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Abstract
We show that given a triangulation T of a set P of n points in the plane, the Delaunay triangulation
DT (P ) of P can be built in O(n + k log4 k) time, where k is the number of edges of DT (P ) not
present in T . We also show that several problems about convex polygons can be solved in O(log k)
time, when the vertices of the polygons are given in an array and we are given a pointer to vertices
that in the array are at distance at most k from the vertices defining the solution.

1 Introduction

We give algorithms for some fundamental geometric problems under the so-called ‘predictions’
paradigm; see Mitzenmacher and Vassilvitskii [9] for an overview. Given a problem Π and a
prediction P for a solution of an instance of Π, we would like to devise an algorithm that
computes a solution S in time at most f(n, d(P, S)), where n the size of the instance and
d is an appropriate measure of how close the prediction is to the actual solution. Roughly
speaking, we would like f to be such that when d is small (good prediction) the running
time is better than the best known time complexity, and when d is large (bad prediction)
the running time approaches that of the best known algorithms, or at least it does not get
much worse. A usual example here is binary search in a sorted array with a given starting
position; the binary search can be done in O(1 + log k) steps using exponential search, where
k is the distance in the array between the starting and the final position of the search.

Our purpose is to initiate the study of problems in Computational Geometry under
the lens of algorithms with predictions. As an example, consider the classical problem of
computing the closest pair in a set P of n points in Rd, where d is constant. Assume that the
prediction is a pair of points (p, q) ∈ P 2, p ̸= q. We can then decompose the space into cube
cells of diagonal length |pq| and assign each point of P to the cube cell that contains it. If δ∗

is the distance of the closest pair, then inside each cube cell there are at most O((|pq|/δ∗)d)
points. We then iterate over the points in P and, for each point pi ∈ P , check the distance
from pi to the points that are in the O(1) cube cells that may have some point at distance
at most |pq| from pi. In total, it takes O(n · (|pq|/δ∗)d) time, assuming the floor function is
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Figure 1 Problems considered in Section 2. In all cases the vertices defining the optimum are
marked with red squares.

available. When the prediction is good, i.e., |pq|/δ∗ is constant, the running time will be
linear. As the prediction deteriorates, the running time may become quadratic and it is
better to turn to other algorithms.

A geometric result that falls in this paradigm is the data structure of Iacono and
Langerman [8] for point location in the plane. They consider the problem of storing a plane
triangulation for point location with a finger: preprocess the triangulation such that, for a
given point p and a finger to a triangle ∆ of the triangulation, we can locate the triangle ∆p

containing p in O(log d(∆, ∆p)) time, where d is a distance-like metric in the subdivision.
In this paper, we provide the following results:

Several problems for convex polygons described by an array of vertices and with some
vertices as prediction can be solved in O(1 + log k), where k is the distance in the array
of the prediction to the vertices describing the solution.
Given a triangulation T of a planar n-point set in the plane, we can compute its Delaunay
triangulation in O(n + k log4 k) time, where k is the number of non-Delaunay edges in T .
Computing the Delaunay triangulation of P from a given triangulation of P requires
Ω(n log n) operations.

2 Convex polygons

We reconsider early computational geometry problems on convex polygons given by an array
under the lens of predictions. Here, predictions are indices of the array that, in the case of a
good prediction, are close to the indices of the elements that define the solution object.

Let P and Q be two polygons with m and n vertices respectively, described by the arrays
P [0, . . . , m − 1] and Q[0, . . . , n − 1] containing their vertices in counterclockwise order. For
any two indices 0 ⩽ i, j ⩽ m − 1 for P , let dm(i, j) = min{|i − j|, |i + m − j|, |i − j − m|} be
their cyclic distance. The cyclic distance dn(·, ·) for Q is defined similarly.
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Figure 2 The polygon P̃ (i, ℓ).

We consider the following problems with predictions; see Figure 1. In all cases we use k to
measure the distance between the prediction and the vertices defining the optimal solution.

Extreme point: Given P and a direction d, find a extremal vertex of P in the direction
d. The prediction is an index i and the measure is

k = min{dm(i, i∗) | P [i∗] extreme point of P in direction d}.

Tangent through a point: Given P and a point q external to P , find the tangents
from q to P . The prediction is two indices i1 and i2 and the measure is

k = min{dm(i1, i∗
1) + dm(i2, i∗

2) | qP [i∗
1] and qP [i∗

2] define the tangents from q to P}.

Line intersection: Given P and a line ℓ, find the intersections of ℓ with the boundary
of P . The prediction is two indices i1 and i2 and the measure is

k = min{dm(i1, i∗
1)+dm(i2, i∗

2) | i∗
1 ̸= i∗

2, ℓ intersects P [i∗
1]P [i∗

1 + 1] and P [i∗
2]P [i∗

2 + 1]}.

