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Abstract—With the exponential rise of internet-connected
devices, the number of Internet of Things (IoT) devices has
surpassed that of traditional IT devices. This proliferation in
IoT adoption can be attributed to the growing demand for
manufacturing automation and the desire for enhanced quality
of life, leading to the production of smart devices in various
industries. However, this rapid adoption has caught the attention
of malicious actors, resulting in a significant increase in cyber-
attacks targeting IoT devices. In response to this emerging threat
landscape, research on IoT security has been active. Nevertheless,
the lack of commercial tools specifically designed for IoT device
security raises concerns about the ability of security research and
adoption to keep pace with the rising number of malicious actors.
To address this gap, this study focuses on introducing a novel
mechanism for detecting malware in IoT devices. By conducting
experiments, we demonstrate that using Hardware Performance
Counters (HPCs), complemented by physical features such as
power consumption, can improve the current malware detection
capabilities. Specifically, we employ Recurrent Neural Networks
(RNN) and Multi-Layer Perception Neural Networks (MLP)
to achieve a remarkable detection accuracy of 95% within a
timeframe of less than 10 seconds from infection.

Index Terms—Internet of Things (IoT), Hardware Performance
Counters (HPC), Malware Detection, Neural Networks (NN)

I. INTRODUCTION

As the number of internet connected devices continues to
rise exponentially, the arms race between malicious threat
actors and the security research community is also seen to
escalate proportionally. In recent years, however a new trend
has emerged, the number of IoT devices has overtaken the
number of traditional IT devices connected to the internet [9].
Every single industry has found a use of this technology, and
as such the adoption rates are astronomical. This explosive
adoption rate has been noticed by the malicious actors and
subsequently the following effects were noticed: a 300%
increase in the number of cyber-attacks in IoT devices around
2019 [6], and 25% of all cyber-attacks targeting IoT devices
in 2020 [20]. Research in IoT security has also been vigorous,
however there is an acute lack of commercial tools designed
specifically for the security of IoT devices, fuelling concerns
that security research and adoption may not be keeping up
with the increase in malicious actors.

In recent years, research on IoT security has grown signifi-
cantly, but there are clear indicators of gaps in understanding

and implementation of effective security measures. Literature
regarding malware detection approaches in IoT devices over
three years between 2019 and 2022 shows a notable shift in
research focus from the traditional signature-based methods
to machine learning-based approaches [22], [8]. The research
gaps identified include the need for standard datasets and more
robust techniques, as well as the emphasis on interpretability
of machine learning models and their transferability across IoT
domains. Notably, none of the surveyed papers include studies
that employ HPCs for malware detection in IoT devices.

Therefore, this study proposes a novel malware detection
mechanism for IoT devices utilizing Hardware Performance
Counters (HPC). HPCs are specialized registers integrated
within the hardware architecture of a processor, designed to
monitor various aspects of system performance such as proces-
sor usage, memory usage, and cache behaviour. As explained
by Intel Corporation, HPCs provides low-level performance in-
formation and is primarily designed to be used for debugging,
system optimization, and performance profiling [2], it counts
specific events such as the number of instructions executed, the
number of cache misses, the number of branch mispredictions,
and the number of cycles elapsed during program execution
and much more. While the concept of hardware counters for
performance monitoring and analysis dates back to the 1970s
with the development of performance monitoring hardware
for IBM mainframes [12], its first recorded application in
security is attributed to a 2003 publication [14]. Despite the
presence of contradictory arguments in the existing literature,
we hypothesize that HPCs can serve as an effective means of
malware detection in IoT devices. To guide the investigation
towards this goal, a set of specific research objectives has been
identified:

• Are HPCs effective in differentiating between benign and
malicious datasets in the context of malware detection in
IoT devices?

• Are there any potential limitations of HPCs due to their
probabilistic nature and if so, to what extent can it impact
their effectiveness in malware detection?

• How effective of a malware detection solution can be
designed using the HPC data from IoT devices in terms
of detection accuracy and speed?



And in answering these questions, we have determined
that malware detection using HPCs is not only viable but
produces comparable, if not better, classification accuracy
when compared to similar existing mechanisms. The proposed
mechanism utilizing Neural Networks is the primary contribu-
tion of this study.

