

City, University of London Institutional Repository

Citation: Sridhar, S., Ascigil, O., Keizer, N., Genon, F., Pierre, S., Psaras, Y., Rivière, E. &

Krol, M. (2024). Content Censorship in the InterPlanetary File System. Paper presented at
the Network and Distributed System Security Symposium, 26 Feb - 1 Mar 2024, San Diego,
USA. doi: 10.14722/ndss.2024.23153

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/32460/

Link to published version: https://doi.org/10.14722/ndss.2024.23153

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Content Censorship in the
InterPlanetary File System

Srivatsan Sridhar∗, Onur Ascigil†, Navin Keizer¶, François Genon‡

Sébastien Pierre‡, Yiannis Psaras∥, Etienne Rivière‡, Michał Król§
∗Stanford University †Lancaster University ¶University College London

‡ICTEAM, UCLouvain ∥Protocol Labs §City, University of London

Abstract—The InterPlanetary File System (IPFS) is currently
the largest decentralized storage solution in operation, with
thousands of active participants and millions of daily content
transfers. IPFS is used as remote data storage for numerous
blockchain-based smart contracts, Non-Fungible Tokens (NFT),
and decentralized applications.

We present a content censorship attack that can be executed
with minimal effort and cost, and that prevents the retrieval of
any chosen content in the IPFS network. The attack exploits
a conceptual issue in a core component of IPFS, the Kademlia
Distributed Hash Table (DHT), which is used to resolve content
IDs to peer addresses. We provide efficient detection and mitiga-
tion mechanisms for this vulnerability. Our mechanisms achieve
a 99.6% detection rate and mitigate 100% of the detected attacks
with minimal signaling and computational overhead. We followed
responsible disclosure procedures, and our countermeasures are
scheduled for deployment in the future versions of IPFS.

I. INTRODUCTION

Inter-Planetary FileSystem (IPFS) is the largest decentral-
ized peer-to-peer filesystem currently in operation. The plat-
form underpins various decentralized web applications [13],
including social networking and discussion (Discussify [54],
Matters News [16]), data storage (Space [19], Peergos [18],
Temporal [21]), content search (Almonit [1], Deece [6]), mes-
saging (Berty [3]), content streaming (Audius [2], Watchit [73],
DTube [7]), gaming (Gala [23], Splinterlands [20]), and e-
commerce (Ethlance [10], dClimate [5]). IPFS is widely used
as external storage for blockchain-based applications, includ-
ing valuable NFT platforms. Support for accessing IPFS has
further been integrated into HTTP gateways (e.g., Cloudflare)
and mainstream browsers such as Opera and Brave, allowing
easy uptake. The IPFS network currently contains a steady
number of 25,000 online nodes, spread across 2,700 Au-
tonomous Systems and 152 countries, according to a recent
study [66] that also observed widespread usage by clients with
7.1 million content retrieval operations observed from a single
vantage point and during a single day.

IPFS is a content-centric network where each piece of
content is identified by a Content Identifier (CID), similarly
to BitTorrent [4] or Content-Centric Networking [72]. CIDs
are derived by hashing the content and do not embed any

network location information. Such an approach enables easy
content deduplication and the retrieval of data from the closest
available location, in addition to maintaining data integrity.

Data retrieval in a content-centric network requires map-
ping CIDs into network identifiers (i.e. IP addresses and
port numbers) of nodes hosting the content, called providers.
Without this resolution mechanism, nodes willing to fetch
data, or downloaders, have no means to know where to
send their requests for data. The design of IPFS results from
decades of research on how to build efficient P2P systems [24],
[49]. It uses resolution based on a Distributed Hash Table
(DHT) combined with Bitswap, a flooding-based, unstructured
search mechanism. Similarly to systems such as Gnutella [59],
downloaders use Bitswap to establish connections to random
peers in the network and send them content queries. Bitswap
acts as a lightweight cache and speeds up the retrieval of
popular content, but cannot provide discovery guarantees, in
particular for newer or less popular data.

Reliable content discovery is provided by the DHT-based
resolution system. Nodes hosting content advertise themselves
as providers in the network. First, they create provider records
linking their hosted content (identified by CIDs) to their
network location (i.e., IP address and port number). Second,
the providers send the provider records to be stored on a
fixed number of designated nodes. We refer to those nodes as
resolvers. Downloaders wishing to fetch the content contact
the same resolvers, retrieve the relevant provider records, and
then directly contact the discovered providers to download
the data. The DHT guarantees to find the content if it is
stored in the network. Its proper operation is, therefore, of
paramount importance to ensure content availability. IPFS uses
the libp2p implementation [14] of the Kademlia DHT [52].

Contributions. We make four main contributions.

First, we present a content censorship attack targeting the
main IPFS DHT-based resolution system. The attack relies
on strategically placing Sybil identities in the network so
that they replace honest resolvers for a given CID. As a
result, downloaders cannot discover provider records for the
target CID and are unable to download the content. The
attack can be performed from a single, resource-constrained
machine at very little cost ($4 using AWS) and makes the
provider records unavailable after a time that ranges from
a few seconds to up to 48h depending on the initial setup.
Currently, IPFS has no mechanisms to counter the attack,
threatening the security of systems using IPFS as a storage
platform. This includes collaborative file hosting solutions such

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23153
www.ndss-symposium.org

as Filecoin [58] and systems building upon it [36], [45]. It also
concerns the many proposals combining IPFS for storage with
blockchain-hosted application logic, e.g., to implement social
networks [69], domain-specific data sharing applications [46],
[55], or decentralized equivalents to centralized services such
as ride-sharing [44].

Second, we present a reliable attack detection technique
that analyzes the distribution of peer IDs in the network using
the KL Divergence metric [53]. This method extends previous
work [30] and leverages a local density-based network size
estimator [47], [50], [61] to automatically adjust the detection
to the dynamic size of the IPFS network. The detection allows
providers to execute mitigation techniques, which may be
more costly than the default mode, only when an attack is
detected, thereby minimizing the overhead when there is no
attack. The detection can be performed by any node during
regular content resolution operations and does not incur any
additional message overhead. In our experiments on the live
IPFS network, our attack detection method was able to detect
99% of the attacks with a false positive rate of 4%, while
allowing users to trade off these rates based on individual
preferences. A higher detection rate ensures better security
while also leading to more false positives that increase the
overhead when there is no attack.

Third, we introduce a mitigation technique that allows us
to reliably discover provider records regardless of the number
of Sybil nodes placed by an attacker around the target CID.
The mitigation replaces the regular put and get DHT operation
by hash space region-based queries. Using these, providers
always find honest resolvers to store their provider records
and querying nodes always discover these honest resolvers and
receive true provider records. While introducing an overhead
sub-linear in the number of Sybil nodes placed close to the
target CID, this mitigation is only enforced when suspicions
exist about the existence of an attack, as indicated by our
detection mechanism.

Finally, we implement the attack using a custom IPFS DHT
server node, and we implement our detection and mitigation
techniques on top of the libp2p DHT [14].1 Importantly, the
detection and mitigation implementations are fully compatible
with the unmodified IPFS clients and can be incrementally
deployed in the system. Therefore, while nodes that have
not upgraded may remain vulnerable to the censorship attack,
they continue to interoperate with nodes that have upgraded.
We evaluate the feasibility of the attack and the efficiency
of the countermeasures using simulations as well as actual
experiments on the live IPFS network. Our proposed detection
and mitigation schemes are scheduled to be deployed in the
next release of the libp2p DHT.

Related Attacks and Mitigations. Similar DHT vulnerabili-
ties have been previously discussed in the literature [31] and
multiple prevention mechanisms have been proposed [31]–
[34]. However, mostly due to practical reasons [26], [31], [32]
or unrealistic assumptions [33], [34], [57], these mechanisms
cannot be deployed in modern decentralized systems. We
provide a detailed discussion on this topic in Section IX. As a
result, multiple top-tier systems currently rely on a vulnerable
DHT for various purposes. The peer discovery mechanism

1See Appendix A for details including where to find the implementations.

for several blockchains (e.g., Ethereum [22], Celestia [29], or
Polkadot [27]) uses the same libp2p DHT implementation
as IPFS. File sharing in I2P [64] and data dissemination
in Dat [35] also use the Kademlia DHT, although with a
different implementation. Our contributions (both the attack, its
detection, and mitigation mechanisms) are expected to apply
to these systems as well and more broadly to systems using
Kademlia or a Kademlia-like DHT.

Outline. In Section II, we discuss ethical considerations for our
study. Section III presents background on IPFS and its content
resolution mechanisms. Section V, Section VI, and Section VII
respectively introduce the attack, its detection, and mitigation
techniques. In Section VIII we evaluate all these mechanisms
experimentally and we discuss related work in Section IX.
Section X provides a discussion on the implication of the
attack and its countermeasures, while Section XI concludes the
paper. This paper has an accompanying artifact which contains
implementations of the attack, detection and mitigation, and
experiments. Appendix A describes how to access the artifact
and run the experiments to reproduce the results stated in this
paper.

II. ETHICAL CONSIDERATIONS AND RESPONSIBLE
DISCLOSURE

Our work discovers a vulnerability in an existing system
with thousands of users, and our experiments involve mounting
an attack on the live IPFS network. This may raise ethical
concerns. However, we have worked closely with Protocol
Labs, the company that created and maintains IPFS and
libp2p, to develop mitigations for the attack and ensure that
our experiments do not cause harm to any existing users.

As soon as we discovered the potential security impact
of the vulnerability in June 2021, we initiated a responsible
disclosure process by contacting Protocol Labs. Subsequently,
the vulnerability has been assigned a CVE record CVE-2023-
2624812. Details of the CVE record will be made public
once the mitigation is deployed and this work is published.
To ensure no harm or danger to regular operations or honest
users, we limited our censorship attacks to randomly generated
content published by our own nodes. Our attacker nodes were
implemented to only drop messages related to our randomly
generated content and behave normally otherwise to avoid any
other side effects on the network.

Throughout the process, Protocol Labs actively supported
our research by providing access to their datasets, including
network crawls. They welcomed further research based on
our findings and provided advice on performance requirements
for detection and mitigation techniques. Public disclosure of
the vulnerability was carried out at IPFS Camp 2022 [12]
held by Protocol Labs, which included discussions with IPFS
developers, maintainers, and other researchers. We are cur-
rently working with Protocol Labs on the deployment of our
detection and mitigation methods in the next version of the
libp2p DHT. This deployment will benefit other systems
using libp2p, including Ethereum [22], Celestia [29], or
Polkadot [27]. Our mechanisms are not specific to the libp2p
implementation of the Kademlia protocol and can be ported to

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-26248

2

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-26248

other implementations of the DHT by their maintainers. We
commit to assisting these maintainers in this task.