Common tangents: Given P and Q that are disjoint, find the common exterior/interior
tangents of P and Q. For the exterior tangents, the prediction is two indices i1, i2 ∈
{0, . . . , m − 1} and two indices j1, j2 ∈ {0, . . . , n − 1} and the measure is

k = min{
∑

t=1,2
(dm(it, i∗

t ) + dn(jt, j∗
t )) |P [i∗

1]Q[j∗
1 ] and P [i∗

2]Q[j∗
2 ] define

the exterior tangents of P and Q}.

For the interior tangents the definition is similar.
Distance: Given P and Q, find the minimum distance between P and Q. The prediction
is two indices i1 ∈ {0, . . . , m − 1} and j1 ∈ {0, . . . , n − 1} and the measure is

k = min{dm(i1, i∗
1)+dn(j1, j∗

1 ) | the distance between P [i∗
1]P [i∗

1 + 1] and
Q[j∗

1 ]Q[j∗
1 + 1] defines the distance between P and Q}.

▶ Theorem 2.1. Extreme point, Tangent through a point, Line intersection,
Common tangents and Distance with predictions can be solved in O(log k) time.

Proof sketch. The idea is to perform a doubly exponential search on the indices. For index
i and value ℓ, let P̃ (i; ℓ) be the portion of the polygon with vertices P [i − ℓ, . . . , i + ℓ], where
indices are taken cyclically; see Figure 2. Let P̃ (i1, i2; ℓ) be the polygon obtained by joining
P̃ (i1; ℓ) and P̃ (i2; ℓ). Each of P̃ (i1; ℓ) and P̃ (i1, i2; ℓ) have at most O(ℓ) vertices.

EuroCG’24
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Figure 3 Left: NG(f) are shaded for the face f , and the points V (NG(f)) are marked with
squares. Right: V (NG(t)) are marked with squares for the shaded triangle t.

We start with ℓ = 2 and use the standard algorithm for the subpolygons P̃ (i1; ℓ) or
P̃ (i1, i2; ℓ), and/or Q̃(j1; ℓ) or Q̃(j1, j2; ℓ), depending on the problem [2, 6, 7, 10]. We get a
candidate solution for the subpolygons in O(log ℓ) time, which we can test for optimality for
the whole P and Q in constant time. If it is optimal, we have finished, otherwise we square the
value of ℓ and repeat. The values of ℓ follow the sequence 22i for i = 0, 1, 2, . . . , ⌈log2 log2 k⌉
and therefore the total running time is

∑⌈log2 log2 k⌉
i=0 O

(
log(22i)

)
= O(log k). ◀

3 Delaunay triangulation

A plane straight-line graph, shortened to PSLG, is a planar embedding of a graph where all
edges are drawn as straight-line edges. A triangulation of a planar point set P is a connected
PSLG such that: (i) its vertex set is precisely P , (ii) all its bounded faces are triangles, and
(iii) the unbounded face is the complement of the convex hull CH(P ). We remark that a
triangle with an extra vertex inside, possibly isolated, is not a triangular face of a PSLG.

Let P be a set of n points in the plane. For simplicity, we assume that the points in P are
in general position, i.e., no four points are co-circular and no three points are collinear. For a
triangle t, let C(t) be its circumcircle, and for {p, q, r} ∈

(
P
3
)
, let C(p, q, r) = C(△(p, q, r)).

The Delaunay triangulation of P , denoted by DT (P ), can be defined as follows: for any
three distinct points p, q, r ∈ P , the triangle △(p, q, r) belongs to DT (P ) if and only if the
circle C(p, q, r) has no point of P in its interior. The Delaunay triangulation of a point set
in general position is unique. We assume familiarity with DT (P ); see [4, Chapter 9].

Let G be a PSLG and f be a face of G. Let NG(f) be the set of neighbor faces of f in
the dual graph of G and V (NG(f)) be the vertex set of the faces of NG(f). Any isolated
vertices in the interior of a face of NG(f) belong also to V (NG(f)); see Figure 3.

A standard property of DT (P ) is that it can be tested locally: a triangulation T of
P is DT (P ) if and only if, for each triangle t = △(pi, pj , pk) of T it holds that no point
p ∈ V (NG(t)) is in the interior of the circle C(pi, pj , pk). We will need the following extension
to identify subgraphs of DT (P ). See Figure 3, right, for the hypothesis.

▶ Lemma 3.1. Let G be a PSLG with vertex set P and such that each edge of G is on the
boundary of CH(P ) or adjacent to a triangular face. Assume that, for each triangle t of G,
all the points of V (NG(t)) are outside C(t). Then each edge of G is an edge of DT (P ).

Our algorithm will identify and delete an appropriate subset of the edges of a given
triangulation of P . For this, we will need the following bounds.
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▶ Lemma 3.2. Let T be a triangulation of P and let E′ be a subset of E(T ) with k edges.
Remove from T the edges of E′ and then remove also all edges that have bounded, non-
triangular faces on both sides. In total, we remove O(k) edges.

