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A B S T R A C T   

The Incompressible Smoothed Particle Hydrodynamics (ISPH) is now a popular numerical method for modelling 
free surface flows, in particular the breaking waves and violent wave-structures interaction. The ISPH requires 
the projection approach, leading to solving a pressure Poisson’s equation (PPE). Although the accuracy and 
convergence of the numerical scheme to discretise the Laplacian operator involved in PPE is critical for securing 
a satisfactory solution of the PPE, the overall performance of the ISPH is also influenced by other key numerical 
implementations, including (1) estimation of the viscous terms; (2) calculation of the velocity divergence; (3) 
discretisation of the boundary conditions for the PPE; and (4) evaluation of the pressure gradient. In our previous 
paper [29], the quadratic semi-analytical finite difference interpolation scheme (QSFDI), which has a leading 
truncation error at third order derivatives, has been adopted to discretise the Laplacian operator. In this paper, 
the QSFDI will be adopted, not only for discretising the Laplacian operator, but also for approximating viscous 
terms, velocity divergence, boundary conditions and pressure gradient. The performance of the newly formulated 
consistent second order ISPH is assessed by various cases including the oscillating liquid drop, the wave prop
agation, and the liquid sloshing. The results do not only demonstrate a second order convergence over a limited 
range of conditions and a higher computational efficiency, i.e., requiring less computational time to achieve the 
same accuracy, but also show a better mass/energy conservation property and capacity of reproducing a smooth 
pressure field, than other ISPH models considered in this study.   

1. Introduction 

The Incompressible Smoothed Particle Hydrodynamics (ISPH) pro
posed by Cummins and Rudman [1] and Shao and Lo [2] is an important 
stream of the Smoothed Particle Hydrodynamics (SPH) [3,4], in which 
the computational domain is spatially discretised by particles that are 
either fixed (Eulerian particles) [5] or moving with a velocity, such as 
with the material velocity (Lagrangian particles) [6]. The Lagrangian 
ISPH has been shown to have some advantages on modelling problems 
involving large deformations, where the conventional mesh-based 
methods may suffer from severe mesh distortions in the Lagrangian 
applications (e.g. [7]) or undesirable energy dissipations due to the 
numerical approximation of convective terms in the Eulerian or Arbi
trary Lagrangian Eulerian (ALE) applications, e.g. [8]. Compared with 
the traditional SPH (the weakly compressible SPH), the ISPH has been 
shown to have several superiorities in terms of convergence [9,10], 
stability and accuracy [6,11] as well as volume conservation [12]. The 

ISPH has become a popular method for modelling free surface flows, in 
particular the breaking waves and violent wave-structure interactions 
[13–22]. 

The ISPH solves the incompressible Navier-Stokes (NS) equation 
using the projection method [23], where the pressure is obtained by 
solving a pressure Poisson Equation (PPE). There are two approaches to 
derive the PPEs. In the first approach, the PPE is obtained by enforcing 
the density invariance [2,22,24,25]. The right-hand side (RHS) of the 
PPE is termed by the time derivative of the intermediate density. In the 
second approach, the PPE is derived to satisfy a divergence free condi
tion and, therefore, the RHS of the PPE is formulated as the divergence 
of the intermediate velocity [13,26]. For both approaches, additional 
terms may be introduced to the RHS of the PPE to improve the overall 
performance of the ISPH. For example, Khayyer and Gotoh [27] intro
duced an error compensation term to improve the volume conservation. 
Zhang et al. [28,29] implemented a density variation term in the 
divergence-free PPE to form a blended/hybird variant of the PPE for 
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improving the numerical stability. These developments have delivered a 
promising performacne of the ISPH on modelling free surface flows. 

In addition to developing different forms of the PPE, discretising the 
PPE is critical and often dominates the accuracy and the convergence of 
the ISPH methods [29,30]. There are also two types of approaches. One 
of them is to discretise the PPE after converting it into a weak form, 
which avoids the discretisation of high order derivatives. This approach 
was originally developed for the meshless local Petrov-Galerkin method, 
e.g. the MLPG-R [31–36]. It was also extended to the ISPH by Zheng et 
al. [6]. Despite the incorporation of a linear semi-analytical finite dif
ference interpolation scheme (SFDI) [33] for the required interpolation 
and gradient calculation, a second order convergence has been observed 
in modelling violent liquid sloshing [6,30]. Another approach is to 
directly approximate the second and first order derivatives involved in 
the PPE. However, the Lagrangian nature of the particle movement re
sults in an irregular or random particle distribution even if a uniform 
and regular particle distribution is used in the initial state. This brings a 
grand challenge to the Lagrangian particle methods, i.e., how to secure a 
higher order convergence and consistency for irregular particle distri
butions [37,38]. The problem of particle irregularity may be eliminated 
by adopting the Eulerian-based ISPH [5] or a hybrid approach coupling 
the Eulerian and Lagrangian SPH using the domain-decomposition 
strategy [39]. Nevertheless, most of the related research focuses on 
the developments of high order kernel correction [26,37], high order 
discretisation schemes for the Laplacian [40–45] and the gradient [11, 
46] operators, whereas keeps the advantages of the Lagrangian particle 
methods. More reviews on the high order Laplacian discretisation can be 
found in our previous work such as Refs. [30,45]. These developments 
are generally based on the Taylor’s expansion [26,40,41], moving least 
squares method (MLS) [43] or weighted least squared method (WLS) 

[24,25,44,47]. Recently, Yan et al. [45] developed a quadratic 
semi-analytical finite difference interpolation scheme (QSFDI), which is 
based on the principle of the linear SFDI developed by Ma [33]. The 
QSFDI includes the schemes for interpolation, gradient and Laplacian 
estimation, which are derived consistently from the same second order 
Taylor’s expansion and have a leading truncation error at the third 
order. All these schemes in the QSFDI are named as second-order 
schemes in this paper. The patch test carried out by Yan et al. [45], in 
which particles are randomly distributed, confirmed that (1) the QSFDI 
has a first-order convergence and consistency for directly estimating the 
Laplacian of a function; (2) when the QSFDI is applied to discretise the 
Laplacian of a Poisson equation formulated by a known function, the 
solutions exhibit a second-order convergence rate [45]; and (3) the 
QSFDI has a higher computational efficiency to achieve the same order 
of accuracy and mathematical consistency, compared with the second 
order MLS and the second order WLS scheme developed by Tamai et al. 
[43,44]. Zhang et al. [29] applied the QSFDI to discretising the Lap
lacian in the PPE of the ISPH (referred to as the ISPH_QSFDI hereafter). 
They have demonstrated that, compared with the classic ISPH [28], the 
ISPH_QSFDI results in a better accuracy with the same number of par
ticles or requires a shorter computational time to achieve the same ac
curacy for wave-structure interaction problems. Nevertheless, it does 
not show a second order convergence as what has been observed in the 
theoretical patch test [45]. This is because the other differential terms in 
the ISPH_QSFDI, such as the velocity divergence at the RHS of the PPE, 
the viscous terms, the Neumann conditions and the pressure gradient, 
are dealt with by the linear SFDI. 

In this paper, the QSFDI is consistently applied to both the Laplacian 
and the discretisation of other differential terms involved in the ISPH 
procedure. Compared with the ISPH_QSFDI, although the degree of the 
accuracy of the Laplacian discretisation remains the same, i.e. a first- 
order accuracy, the accuracy of the gradient discretisation and the 
treatment of the boundary condition are improved to a second-order 
accuracy. The newly formulated ISPH model is referred to as the 
Consistent Second Order ISPH (ISPH_CQ) hereafter. Its accuracy, 
convergence, efficiency, mass and energy conservation, the capability of 
reproducing a smooth pressure field and capturing a violent pressure 
will be examined for various free surface problems, including the 
oscillating liquid drop, the wave propagation, and the liquid sloshing. 

2. Mathematical model and numerical implementations 

2.1. Governing equations, boundary conditions and projection method 

In the present ISPH, the fluid is assumed to be incompressible and is 
governed by the incompressible NS equation and the continuity equa
tion, 

Du
Dt

= −
1
ρ∇p + g + ν∇2u (1)  

∇⋅u = 0 (2)  

where, D/Dt is the material derivative following the fluid particle and ∇
is the spatial differential operator; ρ is the fluid density; u is the particle 
velocity; p is the pressure; g is the gravitational acceleration; and ν is the 
kinematic viscosity. On the solid boundaries, the following Neumann 
boundary conditions for velocity and pressure, respectively, are imposed 
[30], 

u⋅n = U⋅n (3)  

n⋅∇p = ρ(n⋅g − n⋅U̇˙) (4)  

in which n is the unit normal vector of the solid boundary; U and U̇˙ are 
the velocity and acceleration of the solid boundary. Eq. (3) specifies a 
no-penetration boundary condition but does not enforce a no-slip. This is 

Fig. 1. Flowchart of the projection-based ISPH method.  
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acceptable if the boundary layer is not the focus of the simulation. On 
the free surface, 

p = 0 (5) 

The governing equations and boundary conditions are solved using 
the projection method, which is illustrated by the flowchart shown in 
Fig. 1. 

