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RBS-MLP: A Deep Learning based Rogue Base Station
Detection Approach for 5G Mobile Networks

Mohammad Saedi, Adrian Moore, Philip Perry, Chunbo Luo, Member, IEEE

Abstract—The 3GPP Security Group has identified the detec-
tion of Rogue Base Stations (RBS) in 5G networks as one of the
leading security challenges for users and network infrastructure.
Motivated by this, RBS-MLP, a novel deep learning model, has
been developed to identify RBSs. The model uses signal strength
measurements in each mobile device’s periodic measurement
reports as input data, a reliable metric readily available to the
system. We investigate the impacts of various sizes of datasets,
different window sizes of received signal strength, and different
proportional splits of the dataset into training and test data to
evaluate the performance of the proposed model. We further
demonstrate RBS-MLP using a realistic dataset of received
signal strength measurements for a vehicle driving along various
sections of a road, providing a use case to demonstrate the
use of RBS-MLP to improve the safety of mobile networks.
Experimental results reveal that RBS-MLP is well suited as
a 99.999% accuracy classification model and provides a new
baseline method for RBS detection.

Index Terms—Rogue Base Station (RBS), 5G Mobile Networks,
Attack Detection, Vehicle Platooning, Machine Learning (ML),
Received Signal Strength (RSS), Measurement Report (MR),
gNodeB.

I. INTRODUCTION

ROGUE Base Stations (RBS) are wireless devices that
impersonate a legitimate Base Station (BS), causing

subscribers within a certain radius to connect to those devices
rather than genuine networks. An RBS attack can happen
during the initial cell search stage in the 5G NR when a User
Equipment (UE) looks for a suitable BS to camp on. During
this stage, the UE listens to the wireless broadcast channel
for the synchronising signal (SS) from nearby BSs. Next, the
UE selects a BS based on the received SSs and initiates a
wireless connection. If an RBS broadcasts a spoofing SS with
high Received Signal Strength (RSS) during the cell search
mechanism, the UE may be enticed to it and try to camp
on it rather than any legitimate BS [1]. In the emerging 5G
world, it will be vital for infrastructure providers to protect
against such attacks to secure the communications platform
and protect client data and identity.

Since the inception of early GSM networks, RBS attacks
have continuously evolved and persisted. These can be cate-
gorised as Denial of Service (DoS) attacks on mobile devices
or networks, provision of fraudulent services, and compromis-
ing of subscribers’ privacy. The impact of these attacks varies
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greatly among cellular network generations but remains signif-
icant owing to the multiple interconnections across a diverse
set of current and legacy networks [2]. The development of
5G communications has already led to some advancements
in RBS detection, such as Subscription Permanent Identifier
(SUPI) concealment, guaranteed Globally Unique Temporary
Identity (GUTI) refreshment, and protected redirections. At the
same time, other security mechanisms inherited from previous
generations include mutual authentication between UE and
network, secure algorithm negotiations, and integrity-protected
signalling [3]. Despite these advances, the current position is
that 5G remains vulnerable to RBS attack [4].

Most current RBS detection systems implement a data-
gathering capability in the UE, which then either (i) performs
analysis on the data gathered at UE-side, or (ii) sends the
collected data to a central server for cloud-side detection, or
(iii) to the wider network for analysis known as network-
based detection [5]–[8]. Of these, the first group is prone to
false positives because a UE cannot understand the complete
status of the network view at any given time, and in addition,
UE-side detection systems often need software updates on the
device or root privileges, which are uncommon and may be
difficult for some users. In the second group, the devices send
their Measurement Reports (MR) to a central server in the
5G Core for analysis; otherwise, they operate on the same
premise as UE-side detectors and, as a result, suffer from
the same efficacy and scalability concerns. The third group,
Network-based detection systems, are projected to perform
better in terms of analysis since, unlike UEs, mobile networks
have knowledge of the system’s global status. However, a
supporting monitoring infrastructure to collect data from mul-
tiple network locations or protocols is required. We focus on
the third group, which is more applicable to 5G and cellular
systems.