We will use the following data structures that readily follow from Chan [1]. For the
circles, one uses the lift to the paraboloid and point-plane duality in R3.

▶ Lemma 3.3. We can maintain a dynamic set P of n points in the plane such that:

insertion or deletion of a point takes O(log4 n) amortized time;
for a query circle C, we can detect whether some point of P is inside C in O(log2 n) time.

We can maintain a dynamic set C of n circles in the plane such that:

insertion or deletion of a circle takes O(log4 n) amortized time;
for a query point p, we can detect whether some circle of C contains p in O(log2 n) time.

We next show our main result, where we assume that the prediction is an arbitrary PSLG.

▶ Theorem 3.4. Assume that we have a set P of n points in general position in the plane
and we are given a PSLG G with vertex set P . Let k be the (unknown) number of edges of
DT (P ) that are not in G. In O(n + k log4 k) time we can compute DT (P ).

Proof sketch. The first step is identifying a subset E′ of O(k) edges of G in O(n + k log4 k)
time such that all edges of G − E′ are from the Delaunay triangulation DT (P ). The subset
E′ may contain also some edges of DT (P ); thus, we compute a superset of the “wrong” edges.
The criteria to identify E′ is that G−E′ should satisfy the assumptions of Lemma 3.1. There
are two basic ideas that are being used for this:

Test circumcircles of triangular faces to see whether they contain some point of a neighbor
face. The same triangle may have to be checked multiple times because its neighbor faces
may change, and we employ data structures to do this efficiently.
If an edge is on the boundary of two non-triangular faces, we have no triangle to test the
edge. Then, we just add the edge to E′; by Lemma 3.2, this can happen O(k) times.

For any subgraph G′ of G, let F⩾4(G′) be the faces of G′ that are non-triangular and
bounded. At the start, F⩾4(G) has O(k) vertices and edges; even if G would be a subgraph
of DT (P ), we still have to add k edges to G to obtain DT (P ).

We start with E′ = ∅ and the PSLG G′ = G, and maintain the invariant that G = G′ +E′.
Thus, E′ is the set of edges that are being removed. Let Q be the set of points that lie in the
faces of F⩾4(G′). We maintain Q in the first data structure of Lemma 3.3. We also maintain
the set τ of triangles that share an edge with a face of F⩾4(G′). For each triangle of τ , its
circumcircle is stored in the second data structure of Lemma 3.3.

We iterate over the triangles t of G′ and check whether C(t) contains some point of
V (NG′(t)). The adjacent triangles are checked explicitly, while the adjacent non-triangular
faces are checked by querying Q with C(t). If C(t) contains some point of V (NG′(t)), we
delete all edges of t from G′ and add them to E′. This makes a new non-triangular face of
G′. We have to update Q, τ and the data structures that store them; there are O(1) new
elements. The circumcircles of the old triangles of τ may contain some new point of Q, and
the new triangles of τ (adjacent to the new face of G′) have to be retested. See Figure 4.
This can be done efficiently using O(1) queries and editions in the data structures. More
precisely, for each of the O(1) new triangles in τ we check whether they contain some point

EuroCG’24
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Figure 4 When we check t, we decide to delete E(t) because C(t) contains some point of V (f) ⊆ Q.
The point marked with an empty square becomes a new point of Q that is in the interior of C(t′).

of Q, and for each of the O(1) new points in Q we check whether it is contained in some
circumcircle of {C(t′) | t′ ∈ τ}.

For each triangle we delete, at least one of its edges is not in DT (P ). Therefore, we
delete at most 3k edges. Each triangle that is deleted triggers O(1) additional operations in
the data structures of Lemma 3.3 storing Q and τ and triggers that O(1) new triangles of τ

have to be tested again. Finally, we remove from the final G′ all the edges that have on both
sides non-triangular faces, and add them to E′. This does not change the set Q nor τ , and
therefore we keep having that, for each triangle t of G′, C(t) contains no point of V (NG′(t)).
Because of Lemma 3.2, we have deleted O(3k) = O(k) additional edges.

We have obtained E′ ⊆ E(G) such that |E′| = O(k) and Lemma 3.1 applies to G − E′.
Thus all edges of G − E′ are edges of DT (P ). We then compute the constrained Delaunay
triangulation for the faces of G − E′ using the algorithm of Chew [3] in O(k log k) time. ◀

▶ Corollary 3.5. Assume that we have a set P of n points in general position in the plane
and we are given a triangulation T of P . Let k be the (unknown) number of edges of T that
are not in DT (P ). In O(n + k log4 k) time we can compute DT (P ).

Finally we can easily show the following lower bound.

▶ Theorem 3.6. Computing DT (P ) for a set P of n points in the plane from a triangulation
of P takes Ω(n log n) time in the decision tree model of computation.

4 Conclusions

We conjecture that the Delaunay triangulation DT (P ) can be computed from any other
triangulation T of P in O(n + k log k) time, where k is the number of edges of DT (P ) that
are not in T .
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