Assuming the position (rt) and the velocity (ut) of the particles at 
time t are known, the pressure, velocity and position of the particles at 
the new time step, t+ Δt, where Δt is the time step size, can be predicted 
using three stages, 

(1) Prediction (intermediate) stage 
Calculate the intermediate fluid velocity u∗ at the particle i using 

u∗
i = ut

i +
(
g+ ν∇2ut

i

)
Δt (6)  

and the intermediate position vector r∗ of the particle i by 

r∗i = rt
i + u∗

i Δt (7) 

During this stage, the numerical discretisation is required for finding 
the viscous stress ν∇2ut

i in Eq. (6). 
(2) Pressure projection stage 
Eqs. (1) and (2) lead to a PPE ∇2pt+Δt = ρ∇⋅u∗

Δt for the pressure at the 
new time step pt+Δt . As discussed in the Introduction, this approach is 
derived to satisfy a divergence free condition [13,26]. Alternatively, one 

may derive a PPE to enforce the density invariance, i.e., ∇2pt+Δt
i =

ρi∇⋅u∗
i

Δt 
[2,22,24,25]. Existing literatures, e.g. Xu et al. [48], revealed that the 
divergence-free approach may suffer from a numerical instability caused 
by ill-distributed particles following the Lagrangian movement of par
ticles; whereas the density-invariance approach may overcome such 
problem, but was shown to give pressure predictions with an extremely 
high pressure fluctuation, and to have difficulty in securing satisfactory 
mass/energy conservations. Although these problems can be partially 
solved by introducing an effective particle shifting (e.g. [14,18]), we 
apply the following blended form to all internal fluid particles in this 
paper, such as the particle i illustrated in Fig. 2, 

∇2pt+Δt
i = α ρi − ρ∗

i

Δt2 + (1 − α) ρi∇⋅u∗
i

Δt
(8)  

which shows a better numerical stability in the cases with violent free 
surface flows based on our previous numerical investigations [6,28,29, 
34] compared with the conventional divergence-free approach. Ac
cording to the numerical investigation in Refs. [28,29], the blending 
coefficient α is taken as 0.01. Numerical algorithms are required to 
discretise the Laplacian in the left-hand side (LHS) of Eq. (8), the in
termediate density ρ∗and the velocity divergence at the RHS of Eq. (8), 
using the corresponding physical quantities at particles in the influence 
domain, Ωi, which is centred at the particle i and has a specific radius. 
The intermediate density ρ∗ at the particle i is calculated by 
∑N

j=1mjW(r∗ij) where N is the number of the particles in the influence 
domain (referred to as the neighbouring particles) of the particle i 
(Fig. 2), j is the local particle number ranging from 1 to N, mj is the 
particle mass of the local particle j and W(rij) is a kernel function cor
responding to the position vector rij = ri − rj. 

For fluid particles near the solid boundary, e.g. the particle I illus
trated in Fig. 2, boundary treatments are required. As other SPH works, 
the solid boundaries are represented by solid particles and mirror par
ticles. Following our previous work, e.g. [28,29], the solid particles are 
generated in the beginning of the simulation and are distributed on the 
entire solid boundaries, however, only those located within the influ
ence domain of the fluid particles (referred to as the wetted solid par
ticles) are involved in the simulation. At each time step, mirror particles 
are generated instantaneously by projecting fluid particles near the 
boundaries, that are determined using the distance to the solid boundary 
being smaller than the radius of the influence domain, to the outer side 
of the surface. At the mirror particle Im, the density and the velocity 
components tangential to the solid boundary are taken as the same as 
those at the corresponding fluid particle I, the velocity component 
normal to the solid boundary is taken as the negative normal velocity 
component at the internal particle I to ensure the satisfactory of Eq. (3). 

Fig. 2. Illustration of fluid particles, solid particles and mirror particles.  

Fig. 3. Illustration of definitions of auxiliary functions for the free surface particle identification.  
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The instantaneous generation of the mirror particles and identification 
of the wetted solid particles can minimise the number of particles 
involved in solving the PPE and thus maximise the computational effi
ciency. The wetted solid and mirror particles are involved in the 
calculation of the particle density and the velocity divergence at the RHS 
of Eq. (8). The Neumann boundary condition Eq. (4) is imposed on the 
wetted solid particles and relevant gradient discretisation is imple
mented only using the fluid and wetted solid particles in their influence 
domain. For this purpose, appropriate numerical scheme to discretise 
the gradient operator is required. 

For modelling the free surface flows, it is critical to identify the free 
surface particles, on which Eq. (5) is imposed. For this purpose, Zheng 
et al. [6] has developed an effective approach based on the particle 
density ratio and the particle distribution. In this approach, three 
auxiliary functions relevant to the particle distribution are defined. The 
first one fspa = 1 if there are more than one free surface particles in the 
influence domain of the particle i, and zero otherwise. The 2nd one fspb =

1 if particles are detected in all quadrants of the particle i defined using 
the local xi and yi axis (see Fig. 3(a)), and fspb = 0 otherwise. The third 
one fspc = 1 if particles are detected in all quadrants of the particle i 
divided by yi = xi and yi = -xi (see Fig. 3(b)), and fspc = 0 otherwise. The 
particle i can be identified as a free surface particle if (1) no inner par
ticles are observed in the its influence domain; or (2) if the particle 
density ratio is not higher than 0.9, either fspa = 1 or particles are 
observed in no more than 2 quadrants of the particle i defined for both 
fspb and fspc; or (3) if the particle density ratio is higher than 0.9 and fspa 
= 1, either fspb or fspc = 0. 

(3) Correction stage 
After the PPE with the boundary conditions is solved, the velocity 

and position vectors of particle i at t + Δt are corrected using 

ut+Δt
i = u∗

i −
1
ρ∇pt+Δt

i Δt (9)  

rt+Δt
i = rt

i +
ut

i + ut+Δt
i

2
Δt (10) 

During this stage, numerical schemes to calculate the pressure 
gradient in Eq. (9) are required. After the velocity at and the position 
vector of the particles are updated using Eqs. (9) and (10). The hybrid 
particle stabilization and shifting scheme proposed by Zhang et al. [28] 
are used to further improve the stabilization of the PPE solution. 

As shown, the temporal scheme used to update the velocity at the 
particle i is specified by Eqs. (6) and (9), that yield ut+Δt

i = ut
i +at

iΔt with 

the acceleration at
i =

(
g + ν∇2ut

i −
1
ρ ∇pt+Δt

i
)
; that used to update the 

position vector is Eq. (10), which results in rt+Δt
i = rt

i + ut
iΔt + 1

2at
iΔt2. 

Both of them are widely implemented in the ISPH applications. The 
leading truncation errors of estimating the velocity and the positions 
are, respectively, O(Δt) and O(Δt2) due to the error of estimating the 
acceleration of the fluid particle (Ea) and the fluid velocity ut

i . The ac
curacy of the temporal scheme may be improved by using other 
schemes, e.g. the Runge-Kutta method. However, that does not affect the 
degrees of the accuracy unless an additional term is introduced to 
compensate the leading error EaΔt. Alternatively, this work aims to 
improve the accuracy of the time integration through improving the 
accuracy of estimating the acceleration of the fluid particle, i.e., 
reducing Ea. This is achieved by improving the accuracy of spatial dis
cretisation of the quantities and the solution to the PPE. 

2.2. Consistent second order ISPH (ISPH_CQ) 

As stated above, the QSFDI is consistently applied for all Laplacian 
and gradient operations outlined above, yielding a second order 
gradient estimation and a first-order Laplacian discretisation. Yan et al. 
[45] presented the detailed derivation of the QSFDI and relevant patch 
tests using theoretical functions and ramdonly distributely particles; 
Zhang et al. [29] gave a summary of the QSFDI and applied it to 
descritising the Laplacian of the PPE. For completeness, necessary 
description of the QSFDI is presented here. More detailed derivation is 
duplicated from Refs. [29,45], and presented in the Appendix. 

For each neighbouring particle j with a position vector of rj, that is 
located inside the influence domain of the particle i at ri, a function P can 
be expressed as the Taylor’s expansion, 

Pj − Pi = rT
ji∇Pi +

1
2

(
r(2s)

ji

)T
∇(2s)Pi +

(
r(2c)

ji

)T
∇(2c)Pi +

1
6

(
rT

ji∇
)3

Pi + …

(11)  

where, r(2s)
ji =

[
x2

ji y2
ji z2

ji

]T
, r(2c)

ji =
[
xjiyji xjizji yjizji

]T, ∇(2s) =

[ ∂2

∂x2
∂2

∂y2
∂2

∂z2

]T 
and ∇(2c) =

[ ∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂z

]T
. The splitting of 2nd- 

derivative term 1
2(r

T
ji∇)

2Pi in the conventional Taylor’s expansion (e.g. 