In recent years, there has been a lot of interest in Machine
Learning (ML) for detecting security threats. ML models can
identify security assaults by learning the behaviour of both at-
tack and legitimate scenarios. ML-based classification systems
can provide high levels of precision in the identification of
potential aggressors [9], [10]. We use supervised classification
methods to detect attacks in 5G vehicular platooning [11]. This
paper presents the design, implementation, and development
of an RBS detection system named RBS-MLP, exploring
ML methods to detect RBS in 5G networks effectively. The
proposed approach is essentially based on MR filtering. We
present a case study demonstrating RBS detection in a realistic
dataset of radio information and Received Signal Strength
(RSS) measurements generated by a simulation of a vehicle
travelling along various road sections.
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RBS-MLP is aimed to protect IoT devices by filtering RBS
from MR to detect all rogue agents with as few false positives
as possible, without specialised hardware. In summary, this
research study provides the following contributions:

• Providing a 3GPP Release 18 compliant RBS detection
model. The device-assisted part of the model uses the
standard measurement reporting procedure, while the
network-based part performs the data analysis using a
deep learning RBS detection system.

• Evaluating the performance of the RBS-MLP algorithm
in terms of the accuracy of classification between rogue
and legitimate BS.

• Proposing an enhanced handover protocol to include a BS
trust mechanism to evaluate the trustworthiness of the BS.

• Using the ML approach in a simulation of a platoon
moving along sections of roads containing a mix of
legitimate and rogue base stations.

The rest of the paper is structured as follows. In Section II,
we review the related research in RBS detection systems while
identifying their limitations. Section III presents a novel
RBS detection model comprising a pre-processing component
and a decision maker. Section IV proposes the RBS-MLP
model. Section V presents the performance evaluation and
results for various case studies based on our realistic dataset of
radio information and RSS measurements taken by a simulated
vehicle travelling along various sections of a road. Finally, the
conclusions and future works are discussed in Section VI.

II. RELATED WORK

In this section, we report a summary of existing RBS
detection systems, mentioned in the previous section, accord-
ing to the techniques used. In addition, drawbacks and some
limitations will be described here.

The UE-side includes client-side applications that perform
the identification within the UEs. This includes mobile phones,
vehicles, IoT devices, etc. Android IMSI-Catcher Detector
(AIMSICD) [5], Cell Spy Catcher [12], CatcherCatcher [13],
and SnoopSnitch [6] are some applications that fall into
this group. To provide some level of protection, these apps
require high privileges and low-level access to baseband chips
to reach their full potential. Even though Cell Spy Catcher
and AIMSICD results have not been persuasive, Cell Spy
Catcher at least can be used to determine if the local network
figures have been modified. SnoopSnitch seems to be the
most advanced of the alternatives, as it reliably informs the
user immediately after the threat is detected. In contrast,
Cell Spy Catcher only provides a warning and associated
information. SnoopSnitch, on the other hand, only works on
Qualcomm-based Android phones and requires root access.
Similarly, CatcherCatcher attempts to detect RBS activity by
detecting irregularities in mobile networks, but it only works
on Osmocom phones. To summarise, these apps are still in the
early stages of development for detecting RBS attacks. They
have a lower detection rate, generate more false positives, and
require unusually high-level access, making them unsuitable
for the general public [14].

Techniques for cloud-based detection are based on analysing
the crowdsourced data from a nearby massive number of

UEs to detect and geolocate RBS units. FBS-Radar [7], a
large-scale RBS detection and localisation system, identifies
an RBS through the automated collection of suspicious SMS
messages from end-user devices. In addition, these reports,
including Received Signal Strength (RSS), cell identifier and
UE MAC addresses, are sent to a server to analyse and evaluate
different techniques that exploit this data to identify RBS
installations accurately without analysing the content of the
SMS messages. Van Do et al. [15] suggested a methodology
for detecting abnormal behaviour from an RBS in public
data sets using ML approaches. In [16], the experiment was
extended using machine learning and exploiting a signature-
based strategy with characteristics such as location and the
relationship between the identification number of the UE and
subscription. These investigations used a publicly available
data set from Aftenposten [17] to demonstrate the utility of ML
approaches, but with the drawback that UEs must report their
measurements to a server on the cloud for analysis; otherwise,
they operate like a client-side detector. As a result, they suffer
from effectiveness and scalability issues.