III. BACKGROUND

In this section, we provide the necessary background
information to ensure a comprehensive understanding of the
attack described in this paper. We start with a description of
the Distributed Hash Table (DHT) used by IPFS, followed by
its content resolution mechanisms. We also detail techniques
for network size estimation, necessary for our attack detection
and mitigation mechanisms.

A. IPFS DHT

We review the features of the Kademlia DHT [52] and its
libp2p implementation [14] that are the most relevant to our
attack. To participate in the DHT, each peer generates a pub-
lic/private key pair and derives an identity peerid ∈ {0, 1}256
as the hash of its public key. Ideally, each peer generates
a random key pair and, therefore, peer IDs are distributed
uniformly and independently over the space {0, 1}256. While
honest nodes follow this rule, malicious nodes may generate
and choose from an arbitrary number of key pairs. Each peer
maintains a routing table consisting of m = 256 buckets. The
i-th bucket contains the addresses of up to k = 20 peers whose
peer IDs share a common prefix of exactly i bits with the peer’s
own peer ID.

A new participant node joins the IPFS network by con-
tacting one of the hardcoded bootstrap nodes. This bootstrap
node provides the new node with some initial peers allowing
it to join the DHT. The new node uses this information to
perform a walk through the DHT towards its own peer ID.
The walk allows to: (i) make sure that there is no other node
in the network with the same ID; (ii) discover new peers and
fill the newcomer’s DHT routing table. At the same time, the
newcomer establishes Bitswap [36] connections to a subset of
encountered peers (usually around 300 of them). The core role
of the Bitswap protocol is to enable bilateral content transfer
and to play the role of a cache for recently-accessed content.

The main DHT operation GETCLOSESTPEERS(key) re-
turns the k = 20 closest peers to key. In Kademlia, the
distance between two keys x and y in the key space is given
by x⊕y ∈ {0, ..., 2256−1}, where ⊕ denotes the bitwise XOR
operation on the keys; the resulting binary string is interpreted
as an integer. When a client wants to find the peers with IDs
closest to key, it sends a request to the α = 3 peers in its
routing table whose peer IDs are closest to key. Each of these
peers returns the k closest peers to key in its own routing
table and the addresses of these peers. The client again sends
a request to the α peers closest to key, among peers in its
routing table and those whose addresses it just received. This
process repeats until the client does not find any more peers
closer to key. Due to network churn and imperfect routing
tables, we observed in our experiments that successive calls to
GETCLOSESTPEERS(key) do not always return the true set of
k = 20 closest peers (we provide more details in Section VIII,
Figure 6).

B. Content Resolution in IPFS

IPFS is a content-centric network. It allows its participant
to request files without specifying their location. Content is
indexed by content IDs cid ∈ {0, 1}256 that are derived from
a hash of that content. Both peer IDs and CIDs are used as
keys in the DHT. Each node can play the role of a provider,
downloader, or resolver. The process of content advertisement
and resolution is illustrated in Figure 1.

When a provider wishes to publish content with a given
cid on IPFS, it creates a provider record that contains cid
and the provider’s address. During a PROVIDE(cid) operation,
the provider first uses GETCLOSESTPEERS(cid) to locate the
k = 20 peers with their peer IDs closest to cid, and then sends
them a PutProvider message including the provider record
(Figure 1(a)). We call the peers that hold provider records for
cid the resolvers for cid.

Each CID can have several providers. In fact, by default,
each IPFS client becomes a provider for each piece of content
it downloads for a fixed amount of time (12h, 24h, or 48h
depending on the client version or custom configuration). As a
result, the system provides an auto-scaling feature with supply
automatically rising with demand.

When a downloader wishes to fetch a piece of content,
it first sends a request to all its Bitswap peers. If none of
them has the content, the downloader uses the DHT-based
resolution system. We stress that the Bitswap protocol plays the
supporting role of a cache in the dissemination of popular files.
However, the mechanism does not provide reliable content
resolution, in particular for new or less popular content.

When Bitswap unstructured search fails, the downloader
resolves cid using FINDPROVIDERS(cid). This operation uses
a DHT walk identical to that of GETCLOSESTPEERS(cid)
to find k resolvers but also queries encountered nodes for a
provider record for cid (Figure 1(b)). The process terminates
when either 20 providers have been found, or all resolvers
have been asked. Querying all encountered nodes (i.e., not
only the designated resolvers) is useful because some of the
encountered nodes may have a provider record in their cache.

Upon receiving a provider record, the client connects to the
address specified in the provider record to retrieve the actual
content (Figure 1(c)). Provider records are not authenticated,
and therefore malicious providers may respond with incorrect
provider records (or may not respond at all). However, the
integrity of the content is preserved because the hash of the
retrieved content can be verified against its cid.

C. Network Size Estimator

The number of nodes in a decentralized system is generally
unknown due to the avoidance of centralized membership man-
agement. This number is nonetheless useful for optimizations,
deciding on individual node configurations, or security mech-
anisms. Various methods were proposed for the decentralized
estimation of unstructured and structured networks [47], [50],
[61]. We use in this work a mechanism developed initially
by Protocol Labs as part of a mechanism for decreasing the
latency of publishing content in IPFS [17], [65].

Each node in the DHT refreshes its routing table peri-
odically (every 10 minutes in libp2p). For this, the node

3

keyspace
1 2 3 4 5 6 7 8

Provider CID

Resolvers (k closest peers)

1 has Provider Record

(a) Add Provider

keyspace
1 2 3 4 5 6 7 8

Provider CID

Resolvers (k closest peers)

Downloader

1 hasProvider Record Who has ?

(b) Get Providers

keyspace
1 2 3 4 5 6 7 8

Provider Downloader

1 has

(c) Content Transfer

Fig. 1: Content resolution using the DHT. 1) The provider
upload its provider record to designated resolvers. 2) The
downloader fetches the provider record from resolvers. 3) The
downloader uses the information in the provider record to
download the content directly from the provider.

samples m random keys (one for each bucket of its routing
table) and queries the DHT to obtain the k = 20 closest
peer IDs to each key. Using these, the node then computes
the average distance between each one of these keys keyj for
j = 1, . . . ,m and their i-th closest peer ID for i = 1, ..., k
(with m = 256 and k = 20).

Di =
1

m

m∑
j=1

dist(keyj , peerid
(i)
j) (1)

where peerid
(i)
j is the i-th closest peer ID to keyj . With N

peers in the DHT and peer IDs uniformly distributed in the
hash space, the expected distance between a key and its i-th
closest peer ID is 2256i

N+1 . The node then runs a least square
regression to compute the value of N for which the expected
distances best fit the empirical average distances, i.e.,

N̂ = argmin
N

k∑
i=1

(
Di −

2256i

N + 1

)2

. (2)

The resulting estimate N̂ can be computed in closed form.

When a node starts running, it must perform DHT queries
for a few random keys to initialize its network size estimate.
Since a larger number of queries will result in higher accuracy,
making more queries than what is needed to initialize one’s
routing table is recommended. Thereafter, keeping the estimate

up-to-date does not require any excess DHT queries beyond
what is already used for refreshing the routing table as this is
done frequently (every 10 minutes).

While the network size estimate has a stochastic variance
resulting from the probability distribution of the honest peer
IDs, it is hard for an attacker to bias the estimate significantly.
Since the estimator uses the density of peer IDs around keys
chosen uniformly at random, the adversary would require
numerous Sybil nodes (on the order of the whole network
size) to significantly affect the peer ID density around those
keys.

IV. THREAT MODEL

We assume N DHT nodes participating in the IPFS net-
work. Multiple nodes may share the same IP address (due
to NAT or being hosted by the same physical machine) [51].
However, two nodes cannot share the same ID.

We assume the presence of malicious actors in the network
that may refuse to store valid provider records and distribute
these to honest participants. Malicious actors can spawn
multiple virtual nodes within one physical machine, operate
multiple physical machines, and coordinate their actions. We
assume that no honest node is fully eclipsed by malicious
ones, i.e., each honest node has at least one honest peer and
the DHT routing allows honest nodes to reach any key and
discover other honest peers. IPFS already implements multiple
mechanisms preventing eclipse attacks at the DHT level [56].

An attacker running Sybil nodes interfaces with the net-
work using regular IPFS operations. We do not rely on bugs
present in the operating system or any other components not
related to the P2P network node implementation under attack.
Any flaw in the P2P system protocols, however, may be
exploited as these are considered part of the attack target. Non-
Sybil DHT nodes (ones that are not spawned by the malicious
actor) are assumed to be configured and operated as intended.
Thus, importantly, the attacker only controls Sybil nodes that
they create but does not corrupt or bring down any other nodes.

The goal of the attacker is to prevent downloaders from
obtaining provider records for a target CID. This leads to
content censorship as the downloader cannot find a provider to
obtain the content from (recall that Bitswap is only a cache for
popular content while the DHT is required for reliable content
discovery). We measure the attack effectiveness aeff as the
ratio of unsuccessful FINDPROVIDERS(cid) queries to the total
number of queries for existing content cid issued by honest
downloaders. A query is unsuccessful if it does not return
any honest provider record. The attack effectiveness may vary
depending on the placement of the CID and the downloader
issuing the request in the hash space. We thus always consider
aeff as an average for multiple CIDs and multiple downloaders,
both uniformly spread across the hash space.

The goal of honest participants is to detect the attack and
mitigate its effects, i.e. to enable downloaders to discover valid
provider records and later fetch the content despite the actions
of the attacker.

To assess the effectiveness of our detection mechanism, we
use the false positive fp and false negative fn rates. The false
positive rate fp is the proportion of erroneous detections (i.e.

4

General parameters

N Network size (number of nodes)

k
Bucket size, resolvers per CID, and number of closest
peers obtained in a GETCLOSESTPEERS(cid) call
(currently, k = 20 in libp2p/IPFS)

Attack general parameters

aeff Effectiveness of the attack [%]

e Number of Sybil nodes

e(aeff)
Number of Sybil nodes necessary to perform the attack
with effectiveness aeff .

Attack costs

s(e)
Brute-force attempts necessary to generate e Sybil
identities that are the closest to a target CID.

cgen Cost of generating s(e) Sybil identities [$]

coper
Cost per unit time of operating e Sybil nodes to attack a
single CID [$/s]

catt Total cost of attacking a single CID [$]

Attack performance

tw
Warmup time during which the e Sybil nodes need to be
run but the attack is not yet fully effective [s]

teff

Time after tw during which the attack remains fully
effective. The attack maintains its effect only as long as the
e Sybil nodes are present in the network [s].