[40,44]) into two terms 1
2(r

(2s)
ji )

T
∇(2s)Pi and (r(2c)

ji )
T
∇(2c)Pi in Eq (11) 

results in the reduction of the size of matrix to be inversed when 
formulating the algorithms for approximating Pi, estimating the gradient 
∇Pi, the Laplacian ∇2Pi, as well as other 2nd derivatives at ri. The 
derivation follows the approach of weighted summation suggested by 
Ma [33] who derived the linear SFDI. The details can be found in the 
appendix or our previous work, only the final formulas are given here, 

∇Pi =
∑N

j=1
Φg

ji
(
Pj − Pi

)
(12)  

∇2Pi = IT
∑N

j=1
Φs

ji

(
Pj − Pi

)
(13) 

For convenience, Eqs. (12) and (13) are written in a summation form. 
In the above procedure, I = [1 1 1 ]

T and   

Φs
ji = 2M− 1

2s,i

(

Γji −
∑N

k=1

wkI

d4
ki

ΠkiGT
kiΦ

g
ki

)

(15) 

Definitions of matrices in Eqs. (14) and (15) are as follows 

M2c,i =
∑N

j=1

W
(
rji
)

d4
ji

r(2c)
ji

(
r(2c)

ji

)T
(16a)  

Πji =

{
(

r(2s)
ji

)T
−
(

r(2c)
ji

)T
M− 1

2c,i

∑N

k=1

W(rki)

d4
ki

r(2c)
ki

(
r(2s)

ji

)T
}T

(16b)  

M2s,i =
∑N

j=1

W
(
rji
)

d4
ji

ΠjIΠT
jI (16c) 

Φg
ji = M− 1

1q,i

(
W
(
rji
)

d2
ji

qji −
∑N

k=1

W(rki)

d2
ki

qki

(
r(2c)

ki

)T
M− 1

2c,i
W
(
rji
)

d4
ji

r(2c)
ji −

∑N

k=1

wkI

d2
ki

qkiΠT
kiM

− 1
2s,iΓji

)

(14)   

N. Zhang et al.                                                                                                                                                                                                                                  
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Gji =

{

rT
ji −

(
r(2c)

ji

)T
M− 1

2c,i

∑N

k=1

W(rki)

d4
ki

r(2c)
ki rT

ki

}T

(16d)  

qji =

(

GT
ji − ΠT

jiM
− 1
2s,I

∑N

k=1

W(rki)

d4
ki

ΠkiGT
ki

)T

(16e)  

Γji =

(
W
(
rji
)

d4
ji

Πji − Πji

(
r(2c)

ji

)T
M− 1

2c,I

∑N

k=1

wki

d4
ki

r(2c)
ki

)

(16f)  

M1q,i =
∑N

j=1

W
(
rji
)

d2
ji

qjiqT
ji (16g) 

The leading truncation errors of Eqs. (12) and (13) are 

E∇pi = −
1
6
M− 1

1q,i

∑N

j=1

W
(
rji
)

d2
ji

qji

(

FT
ji − ΠT

jiM
− 1
2s,i

∑N

k=1

W(rki)

d4
ki

ΠkiFT
ki

)

∇(3)pi

(17a)  

and 

E∇2Pi = IT

{

−
1
3
M− 1

2s,i

∑N

j=1

W
(
rji
)

d4
ji

ΠjiFT
ji∇

(3)pi − 2M− 1
2s,i

×
∑N

j=1

W
(
rji
)

d4
ji

ΠjiGT
jiE∇Pi

}

(17b)  

where, Fji =

{

(r(3)ji )
T
− (r(2c)

ji )
T
M− 1

2c,I
∑N

k=1
W(rki)

d4
ki

r(2c)
ki (r(3)ki )

T
}T 

and r(3)ji =

[x3
ji 3x2

jiyji 3x2
jizji 3xjiy2

ji 6xjiyjizji 3xjiz2
ji y3

ji 3y2
jizji 3yjiz2

ji z3
ji]

T. It is clear 
that Eqs. (17a) and (17b) are all termed by the third order derivative of 
P. Theoretically, such leading truncation terms confirm that Eqs. (12) 
and (13) provide exact solutions for the gradient and Laplacian of a 
function that satisfy a second-order polynomial. It further advises a 
second order convergence rate for finding the gradient of a function and 
a first order convergence rate for directly estimating the Laplacian of a 
function, as confirmed by the theoretical patch test in Ref. [45]. In the 
present ISPH_CQ, Eq. (13) is used to discretise the Laplacian in Eq. (8), 
Eq. (12) is applied to implementing the pressure boundary condition 
(Eq. (4)) and to calculating the pressure gradient in Eq. (9). In addition, 
Eqs. (12) and (13) are also extended to finding the velocity divergence 
and the viscous term, respectively, 

∇⋅ui =
∑N

j=1
Φg

ji⋅
(
uj − ui

)
(18)  

∇⋅(νi∇ui) =
∑N

j=1
νiΦs

ji⋅
(
uj − ui

)
(19) 

Overall, all key numerical implementations required by the above- 
mentioned projection procedure are consistently dealt with by the 
QSFDI, except the estimation of the intermediate density in the predic
tion stage, whose influence on the accuracy of the PPE may be minimal 
due to the fact that a small blending coefficient of 0.01 is applied. 
Consequently, the overall turncation error of the ISPH_CQ resulting from 
the spatial discretisation is dominated by the third order derivative of 
physical quantities. A systematic numerical investigation will be carried 
out in the following section to confirm the theoretical analysis. It is 
worth noting that there are few attempts in literature to develop and 
apply consistent gradient and Laplacian schemes for Lagrangian particle 
methods. For example, Nasar et al. [26] developed a high order 
consistent SPH with the pressure projection method and applied it to 
some benchmark problems such as the Taylor Couette problems; Sibilla 
[49] proposed an implicit consistency correction scheme to improve the 
consistency of the SPH approximation; Koh et al. [24] and Luo et al. [25] 

developed the consistent particle method (CPM) and applied the CPM to 
solving free surface problems. Recently, Shimizu et al. [47] developed a 
consistent second order ISPH and investigated its performance for 
modelling free surface flow. However, the PPE solved in Shimizu’s ISPH 
model [47] is written to enforce a density invariance, whereas that used 
in this paper is written as a blended form that consists of both the ve
locity divergence term and the density variation term [6,11,28,29]. The 
small value of the blending coefficient, i.e. 0.01 in Zhang et al. [29], 
implies that the velocity divergence term is the dominant term and the 
accuracy of the gradient discretisation may play more important role for 
securing a satisfactory convergence, compared with Shimizu’s ISPH 
model [47]. It is admitted that the second order algorithms developed by 
Shimizu et al. [47] and that developed by Tamai et al. [44], as well as 
the second order WLS or MLS methods, can also be applied to dis
cretising the present PPE and dealing with the gradient operators. The 
theoretical patch tests by Shimizu et al. [47] and Tamai et al. [44] have 
shown a first-order convergence for approximating the Laplacian of 
specified function and the second-order convergence for estimating the 
gradient. These are consistent with the QSFDI patch test by Yan et al. 
[45]. Nevertheless, to discretise the Laplacian and the gradient, the 
method proposed by Shimizu et al. [47] needs to calculate inverse 
matices with sizes of 5 × 5 for 2D problems and 9 × 9 for 3D problems, 
larger than 2 × 2 and 3 × 3, respectively, in the QSFDI, i.e. M1q,i, M2c,i 

and M2s,i are all 3 × 3 matrices for 3D problems and they are 2 × 2 
matrix, scalar value and 2 × 2 matrix for 2D problems, respectively. As 
confirmed by Yan et al. [45] and Zhang et al. [29], reducing the size of 
the matrices to be inversed brings considerable benefit on improving the 
computational efficiency for both the theoretical patch test and practical 
ISPH simulation of free surface flow. 

2.3. Distinguished difference from classic ISPH and ISPH_QSFDI 

As indicated in the Introduction, the novelty of the present ISPH_CQ 
is the application of the QSFDI consistently to the Laplacian and gradient 
discretisation/approximations in the ISPH. This is different from the 
classic ISPH [28] and the ISPH_QSFDI [29]. In the classic ISPH [28], the 
velocity divergence and the viscous stress term are discretised at the 
particle i, respectively, by 

∇⋅ui = −
1
ρi

∑N

j=1
mj
(
ui − uj

)
⋅∇iW

(
rij
)

(20)  

∇⋅(νi∇ui) =
∑N

j=1
8mj

(
νi + νj

ρi + ρj

uij⋅rij

dij
2 + ε2

)

⋅∇iW
(
rij
)

(21)  

where, ϵ is a small number to avoid the singularity caused by rij = 0; 
uij = ui − uj. These equations are commonly used in other SPH appli
cations, e.g. [50,51]. The pressure gradient in the correction stage and 
the LHS of the pressure boundary condition (Eq. (4)) are discretised by 
using the linear SFDI [11,29,46], 

∇pi = M− 1
1,i

∑N

j=1,j∕=i

W
(
rij
)
rij

d2
ij

(
pj − pi

)
(22a)  

where, the matrix M1,i =
∑N

j=1
W(rji)rjirT

ji
d2

ij 
has a size of 2 × 2 and 3 × 3 for 2D 

and 3D problem, respectively. For 2D problems, M− 1
1,i can be directly 

calculated and consequently, 

∇pi =
∑N

j=1,j∕=i

nxk
i Bxm

ij − nxy
i Bxk

ij

nx
i n

y
i − nxy

i nxy
i

(
pj − pi

)
(22b)  

where, nxy
i =

∑N
j=1,j∕=i

(rxm
j − rxm

i )(rxk
j − rxk

i )

d2
ij

W(rij), nxm
i =

∑N
j=1,j∕=i

(rxm
j − rxm

i )
2

d2
ij

W(rij) Bxm
i =

∑N
j=1,j∕=i

(rxm
j − rxm

i )

d2
ij

W(rij), xm = x when xk = y 
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or xm = y when xk = x, and rxm is the component of the position vector 
in xm direction. The leading truncation error of Eq. (22) is termed by the 
second order derivatives and, therefore, Eq. (22) gives exact solutions 
for a linear distribution of the pressure. The Laplacian in Eq. (8) is dis
cretised by 

∇2pi =
∑N

j=1

4mj

ρi + ρj

(
pi − pj

)
rij

d2
ij + ϵ2 ⋅∇iW

(
rij
)

(23) 

The overall accuracy of the spatial discretization in the classic ISPH 
[28] is dominated by the linear schemes for the gradient estimation and 
the Laplacian discretisation. 