Network-based detection techniques conduct the analysis
on the core of the cellular network. In [8], a technique for
IMSI catcher detection has been proposed that uses existing
operational data from the mobile network used in the mobility
management of mobile stations. The MRs delivered by the
UEs to BSs containing information on the cell and surrounding
cells are used to detect IMSI catchers. Regarding analysis,
network-based detection systems are projected to outperform
client-side detectors since mobile networks know the system’s
global status, unlike UEs. However, a limitation with [8] is
that they only cover 2G radio access technology. Murat [2] is
a network-based approach for recognising RBSs on several
3GPP Radio Access Technologies (RAT) without changing
mobile phones or monitoring equipment. Murat employs the
global state to include information on all connected mobile
phones, the mobile network state, and its deployment and setup
history. It outperforms earlier systems.

Traditional RBS techniques are purposefully planned, mak-
ing it difficult for networks to adjust dynamically. ML is the
process of self-learning from experiences and deeds and such
approaches can be used to respond appropriately in such sit-
uations without human intervention or reprogramming. Deep
learning, a subset of machine learning, has grown in popularity
in recent years and has been used for RBS detection [18];
studies have shown that deep learning outperforms previous
approaches [19].

III. PROPOSED APPROACH

In this section, first, the framework of the detection model
is proposed. Then a novel handover protocol will provide a
key feature for the ML method to build the main component
of the RBS detection system.

The analyser component of the RBS-MLP is an ML-based
approach based on MR; it can be considered an additional
feature for Murat [2]. Murat offers a network-based approach
for identifying bogus base stations that run on any 3GPP radio
access technology without needing to modify mobile phones.
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However, the analyser of Murat consists of data processors and
Rule-based methods; we analyse the MR using ML methods
[20], [21].

A. Proposed Architecture

Fig. 1 describes the proposed architecture to model an RBS
identification system to detect rogue agents using machine
learning methods. The UE in RRC_CONNECTED mode
builds the MR based on signals received from gNBs currently
in range and sends it to the 5G Radio Access Network (RAN).
The proposed system performs the data analysis, identifies
suspected RBS and eliminates them from consideration for
handover [22]. As a result, the suspected RBS is never
included in the version of the MR used to assess the need for a
handover event. The BS identifies the need for a handover and,
if required, initiates the protocol. Upon detection of an RBS,
the network operators can be informed so that legal action
and other post-incident activities can be initiated. For example,
they can alarm the UE from camping on the RBS [23], [24].

Fig. 1. RBS detector.

Such analysers might be included in either the 5G RAN
or the 5G Core, however in this work, the integration of the
analysis into the 5G RAN is examined. This decision can be
explained by the need for scalability, which is most readily
done when the RBS detector is situated at the point where the
gNodeB receives the MR data [20].

Fig. 1 illustrates the components of the AI Analyser, com-
prising a Feature Design element, an AI-based Decision-maker
element, and two MR and ML data storage units. The aim
of Feature Design is to create informative and relevant input
features that help the model distinguish between the two
classes. The ML approaches will be used in the decision-
making function. The Decision Maker, as the significant com-
ponent of the AI Analyser, will receive the ML data and apply
the ML method to identify rogues. Other Analyser functions
can employ various strategies for classification, but we will
demonstrate the effectiveness of an ML approach. The sections
that follow expand on the architecture’s description and details.