Detection and mitigation performance

thr Threshold for the detection mechanism
fn Detection false negative rate [%]

fp Detection false positive rate [%]

meff Effectiveness of the mitigation [%]

TABLE I: Parameters and characterization of the attack, de-
tection, and mitigation.

when there was no attack). The false negative rate fn is the
proportion of attacks that are not detected. A detection leads to
a mitigation action. A false positive leads, therefore, solely to
additional overhead, while a false negative leads to effective
censorship of content. Henceforth, we favor minimizing the
false negative rate fn.

The mitigation effectiveness meff is the ratio of the number
of successful FINDPROVIDERS(cid) queries to the total num-
ber of queries issued by honest downloaders when the target,
existing cid is under attack and the mitigation mechanism
is used. A successful query is defined as one that returns
at least one honest provider record. Similarly to the attack
effectiveness, we report meff as an average for queries issued
for multiple CIDs by multiple downloaders uniformly spread
across the hash space.

V. CID CENSORSHIP ATTACK

We now proceed to detail our content censorship attack,
targeting a specific victim CID. To describe and analyze this
attack, we use a Sybil attack model with notations adapted
from prior work [56], [57] and summarized in Table I.

keyspace
1 2 3 4 S S S S 5 6 7 8

Provider CID

k closest peers

Provider Record

Fig. 2: Illustration of a censorship attack: Attacker places k
Sybil peers (k = 4 in this example) closer to the CID than
any honest peers, so provider records are now only sent to
Sybil peers. Similarly, requests to obtain provider records are
sent to the Sybil peers, who can ignore them.

A. Attack process

Overview. In IPFS, provider records for a target CID should be
stored on the k = 20 peers closest to that CID (i.e. resolvers).
We generate e ≥ k Sybil identities that are closer to the target
CID than to the closest honest peer. As a result, those Sybil
identities receive all new provider records from providers and
resolution queries from downloaders for that CID. Figure 2
illustrates the position of Sybil peers. Sybils drop provider
records and do not respond to queries for that target CID.

Details. The attack proceeds as follows. First, we use the IPFS
API to retrieve the current k = 20 closest peer IDs to the target
CID, sort them by distance to the CID, and identify the closest
one. We then repeatedly generate random public/private key
pairs and compute new peer IDs by hashing the public key. If
a generated peer ID is closer to the CID than to the currently
closest peer ID, we keep the corresponding key pair, otherwise,
we discard it. We repeat the process until we obtain e peer IDs
that are closer to the target CID than any of the original 20
closest peer IDs.

For each generated Sybil peer ID, we spawn a custom
libp2p DHT node (server) that joins the IPFS network.
These Sybil nodes drop received provider records for the target
CID and respond with empty messages to received resolution
queries for the target CID. The Sybil nodes behave normally
for other CIDs, so that our experiments do not affect the rest
of the network. The attacker continuously monitors the set of
e closest peers to the target CID to make sure it contains only
the Sybil nodes. If a new, honest node appears in the set, the
attacker reacts by generating additional identifiers to maintain
the desired number of Sybil nodes in the set.

B. Attack analysis

We analyze the attack in terms of cost and in terms of
effectiveness, including its timing.

Initial costs. The first cost for an attacker is that of generating
Sybil identities. As the hash function is pre-image resistant,
this process must use a brute force generation of private/public
key pairs and associated IDs. The number of attempts it takes
for generating e Sybil identities that are closer to the target
is denoted s(e). This number naturally depends on e, but also
on the distance of the closest honest peer from the target CID,
which in turn depends on the number of peers in the network.

5

The closer the honest peer is to the target CID, the more keys
the attacker needs to generate to obtain Sybil peer IDs closer
to the CID.

The number of attempts further translates into an oper-
ational cost which we quantify using public cloud resource
costs. This cost cgen depends on s(e) and the cost of gener-
ating one private/public key pair. IPFS and libp2p support
both the RSA and Edwards-curve Digital Signature Algorithm
(EdDSA) cryptosystems. The generation of keys for EdDSA is
significantly faster than for RSA, and both are embarrassingly
parallel; we evaluate these costs in Section VIII, and choose
to target EdDSA in our implementation of the attack

The effectiveness of the attack aeff varies with the number
of Sybils e. Theoretically, the attack only requires e = k = 20
Sybil identities. However, different DHT nodes do not always
discover the same set of k = 20 closest peers (we provide
experimental evidence in Section VIII, Figure 6). As a result,
the attack generally requires more than 20 Sybil identities
(as some further honest peers may be discovered). On the
other hand, some of the discovered peers may not be online,
so the attack may also succeed with fewer than 20 Sybil
identities. We empirically studied the effect of the number of
Sybil identities on the rate of successfully censoring the target
content, and observe that e = 45 Sybil identities can censor
content with a aeff = 99% probability of success (Section VIII,
Figure 7). While e(aeff) depends on k, e(aeff) does not depend
on whether the content was already provided before the Sybils
were launched or not.

Timing. The warmup time tw, i.e., the time before the content
is effectively censored and becomes undiscoverable, depends
on whether the Sybil peers are launched before the provider
sends its provider records to the network or the Sybil peers
are launched after.

If Sybil peers are launched before the first provider sends
its provider record to the network then, since the Sybil peers
are the closest peers to the target CID, providers will most
likely send their provider records to only Sybil peers. These
Sybil peers simply drop the provider records. As a result, the
content never becomes discoverable in the network. Therefore,
if all Sybil nodes are launched before the first provider
advertised the content, the attack is effective immediately, i.e.,
tw = 0. We note, however, that this best-case scenario is not
likely in all contexts of use of IPFS, as it requires knowing the
CID of the content to censor before mounting the attack. This
CID depends, indeed, on the content of the file which may
be known only upon its publication. In certain cases, however,
the attacker may know in advance that a specific file will be
published and act to prevent its discoverability.

If the provider records were already stored on honest
peers before the Sybil peers were launched, a downloader
may encounter an honest peer with relevant provider records
before reaching the Sybil peers, and be able to obtain the
provider records this way. By default, however, such provider
records expire every 48 hours3, after which a provider must
call PROVIDE(cid) again. As a result, in the worst case, the
last provider record on an honest resolver will be removed
tw = 48h after launching the Sybil nodes, after which the

324 hours in older versions of go-libp2p

content becomes censored. It is not desirable to get rid of
this limited lifetime of provider records: an unlimited lifetime
would result in a gradual overload of long-running peers and
open new avenues for DoS attacks.

Overall costs. The overall costs of the attack catt include the
initial costs cgen plus the operational costs of running the Sybil
nodes at coper per unit time. The operational cost is incurred
during the warmup time tw before the attack is effective and
the time during which the attack must remain effective teff .
Therefore, catt = cgen + (tw + teff)× coper.

VI. CENSORSHIP ATTACK DETECTION

The first step in countering an attack is its reliable de-
tection. It enables activating mitigation techniques only when
needed and avoids unnecessary overhead when the network is
not under attack. Importantly, the detection cannot simply rely
on the unavailability of the provider records as this could be
due to other reasons (e.g., the provider records expired and the
provider did not renew them). Moreover, the detection method
should ideally expose an attack as soon as the Sybil peers are
added to the DHT, even though unavailability of the provider
records may only occur several hours (tw = 48 hours) later (as
described in Section V-B). This would help prevent downtime
for the content.

To execute the content censorship attack, the attacker must
hijack all PutProvider advertisements for the target CID. To
this end, the attacker must operate e Sybil peers whose IDs
are closer to the target CID than to any other honest peer. As
a result, when an honest node queries the DHT for the target
CID, the 20 closest peer IDs it finds are closer to the CID than
usual. The node can thus use the observed peer IDs to detect
whether the CID is censored or not.

Method Overview. We repurpose a statistical method orig-
inally developed by Cholez et al. [30] for detecting eclipse
attacks. This method first obtains the k = 20 closest peer
IDs to the CID, using a DHT query, and computes the
common prefix length of each peer ID with that CID (i.e.
the number of leading bits that match both the CID and
the peer ID). It then compares the empirical distribution of
the 20 common prefix lengths with the ‘model’ probability
distribution that would result if all these peers were honest,
i.e., if their peer IDs were chosen randomly and uniformly.
We compare the empirical distribution to the model distribution
by computing the Kullback-Liebler (KL) divergence between
the two distributions (also known as a G-test [53]). A large
KL divergence indicates a mismatch between the empirical
and model distributions, indicating an attack. On the other
hand, a small KL divergence indicates a good match of the
distributions, indicating no attack. This KL divergence-based
has been shown to perform well under a small number of
samples [62], which is our situation with only 20 samples
corresponding to the 20 closest peers.

A challenge of implementing this detection method for
the IPFS network is that it requires knowing the number of
peers in the DHT to compute the model distribution. We
show how to adapt this detection mechanism to a DHT of
dynamic size by using a network size estimator. Based on
the network size estimate, our detection method computes

6

Fig. 3: Probability distribution of common prefix lengths of
the target CID with its k = 20 closest peer IDs.

an estimate of the model distribution, which is then used
for detection. Our detection method does not require any
additional communication and requires little local computation.

Method Details. Honest peers choose their peer IDs uniformly
at random, and thus under no attack, peer IDs in the DHT are
distributed uniformly across the hash space. We thus expect
the common prefix lengths of peer IDs with the target CID to
follow a geometric distribution. That is, given a target CID,
the probability that the common prefix length of a randomly
chosen peer ID with the target CID equals x is 0.5x+1 (effects
of the finite length (256 bits) of IDs can be neglected as
the probability of a common prefix length of 256 bits is
negligible). However, when a node queries the DHT for the
target CID, it only obtains the k = 20 closest peers to the
target CID, and the distribution of their common prefix lengths
is not geometric. Particularly, very small common prefixes
are not observed as such peer IDs are far from the target
ID (see Figure 3). In the work of Cholez et al. [30], this
effect is modeled by using a geometric distribution conditioned
on the common prefix length being greater than L, where
L is a parameter that is estimated using measurements from
the network. If we adopted this approach, we would have to
compute L from a fixed, pre-determined network size estimate.
We found that the model distribution computed using this
method is highly susceptible to small variations in the network
size estimate. Instead, in this work, we compute the model
distribution dynamically, i.e., as it varies according to an
estimation of the network size.

We will first describe the method assuming that the network
size N is known. Then, we will show how to adapt this method
using an estimation of the network size. We recall that the
common prefix length of a randomly chosen peer ID with the
target CID is distributed geometrically. Now, in response to a
lookup for the target CID, a node obtains the k largest common
prefix lengths (corresponding to the k smallest distances). The
cumulative distribution function of the j-th largest prefix length
can be calculated as

Fj(x) ≜ Pr(X(j) ≤ x)

=

{∑j−1
i=0

(
N
i

) (
1− 0.5x+1

)N−i
0.5(x+1)i x ≥ 0,

0 x < 0.