In the ISPH_QSFDI [29], only Eq. (23) is replaced by Eq. (12) for the 
Laplacian discretisation, all other numerical implementations remain 
the same as the classic ISPH, i.e., Eqs. (20)–(22). In particular, the linear 
discretisation of the Neumann boundary condition on the solid bound
aries significantly constraints the order of the accuracy and convergence 
of the PPE solution, even though the QSFDI is applied to discretise the 
Laplacian. The overall accuracy of the spatial discretization in the 

ISPH_QSFDI is still dominated by the linear scheme for the gradient 
estimation due to the fact that the overall degree of accuracy is deter
mined by the scheme with the lowest order. This has been confirmed by 
the first-order convergence of the ISPH_QSFDI observed in the numerical 
investigation of wave-structure interaction problems in Ref. [29]. For 
clarity, numerical implementations of different ISPH models are sum
marised in Table 1. In the present ISPH_CQ, the QSFDI is consistently 
adopted to the Laplacian and gradient discretisation/approximations, 
involved in the viscous stress, Laplacian operator, velocity divergence 
and corresponding Neumann boundary condition and the pressure 
gradient. Through the use of the second-order gradient estimation in the 
ISPH_CQ, instead of the first-order estimation in the ISPH_QSFDI, the 
overall degree of accuracy and convergence of the ISPH_CQ are expected 
to be improved. It is noted that W(rij) in the SFDI and QSFDI, e.g. Eqs. 
(11), (12) and (22), is a weighting function that can be different from the 
SPH kernel function, e.g. W(rij) in Eqs. (20), (21) and (23). In this paper, 
the cubic B-spline kernel proposed by Monaghan and Lattanzio [53] is 
used for the SPH kernel function and the weighting function of the SFDI 
and QSFDI. 

3. Numerical investigations 

In this section, the present ISPH_CQ is applied to various cases with 
the free surface, including the oscillating drop, wave propagation and 
liquid sloshing. Its performance in terms of accuracy, convergence, 
computational efficiency, mass (volume) and energy conservation and 
of producing satisfactory pressure field is assessed. For the purpose of 
comparison, the classic ISPH [28] and the ISPH_QSFDI [29] are also 
employed. Although the mathematical models and the numerical pro
cedure described above are valid for both 2D and 3D problems, only 2D 
cases are considered in the investigation. In the convergence in
vestigations, following the concept of the Courant–Friedrich–Lewy 
(CFL) condition, the time step size dt is determined using the mean 
particle spacing dx, i.e. Co = umaxdt/dx, where umax is the maximum 
particle speed. As discussed above, the temporal scheme adopted in the 
present projection approach is first order for the particle velocity and 
second order for the particle displacement. In order to minimise the 
impact of the time step size (the temporal scheme) on the convergence 
investigation, the Courant number Co is taken as a small value, i.e. 
0.1umax, according to our numerical investigation. 

3.1. Oscillating drop under a conservative force field 

The oscillating drop under a conservative force field has been widely 
considered as a benchmark case for assessing the accuracy, convergence 
and energy conservation of particle methods [18,19,54]. In this case, the 
fluid is incompressible and inviscid, and is subjected to a conservative 
force field of − Ψ2r, where Ω is a dimensional parameter and Ψ2 = 1.44 
N/m is used in the present study; r (x, y) is the position vector of a 
particle, measured from the centre of the drop at its initial state when the 
drop exhibits a circular shape with a radius R of 0.5 m, as sketched in 
Fig. 4. The particle velocity at the initial state is specified as (σx, − σy), 
where the coefficient σ is taken as 0.4 s− 1. The free surface boundary 
condition is imposed to the outer edge of the drop. For this problem, the 
corresponding exact theoretical solution is available and is given in 
Ref. [54]. All numerical models use dt/dx = 0.1 s/m to determine the 
time step size. Correspondingly, the Courant number is 0.02 considering 
the maximum particle velocity of 0.2 m/s in this case. For convenience 
of the analysis, the parameters with a length scale are non
dimensionalised by the drop radius R and the time by τ = t

̅̅̅̅̅̅̅̅
g/R

√
, unless 

mentioned otherwise. 
Fig. 5 displays the particle distributions and the pressure contour for 

the drop at τ = 88.58. In this case, the particle resolution is taken as dx =
0.02. As expected, all ISPH models reproduce a smooth pressure distri
bution. However, a close look at the particle distribution, e.g., the zoom- 

Table 1 
Summary of numerical implementations of ISPH models.  

Numerical implementations ISPH_CQ ISPH_QSFDI ISPH 

prediction Intermediate velocity and 
position 

Eq. (6) and Eq. (7), respectively 

Intermediate density ρ∗ =
∑N

j=1mjW(rij)

Viscous stress Eq. (19) Eq. (21) Eq. 
(21) 

Pressure 
Projection 

PPE Eq. (8) 
Laplacian discretisation Eq. (13) Eq. (13) Eq. 

(23) 
Velocity divergence Eq. (18) Eq. (20) Eq. 

(20) 
Solid boundary condition Eq. (12) Eq. (22) Eq. 

(22) 
Free surface condition Eq. (5), free surface particle is 

identified by using a method based 
on the auxiliary functions [5] 

Linear algebraic solver Bi-CGSTAB method [52] without 
pre-conditioning. Tolerance 10− 5. 

Correction Pressure gradient Eq. (12) Eq. (22) Eq. 
(22) 

Correction of particle 
velocity and position 

Eq. (9) and Eq. (10), respectively 

Particle stabilization and 
shifting 

The hybrid particle stabilization 
and shifting scheme proposed by 
Zhang et al. [28] 

Kernel/Weighting function The cubic B-spline kernel proposed 
by Monaghan and Lattanzio [53]  

Fig. 4. Schematic sketch of the oscillating drop under a conservative 
force field. 
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in plots in the right column of Fig. 5, suggests that the present ISPH_CQ 
results in a better (more evenly distributed, lower irregularity) particle 
distribution near the free surface than other ISPH models. 

Fig. 6 illustrates the time histories of the semi-major axis ae of the 
oscillating drop resulted from different ISPH models. For comparison, 
the corresponding theoretical solution [54] is also plotted. It is shown 
that the numerical results by the ISPH_CQ agree well with the theoretical 
solution, whereas the classic ISPH and the ISPH_QSFDI do not only 
underestimate the peak value but also lead to a visible phase shift. To 
quantitatively assess the accuracy of the numerical results, the averaged 

errors Erra (L-2 norm) of the numerical results with reference to the 
analytical solution are analysed. The error is defined as 

Erra =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
aei,n − aei,a

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1ae2

i,a

√ (24)  

where, aei,a is the theoretical value of the semi-major axis ae at ith time 
step and aei,n is the corresponding numerical results, N is the total 
number of time steps considered for the error evaluation. In this case, 

Fig. 5. The particle distributions and pressure contour for the oscillating drop at τ = 88.58 (a: ISPH; b: ISPH_QSFDI; and c: ISPH_CQ. dx = 0.02).  
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the duration of the simulation is taken as 110.73 and the numerical 
results at the final two periods, i.e. 82.38–110.73, are used for the error 
evaluation. For all cases with different ISPH methods and different 

particle resolutions, the same time interval (yield the same value of N) is 
used for post-processing the data and estimating the error. 

Fig. 7 shows the numerical errors in the cases with different particle 
spacing dx, ranging from 0.05 to 0.01. For convenience, two dash lines 
representing the first-order (k = 1) and second-order (k = 2) conver
gence rates are illustrated, respectively. It is observed that the ISPH_CQ 
shows a second-order convergence when dx > 0.025 (log(dx) ≈ − 1.6), 
and a slower convergent trend (approximately a first-order rate) when 
the particle spacing becomes further smaller. This is because other 
sources of errors may become relatively significant when the particle 
resolution is below a value, which are not reduced by decreasing the 
spacing. One source of error may be related to the imprecise enforce
ment of the dynamic free surface boundary condition, Eq. (5), due to the 
perturbation of the free surface (see the free surface particles in Fig. 5(a) 
and (b)), mainly caused by particle shifting and kernel-based approxi
mations in presence of truncated kernel domains. Such perturbation 
becomes relatively sensitive when the particle resolution increases. The 
other error source may be related to the time integration scheme 
employed. This may become dominated when dx is sufficiently small. 
The high order time integration scheme would be used to reduce the 
error. These will be further investigated in our future work. Although a 
perfect second-order convergence was not achieved in the whole range 
of particle spacings, the smallest spacing within the range of second 

Fig. 6. Time histories of semi-major axis ae of the oscillating drop (dx = 0.02).  

Fig. 7. Numerical errors for modelling oscillating drop using different particle 
resolutions (R = 0.5 m). 

Fig. 8. CPU times spent by different ISPH models for modelling the oscillating 
drop (R = 0.5 m). 

Fig. 9. Time histories of (a) kinetic energy (KE); (b) potential energy (PE) and 
(c) total energy (TE) in the cases with oscillating drop (dx = 0.02). 
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order convergence can lead to numerical results that have invisible 
difference from the analytical solution as shown in Fig. 7. It is also 
observed that the accuracy of the ISPH_CQ in general is significantly 
higher than the accuracies of other models adopting the same particle 
spacing. 

We recognise that discretising the Laplacian and gradient using high 
order schemes, such as the QSFDI in this paper and the consistent second 
order scheme developed by Shimizu et al. [47], requires more compu
tational effort than the linear or other lower order schemes. One may 
question whether it is worth to sacrifice the time to improve the accu
racy. To clarify this, the CPU time taken by different ISPH models to 
achieve the results shown in Fig. 7 are analysed. All these cases are run 
in the same workstation with Intel i7 3.3 GHz and 128 GB RAM using 
OpenMP for parallel computing with 16 cores. Fig. 8 illustrates the CPU 
time taken by all ISPH models to achieve the results from τ = 0 to τ =
110.73. It clearly reveals that the ISPH_CQ requires significantly less 
CPU time than other ISPH models to achieve the same level of accuracy. 