B. Handover Process

In a 5G environment, an IoT device typically has a selection
of BS units within its reception range and the way the device
decides which BS to attach is based on an analysis of the
device’s MR. The MR identifies the most vital received BS

signals from the current location and orientation and is updated
periodically, usually every second. Depending on the received
signal strength of the currently connected BS and the signal
strengths of alternate candidate BS units, the device will be
told by the network either to stay with the current BS or
handover to a more robust alternative. Handover management
is critical for ensuring that UEs may move freely between cells
while still receiving high-quality communication services. The
gNB is in charge of managing UE migration across cells.
Typically the handover decision in 5G RAN is based on the
MR produced by UEs [25]. The handover process is that the
UE is currently connected to a gNB (the serving BS); if there
is another BS in the MR with a level that exceeds the threshold
value, then we handover to it. Fig. 2 illustrates the Received
Signal Strength (RSS) from a collection of 30 BS encountered
by a platoon leader along a stretch of urban motorway. As
the UE moves along the highway, the handover process is
activated, resulting in the connected signal strength profile
illustrated in Fig. 3.

Fig. 2. Received signal strength in a legitimate scenario.

Fig. 3. Handover decision-making in a legitimate scenario.

C. Feature Design

To entice surrounding UEs, an RBS often transmits higher-
than-normal signal power. A steep increase and fall in RSS is a
characteristic of the profile of a typical rogue [11], which can
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be used as a fingerprint for detection. Therefore, this section
defines and implements two new features including the Rate
of Change (RoCH) and Probation Period. These informative
features are calculated and monitored for all BS and RBS
that UE detects. The main idea is that the RoCH is a better
indicator for RBS detection than "raw" RSS data, as RBS tend
to increase at a more rapid rate than "regular" BS. Following
is a description of the Probation period.

Fig. 4, for instance, demonstrates BS1, the connected BS,
with decreasing power over time as BS2 rises. The RoCH
of BS2 can be collected if its readings during the Probation
Period are monitored. The Probation Period begins when the
BS is first detected and concludes when sufficient consecutive
MR values have been recorded. The optimal number of values
will be determined later in the following sections. In the
diagram, the timestamp "C" indicates the beginning of the
Probation Period or Candidate BS Monitoring Period, and the
timestamp "H" indicates the transition time.

Fig. 4. Candidate BS monitoring period for a legitimate scenario.

The analysis is a continuous procedure that proceeds re-
gardless of any handover. The RBS (in red) in Fig. 5 is
recognized as a rogue before the probable handover point. The
next sections will describe various possibilities depending on
whether both BS and rogue could be in the MR at the same
time or not. However, a rogue agent must not be taken into
account for handover.

Fig. 5. Detection of rogue base stations and transfer to a legal base
station.

The BS Analysis system will use RoCH as one of its
essential features to learn any fingerprint related to the RBS.

In addition, it will be considered in the ML approach by con-
structing a fingerprint of the rogue data stream and attempting
to identify what is in a dataset that characterises it as legitimate
or rogue.

D. Proposed Analysis System

By analyzing the RSS value ranges, it can be observed that
the MR’s strongest signal values are around -70 and -75, while
the weakest signals are around -90 and -95. These values are
influenced by the distance between the BS and the road and the
power of the BS transmission. The graph in Fig. 6 shows an
attack scenario where RBS values increase and decrease more
rapidly compared to LBS values. Consequently, the average
rate of RoCH for RBS is significantly higher during the initial
rise period than for LBS. As the RoCH is dependent on the
speed of the vehicle, the system needs to learn and adjust the
threshold accordingly.

Fig. 6. Attack scenario.

Fig. 7 demonstrates the transfer to RBS in this particular
scenario. The timeframes when the platoon leader is linked to
an LBS are denoted by a blue signal, while the connection to
an RBS is indicated by a red signal.

Fig. 7. Handover decision-making in an attack scenario.

This research introduces a novel BS monitoring model that
takes into account the potential presence of rogue actors in the
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mobile network. According to this proposal, which is depicted
in Fig. 8, a state machine is designed with three states for each
BS, including a blocked state that is reserved for a BS that
has been identified as a rogue in the MR and should not be
considered for handover:

• Blocked state: a BS that will not be considered for
handover. This may be because it has been assessed as
potentially rogue by the classifier, or because it has been
recently discovered and not yet completed its probation
period.