(3)

Since we only receive one sample for the j-th best peer ID for
each j, we can compute an average probability mass function

of the k best common prefix lengths as

p(x) =
1

k

k∑
j=1

(Fj(x)− Fj(x− 1)). (4)

This model distribution p(x) is shown along with the empirical
average distribution of common prefix lengths in Figure 3.
Note that the empirical distribution in case of no attack (all
peer IDs generated randomly) exactly matches the model
distribution, while the distribution under an attack (e = 20
Sybil peers closer than honest peer IDs) significantly differs
from the model. Importantly, placing more than 20 Sybils
drives the ID distribution further away from the model, easing
the detection. Since k = 20, the sums in eqs. (3) and (4) can
be computed efficiently.

The KL divergence is a tool used to quantify the difference
between two probability distributions. For two discrete proba-
bility distributions p(x) and q(x) on a support set X , the KL
divergence from p to q is defined as

D (q ∥ p) ≜
∑
x∈X

q(x) ln

(
q(x)

p(x)

)
. (5)

In our case, X is the random variable denoting the common
prefix length between a peer ID and the target CID, X =
{0, ..., 256}, p(x) is the model distribution and

q(x) ≜
1

k

k∑
i=1

1{Xi = x} (6)

is the empirical distribution of common prefix lengths. Note
that the support of the empirical distribution q(x) is a subset
of the support of the model distribution p(x), therefore the
sum in the KL divergence is only computed over values of x
for which q(x) > 0. Now, a threshold thr must be chosen so
that the CID is flagged to be under an attack if and only if
D (q ∥ p) > thr.

Adapting to Dynamic Network Sizes. Computing the model
distribution requires knowing the number of peers in the
DHT (N) that is unknown to the DHT nodes. Instead, we
substitute an estimate N̂ of the network size obtained from
the network size estimator we described in Section III-C. A
node can locally estimate the model distribution by substituting
N̂ instead of N in eqs. (3) and (4). The complete censorship
detection algorithm is specified in Algorithm 1.

It is important to note that the network size estimate
does not depend on the closest peer IDs for the CID for
which censorship detection is being performed. Instead, it is
computed using the closest peer IDs to randomly chosen keys.
Therefore, recall from Section III-C that the attacker would
require a number of Sybil peers of the order of the network
size to bias the estimator. As a result, the detection remains
robust under the censorship attack.

Choosing a detection threshold. The detection threshold
thr is a per-node constant value. A higher threshold results
in more false negatives (some attacks go undetected, hence
unmitigated) while a lower threshold results in more false
positives (mitigation overhead when there is no attack). In
Section VIII, we evaluate the false positive and false negative

7

Algorithm 1 Censorship Detection Algorithm; thr is a pre-
decided detection threshold

1: procedure DETECTION(key)
2: peers← GET20CLOSESTPEERS(key)
3: q ← numPeersPerCPL(peers)/20 ▷ eq. (6)
4: N ← GETNETSIZEESTIMATE() ▷ eqs. (1) and (2)
5: p← computeModelDist(N) ▷ eqs. (3) and (4)
6: KL← computeKL(p, q) ▷ eq. (5)
7: return KL > thr ▷ true indicates attack

rates for different thresholds and recommend a threshold that
favors reducing false negatives. Different nodes can however
choose different thresholds according to their desired trade-
off between the error rates. In Section VIII, we show that a
constant threshold suffices even as the network size varies.

VII. MITIGATION WITH REGION-BASED QUERIES

Countering Sybil attacks in an open, decentralized system
is challenging. Traditionally, this problem is solved by binding
identities to valuable resources (e.g. using Proof of Work [26],
[37]), certificate authorities [28], reputation systems [33], [48],
[70], [71], or diversifying the IP addresses of the peers of
each node [56]. Proof of Work and IP address restrictions are
not sufficient as our attack only requires a few Sybil peers
(e ≈ 45): these measures would only slightly increase the
cost of the attack. On the other hand, certificate authorities
and reputation systems hamper the decentralization and open
participation model of IPFS. Simply increasing the value of the
number of closest peers contacted in a DHT query (currently
k = 20) also does not solve the problem as the attacker only
needs to generate more Sybil peers to match the new number.
Another naive idea is that the providers modify the content
by one bit to modify its CID. However, the new CID must be
then advertised to potential downloaders to make the content
publicly accessible. The attacker can then simply “follow”
the new CIDs and continuously censor the content. Further,
modifying the content is unsuitable for immutable Web3.0
content (e.g., NFTs and DIDs) whose hash is already published
on a blockchain.

The fundamental problem in countering the content censor-
ship attack lies in the inability to classify resolvers as honest
or malicious. When a downloader receives no provider record
or an inactive provider record from a resolver (i.e., it is unable
to find the referenced provider or the provider does not hold
the content), this can be due to several reasons. For instance,
the resolver was offline, the record used to be correct but the
provider had since left, or there was a network failure. As
a result, the downloader cannot draw any conclusions on the
resolver’s correctness based on the received results, eliminating
any attempts to gradually filter out malicious nodes by local
scoring systems.

Main idea. The core observation behind our approach is that,
while an attacker can spawn additional Sybil identities, it
has no way of removing the honest ones from the network.
As long as the provider can send its provider record to the
initial honest resolvers, and the downloader can communicate
with these resolvers, the censorship attack will be mitigated.
To maintain communication with the initial honest resolvers

keyspace
1 2 3 4 S S S S 5 6 7 8

Provider CID

All peers within D distance

Provider Record

Fig. 4: Illustration of our mitigation: A provider record is
sent to all peers within a region that contains k honest peers
on average (k = 4 in this example), as estimated using the
network size. This region contains k honest peers even in the
presence of Sybil peers, as honest peers are not removed.

Algorithm 2 Function to find all peers with a Common Prefix
Length (CPL) ≥ minCPL with key

1: procedure FINDBYCPL(key,minCPL)
2: set← GETCLOSESTPEERS(key)
3: CPL← minCommonPrefixLength(set, key)
4: while CPL ≥ minCPL do
5: qkey← key[:CPL] ∥ key[CPL] ∥ key[CPL+ 1:]
6: set← set ∪ FINDBYCPL(qkey,CPL+ 1)
7: CPL← CPL− 1
8: removeItemsWithPrefixLessThan(set,minCPL)
9: return set

even during an attack, we propose region-based DHT queries.
Rather than communicating with the k = 20 closest peers to a
CID, that an attacker can easily control, we communicate with
all the nodes in the hash space region that k = 20 uniformly
distributed peer IDs should cover (Figure 4). The size of this
region is calculated using the network size estimate and using
the assumption that honest peer IDs are distributed uniformly
over the key space. Such an approach ensures that regardless
of the number of Sybil nodes placed by an attacker, the
provider can store provider records on ≈ 20 honest resolvers,
and the downloader also communicates with ≈ 20 honest
resolvers to reliably retrieve the correct provider records. To
prevent additional overhead when there is no attack, we run
the region-based queries only when an attack is detected using
the detection mechanism that we detailed in Section VI.

Algorithm. The region-based query algorithm is described in
Algorithm 2, with a sample execution in Figure 5. The goal
of this algorithm is to find all peer IDs that share a common
prefix of at least minCPL bits with key. Note that any two
keys k1, k2 have a common prefix length (CPL) of at least l
iff the XOR distance between k1 and k2 is less than 2256−l.
Therefore, the common prefix requirement specifies a region
of the key space with a distance 2256−minCPL from key. To
keep our mitigation compatible with the current version of
libp2p DHT nodes, we use the same RPCs that the DHT
nodes currently use. Therefore, we build the algorithm using
only calls to GETCLOSESTPEERS(key) which obtains the 20
peer IDs that are the closest to key, which is already available
in go-libp2p-kad-dht [15]. We start with this primitive
and then compute the common prefix length shared by key and
all of its 20 closest peer IDs, which we note as CPL.

8

XOR distance0 2246 2247 2248

#
key

0) k closest peers to key (CPL = 9)

#
qkey1

1) all peers with CPL ≥ 9 with key

#
qkey2

2) all peers with CPL ≥ 8 with key

Fig. 5: An example illustration of FINDBYCPL(key, 8) (see
algorithm 2). Note that any two keys k1, k2 have common
prefix length (CPL) at least l iff the XOR distance between k1
and k2 is less than 2256−l. Step 0: Find the k (4 in this example)
closest peers to key (shown in black). Calculate their minimum
common prefix length with key (CPL = 9 in this example).
Step 1: FINDBYCPL(qkey1, 10) returns the green peers with
CPL ≥ 10 with qkey1. Now we have found all peers with CPL
≥ 9 with key. Step 2: FINDBYCPL(qkey2, 9) returns the blue
peers. Now we have found all peers with CPL ≥ 8 with key,
and the algorithm terminates.

Since we have found at least one peer ID with a common
prefix length CPL, we must have found all peer IDs with
common prefix length ≥ CPL+ 1, as the latter are closer (in
XOR distance) to key than the former (see step 0 in Figure 5).
In the next step, we would like to find all peer IDs with
common prefix ≥ CPL with key. Since we have already found
all peer IDs with the prefix key[:CPL+1] (i.e., the first CPL+1
bits match key), we only need to find all peers IDs with the
prefix key[:CPL] ∥ key[CPL] (i.e. the first CPL bits match key
and the (CPL+1)-th bit is different). This is done recursively
using our algorithm. This step is repeated until all peer IDs
with common prefix length ≥ minCPL with key have been
found.

While using this region-based query algorithm, we choose
the value of minCPL such that a region of the key space
with common prefix length at least minCPL with key = cid
contains at least k = 20 honest peer IDs with high probability.
Suppose that there are a total of N peer IDs in the DHT,
distributed uniformly across the hash space. A common prefix
length of at least minCPL corresponds to a XOR distance
< 2256−minCPL. Then, the expected number of peer IDs in
this region is 2minCPL×N . By setting minCPL = ⌈log2

(
N
k

)
⌉,

we have a region that contains k honest peer IDs on average.
Given an estimate N̂ of the network size (as described in
section III-C), we substitute N̂ for N to calculate the region
size. By a simple probabilistic bound, we can also extend this
region to contain k honest peer IDs with high probability.