The energy conservation is examined next. Fig. 9 displays the time 
histories of the kinetic energy (KE), potential energy (PE) and total en
ergy (TE), in which TE0 is the theoretical value of total energy. From 
Fig. 9(a) and (b), one can observe that the ISPH_CQ reproduces the 
energy time histories better than others, consistent with the observation 
from Fig. 6. Although the total energy of the drop seems to follow a 
dropping trend in all numerical simulations, the ISPH_CQ demonstrates 
a significantly better energy conservation, compared with other ISPH 
models using the same particle resolution. For a similar threshold value 
of energy loss, e.g., 1 %, the ISPH_CQ requires a much coarser particle 
resolution, e.g. dx = 0.02, than other ISPH models, i.e. 0.005. It is worth 
noting that the total energy in the present numerical simulation is not 
constantly dropping but slightly oscillating, similar to the observation in 
literature, e.g. [19]. In the present work, such oscillations may be caused 
by the particle shifting procedure, which does not guarantee the energy 
conservation [15]. 

3.2. Water wave propagation and liquid sloshing 

On the basis of the above benchmarking test, the performance of the 
ISPH_CQ is now assessed by modelling water wave propagation prob
lems where the implementation of the solid boundary condition is 
needed in addition to the free surface conditions. Unlike the inviscid 
case in Section 3.1, the viscosity of the fluid is taken into account and the 
kinematic viscosity of 10− 6 m2/s is applied in these cases. Although the 
accuracy of the viscous term estimation in the ISPH_CQ is first order, its 
contribution to the overall degree of accuracy and convergence is 
insignificant due to the fact that the viscous effect in the non-breaking 
free surface flow is negligible. 

The first set of cases is the wave propagation in a numerical wave 
tank as sketched in Fig. 10, where d and L are the mean water depth and 
the length of the tank, respectively. A wavemaker is placed at the left 
end of the tank. A Cartesian coordinate system (x, y) is adopted. The 
horizontal axis x origins from the original location of the wavemaker 
and points to the right end of the tank; the vertical axis y points upwards 
and origins from the mean water surface. Both solitary waves and reg
ular waves propagations in the wave tank are simulated. In the cases 
with solitary waves, d = 0.25 m, L = 40d, the right end of the tank is 
assigned to be a rigid wall and the length of the damping region is 
chosen as zero. The solitary wave with wave height h is generated by the 
wavemaker using the approach presented in Ref. [34]. It is expected that 
the total energy become a constant value after the wavemaker stops. For 
solitary waves, the analytical solution from Boussinesq equation [55] is 
widely used to describe their wave profiles. Although the analytical 
solution was derived based on the assumptions of incompressible, 
inviscid fluid and h/d <<1, it is used here to evaluate the accuracy of the 
numerical models. In the cases with regular waves, d = 0.5 m, L = 60d 
and various wave gauges are placed along the direction of wave prop
agation. The regular waves are generated by a piston wavemaker using 
the linear wavemaker theory [56]. To prevent the undesirable wave 
reflections from the right end of the tank, an artificial damping region 
with a length of 3 wavelength is attached to the right end. In the 
damping region, the fluid velocity is corrected by a velocity damping 
during the correction stage of the projection procedure. More details 
about the damping technique can be found in Ref. [57]. We choose the 
case with wave height of 0.2d and wave period 1.2 s. For such wave 
condition, the second order Stokes wave theory [58] is valid and pro
vides the reference value for the error evaluation in the present nu
merical investigation. In the analysis, the parameters with a length scale 
are nondimensionalised by the water depth d and the time by τ =

t
̅̅̅̅̅̅̅̅
g/d

√
. 

Liquid sloshing is another classic free surface problem. The second 
set of cases considered in the investigation is the simulation of sloshing 
waves in an oscillating tank. The schematic diagram of the tank is 
illustrated in Fig. 11, where L is the tank length, D is its height, and d is 
the mean water depth. A pressure sensor P1 is located on the left side 

Fig. 10. Schematic setup of the numerical wave tank (G1 demonstrates a wave gauge).  

Fig. 11. Sketch of the sloshing tank.  
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wall of the tank at a distance z from the bottom. The tank is subjected to 
a periodic sway motion with its displacement being specified by Xs =

asin(ωt), where a and ω are the amplitude and the frequency of the 
motion, respectively. Two conditions are used for different purposes. In 
the first condition, L = 1.0 m, d = 0.5 L, a = 0.005 L and ω = 0.8ω1, 
where ω1 is the natural frequency of the first mode of the tank, and the 
analytical solution by Faltinsen [59] and Wu et al. [60]. 

η =
a
g

(

xω2 +
∑∞

n=0
Cnωsinknx

)

sinωt −
a
g
∑∞

n=0
ωn

(

Cn +
Hn

ω2

)

sinknxsinωt

(25)  

where, kn = 2n+1
L π, ωn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gkntanhknd

√
, Hn = ω31

L
4(− 1)n

k2
n

, Cn = Hn
ω2

n − ω2 and η 
is the wave elevations, will be used to quantitively analyse the accuracy, 
convergence, computational robustness and the volume conservation, 
despite of the fact that the analytical solution may contain inexactness 
for a highly nonlinear sloshing. The second case involves a violent 
sloshing to assess the performances of the ISPH models on capturing the 
impact pressure. For this purpose, the experimental case carried out by 
Kishev et al. [61] is chosen. In the analysis, the parameters with a length 
scale are nondimensionalised by the tank length L and the time by τ =

t
̅̅̅̅̅̅̅̅
g/L

√
. 

3.2.1. Accuracy, convergence and efficiency 
Fig. 12 compares the free surface profiles at τ =19.42 for solitary 

wave with h = 0.48. The corresponding Courant number adopted in this 
case is approximately 0.2. The numerical results from different ISPH 
models, which adopt a mean particle resolution dx = 0.05, and the 
corresponding analytical solution based on the Boussinesq equation [55] 
are plotted for comparison. It is observed that all ISPH models produce 
the numerical results that reasonably agree with the analytical solution. 
However, the present ISPH_CQ leads to the best results in terms of 

Fig. 12. Comparisons of solitary wave profiles between analytical and nu
merical results at τ =19.42 in the cases with h = 0.48 (dx = 0.05). 

Fig. 13. Averaged errors Erra (L-2 norm) of numerical results corresponding to different particle spacing in the cases for solitary wave propagation (a: h = 0.48, 
taking Boussinesq solution [55] as the reference solution; b: viscous effect, h = 0.48, taking Boussinesq solution [55] as the reference solution; c: nonlinear effect, 
taking Boussinesq solution [55] as the reference solution; d: h = 0.48, the errors of ISPH_CQ estimated by taking different references). 
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capturing the target wave crest at η = 0.48. Following the bench
marking test above, the averaged error in this case is estimated using the 
following equation, 

Erra =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
ηi,n − ηi,a

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1η2

i,a

√ (26)  

where, ηi,n is the wave elevation at ith particle obtained from the 

numerical simulations and ηi,a is the reference solution, N is the total 
number of particles in the sub-domain considered for the error evalua
tion. In this work, the sub-domain is chosen to be approximately centred 
at the wave crest and specified by x = [14 22] for the case with h = 0.48. 
To investigate the convergence properties of the ISPH models, the 
averaged errors in the cases with different particle resolutions, ranging 
from dx = 0.125 to 0.05, are analysed. 

Fig. 13(a) compares the L-2 norm error Erra defined by Eq. (26), in 
which ηi,a is given by the Boussinesq solution [55], resulted from 
different ISPH models for the cases with h = 0.48. It is observed that the 
accuracy of the ISPH_CQ is, in general, significantly higher than other 
schemes adopting the same particle spacing. One may observe a 

Fig. 14. Comparisons of regular wave time histories between the analytical and 
ISPH results at x = 20 (wave height H = 0.2 and wave period 5.315; dx 
= 0.025). 

Fig. 15. Averaged errors Erra (L-2 norm) of numerical results from different 
ISPH models in the cases with regular wave propagation. 

Fig. 16. The comparison of time histories of the surface elevations between the 
analytical solution [59,60] and ISPH results recorded at the left wall of the 
sloshing tank (L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1, dx = 0.01). 

Fig. 17. Errors of numerical results in the sloshing cases with different particle 
resolutions (L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1). 