II. METHODOLOGY

We have adopted an experimental approach for this research
due to the scarcity of relevant datasets for malware detection
in IoT devices. The subsequent sections will provide detailed
descriptions of the experimental architecture, collected data,
and the subsequent exploration and analysis conducted with
the objective of designing a robust solution for malware
detection in IoT devices.

A. Experimental Architecture

Given the acute lack of datasets tailored for IoT security, we
have adopted an experimental approach towards data collection
and analysis. For this purpose, an experimental setup has been
designed aimed towards extracting Hardware Performance
Counters and other pertinent features from IoT devices. The
experimental setup consists of several Raspberry pis connected
in a sandboxed network with simulated internet connection
provided by INetSim.

B. Data Collection

HPCs rely on physical registers to store the counts of
sub-architectural events and are limited by the number of
such registers present in the particular CPU model. In this
study, the Raspberry Pi model 2bs has been used, which
is equipped with ARM Cortex A9 CPUs that incorporate
58 events; however, it contains only 7 monitoring registers.
Typically, each register has the capacity to monitor a single
event; however, by utilizing time-multiplexing techniques, a
total of 14 events have been collected for the initial analyses.
These are:

• No. of Cycles
• No. of Functions
• No. of Float
• No. of Load
• No. of Store
• No. of Network Interrupts
• No. of Committed Instructions
• No. of Integer Instructions

• No. of Branch Instructions
• No. of Data Cache Hits
• No. of Data Cache Misses
• No. of Instruction Cache Hits
• No. of Instruction Cache Misses

The Raspberry Pis in our study serve as a platform to sim-
ulate a range of IoT devices using a combination of modified
device firmware and industry benchmarks. The collection of
HPC data is achieved using an in-built linux tool ”perf stat”
tool, which is configured to poll the registers of the simulated
devices at a granularity of 1ms. During the experimentation
phase, a benchmark is executed for a duration of 2 minutes
with and without the presence of malware running in the

TABLE I
MALWARE SAMPLES USED

Family Samples Family Samples

Botnets

Mirai

Rootkits

Bashlite
Kaiten BrickerBot
Qbot Rustock
Linux.Wifatch Zues/Zbot
Hajime Alureon
Mozi Ztorg
lightaidra

Ransomwares

Ryuk

Spyware

Tycoon GrandCrab
Erebus Maze
Pegasus Revil
FruitFly RansomExx
IoTroop NotPetya

same threads. This results in the generation of approximately
120,000 observations per run. To minimize the noise from
extraneous factors, the IoT device firmware running on the
Raspberry Pi is pinned to a specific thread, and the monitoring
tool is set to observe only these threads. To further reduce
noise, most background processes are terminated during data
collection. The malware executables are obtained from a
GitHub repository containing live samples [23] and Malware
Bazaar, an Open-Source Intelligence platform [1]. The current
dataset under analysis includes 24 malware samples, see table
I.

III. DATA EXPLORATION

This section presents the initial data exploration and analysis
conducted to support the research objectives. We first examine
the non-deterministic characteristics of HPC data in section
III-A. Then, using correlations (section: III-B) and clustering
(section: III-C), we demonstrate that despite the observed
non-deterministic characteristics, the execution of malware
on an IoT device results in detectable variations in HPC
values. Additionally, using these same techniques, we identify
a subset of HPC features that are more influenced by malware
execution.

A. Probabilistic Nature of HPCs

There are several approaches and techniques that can be
used to estimate the degree of non-determinism in a given
context. For example, one approach is to measure the variation
or deviation of the data points from their mean or expected
values [3]. Another approach is to use statistical models
to compare the distribution of the data points in different
runs [13]. Following the first approach, a statistical summary
typically includes measures of central tendency, such as the
mean, median, and mode, as well as measures of dispersion,
such as the standard deviation and range. Comparing the
statistical summary across multiple runs of the same malware,
we observed variations in the interquartile range, mean and
standard deviations in most of the HPC events, see figures 2,
3, 4. However, these were not consistent across the collected
counters, for instance, No. of Float instructions and No. of
integer instructions were constant in their statistical summary,



Fig. 1. Comparison of Instruction Cache Miss rates between multiple runs

whereas the most differences were observed in the Data cache
and Instruction cache miss rates.