Cost Analysis. By default, both providers and downloaders do
one DHT lookup (using GETCLOSESTPEERS(key)) to obtain
the list of k = 20 closest peer IDs to key. When a provider
or downloader uses a region-based query, it does multiple
lookups using GETCLOSESTPEERS(·). The number of lookups
required increases sub-linearly in the number of Sybil identities
placed by an attacker (shown experimentally in Figure 15).
Importantly, operating a Sybil identity requires participating in
the DHT routing and responding to keep-alive messages. As
a result, the cost for the attacker increases linearly with the
number of Sybil identities. When the target CID is not under

attack, using the region-based query would still use more than
one GETCLOSESTPEERS(·) lookups, because honest peer IDs
are distributed randomly, and therefore the chosen region might
contain more than 20 peer IDs. To avoid this overhead when
there is no attack, we run the region-based lookup only when
the detection mechanism (Section VI) detects an attack, and
use the default lookup otherwise. We evaluate the provider’s
and downloader’s cost of the region-based queries (number of
lookups and latency) and the attacker’s cost in Section VIII.

Correctness Analysis. We prove that Algorithm 2 indeed finds
all peer IDs with a common prefix length of at least minCPL
with key.

Theorem 1. Assuming that GETCLOSESTPEERS(key) returns
the 20 closest peer IDs to key, FINDBYCPL(key,minCPL)
returns all peer IDs with a common prefix of at least minCPL
bits with key.

Proof: We prove this claim through induction. For
the base case, if there are < 20 peer IDs with a com-
mon prefix length of at least minCPL with key, then
GETCLOSESTPEERS(key) must return at least one peer with
a common prefix length < minCPL with key. Therefore,
CPL < minCPL, hence the function returns all peer IDs that
have a common prefix length of at least minCPL.

Otherwise, CPL ≥ minCPL. Since we have found at least
one peer with a common prefix length CPL, we have found all
peers with a common prefix length ≥ CPL+1, that is all peers
with the prefix key[: CPL+1]. Thus, we create a new key qkey
which has the prefix key[: CPL] ∥ key[CPL]. By induction, we
assume that FINDBYCPL(qkey,CPL+1) returns all peers with
prefix key[:CPL] ∥ key[CPL]. Together, we now have all peers
with the prefix key[:CPL]. After subtracting 1 from CPL, we
maintain the invariant that we have found all peers with prefix
key[:CPL + 1]. If the loop doesn’t quit, then we continue to
find peers with one more bit in the common prefix in every
iteration. If the loop quits, this means that CPL+1 ≤ minCPL,
therefore we have found all peers with common prefix length
of at least minCPL as promised.

Even if GETCLOSESTPEERS(key) does not return all of the
20 closest peer IDs to key, the algorithm will still terminate
(because CPL decreases at every iteration) but may not find
all the peers with a common prefix length of at least minCPL.
Since we restrict ourselves to build the region-based lookup
using GETCLOSESTPEERS(key), our method is accurate only
in the cases when GETCLOSESTPEERS(key) is accurate.

VIII. EVALUATION

In this section, we evaluate the cost of the attack and the
effectiveness of our detection and mitigation methods.

A. Setup

We perform our experiments on the live IPFS networks. All
our attacks targeted only content that we created. No content
provided by other users was affected. Although we did not
require any special permissions from Protocol Labs to execute
our attacks, we informed them for responsible disclosure.

In the evaluation, we use three types of DHT nodes: (i) the
malicious Sybil nodes, (ii) a provider node hosting the content

9

Fig. 6: Distribution of nodes discovered during a DHT query
by different versions of IPFS clients, across 100 experiments.

Fig. 7: Percentage of attacks in which i) the attack was
effective and ii) the detection algorithm detected the attack.

that we created, and (iii) a downloader node that attempts to
resolve the target CID and fetch its content. All these nodes
were hosted on a single AWS t3.xlarge instance with 4 vCPUs
and 16 GiB memory. The attacker node is implemented as a
custom DHT client using libp2p [14]. Our mitigation and
detection methods are also implemented on top of libp2p.
Except for the experiment of Figure 8, the provider sends the
provider record (i.e., it provides the content) after the Sybils
are launched so that we avoid waiting for tw = 48 hours for
the attack to take effect.

B. DHT Lookup Accuracy

The DHT query GETCLOSESTPEERS(key) is ideally ex-
pected to return the k = 20 closest peer IDs to the queried
key. Figure 6 shows the number of GETCLOSESTPEERS(key)
queries in which each peer close to the queried key is discov-
ered. The x-axis shows the index of nodes ordered by their
distance to the queried key (1 is the closest node). The y-
axis shows the fraction of queries in which each node was
discovered. The results are averaged over 100 experiments. The
set of peers obtained is compared with the true 20 closest peers
(‘perfect routing’) that were obtained from a network crawler.
We observed that when different nodes perform this query,
and when the same node does it multiple times, the set of 20
peers received in response is not always the same. This effect
is present in both versions of libp2p considered here but the
query responses are more consistent in the newer version. To
mitigate this effect, the attacker has to use a larger number of
Sybils e > 20 for high attack effectiveness aeff → 100%.

C. Attack

We follow by determining the number of Sybil identities
e required to achieve high attack effectiveness aeff . Since the

0 10 20 30 40 50
Time (hours)

40

60

80

100

Ce
ns

or
ed

 C
ID

 Q
ue

rie
s (

%
)

45 Sybils

Fig. 8: Rate of censored CID queries (%) over time, from the
start of launching the attack (when content has been provided
before adding Sybil nodes).

Fig. 9: Average time and cost required to generate necessary
Sybil identities.

DHT queries do not consistently return the same set of peers,
downloaders may discover some honest resolvers when there
are only e = 20 Sybils. Figure 7 shows the success rate of
the attack as the number of Sybil peers varies. Even when
e < 20, the attack sometime succeeds because too few honest
resolvers are contacted, and they may be offline. Involving
more Sybil peers increases the chance of a successful attack
but also proportionally increases the cost for the attacker. With
e = 45 Sybils, the attack succeeds with 99% probability. We
use this value for the rest of the experiments.

When the Sybil nodes are placed before the target content
is added to the network, the attack takes effect immediately
(tw = 0). However, we also explore a more realistic timeline in
which content has been provided before launching the attack.
Figure 8 presents the evolution of the attack effectiveness aeff
over time. For each censored CID, we spawn 5 downloader
nodes per hour. We stop the experiment when all queries
have been unsuccessful for at least 3 hours. Immediately after
starting the attack, the effectiveness reaches aeff = 30%. This
is caused by a portion of the downloaders not encountering
any honest resolvers on their path toward the attacked region.
The effectiveness steadily increases over time. Multiple spikes
(e.g. after 12h) are caused by a portion of resolvers (running
older IPFS versions) dropping the provider records. The attack
takes full effect after 48 hours, which is when resolvers drop
the provider record as per the current IPFS version. Based on
this result, we assume a maximum warmup time tw = 48h in
the cost calculations that follow.

Finally, we explore the cost of performing the attack. The
AWS instances running the Sybils cost coper = 0.16$ per hour.
Figure 9 presents the time and monetary cost of generating

10

e = 45 Sybil identities for both cryptosystems present in
IPFS. For readability, we omit the number of iterations s,
as it is the same for both methods and proportional to the
cost/time. The monetary cost cgen and the generation time
increase linearly with the network size. In larger networks,
the distance between the closest honest resolver and the target
CID decreases and the generation algorithm requires more
iterations. EdDSA is significantly faster than RSA and the
generation time remains below 12s translating into 0.0005$,
even for the largest evaluated network with n = 30, 000 nodes.
Generating Sybils using RSA, while slower, is feasible even
for moderately resourceful attackers.

The peak CPU utilization of 30% occurred only during
the generation of Sybil private keys. The maximum bandwidth
utilization of the machine hosting e = 45 Sybils was 4.67
Mbps (both inbound and outbound) when no requests were
made for the censored CID. Taking the cost of generating Sybil
identities cgen = 0.0005$, the longest warmup time tw = 48h,
and the duration of the attack teff hours, the total cost of the
attack using EdDSA is given by catt = cgen + (tw + teff) ×
coper = 7.68 + teff × 0.16$.

D. Detection

Fig. 10: False positive and false negative rates of the detection
method, for different detection thresholds.

We follow by investigating our attack detection mechanism,
which calculates the KL divergence between a model and
empirical peer ID distributions, and flags a CID as under
attack if the divergence is above a certain threshold thr. In
Figure 10, we plot the false positive and false negative rates
of the detection method for different choices of the detection
threshold (the lower the threshold, the more false positives,
but the fewer false negatives). We see that increasing the
number of Sybils makes the attack easier to detect, with
fewer false negatives. Each DHT node can choose its own
detection threshold, based on its desired false positive and
false negative rates. However, it is reasonable for the default
implementation to choose a threshold that favors fewer false
negatives, thereby mitigating most attacks, at the cost of a
small overhead of running the mitigation even when there is
no attack. In the following experiments, we choose a threshold
of 0.94 which achieves 4.4% false positives and 0.81% false
negatives (circled in Figure 10).

In Figure 11, we show the results of the detection method
for 250 experiments each with a different number of Sybil
peers. Each point represents the result of a single experiment
and the y-coordinate is the observed KL divergence value.
The percentage of successful attacks (solid circles), where the

Fig. 11: KL divergence for varying numbers of Sybils e.

Fig. 12: KL divergence for varying network sizes N , and the
false negative and false positive rates.

provider record was not found by the downloader, and the
percentage of experiments that were flagged as attacks are
indicated. If the number of Sybils launched by the attacker
is decreased, more attempted attacks go undetected (false
negatives), but we see that these attacks are not successful
either. This effect is also summarized in Figure 7.

To run experiments for different network sizes N , we
simulate a DHT network by generating N random peer IDs.
Requests for a CID are resolved by simply finding the 20 clos-
est peer IDs in this simulated network. Network size estimation
and detection are performed using these simulated responses.
In Figure 12, we show that the KL divergence metric is robust
to changes in the network size. This is because our detection
method automatically calculates the model distribution based
on the estimated network size. Therefore, a fixed detection
threshold can be used even as the network size changes. Note
that the KL divergence values in such a simulation tend to
be lower than those measured on the real network because
lookups in the real network do not always result in the correct
20 closest peers.

E. Mitigation

We evaluate the performance and the overhead of using
our mitigation mechanism in the live IPFS network. Mitigation
of a censorship attack on cid is successful if its downloaders
successfully retrieve at least one valid provider record using
a FINDPROVIDERS(cid) operation. Our mitigation mechanism
uses region-based queries with a region containing 20 peer IDs
on average for both FINDPROVIDERS(cid) and PROVIDE(cid)
when an attack is detected.

For different number of Sybils e, we launch censorship
attacks on 50 different CIDs. During each attack, we launch
e Sybil peers, and after waiting for one minute, we provide

11

the target CID from a separate DHT instance. We then test
the reachability of the content from ten different downloaders.
As a baseline comparison, we also provide results for e = 0
whenever appropriate.

