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Abstract—There is evidence that it may be possible to de-
tect viruses and viral infection optically using techniques 
such as Raman and infra-red (IR) spectroscopy and hence 
open the possibility of rapid identification of infected pa-
tients. However, high-resolution Raman and IR spectroscopy 
instruments are laboratory-based and require skilled opera-
tors. The use of low-cost portable or field-deployable instru-
ments employing similar optical approaches would be highly 
advantageous. In this work, we use chemometrics applied to 
low-resolution near-infrared (NIR) reflectance/absorbance 
spectra to investigate the potential for simple low-cost virus 
detection suitable for widespread societal deployment. We 
present the combination of near-infrared spectroscopy and 
chemometrics to distinguish two respiratory viruses, respiratory syncytial virus (RSV), the principal cause of severe 
lower respiratory tract infections in infants worldwide, and Sendai virus (SeV), a prototypic paramyxovirus. Using a 
low-cost and portable spectrometer, three sets of RSV and SeV spectra, dispersed in phosphate-buffered saline (PBS) 
medium or Dulbecco's modified eagle medium (DMEM), were collected in long-term and short-term experiments. The 
spectra were pre-processed, and analysed by partial least squares discriminant analysis (PLS-DA) for virus type and 
concentration classification. Moreover, the virus type/concentration separability was visualized in a low-dimensional 
space through data projection. The highest virus type classification accuracy obtained in PBS and DMEM is 85.8% and 
99.7%, respectively. The results demonstrate the feasibility of using portable NIR spectroscopy as a valuable tool for 
rapid, on-site and low-cost virus pre-screening for RSV and SeV with the further possibility of extending this to other 
respiratory viruses such as SARS-CoV-2.  
 

Index Terms— Chemometrics, classification, near-infrared spectroscopy, partial least squares discriminant analysis, res-
piratory syncytial virus, Sendia virus. 

 

 

I. Introduction 

iral infection can often present a serious risk to population 

health, and therefore early warning and continuous moni-

toring represent an important element of disease mitigation. The 

primary laboratory standard for the detection of viral infection 

relies on quantitative reverse transcription-polymerase chain re-

action (RT-qPCR), which amplifies and detects RNA se-

quences. Although RT-qPCR can provide an accurate diagno-

sis, it is limited by cost and processing time, and is not suitable 

for real-time and on-site virus detection across a wide range of 

community and healthcare settings. Considerable effort is being 

devoted to exploring alternative detection approaches in point-
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of-care technologies that attempt to couple simplicity, speed 

and low cost with the required accuracy in terms of sensitivity 

and selectivity. Examples include electrochemical biosensors 

[1][2], immunoassay-based tests [3][4] and spectroscopic as-

says [5][6][7][8]. 

Optical and infrared spectroscopy represents powerful tools 

for the analysis of chemical species and the detection of trace 

inorganic, organic and biological components [9]. Combined 

with computational analysis, different spectroscopic techniques 

can provide spectral fingerprint information of biomarkers with 

the advantages of being rapid, non-destructive and requiring lit-

tle or no sample preparation. Spectroscopic techniques such as 

surface-enhanced Raman spectroscopy (SERS), attenuated total 
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reflection Fourier-transform infrared (ATR-FTIR) spectros-

copy and near-infrared spectroscopy (NIRS) have been reported 

as effective tools in virology studies [10]. Investigated tasks in-

clude the detection of influenza virus, respiratory syncytial vi-

rus (RSV), human immunodeficiency virus type-1 (HIV-1) and 

hepatitis C virus [10]. For influenza virus detection in nasal 

fluid, Sakudo et al. [11] combined visible and near-infrared 

spectroscopy (Vis-NIRS) and soft independent modelling of 

class analogy (SIMCA). The identification accuracies of non-

influenza and influenza patients were 96.7% and 100%, respec-

tively. Lim et al. [12] proposed a label-free method to distin-

guish different types of influenza viruses grown in cells using 

SERS and principal component analysis (PCA). The fingerprint 

related to the virus can be effectively extracted from the spectral 

peaks based on the PCA loadings. Similarly, for RSV identifi-

cation, spectra measured by SERS can be unambiguously sep-

arated using PCA and hierarchical cluster analysis (HCA) [13]. 

In fact, in addition, these techniques can present the important 

wavelengths related to the biomarkers associated with HIV-1 

and hepatitis B viral infection [14][15].  

Recently the use of attenuated ATR-FTIR, surface-enhanced 

infrared absorption spectroscopy (SEIRA) and Raman spectros-

copy have been investigated to detect SARS-CoV‑2 infections. 

Barauna et al. [6] obtained ATR-FTIR spectra of contrived sa-

liva samples spiked with inactivated γ-irradiated SARS-CoV-2 

virus particles. A genetic algorithm-linear discriminant analysis 

(GA-LDA) model was constructed based on 100 training sam-

ples and achieved 95% sensitivity and 89% specificity in vali-

dation (61 negatives and 20 positives). Yao et al. [5] used 

SEIRA spectroscopy and PCA to capture the differences be-

tween infected and control samples, yielding 89.47% sensitivity 

and 87.5% specificity. Carlomagno et al. [7] combined Raman 

spectroscopy and convolutional neural network (CNN) to ana-

lyse patient saliva, and the accuracy was 89–92%. In addition, 

the infrared based saliva screening test based on partial least 

squares discriminant analysis (PLS-DA) achieved the same 

level of accuracy (93% sensitivity and 82% specificity) [8]. 