• Candidate state: a BS that has completed its probation pe-
riod and has not exhibited any rogue-like characteristics.
If the RSS of a candidate BS exceeds that of the currently
connected BS, then a handover event is initiated.

• Connected state: the currently “active” BS. Only one BS
will be in this state at any time.

Fig. 8. BS state machine in Analyser.

A newly discovered BS should be blocked until the proba-
tion period has expired. Upon completion of the probationary
period, the BS will be approved. Each BS moves between
the states depending on the rate of change of its signal
strength. For example, a candidate exhibits a sudden large
jump in its RSS value resulting in it being classified as a
rogue and becoming blocked (Rejected). Alternatively, if a
candidate rises normally and becomes the strongest signal
exceeding the handover threshold, then it will be the subject
of a handover event and will become connected (handover).
If the currently connected BS is no longer the strongest, it
will be replaced and revert to the candidate state (replaced),
or the connected BS might exhibit rogue-like behaviour so
would be immediately blocked. The Drop Out arc from other
states to the “Outside” state machine represents a BS that drops
out of the MR. In reality, it needs to move out of range and
then be rediscovered and pass a probation period to become
a candidate. A “Discovered” BS cannot become a candidate
until it has been observed and checked for a complete window
of timestamps. During this period, it is in the Blocked state.
The aim is to remove the arcs connecting “Candidate” and

“Connected” with “Blocked” by detecting RBS before they
are considered for detection.

IV. DEEP LEARNING APPROACH

This section of the study intends to investigate the effective-
ness of the ML method in distinguishing between rogue and
legitimate signals by training it with both types of instances.
The aim is to eliminate the need for a predetermined threshold
level in the process.

A. Produce Measurement Report

The 3GPP Technical Report 38.331 [26] outlines UE mea-
surement reports that contain pertinent data to identify Rogue
Base Stations (RBS). The reports include the cell identity and
Received Signal Strength (RSS), as well as information about
cell groups (CGI_info) that incorporate data from both the
MIB and SIB1.

The simulation tool utilised in the research can simulate a
vast number of BS and RBS along an extensive motorway, as
discussed in [27]. However, not all data related to BS and RBS
can be accessed by the handover mechanism simultaneously.
According to the 3GPP specification, the MR component
stores only the six strongest Received Signal Strength (RSS)
values at any given time [28], [29], which are calculated based
on the received signals from the six most prominent BS within
the platoon leader’s vicinity, as depicted in Fig. 9.

Fig. 9. Multiple data streams represent BSs, but only a maximum of
six BSs is included in MR at any time.

B. Machine Learning Dataset

When a new BS is discovered, it is assigned the “Blocked”
state. Once it has been present in the MR for a defined number
of consecutive samples, it can be analysed to determine
whether it is legitimate (“Candidate”) or rogue (“Blocked”).
Therefore, it is the first run of consecutive values that should
be used as training data for the proposed model and the
optimal length of this initial run is determined in the following
sections.

The Feature Design component in Fig. 1 takes the accu-
mulated MR data over a simulation period and generates the
ML dataset which will be utilised specifically for training the
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TABLE I
DATA FILE OF ML DATA (L: LEGITIMATE, R: ROGUE)