Mitigation effectiveness. Figure 13 illustrates the mitigation
effectiveness meff for different numbers of Sybils e, and
provides results without the mitigation for comparison. Our
mechanism mitigates all of the detected attacks for all the
evaluated Sybil numbers. Importantly, for e = 45, the number
of downloaders receiving their content increases from only
0.44% without the mitigation to 100% when it is activated.

To better understand the region-based queries, Figure 14
presents the average size of the following sets of peers:
(i) contacted: peers encountered by the downloaders during
FINDPROVIDERS(cid), (ii) updated: resolvers that obtain the
provider record for cid, and (iii) intersection: non-Sybil peers
in the intersection of the two aforementioned sets of peers. We
omit unresponsive peers in both sets. The number of contacted
peers increases with the increasing number of Sybils. Higher
peer density in the target region causes additional lookups that
reach honest peers located nearby. For the same reason, the
number of updated peers increases as well.

The number of contacted peers is substantially higher than
the number of updated peers, because the former includes
not only just the peers within the target region but also
peers encountered during the DHT walk toward that target
region. More importantly, the average size of the non-Sybil
intersection of contacted and updated peers oscillates around
30. This is higher than the expected value of 20 (i.e., the region
size used by the mitigation mechanism) because the current
network size estimation slightly underestimates the size of
the IPFS network. Higher intersection size ensures successful
mitigation even when multiple honest nodes in the region are
offline.

Mitigation overhead. In Figure 15, we assess the overhead
of the mitigation mechanism in terms of the number of DHT
lookups involved in region-based queries. While the number
of lookups is up to 9 times higher than for an un-attacked
network, the overhead increases sub-linearly with the number
of Sybils, and is incurred only when an attack is detected.

We then measure the latency of the PROVIDE as well as
FINDPROVIDERS operations. The average latencies of these
operations are shown in Table II when under attack and
otherwise, for both the default and the mitigation modes.

20 30 40 45
Number of Sybils

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

100.00 100.00 100.00 100.00

63.12

19.95

3.83 0.44

Successfully mitigated
CID discoverable w/o mitigation

Fig. 13: Percentage of attacks that are mitigated.

0 20 30 40 45
Number of Sybils

0

50

100

150

200

Nu
m

be
r o

f P
ee

rs

15
.3

3

33
.3

8

30
.0

1

31
.7

0

31
.6

9

46.25

78.79
105.02

118.72 127.78

15
.7

5 40
.9

2

51
.0

0

64
.9

4

71
.8

3

Non-Sybil intersection
Sybils (subset)
Contacted peers
Updated peers

Fig. 14: Number of peers contacted and updated by region-
based queries.

Attack (45 Sybils) No attack (0 Sybils)

Provide
Default — 15914 ms
Mitigation 24780 ms 27099 ms

Find 20 providers
Default — 26483 ms
Mitigation 28930 ms 27756 ms

Find 1 providers
Default — 647 ms
Mitigation 712 ms 329 ms

TABLE II: Average latency (milliseconds) of Provide and
FindProviders operations with and without our mitigation,
during attack and no attack. A red dash indicates that the
operation was unsuccessful due to the attack.

In general, FINDPROVIDERS waits until it finds 20 distinct
providers, or it has contacted all resolvers. This is followed
in both the default and mitigation modes. However, the first
provider record is obtained much earlier. Although finding one
provider record may be enough in the optimistic case, the
first provider record that the downloader obtains may not be
correct (it may be old or may be sent by a malicious peer) and
therefore the downloader might need to wait longer to retrieve
the content. Even though the mitigation mode requires several
DHT queries while the default mode uses only one, the latency
of the mitigation mode is not much higher than the default
mode. This is because the subsequent queries are much faster
than the first query.

0 20 30 40 45
Number of Sybils

0

2

4

6

8

10

Nu
m

be
r o

f D
HT

 L
oo

ku
ps

1.00

4.33

6.89

8.76 9.16

Fig. 15: The number of DHT lookups involved in a region-
based query.

12

IX. RELATED WORK

In this section, we review previous work focusing on
solving the problem of attacks based on Sybil identities in
decentralized systems and their limitations. For a more com-
plete view of the Sybil attack and countermeasures, we refer
the readers to a survey by Urdaneta et al. [67].

CFS [31] is a storage system built over the early Chord
DHT [63]. CFS uses node ID authentication to prevent a node
from taking a specific position in the DHT ring. CFS clients
check that the node ID is the result of the hash of its IP address,
plus a number from a small range, e.g., 1 to 10. However,
this solution is less effective when an attacker has access to
a large number of IP addresses (e.g. using cloud providers)
and it is incompatible with a large number of peers placed
behind a NAT, which is the case in IPFS [66]. S-Chord [38]
is an extension of Chord that can provide routing guarantees
despite the presence of a number of Byzantine nodes in the
network but it increases the number of messages and latency
for routing by a factor logarithmic in the number of nodes.
S/Kademlia [26] proposes Proof-of-Work (PoW) mechanisms
to rate-limit the generation of new peer IDs. However, while
PoW slows down the attacker, it does not fully mitigate the
problem, makes the system less sustainable, and is problematic
for constrained devices.

Some mechanisms make additional assumptions on trusted
certificate authorities (CAs) to sign peer IDs [28] or use
social trust networks [33], [48], [70], [71] to detect or prevent
Sybil attacks. Even though most deployed systems do rely on
hardcoded bootstrap nodes, relying on CAs to control and
certify all memberships would be considered incompatible
with the open and decentralized environment of IPFS.

Awerbuch and Scheideler [25] propose that the peer IDs
of all honest peers in a DHT be rotated whenever a new peer
joins. This can prevent an attacker’s peers from concentrating
in one region of the key space. Unfortunately, this solution
is particularly expensive in a dynamic network where nodes
constantly join and leave the system.

Cholez et al. [30] introduce a Sybil detection mechanism
based on KL-divergence followed by removing suspected peers
from the set of k closest peers. We adopt their detection
mechanism but do not remove any peers. Since in IPFS, the
CID is the hash of the content, Sybil peers cannot cause a
downloader to accept incorrect content. Therefore, removing
Sybil peers is not required. Instead, our mitigation ensures that
providers and downloaders continue to contact enough honest
peers.

Recently, Protocol Labs introduced network indexers [11]
allowing to resolve a CID to a list of providers in Filecoin [39].
While the usage of cloud infrastructure makes the system
highly efficient and resistant to Sybil attacks, the indexer is
fully centralized introducing the risks of censorship and can
constitute a single point of failure.

Eclipse attacks. Multiple attacks based on node eclipsing
target decentralized systems. An attacker attempts to control
all the neighbors of a specific target node in the overlay. This
differs from the content censorship attack we discuss in this
paper, which targets a specific entry of a distributed directory.

Eclipse attacks are documented for Bitcoin [40], [60]
or Ethereum [42], [51] allowing to partition the blockchain
network and prevent a miner from participating fairly. The
recent Gethlighting attack shows this is possible by only
eclipsing a subset of a node’s neighborhood [43]. A recent
attack targets the IPFS DHT [41], [56] and allows isolating
a single node from the network. As a result, the IPFS DHT
was augmented with table eviction policies and with rules
restricting the number of peers with the same IP address in
a routing table. This makes the attack impractical even for a
resourceful attacker [56]. Our censorship attack targets content
rather than single nodes and works despite these changes.
However, we also build upon this past work as we rely on
eclipse resistance for our mitigation techniques.

Wang et al. [68] is an early example of a content cen-
sorship attack, targeting the Kad network, an implementation
of Kademlia used in the eDonkey [8] and eMule [9] content-
sharing networks. These attacks exploit a vulnerability in the
Kad implementation: peers were not authenticated based on
their peer IDs, so an attacker could impersonate another peer.
This vulnerability does not exist in the IPFS network where
peer IDs are derived by hashing the peer’s public key, and
where messages are signed with the corresponding secret keys.
Our attack is much simpler than the one of Wang et al. and
does not require this vulnerability.

X. DISCUSSION AND FUTURE WORK

Currently, IPFS does not provide an admission mechanism
and resolvers will accept any provider records until they run
out of storage. After that, depending on the implementation,
the resolvers may crash or flush older, legitimate provider
records. The time required for this attack depends on the
bandwidth available at each resolver and the amount of free
storage. While a deeper analysis is out of the scope of this
paper, introducing an admission mechanism based on the
diversity of incoming traffic has the potential to eliminate this
vulnerability.

While our mitigation technique (Section VII) fully protects
against the CID censorship attack, it involves querying the
Sybil nodes for provider records. The Sybil nodes may return
a large number of fake provider records so that downloaders
keep trying them, thereby slowing down the resolution. The
impact of such an attack can be reduced if the downloader
only tries a single provider record obtained from each resolver
and prefers records obtained from resolvers with diverse IP
addresses (i.e. from different /24 networks). Any attempts to
significantly delay the resolution would sharply increase the
attacker’s cost.

Our mitigation technique relies on region-based DHT
queries. For easy integration with the current IPFS network,
those queries are built on top of a regular Kademlia DHT that
does not natively support them. This results in slightly higher
overhead and increases resolution time. Adapting the core
internals of the DHT and optimizing them for region-based
queries might speed up the process and reduce its overhead.
However, such deep changes make incremental deployment
and compatibility with the existing version challenging.

During this project, we initially considered an approach
where providers register their provider records on all the nodes

13

encountered on the path towards resolvers. Such a solution
increases the chance of an honest downloader receiving a cor-
rect provider record before reaching the region with the Sybil
nodes. However, the mechanism does not provide resistance for
downloaders located close to the CID in the DHT hash space.
Furthermore, the on-path registration significantly increases the
storage cost of holding provider records for the entire network
even when no attack is being conducted.

The IPFS DHT, and thus our mitigation and detection
mechanisms, depends on the correctness of the DHT routing.
However, a powerful attack may try to disturb DHT operations
by deploying a large number of uniformly distributed Sybils
that only return other Sybils when queried. While costly, such
an attack could be devastating for the entire ecosystem. We
advocate for additional future work that improves the DHT
resistance to such attacks and is practical to deploy in large-
scale networks.

XI. CONCLUSION

We presented a successful censorship attack on IPFS.
We showed that an attacker can easily make any content
undiscoverable in the network by strategically placing a small
number of Sybil identities in the DHT. The effectiveness of
the attack was confirmed by removing multiple, specifically
crafted content from the live IPFS network. Importantly, our
attack has a constant, negligible cost regardless of the popu-
larity of the target content.

The attack has a significant impact on the IPFS network
itself as it threatens the core functionality of the platform.
However, it also impacts other systems that rely on the
availability of content stored on IPFS. This includes thousands
of decentralized applications and oracles deployed on various
blockchains. Moreover, the DHT flaw that led to the attack is
present in other currently deployed DHT-based systems.

