre-emptively veers to allow a safe space for the MEV-2 dur-

ing its obstacle avoidance maneuver.

The unified trajectory-planning approach generates an

evasive trajectory in advance as can be seen in Fig.4(a).

MEV-1 senses the intention of MEV-2 to overtake the obsta-

cle, and it re-plans its trajectory accordingly. One drawback

of this approach is that it cannot guarantee a collision avoid-

ance at every time step along the prediction horizon. It is

seen at beginning of the avoidance maneuver one sample of

the MEV-2 planned trajectory crossing the obstacle. By em-

ploying the proposed cooperative MIQP approach Fig.4(b)

yields a more precise double lane change maneuver. We ob-

serve that before MEV-2 passing the obstacle, the trajectory-

planner re-plans its trajectory avoiding the obstacle by turn-

ing right and obeying the longitudinal safety margin. After

passing the obstacle, the planned-trajectories converge to the

reference. Fig. 5 shows the vehicle position as it overtakes

the obstacle in three lane scenario. The results are obtained

in the co-simulation framework of MATLAB-CARSIM.

Fig. 6 shows steering hand-wheel angle profiles for both

approaches. In general, the MPC follows a smooth driv-

ing behaviour while it seers vehicle to complete the obsta-

cle avoidance maneuver. First, the steering inputs turn right

for collision avoidance, thereafter they turn left to safely re-

turn the vehicle to its original lane which is the determined

reference trajectory. Looking at Fig. 6(a-b) one can see that

using NMPC the vehicles have to take more corrective action

to return back to their original lane. The MIQP approach as

demonstrated in Fig. 6(c-d) outperforms with a smoother

steering action and therefore increases the passenger com-

fort.

Fig. 7 shows the total rear wheel torque as input sig-

nal generated by the CarSim. Initially both vehicles have

a torque of approximately 17 N-m, this value is required to

maintain a constant speed of 36 km/h. MEV-2 decelerates for

a period as it sees the obstacle first as a result the torque de-

creases. Once it overtakes the obstacle by turning towards

the right, the torque increases again to avoid the obstacle

quickly. This allows MEV-2 performs the maneuver with-

out a harsh braking. The MEV-1 on other hand just turns to

the right and its torque increases to avoid colliding MEV-2.

To evaluate the performance in a scenario at highway

speeds, we have simulated the hierarchical scheme for MEV-

2 with a speed of 80 km/h, carrying out the obstacle avoid-

ance maneuver. The obstacle is located now at O = [150 4]T

m. The results of the tracking controller are shown in Fig. 8.

It is noted that the vehicle is able to follow sufficiently well

the reference trajectory r̄t , however its performance is infe-

rior due the presence of actuator delay. The enlarged display

shows the profile of the longitudinal velocity vx.
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1
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5
(a) NMPC

0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

3

4

5
(b) MIQP

Fig. 4: The trajectories of the vehicles generated by

the trajectory-planner during the collision avoidance for a

straight reference (dashed line) and obstacles: (a) NMPC

trajectory-planning; (b) MIQP trajectory-planning.

Fig. 5: The animation interface of CARSIM showing maneu-

ver to avoid collision.

Computing Times

The computation times to obtain the control signal for

the different algorithms of the performed simulations are

compared in Fig. 9. Looking for the MEV-1 Fig.9a, it

is observed that the time of getting the control signal us-

ing NMPC is around 50 ms in 79% of the iterations, while

for the MIQP approach this value reaches up to 175 ms for

the majority of the samples. Regarding the MEV-2 Fig.9b,
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Fig. 6: Profiles of the steering hand-wheel angle.
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Fig. 7: Total rear wheel torque.

the average computation time with the NMPC framework

is 50 ms, while for the MIQP scheme it is 190 ms. No-

tice that the MIQP trajectory-planner presents in the worst

case 700 ms, as the computational load increases drastically

when the vehicles approach the obstacles due to the activa-

tion of the binary variables. For the NMPC framework, the

0 100 200 300 400 500
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Fig. 8: Performance evaluation of the tracking controller at

high speed (80 km/h).

computation time in the worst case is 200 ms, that occurs

when the controller decides to relax the soft constraints to

improve feasibility. Overall the computation burden during

the double lane change manoeuvre execution is lighter for

the unified NMPC approach when compared to the MIQP

trajectory-planner, which include collision avoidance as hard

constraints. For the latter approach, the time to get a solution

becomes prohibitive for real-time applications in complex

scenarios where a bigger ensemble of cooperative vehicles

are employed.

7 Conclusions

This paper evaluated two different trajectory-planning

algorithms on a cooperative collision avoidance scenario. To

assess the performances of the proposed methods, numerical

simulations were performed using a high fidelity non-linear

vehicle model in CARSIM to attain the on-road autonomous

driving environment. The unified approach based on non-

linear MPC have the potential for real-time application and

it is shown to be a practical solution in the overtaking sce-

nario. While the hierarchical approach using MIQP allows

a high-precision planning, however, its computational cost is

high as well because of the binary variables added to the de-

cision variables of the optimisation problem. It is considered

that timing behavior of MIQP is prohibitive for real-time use.

Both frameworks account for the trajectories of other coop-

erating vehicles planned over a finite horizon to satisfy the

collision avoidance requirement.

For a future work, the human driver vehicles (HDVs)

will be incorporated in the traffic scenario. This will allow

to test the cooperative trajectory-planning algorithms in the

experiments including both human-driven and autonomous

vehicles. An HDV prediction model will be integrated to

assist the trajectory-planner; and therefore it will be possi-

ble for the human-driven vehicle to influence the behaviour

of the autonomous vehicles. Another improvement of the
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(a)

(b)

Fig. 9: Running times to compute the control signal in each

iteration: (a) MEV-1; (b) MEV-2.

work will focus in handling the conflict resolution problem

that emerges when we consider the trajectory-planning of

multiple vehicles. This work is also planned to be imple-

mented and tested on real vehicles according to the scope of

the MuCCA project founded by Innovate UK [45].
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