BS(i) Timestamp(i) BS Target
RSS1 RSS2 RSS3 RSS4 RSS5 RSS6 RSS7 RSS8 RSS9 RSS10

BS(1) -76.601 -76.545 -76.426 -75.997 -75.659 -75.418 -75.334 -75.154 -75.040 -75.583 L
BS(2) -82.753 -81.928 -81.835 -81.686 -80.905 -82.026 -82.161 -81.919 -81.874 -81.666 L
BS(3) -84.585 -84.817 -85.761 -85.991 -86.332 -86.516 -86.462 -86.439 -85.777 -85.655 L
BS(4) -87.612 -88.044 -87.889 -86.993 -87.592 -87.623 -88.213 -87.058 -87.102 -87.290 L
BS(5) -90.285 -89.245 -89.290 -89.188 -88.509 -87.579 -87.804 -88.252 -87.731 -87.887 L
BS(6) -90.862 -90.232 -90.018 -89.431 -89.628 -88.791 -90.088 -89.592 -89.791 -89.952 L
BS(7) -89.820 -89.463 -89.647 -89.154 -69.260 -68.773 -65.956 -66.554 -65.613 -66.044 L
BS(i-1) -79.483 -74.951 -69.992 -69.564 -69.679 -70.132 -69.947 -69.899 -71.056 -70.889 R
BS(i) -83.950 -80.313 -75.188 -70.416 -70.399 -70.267 -70.876 -70.851 -70.891 -71.973 R
BS(n-1) -84.039 -79.276 -75.123 -75.509 -74.913 -75.110 -75.424 -75.446 -75.697 -76.000 R
BS(n) -92.281 -87.595 -83.476 -78.500 -74.190 -74.293 -74.622 -74.371 -74.691 -75.132 R

ML classifier. In addition, the rate of changes can be added as
well to have more features for learning more to identify RBS
accurately.

The experiments carried out in this study necessitate using
a dataset that contains both malicious and legitimate BSs.
The simulations include different road lengths and BS/RBS
positions/densities [11]. When the UE (in this scenario, the
lead vehicle of a platoon) is within the range of the BSs, the
received signal is calculated per second.

A snapshot of the ML training data, which includes data
streams from both LBS and RBS, is shown in Table I. Each
BS is assigned its own line in the data, with the first set
of consecutive RSS readings for that BS in the MR and an
identification (L for LBS, R for RBS) following.

The width of the sample window is the quantity of RSS
samples included in each BS set. Alternative window sizes
will be looked into even though the size of the window in this
example is assumed to be 10.

Three datasets of different sizes have been created as
described in Table II. For example, in the first dataset, we
simulate a 500 km road with 30000 timestamps in which there
are 90 legitimate BSs and 18 rogue BSs. The details of the
three datasets are presented.

TABLE II
PARAMETER SETTING OF SIMULATIONS OF THREE DATASETS

Dataset LBS RBS Road Length(Km) Timestamp(S)
90LBS–18RBS 90 18 500 30000
500LBS–90RBS 500 90 4000 170000
1000LBS–180RBS 1000 180 5000 225000

C. Classification

The classification stage in Machine Learning is a procedure
for determining whether or not an observation falls into a
specific category. Here, it detects whether an unknown base
station (observation) is genuine or fake (categories).

In this section, it will be demonstrated how datasets and fea-
tures were combined to generate classifier models to correctly
identify a stream of received signal values as representing
either a legitimate or rogue BS. The classifier is trained by
feeding it successive data streams (one stream at a time),

indicating for each whether the stream represents a legitimate
or rogue BS.

Once the classifier has learned how to differentiate between
legitimate and rogue streams, we can then pass it an unknown
stream representing the output from either a legitimate or
rogue BS and have it classified.

An artificial neural network algorithm is implemented to
verify the model performance. The detection model proposed
is a binary classification Multilayer Perceptron (MLP) using
the sequential API as shown in Fig. 10. The classifier includes
three hidden layers. The first layer consists of “relu” activation
function with a ‘he_normal‘ weight initialisation to overcome
the problem of vanishing gradients when training deep neural
network models. The activation functions in the second layer
are the “tanh” and “sigmoid” functions. The optimiser is
“SGD” (Stochastic Gradient Descent), and the loss function
is “binary_crossentropy”. The selection of all activation func-
tions and loss functions was based on the analysis results.

V. PERFORMANCE EVALUATION AND RESULTS

In this stage, we will apply our classifier to test data sets
to evaluate the accuracy and reliability of our method. First,
we will consider some evaluation metrics in the following
paragraph and then show some diagrams to show and compare
the results with the following scenarios.

• True positive (TP): positive samples correctly classified as
positive, here, i.e., correctly identified LBS. This would
remain in the "Candidate" or "Connected" state in the
state machine provided in Section III.