Fig. 18. CPU times spent by different ISPH models in the case with h = 0.48 
(error is estimated with reference to the ISPH_CQ results with dx = 0.04). 
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second-order convergence rate of the ISPH_CQ, when dx > 1/15 (log(dx) 
≈ − 1.176), one order higher than other ISPH models. Nevertheless, 
when the particle spacing is further reduced to dx = 0.05 (log(dx) ≈
− 1.3), the convergence rate of the ISPH_CQ is less than a second order. 
In order to find the reasons, several possible causes are considered. The 
first one is that the viscosity is taken into account in the numerical model 
but not in the Boussinesq solution [55] that is taken as the reference in 
Eq. (26). The second is that the ISPH models are fully nonlinear while 
the Boussinesq solution is weakly nonlinear with the assumption of h/d 
<< 1. For the case with h = 0.48, the assumption h/d << 1 is not well 
satisfied, yielding the inexactness of the Boussinesq solution, that does 
not depend on the particle spacing. When the error of numerical results 
is relatively large, such theoretical inexactness does not play a signifi
cant role and so not significantly affect the convergence rate of the 
numerical methods. However, when the error of the numerical results 
reaches to a certain level with reducing the particle spacing, the theo
retical inexactness becomes relatively more evident. To test the 
perception, we simulated some cases without viscosity and some cases 
with different wave heights. Fig. 13(b) shows the L-2 norm error of the 
ISPH_CQ with and without considering the viscous term. It confirms that 
the viscous term plays insignificant role [62] and is not the cause leading 
to the lower convergence rate at dx = 0.05. Fig. 13(c) depicts the 
convergence rates corresponding to different wave heights. It is found 

from Fig. 13(c) that as the wave height (wave nonlinearity) decreases, 
the convergence rate becomes faster at dx = 0.05; in particular, when h 
= 0.1, a nearly second-order convergence rate is observed in the entire 
range of the particle spacing. To further explore this aspect, the nu
merical error is estimated by taking the numerical results given by a 
finer particle spacing, i.e. dx = 0.04, as ηi,a in Eq. (26). The convergence 
rate is plotted in Fig. 13(d), which shows a second order convergence of 
the ISPH_CQ. From these results, we believe that the slower convergence 
rate in Fig. 13(a) at dx = 0.05 is because the theoretical solution used as 
reference in Eq. (26) bears some inexactness due to the fact that h/d does 
not well satisfy the assumption of the Boussinesq solution [55]. For the 
cases falling in the valid range of the Boussinesq solution, i.e. h = 0.1, a 
second order convergence rate can be observed. This conclusion will be 
further consolidated by the following case with regular waves which can 

Fig. 19. CPU times spent by different ISPH models in the cases with regular 
wave propagation (wave height H = 0.2 and wave period 5.315). 

Fig. 20. CPU times spent by different SPH models to achieve the results at τ =
40.72 for modelling the liquid sloshing (L = 1.0 m, d = 0.5, a = 0.005 and ω =
0.8ω1, error is estimated using the ISPH_CQ results with dx = 0.005). 

Fig. 21. Time history of fluid volume in the sloshing tank in the cases with (a) 
dx = 1/60; (b) dx = 1/100 (L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1). 

Fig. 22. Time histories of the volume of the fluid in the case with solitary wave 
propagation (h = 0.4 and dx = 0.05). 
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be accurately described by the second order Stokes wave theory [58]. 
Fig. 14 plots the time histories of the wave elevation recorded at x =

20 in the case with regular wave propagation, in which the analytical 
solution is given by the second order Stokes wave theory [58]. The 
corresponding Courant number adopted in this case is approximately 
0.15 in which the maximum fluid speed is taken as 

̅̅̅̅̅
gd

√
. In the ISPH 

modelling, the mean particle resolution dx = 0.025 is chosen. Similar to 
the comparisons in Figs. 7 and 13, the ISPH_CQ delivers the results with 
a better accuracy than the classic ISPH and the ISPH_QSFDI. This fact is 
clearer in Fig. 15 which quantitatively compares the variation of the 
average errors (Erra) of different ISPH models as the mean particle 
spacing changes. Erra is defined in a way similar to Eq. (24) but aei,a is 
replaced by the wave elevation at ith time step from analytical solution 
and aei,n by the corresponding analytical solution, N is the total number 
of time steps as defined in Eq. (24) during the time window considered 
for the error estimation, which is 6 wave periods starting from τ = 83.27 
in this case. Fig. 15 does not only clarify the observation in Fig. 14 but 
also confirms that the ISPH_CQ has a second-order convergence. The 
errors have also been estimated by taking the numerical results obtained 
by using the finest mesh in the tests as for Fig. 13, and same behaviour is 
observed, which are not presented as they do not add much value. This is 
perhaps due to the fact that the second order analytical solution is ac
curate enough for this case. 

For the liquid sloshing problems, the corresponding Courant number 
adopted in this case is approximately 0.08. Fig. 16 compares the time 
histories of the surface elevations recorded at the left wall of the sloshing 
tank in the case with L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1. For 
the purpose of comparison, the analytical solution by Faltinsen [59] and 

Wu et al. [60] is also plotted. As expected, the result predicted by the 
ISPH_CQ agrees well with the analytical solution, whereas the results 
from other two ISPH models show a noticeable difference from the 
analytical solution, especially during τ = 15.66 to 21.92 and 34.45 to 
40.72. The corresponding error analysis is shown in Fig. 17. The defi
nition of the error is the same as that used in Fig. 15 for the numerical 
results in the time window τ = 0 to 40.72. Similar to the cases shown in 
Fig. 13, the analytical solution may contain inexactness for the cases 
with high nonlinearities, both the analytical solutions and the ISPH_CQ 
solution with a higher particle resolution, i.e. dx = 0.005, are used as the 
reference value to define the error in Fig. 17(b). Clearly, it leads to the 
same conclusion in terms of the accuracy and convergence as that was 
observed in Fig. 13. 

Overall, one may agree that the ISPH_CQ results in a second-order 
convergence over a limited range of conditions considered in this 
paper, when the viscosity effect is not significant, and a better accuracy 
compared with the ISPH_QSFDI and the classic ISPH. In the ISPH_QSFDI, 
despite a more accurate Laplacian discretisation is applied and a slight 
improvement of the accuracy compared with the classic ISPH is 
observed in Figs. 7, 13, 15 and 17, the convergence is mainly first-order 
because a first-order gradient discretisation scheme (SFDI) is applied for 
calculating the velocity divergence and the pressure gradient, as well as 
implementing the solid boundary condition (see Table 1 for details). 
After the discretisation of relevant terms in the ISPH_QSFDI is replaced 
by the QSFDI in the ISPH_CQ, the overall accuracy and convergence are 
enhanced. This confirms our hypothesis stated above and in Zhang et al. 
[26], i.e., the order of accuracy/convergence of the ISPH depends on all 
numerical implementations, which can be generalised as the Laplacian 
and gradient discretisation/approximation, and may be dominated by 
the implementation/scheme with the lowest order of accu
racy/convergence. This further confirms the necessity of developing 
consistent numerical models. This observation is also in line with a 
recent work by Pan et al. [36], who developed a consistent weak 
formulation for discretising both the PPE and the solid boundary con
dition using the MLPG-R, and demonstrated an improvement in the 
accuracy compared with the original MLPG-R with directly discretising 
the solid boundary condition using the SFDI. 

Following Fig. 8, the CPU time spent by different ISPH models to 
achieve the results shown in Figs. 13, 15 and 17 are analysed. Fig. 18 
illustrates the CPU time taken by all models to achieve the results from 
τ = 0 to 19.42 for the solitary wave case with h = 0.48. It once again 
reveals that the ISPH_CQ requires significantly less CPU time than other 
ISPH models to achieve the same level of accuracy. The same observa
tion is hold for the cases of the wave propagation and the liquid sloshing, 
as demonstrated by Figs. 19 and 20. 

It is worth noting that the CPU time required to discretise the Lap
lacian and estimate the gradient in the QSFDI is longer than the linear 
SFDI and other lower-order schemes adopted in the classic ISPH and the 
ISPH_QSFDI for the same particle resolution, though the QSFDI results in 
a better accuracy. Attention shall be paid to balance the CPU time and 
the required accuracy. In some cases with low particle resolutions, the 
advantage of using the ISPH_CQ is not significant, e.g. Fig. 19, when the 
error is not small. Nevertheless, as the particle resolution increases, the 
advantage becomes more significant and consistent. For a threshold of 
error, e.g. 10 %, which is normally required, the advantage of the 
ISPH_CQ is observed to be significant in all the cases considered in this 
paper. It is also worth noting that the investigation of the CPU time 
presented above is based on a shared-memory OpenMP parallel 
computing, which may be ideal for small-scale problems that can be 
solved using a workstation. Although techniques for accelerating the 
ISPH have been developed, e.g., the pseudo-spectral ISPH [63], or the 
particle methods supported by the modern machine learning techniques 
(e.g. [64,65]), the most commonly used approach to accelerate the 
simulation is to develop massively parallel schemes supporting distrib
uted memory and running in high-performance computer clusters (HPC) 
or super computers. There is a significant progress on parallelisation of 

Fig. 23. Time histories of the total energy in the case with solitary wave 
propagation (h = 0.2 and dx = 0.025). 

Fig. 24. Total spectrum energy recorded at different locations along the wave 
tank in the case with regular wave propagation (wave height H = 0.2 and wave 
period 5.315; dx = 0.025). 
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ISPH solvers recently, including the message passing interface (MPI) 
parallelisation [66,67] or graphics processing unit (GPU) computing 
[68]. For parallel computing using distributed memory, the parallel 
efficiency can be affected by particle data locality, communication due 
to distributed parallelism and load imbalance caused by the particle 
movement between partitions at the hierarchical architecture of 
CPU/GPU cores and HPC nodes, which are closely correlated with the 
kernel radius (the influence domain size) and the particle irregularity. 
The classic ISPH and the ISPH_QSFDI typically require a larger influence 
domain size for gradient/divergence approximations to ensure a smooth 
pressure field and a stable solution than the ISPH_CQ, as will be dis
cussed in Section 3.2.4. This means that the number of neighbouring 
particles for a particle in its influence domain is smaller in the ISPH_CQ 
than that required in the classic ISPH and ISPH_QSFDI. Therefore, the 
ISPH_CQ is expected to need less amount of inter-processor communi
cation due to neighbouring particles data dependency of the different 
processors. Furthermore, the particle distributions in the ISPH_CQ 

simulations seem to be more even or less irregular compared with those 
in other ISPH models, as demonstrated by Fig. 6. This helps maintaining 
a satisfactory conditional number of the matrix for the algebraic equa
tions resulted from discretising the PPE, avoiding ill conditioned matrix 
or singularity due to the particle irregularity, and consequently leads to 
a quick convergence for solving the algebraic equations. Furthermore, it 
brings convenience to maintaining load balancing and a robust neigh
bour particle search by minimising the particle movement between 
partitions. However, these hypotheses cannot be confirmed until the 
corresponding parallel solver based on the ISPH_CQ can be developed in 
our future work. 