Next, we employed the Kernel Density Estimate (KDE)
method to estimate the probability density function of the
HPC events. It provides a way to estimate the distribution
of a continuous variable based on a sample of data. KDE
operates by wrapping a kernel function around each sampled
data point. The shape of the curve used to approximate
the probability density function is determined by the kernel
function. Using the Gaussian kernel, we plot the distribution
of the observations in the dataset. Here too, we observed the
most variations in the Data/Instruction cache miss rates, Fig
3. Both the Statistical summary and kernel density estimates
are visualized using violin plots, where:

• The blue area represents the kernel density distribution,
which indicates the probability density of the variable
at different values. It displays how the data points are
distributed throughout the dataset, with longer horizontal
peaks indicating areas of greater density.

• The horizontal yellow lines denote the quantiles, which
are statistical measures that divide the dataset into equal
parts. The three lines represent the upper quartile (Q3),
median (Q2), and lower quartile (Q1) of the data, ar-
ranged from top to bottom.

• The orange dot represents the mean, which is the arith-
metic average of the dataset. The vertical orange line
extending from the dot represents the variance, which
indicates how much the data points are spread around
the mean value.

The violin plots in Fig 1 show that the four datasets used
for visualization have different distributions. Note that while
the following behaviour is present on the entire dataset, for
visualization purposes, only four data samples are used. The
quartiles (horizontal yellow lines) show that the median (Q2)
of the third dataset is higher than the other three datasets,
indicating that its values are generally higher. The third
dataset’s upper quartile (Q3) and lower quartile (Q1) are closer
together, indicating a more evenly distributed dataset. The first
and third datasets have a higher mean (orange dots) than the
other two. Each dataset has a different variance, shown by
vertical orange lines. The second dataset has a lower variance,

Fig. 2. Comparison of ICache Miss rates between different runs and between
malicious and benign datasets

Fig. 3. Comparison of Data Cache Miss rates between different runs and
between malicious and benign datasets

indicating that data points are clustered around the mean. The
first dataset has the highest variance, meaning its data points
are more spread out than the other three. The quartiles and
medians also indicate that the datasets are skewed differently.

A similar comparison on the benign data also shows the
same non-determinism, Figure 2. Furthermore, when benign
datasets are compared to the malicious datasets, there are ad-
ditional visual differences, especially when comparing datasets
2 & 3 between the malicious and benign datasets, the shape of
the distribution function varies significantly. Data Cache miss
rate also follows similar trends (Figure 3).

Conversely, we do not observe any non-determinism in the
following two events: No. of Integer instructions & No. of
Float instructions, Fig. 4.

From the comparison of non-determinism, the following
conclusions can be made about the set of HPC data we have
collected so far:

• Non-Determinism is present in HPC values, however not
all the events display such behaviour

• No. of Integer Instances, and Number of Float Instances
are fairly constant between runs, whereas Instruction
cache and Data Cache miss rates vary the most.

The impact of non-determinism on HPC’s malware de-
tection capability is investigated in further sections. Results
from violin plots and *a table* illustrate that the variations
caused by malware are more significant than those resulting



Fig. 4. No. of Integer Instructions

from probabilistic factors. Nevertheless, we will demonstrate
that malware execution induces observable variations in HPC
values through multiple visualization techniques. These tech-
niques will also aid in selecting relevant features for data
classification.

B. Pearson Correlation Analysis

Next, we perform a correlation analysis to study the corre-
lations between different collected events. Pearson correlation
coefficient is a statistical measure that quantifies the strength
of the linear relationship between two variables. It is used to
determine how closely related two variables are to each other.
Pearson’s correlation coefficient is calculated as the covariance
of the two variables divided by the product of their standard
deviations.

The resulting coefficient is represented by the symbol ”r”
and can take values between -1 and 1. When the value of ”r”
is close to -1, it indicates a perfect negative linear relationship,
while a value of 0 indicates no linear relationship between the
two variables. When ”r” is close to 1, it indicates a perfect
positive linear relationship between the two variables. Pearson
correlation coefficient is frequently used in machine learning
applications to determine the degree of correlation between
two variables, which is useful for feature selection, model
building, and evaluating model performance [18].