• True negative (TN): negative samples correctly classified
as negative, i.e., correctly identified RBS; refer to a state
diagram in which BS would move into (or remain in) the
“Blocked” state.

• False-positive (FP): negative samples incorrectly classi-
fied as positive, here, i.e., wrongly identified LBS; BS
which should be “blocked” remains as “candidate”. When
an RBS has been identified as a legitimate (FP), it makes
a critical situation in the handover process – a situation
that we are trying to prevent.

• False-negative (FN): positive samples correctly classified
as negative, i.e., wrongly identified RBS; In this case,
the BS which is a legitimate “candidate” is wrongly

Page 6 of 26IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

Fig. 10. Artificial neural network architecture.

“blocked”. Not the desired outcome, but not a disaster as
long as we are currently connected, or another legitimate
candidate is available. Therefore, when a legitimate BS
is identified as a rogue, the impact is less significant.

Four different metrics are used for each classifier’s eval-
uation [30], [31]. First, accuracy is the classifier’s ability to
categorise the samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Second, Recall or Sensitivity, is the proportion of positive
samples that are classed as positive. It is also called Sensitivity
or True Positive Rate (TPR), which is the LBS detection
probability:

Recall =
TP

TP + FN
(2)

Third, precision is the proportion of correct positive classifi-
cations (TP) from cases predicted as positive:

Precision =
TP

TP + FP
(3)

Fourth, the F1-score is the harmonic mean and takes precision
and recall into account:

F1-score = 2× Precision×Recall

Precision+Recall
(4)

Next, we examine the model’s performance and investigate
the effects of different data set sizes, RSS window sizes, and
different portions of training and test data sources. Through
experimentation, we compared three datasets with 70/30 splits
between training and testing as well as varied window widths
of RSS in terms of accuracy, recall, precision, and F1-score.
As might be predicted, accuracy may be observed to grow
as more data is taken into account. A 70/30 split between
training and testing data results in an accuracy result of 0.975
for WS=3 with 500 LBS and 90 RBS, as indicated in Fig. 11
by a dashed green line.

Fig. 11. Accuracy metric.

The green line indicates that this metric increases to 0.985
with an 80/20 split between training and testing data. Accuracy
rises even further for the bigger dataset, hitting 0.995 for
the 500LBS-90RBS dataset and 0.99999 for the 1000LBS-
180RBS dataset. Similarly, the precision, recall, and F1-score
metrics will rise with larger datasets and training data, which
will be explored in the following part.

The greater the window size, the more data there will be to
work with to make a more accurate conclusion. The Accuracy
measure in Fig. 11 shows that WS=3 is not a sufficiently
trustworthy size, and so it is not an adequate size for a window.
WS=5 is substantially more reliable, although WS=7 yields
0.995 accuracy. However, for the biggest dataset, WS=10 is the
best choice overall, with accuracy=0.99999. However, when it
comes to the overhead of using a bigger window size than is
necessary, it is more likely that a larger window may hamper
connection since a possible BS will be blocked for a longer
amount of time, which may result in latency. Blocking a BS
from handover for a longer length of time owing to a wider
window may have a detrimental influence on signal availability
to the platoon.

The decision-making process becomes more accurate as
the range of possibilities widens. Nevertheless, even after
exploring WS=12 and WS=15, it was found that they did not
yield better results than WS=10. Consequently, the experiment
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Fig. 12. Precision metric.

was terminated at WS=10, and now WS=10 can be fully
trusted. There is no justification to consider larger window
lengths at this point. Fig. 12, Fig. 13 and Fig. 14 show the
findings for the other three performance metrics, revealing
that the precision, F1-score, and recall factors for the 90LBS-
18RBS dataset are 0.997, 0.998, and 1.0, respectively, and
improve with larger comprehensive datasets.

Fig. 13. F1-score metric.

Fig. 14. Recall metric.