3.2.2. Mass/volume and energy conservations 
Mass/volume and energy conservations are other important criteria 

to assess the performance of a numerical model. Shimizu et al. [47] 
carried out a systematic investigation using the cases with standing 
waves and regular wave propagations, and concluded that the consistent 

Fig. 25. The particle distributions and pressure contour: (a) ISPH; (b) ISPH_QSFDI and (c) ISPH_CQ at different time instants: τ = 50.11(a1, b1 and c1) and τ = 51.68 
(a2, b2 and c2) (L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1 and dx = 0.01). 
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application of the second order Laplacian and gradient discretisation can 
significantly improve the energy conservation. In this section, the mass 
(volume) and energy conservations in the cases presented in the above 
section are examined. 

In the ISPH, mass may be considered to be always conserved due to 
invariance of number of particles involved. Hence, numerical resolution 
and satisfaction of the continuity equation would be linked to the vol
ume conservation including the total volume of the fluid. Fig. 21 dis
plays the time histories of the fluid volume in the sloshing tank in the 
cases with L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1, corresponding 
to Figs. 16 and 17. The fluid volume in the tank is obtained by inte
grating η + d over the entire numerical tank. A theoretical volume V0 of 
the fluid, i.e., the fluid volume at the initial state, is also plotted in 
Fig. 21 for comparison. As seen, the ISPH_CQ results in a nearly constant 
fluid volume during the simulation for both particle resolutions, 
whereas both the classic ISPH and the ISPH_QSFDI lead to a visible loss 
of the volume, especially in the case with the coarser particle resolution 
(dx = 1/60). The observation proves a better performance of the 
ISPH_CQ than the classic ISPH and the ISPH_QSFDI in terms of mass/ 
volume conservation. 

The superiority of the ISPH_CQ over the other ISPH models in terms 
of volume conservation was also found in other cases with different 
particle resolutions. To save the space, only one set of results in the case 
with solitary wave propagations is presented in Fig. 22, where d = 0.25 
m, h = 0.4, L = 140 and dx = 0.05. It is observed that the volume ob
tained by the ISPH_CQ slightly varies before the wavemaker stops at ~ 
10, and tends to be a constant value thereafter. This suggests a good 
volume conservation of the ISPH_CQ, an insignificant difference be
tween the ISPH_CQ results and the theoretical value (i.e., V/V0 = 1.0). 
However, the fluid volumes in the simulations using the classic ISPH and 
the ISPH_QSFDI reduce continuously after the wavemaker stops. 

On the other hand, the performances of the ISPH models in terms of 
energy conservation are also examined. Fig. 23 illustrates the time his
tories of the total energy for the same case shown in Fig. 22. In this case, 
the wavemaker feeds energy into the fluid and, consequently, the fluid 
energy increases until the wavemaker stops. During the period when the 
wavemaker moves, all models seem to yield similar results. After the 
wavemaker stops, the energy in the tank is expected to be constant. One 
can find from Fig. 23 that the total fluid energy in the ISPH_CQ simu
lation is well conserved after the wavemaker stops, but the 

Fig. 26. The particle distributions and dynamic pressure contour: (a) ISPH; (b) ISPH_QSFDI and (c) ISPH_CQ at different time instants: τ = 50.11(a1, b1 and c1) and τ 
= 51.68 (a2, b2 and c2) (L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1 and dx = 0.01). 
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corresponding results from other two ISPH models exhibit a continuous 
loss of energy after the wavemaker stops until a quasi-steady state is 
reached at ~ 32. This is consistent with the observation in Fig. 12 that 
the classic ISPH and ISPH_QSFDI underestimate the solitary wave 
height. 

For the regular wave propagation, the energy conservation can be 
reflected by the spectrum energy recorded at different locations along 
the direction of the propagation. Fig. 24 compares the total spectrum 
energy recorded at different locations in the case corresponding to 
Fig. 14. The particle spacing yielding approximately 80 particles in each 
wavelength (~ 2 m) and 40 particles along the water depth is adopted. 
Generally speaking, the wave energies at different locations predicted by 
the ISPH_CQ are the highest and those by the classic ISPH are the lowest. 
This is consistent with the comparison of the wave elevation shown in 
Fig. 14. More importantly, the rate of the reduction in the case with 
ISPH_CQ is lower than others. The percentage of the energy reductions 
from x/d = 20 to x/d = 36 are 8.9 %, 13.8 % and 19 % for the ISPH_CQ, 
the ISPH_QSFDI and the classic ISPH, respectively. One may agree that 
this exhibits that the ISPH_CQ has a better energy conservation property 
than other ISPH models in terms of maintaining the wave energy during 

a long-distance wave propagation, although the energy loss can be 
further reduced if a finer particle resolution is applied. 

3.2.3. Pressure distribution 
As indicated in the Introduction, the ISPH generally produces a 

better pressure field, e.g. smoother distribution and less suspicious 
pressure fluctuation, than the weakly compressible SPH. In this section, 
the performance of the ISPH_CQ in terms of pressure prediction is sys
tematically investigated using the case with liquid sloshing. 

Fig. 25 illustrates the particle distribution and the pressure contour 
at different instants in the case corresponding to Figs. 16 and 21, where 
the particle resolution dx = 0.01 is adopted. The corresponding dynamic 
pressure distribution is plotted in Fig. 26. All ISPH models seem to 
reproduce a smooth pressure field (Fig. 25) but the ISPH_CQ results in a 
smoother dynamic pressure distribution (Fig. 26). A similar conclusion 
is also made by Shimizu et al. [47] who demonstrated the advantage of 
using the consistent high order ISPH on producing a smoother dynamic 
pressure than the lower order competitors. 

It is noted that the dynamic pressure is mainly associated with the 
kinematics of the particles, which are dominated by the gravity and the 

Fig. 27. The pressure gradient contour: (a) ISPH; (b) ISPH_QSFDI and (c) ISPH_CQ at different time instants (left column: ∂p/∂x at τ = 50.11; right column: ∂p /∂y at τ 
= 51.68) (L = 1.0 m, d = 0.5, a = 0.005 and ω = 0.8ω1 and dx = 0.01). 
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pressure gradient for modelling the free surface flows. Since the gravi
tational acceleration is uniform, consequently the smoothness of the 
pressure gradient evaluation is vital to ensure the smoothness of the 
dynamic pressure. In the classic ISPH and the ISPH_QSFDI simulation, 
the linear SFDI is applied for evaluating the pressure gradient. Although 
a larger influence domain may be taken, theoretically the scheme cannot 
guarantee the smoothness of the pressure gradient. The second order 
scheme QSFDI applied in the ISPH_CQ is expected to bring about better 
smoothness for gradient operation. This is confirmed by Fig. 27, in 
which the suspicious spatial wiggle of the pressure gradient is observed 
in the results from the classic ISPH and ISPH_QSFDI that apply the linear 
SFDI, but less evident in the present ISPH_CQ simulation. 

Same analysis is also made for the cases with violent sloshing. In this 
case, the tank is specified by L = 0.6 m and d = 0.2. The motion 

amplitude and the period of the tank are a = 0.0556 and 6.065 
̅̅̅̅̅̅̅̅
g/L

√
, 

respectively. The configuration is the same as the experiments carried 
out by Kishev et al. [61]. Fig. 28 illustrates the snapshots of the particle 
distributions and the pressure contour at two instants, i.e. τ = 13.06 and 
τ = 15.77, corresponding to the occurrences of the violent wave impacts 
on the right and left sides of the tank, respectively. As expected, a 
smooth pressure field is reproduced by all ISPH models, although the 
formations of the breaking jet are different in different simulations. 

Furthermore, the pressure time histories are recorded by a pressure 
sensor placed on the wall at z = 0.066 for the relevant simulations. 
Results are plotted in Fig. 29 for dx = 1/120 and Fig. 30 for dx = 1/60, 
together with the experimental results by Kishev et al. [61] for com
parison. Similar to Ref. [61], we compared the numerical results from 
the 3rd period with the experimental result to avoid the potential 

Fig. 28. The particle distributions and pressure contour in the case with violent sloshing: (a) ISPH; (b) ISPH_QSFDI and (c) ISPH_CQ at different time instants: τ =
13.06 (a1, b1 and c1) τ = 15.77 (a2, b2 and c2) (L = 0.6 m, d = 0.2, a = 0.0556 and period of 6.065). 

Fig. 29. Comparison of pressure time histories from different ISPH models (L =
0.6 m, d = 0.2, a = 0.0556 and period of 6.065; dx = 1/120, experimental data 
is duplicated from Kishev et al. [61]). 

Fig. 30. Comparison of pressure time histories from different ISPH models (L =
0.6 m, d = 0.2, a = 0.0556 and period of 6.065; dx = 1/ 60, experimental data is 
duplicated from Kishev et al. [61]). 
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transient effects commonly occurring in the numerical simulation. It is 
observed that both the numerical and experimental results are not 
periodically repeated despite the tank is subjected to a periodic motion. 
This is a common phenomenon in the violent sloshing. Overall, the 
agreements between the numerical and the experimental results are 
acceptable, considering the complex nature of the violent sloshing 
problem where the random factor play a role; the ISPH_CQ seems to 
predict a better impact pressure than other ISPH models in terms of the 
impact magnitude and the time of occurrence. If a coarser particle res
olution is applied, e.g. dx = 1/60 (Fig. 30), the ISPH_CQ may still deliver 
a result that reasonably agrees with the experimental data and is better 
than the other two models, especially in terms of peak pressure in the 
first period. This implies that the ISPH_CQ can provide a satisfactory 
result with a coarser computational resolution compared with other two 
considered ISPH models. 