The computation of the Pearson correlation coefficient be-
tween all features of a dataset generates a correlation matrix,
which can be depicted using a heatmap, as illustrated in
Figure 5. Typically, the triangles on two sides of a correlation
matrix along the diagonal contain the same information. This
is because the correlation matrix is a square matrix, where each
row and column represent a variable in the dataset, and each
cell in the matrix represents the correlation coefficient between
two variables. The diagonal of the matrix always contains a
correlation coefficient of 1 since it represents the correlation
of each variable with itself. The upper and lower triangle of
the matrix represent the same set of pairwise correlations,
in a different order. Therefore, this allows us to calculate a
similar correlation matrix for a malicious dataset and replace
the upper triangle with the malicious correlation, allowing for
comparison between them to determine how this relationship

Fig. 5. Pearson Correlation Coefficient Heatmap

between the features is affected by the addition of malware
running on the device.

In Figure 5, we have highlighted the sections where the
introduction of malware has had a significant impact on the
correlation; specifically, the pair of red highlighted cells;
these correspond to the correlation coefficient between the
number of load and store events. Notably, the benign dataset
(bottom triangle) exhibits a negative correlation between these
variables, whereas the malicious dataset (upper triangle) shows
a positive correlation. This is an interesting observation, which
implies that the inclusion of these features will be significantly
helpful for the Neural Network models to classify benign
versus malicious datasets. This correlation heatmap suggests
the following features to be interesting: No. of Load, Store,
Branch, committed instructions, and the DCache & ICache
miss rates. Note that these are also the same events in which
we observed higher rates of non-determinism.

C. Clustering Analysis

Next, we use K-Means clustering to further confirm our
hypothesis that malware induced variations in HPCs are sig-
nificant and observable. K-Means has been used for feature
selection in various fields, including computer vision and
bioinformatics [17] [15]. Typically, when performing clus-
tering with a high-dimensional dataset, it is reduced to two
dimensions using various techniques like Principal Compo-
nent Analysis, however this process is known to lose certain
information [11]. Therefore, we will use K-Means clustering
without dimensionality reduction: The clustering results of K-
Means will be visualized with two features at a time, and the
plots can then be used to evaluate the separation of the clusters.
Well-separated clusters with clear boundaries indicate that the
features used are useful in grouping data into two distinct
clusters (Malicious or Benign), while overlapping or poorly
separated clusters suggest that the features may not be suitable
for classification. There are several published works on the use



Fig. 6. K-Means Clustering

of K-means clustering for high dimension data similarly, [24]
and [5].

Take the four plots in Figure 6 for example, the top two
clusters are well-separated, with clear outliers, whereas the
bottom two plots have certain overlaps. Evaluating the similar
plots between different combinations of features gives us
another list of features that are potentially significant in the
classification of malicious and benign data: No. of Branch,
Load, Store, and Functions.

IV. RESULTS

Following the presented initial exploratory data analysis
and feature selection, a range of Neural Network models are
trained and evaluated in terms of their prediction accuracy
and detection speed. Neural Networks are preferred over
traditional machine learning models for time series classifi-
cation tasks, as they are better able to handle complex non-
linear relationships and process large amounts of data [10].
Specifically, Recurrent Neural Networks (RNNs) are often
used for time series classification because of their ability to
capture temporal dependencies in the data through the use of
feedback loops in their architecture. Additionally, some studies
have shown that Multi-Layer Perceptron (MLP) and certain
Convolutional Neural Network (CNN) models also perform
exceptionally well in time series classification when dealing
with large and complex feature sets [7]. Therefore, drawing
from literature studied and discussed in previous sections, we
have implemented the following NN Models: MLP (Multi-
Layer Perception); RNN (Recurrent Neural Network); MCD-
CNN (Multi Channel-Deep Convolutional Neural Network);
FCN (Fully Convolutional Network); and CNN (Convolutional
Neural Network). In addition to comparing the models with
each other, we will also be comparing the different feature sets
within each model. These feature sets are described in table
II.