Table III demonstrates that the True Negative Rate (TNR),
varies between 98.97% and 100% for various datasets with
varying divisions of training and test data, implying that

the detection probability of RBS for the proposed model is
about 99.50%. On the other hand, the maximum bound of
the False Positive Rate (FPR) that detects rogue agents as
genuine is around 1%. The 500LBS-90RBS dataset appears to
be an anomaly, outperforming the 1000LBS-180RBS dataset.
Moreover, the False Negative Rate (FNR), which measures the
probability that LBS is a rogue, is also zero.

In general, when the dataset is much smaller, there is less
training data available, resulting in FP. Except for 500LBS-
90RBS, all datasets attain an FPR close to zero. Plotting the
loss function rate is a helpful technique to see if the model is
appropriately trained. During model training, the loss function
is utilised to determine the target value for the model to
achieve. We have used binary cross-entropy from the Keras
library, a high-level neural network library, in our experiment.
It is used in binary classification model as a loss function
and computes the difference in cross-entropy between true and
predicted labels. This is crucial to ensuring that the model is
fitted correctly. Fig. 15 shows the loss rate of the model for
the same configuration. The minimal rate is accomplished in
a variety of datasets. The results reveal that the loss rate is
unaffected by window size; nevertheless, the larger the dataset,
the lower the loss rate [32], [33].

Fig. 15. Loss rate.

VI. CONCLUSION AND FUTURE WORK
5G includes many measures to help secure the network

and protect users’ privacy and security. However, one of
the most pressing issues in user and network security, as
recognised by the 3GPP Security Group, is the identification
of malicious agents in mobile networks. RBS attacks have
been identified as a significant threat. So, the detection of
RBS attacks will be a substantial contribution to knowledge
from this research. We have designed and implemented a
new method to intelligently detect the presence of a rogue
by using a Multi-Layer Perceptron technique. The system is
termed RBS-MLP and it is 3GPP compliant. The system can
be deployed in the gNBs of a 5G RAN to gather information
from Measurement Reports from mobile devices and analyse
how the reported signal strength varies with time to identify
a signal from an RBS. We have tested this system with large
sets of synthetic data from a vehicle platooning scenario to
fine tune the system. The results show that the ML approach
produces 99.999% accuracy, i.e., is one misclassification in
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TABLE III
TPR: LBS DETECTION PROBABILITY, TNR: RBS DETECTION PROBABILITY

FPR FNR
Dataset WS=3 WS=5 WS=7 WS=10 WS=3 WS=5 WS=7 WS=10

90LBS–18RBS 0 0 0 0 0 0 0 0
500LBS–90RBS 1.03 1.03 1.03 1.03 0 0 0 0

1000LBS–180RBS 0 0 0 0 0 0 0 0

TPR TNR
Dataset WS=3 WS=5 WS=7 WS=10 WS=3 WS=5 WS=7 WS=10

90LBS–18RBS 100 100 100 100 100 100 100 100
500LBS–90RBS 100 100 100 100 98.97 98.97 98.97 98.97

1000LBS–180RBS 100 100 100 100 100 100 100 100

every 100,000, with some specific results and provides a new
baseline method for RBS detection. Also, will help to improve
5G services in our target deployment (platooning). The next
step of the work will involve the deployment of various AI/ML
techniques and compare performance metrics.
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Fig. 1. RBS detector. 
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Fig. 2. Received signal strength in a legitimate scenario. 
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Fig. 3. Handover decision-making in a legitimate scenario. 
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Fig. 4. Candidate BS monitoring period for a legitimate scenario. 
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Detection of rogue base stations and transfer to a legal base station. 
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Fig. 6. Attack scenario. 
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Fig. 7. Handover decision-making in an attack scenario. 
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Fig. 8. BS state machine in Analyser. 
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Fig. 9. Multiple data streams represent BSs, but only a maximum of six BSs is included in MR at any time. 
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Fig. 10. Artificial neural network architecture. 
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Fig. 11. Accuracy metric. 
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Fig. 12. Precision metric. 
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Fig. 13. F1-score metric. 
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Fig. 14. Recall metric. 
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Fig. 15. Loss rate 
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