We also presented a robust detection technique allowing
us to detect the attack in real time without communication
overhead and to activate our proposed mitigation mechanisms
when necessary.

Finally, we introduce a practical mitigation technique based
on region-based DHT queries. While many others mitigation
techniques have been proposed, none of them are practical
enough to be deployed in an open decentralized system. Our
approach is the first that can be deployed incrementally in
a live network without requiring changes to the core DHT
protocol. It also does not require additional components and
does not incur significant overhead. Importantly, our mitigation
technique prevents the attack without blocking any nodes
or using unreliable reputation systems. We believe that our
mitigation technique can be easily integrated into other DHT-
based systems.

ACKNOWLEDGEMENTS

This work was partly done when Srivatsan Sridhar was
consulting for Protocol Labs. At Stanford University, Srivatsan
Sridhar’s research is funded by a gift from the Ethereum
Foundation.

REFERENCES

[1] Almonit. [Online]. Available: https://almonit.eth.link/#/
[2] Audius. [Online]. Available: https://audius.org
[3] Berty. [Online]. Available: https://berty.tech
[4] The BitTorrent specification. [Online]. Available: https://www.bittorrent.

org/beps/bep 0052.html
[5] dClimate. [Online]. Available: https://www.dclimate.net
[6] Deece. [Online]. Available: https://github.com/navinkeizer/Deece
[7] DTube. [Online]. Available: https://d.tube
[8] eDonkey network. [Online]. Available: http://www.edonkey2000.com
[9] eMule network. [Online]. Available: http://www.emule-project.net

[10] Ethlance. [Online]. Available: https://github.com/district0x/ethlance
[11] Introducing the network indexer. [Online]. Available: https://filecoin.

io/blog/posts/introducing-the-network-indexer/
[12] IPFS Camp 2022. [Online]. Available: https://2022.ipfs.camp
[13] IPFS ecosystem directory. [Online]. Available: https://ecosystem.ipfs.

tech/
[14] libp2p/go-libp2p-kad-dht: A Kademlia DHT implementation

on go-libp2p. [Online]. Available: https://github.com/libp2p/
go-libp2p-kad-dht

[15] libp2p/go-libp2p-kad-dht: Get closest peers implementation.
[Online]. Available: https://github.com/libp2p/go-libp2p-kad-dht/blob/
2b85cfc0b1e5372bb36cb3ed4c82321054b1f055/lookup.go#L19

[16] Matters News. [Online]. Available: https://matters.news
[17] Optimistic provide by dennis-tra, pull request 783, libp2p/go-

libp2p-kad-dht. [Online]. Available: https://github.com/libp2p/
go-libp2p-kad-dht/pull/783

[18] Peergos. [Online]. Available: https://peergos.org
[19] Space. [Online]. Available: https://github.com/ipfs-shipyard/space
[20] Splinterlands. [Online]. Available: https://splinterlands.com/
[21] Temporal. [Online]. Available: https://temporal.cloud
[22] (2019) Discovery overview. The Ethereum Foundation. [Online]. Avail-

able: https://github.com/ethereum/devp2p/wiki/Discovery-Overview
[23] (2023) Gala games. [Online]. Available: https://app.gala.games/games
[24] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer

content distribution technologies,” ACM computing surveys (CSUR),
vol. 36, no. 4, pp. 335–371, 2004.

[25] B. Awerbuch and C. Scheideler, “Towards a scalable and robust DHT,”
Theory Comput. Syst., vol. 45, no. 2, pp. 234–260, 2009.

[26] I. Baumgart and S. Mies, “S/Kademlia: A practicable approach towards
secure key-based routing,” in International conference on parallel and
distributed systems, ser. ICPADS. IEEE, 2007.

[27] J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini,
F. Lama, H. K. Alper, X. Luo, F. Shirazi, A. Stewart, and G. Wood,
“Overview of Polkadot and its design considerations,” arXiv preprint
arXiv:2005.13456, 2020.

[28] M. Castro, P. Druschel, A. J. Ganesh, A. I. T. Rowstron, and D. S.
Wallach, “Secure routing for structured peer-to-peer overlay networks,”
in Fifth Symposium on Operating Systems Design and Implementation,
ser. OSDI. USENIX Association, 2002.

[29] Celestia, “The first modular blockchain network,” https://celestia.org,
2021.

[30] T. Cholez, I. Chrisment, O. Festor, and G. Doyen, “Detection and
mitigation of localized attacks in a widely deployed P2P network,”
Peer-to-Peer Netw. Appl., vol. 6, no. 2, pp. 155–174, 2013.

[31] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in 18th ACM Symposium on
Operating Systems Principles, ser. SOSP, 2001.

[32] G. Dán and N. Carlsson, “Centralized and distributed protocols for
tracker-based dynamic swarm management,” IEEE/ACM Transactions
on Networking, vol. 21, no. 1, pp. 297–310, 2012.

[33] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. Anderson,
“Sybil-resistant DHT routing,” in 10th European Symposium on Re-
search in Computer Security, ser. ESORICS. Springer, 2005.

14

https://almonit.eth.link/#/
https://audius.org
https://berty.tech
https://www.bittorrent.org/beps/bep_0052.html
https://www.bittorrent.org/beps/bep_0052.html
https://www.dclimate.net
https://github.com/navinkeizer/Deece
https://d.tube
http://www.edonkey2000.com
http://www.emule-project.net
https://github.com/district0x/ethlance
https://filecoin.io/blog/posts/introducing-the-network-indexer/
https://filecoin.io/blog/posts/introducing-the-network-indexer/
https://2022.ipfs.camp
https://ecosystem.ipfs.tech/
https://ecosystem.ipfs.tech/
https://github.com/libp2p/go-libp2p-kad-dht
https://github.com/libp2p/go-libp2p-kad-dht
https://github.com/libp2p/go-libp2p-kad-dht/blob/2b85cfc0b1e5372bb36cb3ed4c82321054b1f055/lookup.go#L19
https://github.com/libp2p/go-libp2p-kad-dht/blob/2b85cfc0b1e5372bb36cb3ed4c82321054b1f055/lookup.go#L19
https://matters.news
https://github.com/libp2p/go-libp2p-kad-dht/pull/783
https://github.com/libp2p/go-libp2p-kad-dht/pull/783
https://peergos.org
https://github.com/ipfs-shipyard/space
https://splinterlands.com/
https://temporal.cloud
https://github.com/ethereum/devp2p/wiki/Discovery-Overview
https://app.gala.games/games
https://celestia.org

[34] G. Danezis and P. Mittal, “SybilInfer: Detecting Sybil nodes using social
networks.” in Network and Distributed System Security Symposium, ser.
NDSS, 2009.

[35] “Dat ecosystem,” Dat Consortium, 2023. [Online]. Available: https:
//dat-ecosystem.org/

[36] A. De la Rocha, D. Dias, and Y. Psaras, “Accelerating content routing
with Bitswap: A multi-path file transfer protocol in IPFS and Filecoin,”
Protocol Labs, Tech. Rep., 2021.

[37] C. Dwork and M. Naor, “Pricing via processing or combatting
junk mail,” in 12th Annual International Cryptology Conference, ser.
CRYPTO. Springer, 1993.

[38] A. Fiat, J. Saia, and M. Young, “Making chord robust to byzantine
attacks,” in 13th Annual European Symposium on Algorithms, ser. ESA.
Springer, 2005.

[39] B. Fisch, J. Bonneau, N. Greco, and J. Benet, “Scaling proof-of-
replication for Filecoin mining,” Report. Protocol Labs Research, 2018.

[40] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
Bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium,
2015.

[41] S. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping
the Interplanetary filesystem,” in IFIP Networking Conference, 2020.

[42] S. Henningsen, D. Teunis, M. Florian, and B. Scheuermann, “Eclipsing
Ethereum peers with false friends,” arXiv preprint arXiv:1908.10141,
2019.

[43] H. Heo, S. Woo, T. Yoon, M. S. Kang, and S. Shin, “Partitioning
Ethereum without eclipsing it,” in Network and Distributed System
Security Symposium, ser. NDSS, 2023.

[44] M. S. Hossan, M. L. Khatun, S. Rahman, S. Reno, and M. Ahmed,
“Securing ride-sharing service using IPFS and hyperledger based on
private blockchain,” in 2021 24th international conference on computer
and information technology, ser. ICCIT. IEEE, 2021.

[45] H.-S. Huang, T.-S. Chang, and J.-Y. Wu, “A secure file sharing
system based on IPFS and blockchain,” in 2nd International Electronics
Communication Conference, ser. IECC, 2020.

[46] S. Jianjun, L. Ming, and M. Jingang, “Research and application of data
sharing platform integrating Ethereum and IPFS technology,” in 19th
International Symposium on Distributed Computing and Applications
for Business Engineering and Science, ser. DCABES. IEEE, 2020.

[47] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers,
“Decentralized schemes for size estimation in large and dynamic
groups,” in 4th IEEE International Symposium on Network Computing
and Applications, ser. NCA. IEEE, 2005.

[48] C. Lesniewski-Laas and M. F. Kaashoek, “Whanau: A sybil-proof
distributed hash table,” in 7th USENIX Symposium on Networked
Systems Design and Implementation, ser. NSDI. USENIX Association,
2010.

[49] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[50] G. S. Manku, M. Bawa, P. Raghavan et al., “Symphony: Distributed
hashing in a small world.” in USENIX Symposium on Internet Tech-
nologies and Systems, ser. USITS, 2003.

[51] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks
on Ethereum’s peer-to-peer network,” Cryptology ePrint Archive, 2018.

[52] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in International Workshop on
Peer-to-Peer Systems, ser. IPTPS. Springer, 2002.

[53] J. McDonald, Handbook of Biological Statistics, 3rd ed. Sparky House
Publishing, 2014.

[54] moxystudio. Discussify. [Online]. Available: https://github.com/
ipfs-shipyard/pm-discussify

[55] H. Mukne, P. Pai, S. Raut, and D. Ambawade, “Land record manage-
ment using Hyperledger Fabric and IPFS,” in 10th International Con-
ference on Computing, Communication and Networking Technologies,
ser. ICCCNT. IEEE, 2019.

[56] B. Prünster, A. Marsalek, and T. Zefferer, “Total eclipse of the heart–
disrupting the InterPlanetary file system,” in 31st USENIX Security
Symposium, 2022.

[57] B. Prünster, D. Ziegler, C. Kollmann, and B. Suzic, “A holistic approach
towards peer-to-peer security and why proof of work won’t do,” in 14th
International Conference on Security and Privacy in Communication
Networks, ser. SecureComm. Springer, 2018.