Figure 7 provides a comparison of the predictive accuracy of
the chosen models utilizing different feature sets. The results
indicate that the MLP model utilizing the star feature set
outperforms other models and feature sets. These findings

TABLE II
FEATURE SETS UNDER TEST

Feature Sets Description
Baseline All 14 HPC events
Baseline + Power All 14 HPC events and Power Consumption data
Star Features No. of Load, Store, Branch, Functions,

ICache/DCache miss rates & Power Consumption
Partial Frequency
Domain data

Star Features + (Power consumption and No. of
Branch in their frequency domain)

Fig. 7. Accuracy % of different models using different feature sets

Fig. 8. Accuracy percentage of different malware samples using RNN

support the results of the HPC data exploration, which guided
the selection of features included in the star feature set.
Notably, MLP and RNN models perform better than the three
CNN-based models. This suggests that learning the temporal
dependencies in the time series HPC data is crucial in our
specific use case.

Having confirmed that MLP and RNN are the top-
performing models among those tested based on the results
of the model comparison above using different feature sets,
we now aim to investigate the detection accuracy and speed
of these models exclusively and drop the other models in
consequent tests.

Further investigation into the prediction accuracy of individ-
ual malware samples, as depicted in Figure 8, reveals some
interesting insights. Notably, ransomwares exhibit exceptional
classification accuracy, with one sample surpassing 95% pre-
diction accuracy. Botnets closely trail ransomwares, achieving
accuracy rates ranging between 91% and 94%. In certain cases,



Fig. 9. Accuracy percentage of different malware samples using MLP

Fig. 10. Detection Speed of different malware samples using MLP

botnets even outperform specific ransomware samples. This
higher accuracy when compared to other malware families can
be attributed to the inherent characteristics of ransomwares and
botnets, which involve extensive code execution and network
activities during the initial stages of infection. On the other
hand, spywares which are specifically designed to remain
concealed until necessary, demonstrate some of the lowest
prediction accuracy values among the tested malware families.
Their evasive nature and limited observable behaviours make
them inherently challenging to detect accurately. In terms
of the models employed, MLP exhibits a similar pattern
as the RNN: Higher accuracy with ransomwares, followed
by botnets then rootkits and finally spywares. However, the
overall accuracy levels achieved by MLP are lower compared
to those attained by RNN across all malware families.

Shifting our focus to the detection speeds, it is observed
that ransomwares exhibit the shortest detection times in our
experiments. Using RNN, we were able to detect ransomware
execution in approximately 5 seconds, as illustrated in Fig 11.
Similarly, MLP demonstrates the ability to detect ransomware
execution within a range of 6 to 7 seconds, as seen in Fig
10. Evidently, the distinguishing characteristics that contribute
to higher detection accuracy of ransomwares also facilitate
faster detection times. However, it is crucial to emphasize
the considerable disparity observed in the detection speeds
across different malware families. The notable differences in

Fig. 11. Detection speed of different malware samples using RNN

detection times highlight the varying complexities associated
with each malware type.

V. DISCUSSIONS AND LIMITATIONS

The findings of this study provide clear evidence that
Hardware Performance Counters (HPCs) can be effectively
utilized for malware detection, demonstrating both satisfactory
accuracy and speed. Despite the initial concerns about the
non-deterministic nature of HPCs, it was observed that this
characteristic has minimal impact on the effectiveness of the
detection mechanism. Previous works have highlighted the
detrimental effects of such non-determinism in security appli-
cations. However, the evidence gathered in this research shows
that neural network models have the capability to learn and
adapt to this non-deterministic behaviour, thereby mitigating
its influence. In contrast, older studies employing signature
or threshold based detection mechanisms appear to be more
susceptible to the challenges posed by non-determinism in
HPCs.

In order to provide a complete and honest evaluation of
the findings presented, it is also important to acknowledge the
limitations of this study.

We initially aimed to collect HPC data directly from IoT
devices to facilitate this study, however, we encountered some
challenges: Although the processor and kernel utilized in the
IoT devices have the capability to support HPC monitor-
ing, accessing them requires shell access which is actively
prevented by the security measures in place. As a result,
collecting HPC data from the IoT devices directly introduces
significant processing overheads that must be considered in
the study. Therefore, for this study we utilized raspberry pis
with simulated IoT devices, however we are actively pursuing
the extraction of HPC data from the IoT devices themselves
to enable a more comprehensive and accurate analysis of
malware detection mechanism.