4. Conclusions and discussions 

In this paper, the consistent second order ISPH model (ISPH_CQ) is 
developed for modelling free surface flows. In this model, the QSFDI is 
consistently adopted to numerically approximate derivatives, involved 
in the viscous stress, Laplacian operator, velocity divergence and cor
responding Neumann boundary conditions and the pressure gradient. 
The schemes for discretising the Laplacian and approximating the 
gradient are consistently derived from the second order Taylor’s 
expansion. Compared with the existing consistent second order ISPH 
model (e.g. [47]), the distinguishing feature is that the QSFDI requires 
inversion of matrices with much smaller sizes, i.e., 2 × 2 for 2D problems 
and 3 × 3 for 3D problems, compared with existing models, e.g., 5 × 5 
for 2D problems in Ref. [47]. This feature is expected to bring about 
considerable benefit for improving computational robustness. 

The performance of the present ISPH_CQ is examined by using 
various cases with free surface, including the oscillating drop, solitary/ 
regular wave propagations and liquid sloshing with or without wave 
breaking. Its accuracy and convergence properties are compared with 
the classic ISPH [25] and the ISPH_QSFDI [26]. It is concluded that the 
ISPH_CQ leads to a significantly higher accuracy providing the same 
particle resolution or requires shorter CPU time to secure the same level 
of accuracy, than other ISPH models. Although the convergence prop
erty may be downgraded by the linear temporal schemes when the 
particle resolution is sufficiently high, the linear accuracy of the 

discretisation of the viscous term and, in some cases, the imprecise 
enforcement of the dynamic free surface boundary condition, the 
ISPH_CQ exhibits a second order convergence rate over a limited range 
of conditions for practical simulation of free surface problems, which 
has not been observed in literature for ISPH applications, to the best of 
our knowledge. The numerical investigations also show that the 
ISPH_CQ has better performance than the other two considered ISPH 
models in terms of mass/volume and energy conservation and repro
ducing smooth pressure field under the same conditions. The ISPH_CQ 
will be demonstrated to have similar good performance in three 
dimensional cases and/or using MPI parallelisation (GPU computing) in 
our future work. 
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Appendix: Derivation of QSFDI 

For each particle j with a position vector of rj, that is located inside the influence domain Ωiof the particle i at ri, a function P can be expressed as a 
second order Taylor’s expanesion, i.e. Eq. (11). Multiplying Eq. (11) by w(rji)r(2c)

ji /d4
ji , where w(rji) is the weighting function for particle j related to ri, dji 

is the distance between particle i and its neighbouring particle and ignoring the truncation error and taking the sum of resultant equations for all 
particles in the influence domain of i, yields 

∇(2c)Pi ≈ M− 1
2c,i

∑N

j=1

W
(
rji
)

d4
ji

r(2c)
ji
(
Pj − Pi

)
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(
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ji rT
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(
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ji
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1
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W
(
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ji∇
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Pi (A1)  

in which M2c,i =
∑N

j=1
W(rji)

d4
ji

r(2c)
ji (r(2c)

ji )
T 

. For convenience, (rT
ji∇)

3Pi is re-written as(r(3)ji )
T
∇(3)Pi, where r(3)ji =

[x3
ji 3x2

jiyji 3x2
jizji 3xjiy2

ji 6xjiyjizji 3xjiz2
ji y3

ji 3y2
jizji 3yjiz2

ji z3
ji]
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∂z3]T are two 10 × 1 matrices. 
Substituting Eq. (A1) into Eq. (1), it leads to 

Pj − Pi ≈
(
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where, 
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Multiplying Eq. (A2) by w(rji)Πji/d4
ji and taking the sum of resultant equations for all particles in the influence domain of i, it leads to the expression 

of ∇(2s)Pi, 

∇(2s)Pi ≈ 2M− 1
2s,i

∑N

j=1
ΓjI
(
Pj − Pi

)
− 2M− 1

2s,i

∑N

j=1

W
(
rji
)

d4
ji

ΠjiGT
ji∇Pi −

1
3

M− 1
2s,i

∑N

j=1

W
(
rji
)

d4
ji

ΠjiFT
ji∇

(3)Pi, (A3)  

where, M2s,i =
∑N

j=1
W(rji)

d4
ji

ΠjiΠT
ji and ΓjI =

(
W(rji)

d4
ji

Πji − Πji(r(2c)
ji )

T
M− 1

2c,i
∑N

k=1
W(rki)

d4
ki

r(2c)
ki

)

. Substituting Eqs. (A3) to (A2) leads to 

Pj − Pi ≈
(

r(2c)
ji

)T
M− 1

2c,i

∑N

k=1

W(rki)

d4
ki

r(2c)
ki (Pk − Pi) + ΠT

jiM
− 1
2s,i

∑N

k=1
Γki(Pk − Pi) +

(

GT
ji − ΠT

jiM
− 1
2s,i

∑N

k=1

W(rki)

d4
ki

ΠkiGT
ki

)

∇Pi +
1
6

(

FT
ji − ΠT

jiM
− 1
2s,i

×
∑N

k=1

W(rki)

d4
ki

ΠkiFT
ki

)

∇(3)Pi (A4) 

Multiplying the further modified Eq. (A4) by w(rjI)qji/d2
jI, where the coefficient qji =

(

GT
ji − ΠT

jiM
− 1
2s,i
∑N

k=1
W(rki)

d4
ki

ΠkiGT
ki

)T

, and taking the sum of 

resultant equations for all particles in the influence domain of i, it leads to the expression to approximate the gradient with a term associated with 
(rT

ji∇)
3Pi 

〈∇Pi〉 = M− 1
1q,i

∑N

j=1

W
(
rji
)

d2
ji

qji
(
Pj − Pi

)
− M− 1

1q,i

∑N

j=1

W
(
rji
)

d2
jI

qji

(
r(2c)

ji

)T
M− 1

2c,i

∑N

k=1

W(rki)

d4
kI

r(2c)
ki (Pk − Pi) − M− 1

1q,i

∑N

j=1

W
(
rji
)

d2
ji

qjiΠT
jiM

− 1
2s,i

∑N

k=1
Γki(Pk − PI) (A5)  

E∇pi = −
1
6
M− 1

1q,i

∑N

j=1

W
(
rji
)

d2
ji

qji

(

FT
ji − ΠT

jiM
− 1
2s,i

∑N

k=1

W(rki)

d4
ki

ΠkiFT
ki

)

∇(3)pi (A6)  

where, M1q,i =
∑N

j=1
W(rji)

d2
jI

qjiqT
ji . Substituting Eqs. (A5) to (A3), it leads to the formula to approximate∇(2s)pi, i.e., 

∇(2s)Pi = 2M− 1
2s,i

∑N

j=1
Γji
(
Pj − Pi

)
− 2M− 1

2s,i

∑N

j=1

W
(
rji
)

d4
jI

ΠjiGT
ji〈∇Pi〉 (A7)  

with its leading truncation error 

E∇(2s)Pi = −
1
3
M− 1

2s,i

∑N

j=1

W
(
rji
)

d4
ji

ΠjiFT
ji∇

(3)Pi − 2M− 1
2s,i

∑N

j=1

W
(
rji
)

d4
ji

ΠjiGT
jiE∇pi (A8) 

The Laplacian can therefore be approximated by using 
〈
∇2Pi

〉
= IT〈∇(2s)Pi

〉
(A9)  

where, I = [ 1 1 1 ]
T. The corresponding leading truncation error is 

E〈∇2Pi〉 = ITE∇(2s)Pi (A10) 

In practice, Eq. (A9) can be applied to discretise the Poisson’s equation at all particle positions and/or to directly approximate ∇2P(x) at a point xi 

coinciding with a particle location, where Pi is known. However, to estimate ∇2p(x) at a point that does not coincide with any particles, Pi needs to be 
numerically interpolated using Pj. To do so, estimation of ∇(2c)Pi in Eq. (1) is required and achieved by substituting Eqs. (A5)–(A8) to Eq. (A1), 

〈
∇(2c)p(x)

⃒
⃒

x=xI

〉
= M− 1

2c,I

∑N

j=1

wjI

d4
jI

r(2c)
jI
(
pj − pI

)
− M− 1

2c,I

∑N

j=1

wjI

d4
jI

r(2c)
jI rT

jI

〈
∇p(x)|x=xI

〉
−

1
2
M− 1

2c,I

∑N

j=1

wjI

d4
jI

r(2c)
jI

(
r(2s)

jI

)T〈
∇(2s)p(x)|x=xI

〉
(A11) 

For convenience of deriving the interpolation function, Eqs. (A5), (A7) and (A11) are, respectively, rewritten in a summation form, i.e. 

〈
∇p(x)|x=xI

〉
=
∑N

j=1
Φg

jI
(
pj − pI

)
(A13) 
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〈
∇(2s)p(x)|x=xI

〉
=
∑N

j=1
Φs

jI

(
pj − pI

)
(A14)  

〈
∇(2c)p(x)

⃒
⃒

x=xI

〉
=
∑N

j=1
Φc

jI

(
pj − pI

)
(A15) 

Consequently, Eq. (A9) can be re-written as 

〈
∇2p(x)|x=xI

〉
= IT

∑N

j=1
Φs

jI

(
pj − pI

)
(A16)  
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