[58] Y. Psaras and D. Dias, “The interplanetary file system and the Filecoin
network,” in 50th Annual IEEE-IFIP International Conference on
Dependable Systems and Networks-Supplemental Volume, ser. DSN-S.
IEEE, 2020.

[59] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”
in 1st international conference on peer-to-peer computing, ser. P2P.
IEEE, 2001.

[60] M. Saad, S. Chen, and D. Mohaisen, “SyncAttack: double-spending
in Bitcoin without mining power,” in ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS, 2021.

[61] E. Sohl. A new method for estimating P2P network size. [Online].
Available: https://eli.sohl.com/2020/06/05/dht-size-estimation.html

[62] R. R. Sokal and F. J. Rohlf, Biometry: the principles and practice of
statistics in biological research, 3rd ed. Freeman, 1994.

[63] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on network-
ing, vol. 11, no. 1, pp. 17–32, 2003.

[64] J. P. Timpanaro, T. Cholez, I. Chrisment, and O. Festor, “Evaluation
of the anonymous I2P network’s design choices against performance
and security,” in 2015 International Conference on Information Systems
Security and Privacy, ser. ICISSP. IEEE, 2015.

[65] D. Trautwein. Network size estima-
tion. [Online]. Available: https://www.notion.so/
Network-Size-Estimation-4ab2c52083ed4e88968f629d1fa47eb7

[66] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of IPFS: a storage layer
for the decentralized web,” in ACM SIGCOMM 2022 Conference, 2022.

[67] G. Urdaneta, G. Pierre, and M. van Steen, “A survey of DHT security
techniques,” ACM Comput. Surv., vol. 43, no. 2, pp. 8:1–8:49, 2011.

[68] P. Wang, J. Tyra, E. Chan-Tin, T. Malchow, D. F. Kune, N. Hopper, and
Y. Kim, “Attacking the Kad network,” in 4th international conference
on Security and privacy in communication networks, ser. Securecomm,
2008.

[69] Q. Xu, Z. Song, R. S. M. Goh, and Y. Li, “Building an Ethereum and
IPFS-based decentralized social network system,” in 24th international
conference on parallel and distributed systems, ser. ICPADS. IEEE,
2018.

[70] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A near-
optimal social network defense against sybil attacks,” IEEE/ACM Trans.
Netw., vol. 18, no. 3, pp. 885–898, 2010.

[71] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman, “SybilGuard:
defending against Sybil attacks via social networks,” IEEE/ACM Trans.
Netw., vol. 16, no. 3, pp. 576–589, 2008.

[72] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, 2014.

[73] ZorrillosDev. Watchit. [Online]. Available: https://watchit.movie/#/

15

https://dat-ecosystem.org/
https://dat-ecosystem.org/
https://github.com/ipfs-shipyard/pm-discussify
https://github.com/ipfs-shipyard/pm-discussify
https://eli.sohl.com/2020/06/05/dht-size-estimation.html
https://www.notion.so/Network-Size-Estimation-4ab2c52083ed4e88968f629d1fa47eb7
https://www.notion.so/Network-Size-Estimation-4ab2c52083ed4e88968f629d1fa47eb7
https://watchit.movie/#/

APPENDIX A
ARTIFACT APPENDIX

In this work, we implement a censorship attack on the
IPFS network, a method to detect the attack, and a method to
mitigate the attack. Our artifact includes the implementations
of these three components and experiments to measure their
effectiveness, accuracy, and cost.

Artifact Outline (key aspects):
/

README.md

common

go-libp2p-kad-dht

(detection & mitigation)

go-libp2p-kad-dht-Sybil

(Sybil DHT implementation)

Sybil_DHT_Nodes (Sybil node implementation)

kubo (standard IPFS
implementation)

experimentCombined (main experiment & results)

README.md

python (plots & other simulations)

README.md

A. Description & Requirements

1) How to access: The artifact is available online at the link
https://doi.org/10.5281/zenodo.8300034. The detection and
mitigation parts are also available on Github: https://github.
com/ssrivatsan97/go-libp2p-kad-dht, and are scheduled to be
deployed in the official release of go-libp2p-kad-dht.
Our mitigation will be deployed on a per-client basis (not
network-wide) and therefore, the experiments in this artifact
are expected to remain reproducible as they attack our own
providers and downloaders that do not use the mitigation.

2) Hardware dependencies: Our experiments require a
machine with a public IP address which must allow incoming
TCP connections on several ports to allow other IPFS peers
to connect to our Sybil peers. Our experiments were run on a
machine rented from AWS. The recommended instance type is
t3.xlarge which has a 2nd generation Intel Xeon Scalable
Processor (3.1 GHz) with 4 vCPUs, 16 GB memory, and
5 Gbps peak bandwidth. While the compute and memory
requirements of our experiments are modest, a high peak
bandwidth is required to ensure good connectivity of the Sybils
and good attack effectiveness. Our artifact includes instructions
in the README on how to run the experiments on any other
machine with these requirements.

3) Software dependencies: Recommended operating sys-
tem: Ubuntu 22.04. Required software: Go v1.19.10, Python
3.10, gcc, Make.

4) Benchmarks: None.

B. Artifact Installation & Configuration

For the artifact evaluation, the setup begins with logging in
to our provided AWS machine via SSH using the instructions
given in the README file. Detailed instructions for each of
the following steps are given in the top-level README file.

Network setup: In firewall settings, incoming TCP connec-
tions on ports 4001, 5001, 63800-63850 must be enabled.

Install software requirements: Install Go, Python, gcc, and
make. We provide a file requirements.txt to help install all
required Python packages.

Build and initialize IPFS: We provide the source code of
kubo, the IPFS client written in Go, in our artifact. After
compiling the source code, an IPFS node must be initialized.
The IPFS node runs in the background during our experiments
and is used to obtain information from the network such as the
closest peers to the target CID.

C. Experiment Workflow

Our main experiment (E1) has two phases: data collection
and plotting.

Data collection: In this phase, we run the attack for
different numbers of Sybils, different target CIDs, and different
downloader clients. We collect measurements regarding the
attack’s success, detection results, and mitigation success each
time. The code for this step along with instructions is given in
the folder experimentCombined/.

Data processing and plotting: In this phase, we process the
collected measurements and generate the plots in the paper
(Figures 7, 10, 11 and 13 to 15). The code and instructions
for this step are in the folder python/.

D. Major Claims

• (C1): Our censorship attack using e = 45 Sybil nodes
blocks 99% of users’ content requests. This is illustrated
in Figure 7.

• (C2): Our detection mechanism achieves a false negative
rate of 0.81% and a false positive rate of 4.4% for our
chosen detection threshold (Figure 10). Most attacks that
were not detected were also not successful in censoring
the content, and the detection rate improves as the attack
effectiveness increases (Figure 11).

• (C3): Our mitigation leads to successful content discovery
100% of the time (Figure 13) by sending provider records
to a constant number of honest peers even as the number
of Sybils increases (Figure 15). Moreover, the overhead
of our mitigation increases sub-linearly with the number
of Sybils (Figure 14). Claims (C1), (C2), and (C3) are
proven by experiment (E1).

• (C4): Our censorship attack incurs a low cost for the
attacker. The required keys can be generated on commod-
ity hardware within 20 seconds (for EdDSA) or 2 hours
(for RSA). This is proven by the experiment (E2) whose
results are illustrated in Figure 9.

E. Evaluation

1) Experiment (E1): [Detection and Mitigation] [4
compute-hours]: In a single run of this experiment, we do the
following: We create a new file, compute its CID, generate
Sybil identifiers based on the CID, and launch Sybil nodes.
Then, we launch two DHT nodes, a provider and a downloader.
The provider provides the file, the downloader attempts to
find providers for the file and runs the detection. We record
the success of the attack and the detection result. Then, the
provider provides the file with the mitigation enabled, the
downloader attempts to find providers also with the mitigation

16

https://doi.org/10.5281/zenodo.8300034
https://github.com/ssrivatsan97/go-libp2p-kad-dht
https://github.com/ssrivatsan97/go-libp2p-kad-dht

enabled, and we record the mitigation success, the number of
DHT lookups performed by the mitigation, and the number
of honest and Sybil peers contacted and successfully updated
with provider records. This whole process is repeated for 10
different files. This experiment is then repeated for 0, 20, 30,
40, and 45 Sybils. Each run takes 4-5 minutes on average.
Hence, we scale down the number of runs for each experiment
from 100 to 10 and run it for fewer values of the number of
Sybils so that the experiment completes within 4 hours.

[Preparation] None beyond Appendix A-B.

[Execution] Change the working directory to
experimentCombined/, then build and run the experiment
as per instructions in experimentCombined/README.
md. Running the experiment stores the results in the specified
output directory.

[Results] The folder python/ contains code to
generate Figures 7, 10, 11 and 13 to 15 from the
experiment results. For reference, we also provide
the results corresponding to the plots in the paper in
experimentCombined/detection_results and
experimentCombined/mitigation_results.

2) Experiment (E2): [Keys Generation Time] [10 compute-
hours]: This experiment generates the required Sybil keys for
different sizes of the network and analyzes the generation time.

[Execution] Run two sets of experiments measuring gen-
eration time for RSA and EDDSA:
cd py thon /
go run m e a s u r e G e n e r a t e S y b i l K e y s r s a > t i m i n g r s a . c sv
go run m e a s u r e G e n e r a t e S y b i l K e y s eddsa > t i m i n g e d d s a . csv

We provide our results files for reference (generating RSA keys
takes a while).
. / s i m u l a t i o n r e s u l t s / s a m p l e r s a . c sv
. / s i m u l a t i o n r e s u l t s / s ample eddsa . csv

[Results] The commands below will reproduce the graph
in Figure 9.
python3 p l o t k e y g e n e r a t i o n t i m e . py

F. Customization

Experiment (E1) provides arguments to customize the
number of Sybils, the number of clients, and the number of
CIDs for which to run the experiment.

G. Notes

The key generation time is heavily hardware dependent.
The result might thus differ from the ones shown in Figure 9.
The experiment time might be shortened by adjusting the
number of tries per network size. However, this comes at the
price of losing the precision.

In the artifact, we include the code and instructions for
generating all other figures in the paper as well.

17

	Introduction
	Ethical Considerations and Responsible Disclosure
	Background
	IPFS DHT
	Content Resolution in IPFS
	Network Size Estimator

	Threat Model
	CID Censorship Attack
	Attack process
	Attack analysis

	Censorship Attack Detection
	Mitigation with Region-Based Queries
	Evaluation
	Setup
	DHT Lookup Accuracy
	Attack
	Detection
	Mitigation

	Related Work
	Discussion and Future Work
	Conclusion
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

	Customization
	Notes