The HPC data used in our research is specific to ARM
platforms. Although we made sure to include events present
in other CPU architectures as well, nevertheless, the specific
implementations are known to vary with changes in the
platform, potentially affecting the HPC values. As a result,
we plan to collect data from other platforms, conduct similar



experiments, and assess the generalizability of our models and
findings.

VI. RELATED WORKS

A. Malware Detection in IoT devices

In recent years, there has been a significant surge in research
activity within the domain of IoT security. However, a com-
mon comment in the literature is that IoT security research
is still in its formative stages; a similar statement is always
present in most publications, indicating that there may remain
significant gaps in the understanding and implementation of
effective security measures for IoT systems. As a starting point
for this literature review two survey papers were reviewed,
both aimed to classify existing works and provide a taxonomy
of the studies available in the domain of Malware Detection
approaches in IoT devices, but they were published three years
apart. Starting at 2019 [22] provides an overview of malware
detection techniques in IoT and highlights their advantages
and limitations. Then in 2022 [8] focuses on analysing the
various malware detection systems proposed for the Enterprise
IoT environment. Comparing these studies provides some
interesting insights into the progress in this discipline from
2019 to 2022, they are summarized below.

The shift in research focus from traditional malware de-
tection methods to machine learning-based approaches is one
of the most significant changes observed in the domain over
three years. Traditional techniques such as signature-based and
anomaly-based detection methods were the primary topic of
discussions in the 2019 study. The 2022 study, on the other
hand, focuses on a detailed discussion of machine learning-
based approaches, such as deep learning and reinforcement
learning. This shift is also reflected in the research gaps iden-
tified in both publications: The 2019 study identified problems
such as a lack of standard datasets for evaluating IoT malware
detection techniques and a need for more robust and efficient
techniques that can handle the high volume and variety of data
generated by IoT devices, whereas the 2022 paper pinpoints a
different set research gaps; a lack of attention to explainability
and interpretability of machine learning models and a need
for more research on the transferability of machine learning
models across different IoT domains. Overall, the key contri-
butions of both studies include identifying research gaps and
proposing taxonomies or comprehensive surveys of existing
literature. It is worthy to note that neither of the survey papers
discussed above incorporates any studies that employ HPCs
for the purposes of malware detection within IoT devices. The
subsequent section highlights the existing research that does
utilize HPCs for security, although very little research exists
applying this to IoT devices. Similarly, the work presented in
[19] claims to be the pioneering hardware-assisted malware
detection mechanism. However, our work distinguishes itself
through the utilization of distinct underlying features. While
we employ hardware performance counters, the study in
question relies on data extracted from the embedded trace
buffer of a processor. This buffer stores trace information

generated during a processor’s execution, primarily intended
for debugging and performance analysis purposes.

B. Hardware Performance Counters

HPCs have been used for security purposes in multiple
studies with varying levels of success over the years, although
mostly for general purpose computers running Intel x86 or
AMD platforms. [4] provides a comprehensive survey of the
challenges and perils of using HPCs for security, however the
literature used draws from works in other domains such as
profiling, performance optimizations, and OS support as well.
It concludes that more than 45% of the reviewed literature do
not recommend the use of HPCs. This is attributed to two main
reasons frequently cited in the literature: non-determinism and
a lack of portability. The survey study also reports that only
about 10% of the works using HPCs address and explicitly
argue how they account for this non-determinism. Drilling
down into the security research featured in this study, the
next sections summarizes the previous relatively successful
attempts to use HPC for security and how they address the
non-determinism of HPCs:

The authors behind [16] note that HPC data can be non-
deterministic due to various factors, such as hardware differ-
ences, software variations, and operating system behaviour.
To address this issue, they propose a calibration method that
involves collecting HPC data from a reference program that
is executed on the same hardware and software configuration
as the target program. The reference program’s HPC data is
used to create a baseline for the expected HPC data of the
target program. The authors then compare the HPC data of
the target program to the baseline to detect any discrepancies
that could indicate malicious activity. Through experiments,
the authors show that the proposed calibration method can
effectively reduce the impact of non-determinism on the
integrity-checking process. They also note that the calibration
process can be time-consuming but argue that the benefits of
improved accuracy and reduced false positives outweigh the
costs. Overall, the authors provide a practical approach for
addressing the issue of non-determinism when using HPCs
for program integrity checking, although with a very high
processing overhead.

[25] proposes a novel approach to detect Return-Oriented
Programming (ROP) attacks using HPCs. It collects HPC data
during the execution of a program and applies a detection
algorithm to identify attacks. The approach was evaluated
using several real-world applications and demonstrated high
detection accuracy with a low false-positive rate. The authors,
however, do not address the issue of non-determinism of
HPCs. Instead, they acknowledge this issue and propose a
technique to detect ROP attacks using a small set of per-
formance counters. They argue that non-determinism can be
mitigated by selecting the appropriate performance counters
and adjusting the threshold values to account for variations.
They also note that their technique is designed to detect ROP
attacks with high accuracy, even in the presence of non-
deterministic behaviour.



[21] proposes a new technique for detecting kernel rootkits,
which are malware that can modify the control flow of the
kernel to gain control of the system. The proposed technique
uses HPCs to monitor the system call and interrupt numbers in
the kernel, which are used to detect modifications to the kernel
control flow. It uses a combination of threshold-based and
machine-learning-based techniques to detect anomalies in the
HPC data and identify the presence of a rootkit. The authors
evaluated NumChecker using a number of different rootkits
and showed that it can successfully detect all of them with
a low false-positive rate. They also compared NumChecker
with other rootkit detection techniques and showed that it
outperforms them in terms of accuracy and detection speed.
The authors conclude that NumChecker is a promising ap-
proach to detecting kernel rootkits and that it can be integrated
with existing security solutions to provide additional protection
against these types of attacks. The authors do not explicitly
address the issue of non-determinism of HPCs in this paper.

VII. CONCLUSION

Towards the goal of enhancing malware detection in IoT
devices, this study focuses on HPCs and their suitability for
the task. To achieve this, an initial exploratory data analysis
and feature selection are conducted to identify relevant features
for effective malware detection. The selected features include
a subset of the HPC events, and great care has been given
in ensuring that the chosen feature sets capture the neces-
sary information to effectively classify malicious and benign
datasets. The study then compares the predictive accuracy and
detection speed of the Neural Network models using different
feature sets. The following conclusions are drawn from the
study:

• Ransomwares exhibit exceptional accuracy, with samples
surpassing 95% prediction accuracy.

• Botnets closely follow, achieving accuracy rates between
91% and 94%, sometimes even outperforming specific
ransomware samples.

• Spywares, designed to remain hidden, demonstrate lower
prediction accuracy due to their evasive nature and limited
observable behaviours.

• Overall accuracy levels achieved by MLP are lower
than those attained by RNN across all malware families,
this highlights the significance of capturing temporal
dependencies in time series data for effective malware
detection.

• Ransomwares are detected with the shortest detection
times in the experiments. RNN can detect a ran-
somware execution in approximately 5 seconds, while
MLP achieves detection within a range of 6 to 7 seconds.

• The faster detection times are attributed to the same
distinguishing characteristics that contribute to higher
detection accuracy: extensive code execution and network
activities during the initial stages of infection.

• The notable variation in detection speeds across different
malware families emphasize the varying complexities

associated with each type. Understanding these differ-
ences can inform the development of targeted defence
mechanisms and response strategies tailored to specific
malware types.

• Neural network models display the capability to learn
and adapt to the non-deterministic behaviour of HPCs,
thereby mitigating its detrimental impact on security
applications.

In conclusion, this study was aimed towards addressing
the existing gap in malware detection for IoT devices. Our
approach introduced a novel mechanism that uses Hardware
Performance Counters (HPCs). After exploring the probabilis-
tic nature of HPCs, spending some time in feature selection,
and through extensive experiments utilizing Recurrent Neu-
ral Networks and Multi-Layer Perception Neural Networks,
we achieved a detection accuracy of 93% - 95% within
a timeframe of less than 10 seconds from infection, thus
demonstrating the efficiency of our proposed solution.
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