Although these spectroscopic techniques may achieve the ac-

curacy required for viral detection, high-resolution laboratory-

based instruments and skilled personnel are required. Early 

warning and routine community-based monitoring across the 

wide range of healthcare systems cannot readily avail of labor-

atory spectroscopy facilities to the required degree. Relatively 

low-cost portable NIR systems have become available. How-

ever, they suffer from much higher noise levels and lower res-

olution than standard systems [16]. Therefore, the application 

of machine learning techniques to interrogate these low-quality 

spectra and compensate for noise, variability and low resolution 

becomes essential, if effective portable low-cost systems are to 

be developed, which would offer the additional advantage of 

inherent user simplicity since the skilled decision process can 

be automatically transferred from the local collection site to re-

mote centralized high-performance computation. 

Over the last decade, the miniaturisation and on-site portabil-

ity of benchtop spectrometers have shown great prospects in 

many fields, such as food safety [17], materials analysis [18] 

and pharmacology [19]. The use of portable NIRS spectra from 

both solid organic surfaces and liquids coupled with custom 

machine-learning algorithms to investigate the classifica-

tion/regression of target components under different conditions 

has previously been demonstrated [20][21]. However, the ap-

plication of portable spectrometers to virology has only recently 

been studied. Jian et al. [22] developed a spectrometer based on 

sunlight and smartphone to detect avian influenza virus H7N9 

and porcine circovirus type 2 antibodies. The coefficients of de-

termination were 0.959 and 0.969, respectively, which were 

comparable to those of a commercial microplate reader. A ma-

jor challenge with the detection of trace elements in solution is 

the large matrix component present in the signal, particularly 

for aqueous solutions. Typically, the signal-to-noise ratio (i.e., 

the ratio of analyte signal to that of the matrix) in this scenario 

is < 0.01. Due to the narrow range of wavelengths and low spec-

tral resolutions, the data obtained from the miniaturized spec-

trometers is considered low quality. This, coupled with fluctu-

ating experimental parameters, poses a serious challenge to the 

accuracy and reliability of the qualitative and quantitative anal-

ysis. To tackle this issue, data pre-processing is essential to re-

move unwanted variations, such as instrumental and experi-

mental artefacts [23]. Moreover, the use of chemometrics and 

machine learning methods efficiently improves the accuracy 

and reliability of data analysis [24][25]. Therefore, the applica-

tion of chemometrics and machine learning is a promising 

method that can improve the accuracy of processing low-qual-

ity spectra obtained from portable spectroscopy systems. 

In this work, we investigate the feasibility of using portable 

NIRS combined with chemometrics to classify respiratory syn-

cytial virus (RSV) and Sendai virus (SeV). RSV is the principal 

cause of severe lower respiratory tract infections in young in-

fants worldwide, and SeV is a prototypic paramyxovirus. Three 

sets of spectra, dispersed in phosphate-buffered saline (PBS) 

medium or Dulbecco's modified eagle medium (DMEM), were 

collected in long-term and short-term experiments. Although 

diagnostic screening requires a binary positive/negative output, 

the viral load of a positive case can vary significantly, and there-

fore a range of different concentrations was measured, for each 

virus. The PLS-DA was used to model the relationship between 

the NIR spectra and the virus types/concentrations, and the vi-

rus type/concentration separability was visualised in a low-di-

mensional space through data projection. Furthermore, the im-

portant variables of the RSV and SeV classification were iden-

tified using competitive adaptive reweighted sampling (CARS). 

The experimental results demonstrate that the portable NIRS 

system combined with chemometrics can provide a potential 

solution for simple, rapid and low-cost pre-screening of RSV 

and SeV classification.  

II. MATERIALS AND METHODS  

A. Sample Preparation 

Three groups of RSV and SeV samples were prepared in a 

class II virus laboratory in Queen’s University Belfast. The first 

two groups consist of virus samples measured in four sessions 

on different dates (2020-10-15, 2020-10-29, 2020-11-20, and 

2020-12-10) in PBS and DMEM, respectively. The third group 

has virus samples measured in five sessions on the same date 

(2021-02-04), and the samples were measured in PBS. The 

three groups of samples are named as long-term PBS (L-PBS), 

long-term DMEM (L-DMEM) and short-term PBS (S-PBS) for 

simplicity. A total of 44, 44 and 54 virus samples were prepared 

for the three groups, respectively. The RSV and SeV ratios in 
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the three groups were 16:28, 16:28 and 19:35 respectively. The 

information of the virus samples is summarised in Table I.  

Virus stocks (RSV titre: 2.8x107 TCID50/ml; SeV titre: 108 

pfu/ml) stored at –80oC, were thawed rapidly in a 37oC water 

bath. Ten-fold serial dilutions of stocks were made with PBS – 

the RSV stock was diluted 10−1 (Conc-1), 10−2 (Conc-2), 10−3 

(Conc-3) and 10−4 (Conc-4), while the SeV stock was diluted 

10−2, 10−3, 10−4, 10−5 (Conc-5), 10−6 (Conc-6), 10−7 (Conc-7) and 

10−8 (Conc-8). For each dilution, a drop (50 μL) of virus sample 

was pipetted onto the sample well of a microscope glass slide 

containing a fixed-depth recess and covered with a coverslip for 

measurement. After each measurement, the microscope slide 

was washed in sterile water and dried with ethanol. 

B. NIRS Measurement 

The measurement system consisted of a NIR spectrometer, a 

light source, and a sample holder. The spectrometer was 

NIRQuest512 by Ocean Optics, which has a wavelength range 

of 901.06–1721.24 nm, and a resolution of 1.65 nm. The light 

source was HL-2000-HP-FHSA by Ocean Insight, which pro-

vides light output in 360–2400 nm. The typical nominal bulb 

power is 20W and the typical optical output power is 8.4 mW. 

The sample holder consists of a reflectance standard, a parafilm 

covered microscope glass slide with a fixed depth (120 m) 

sample well of area 15 mm2, and a slide holder. An Ocean In-

sight Spectralon diffuse reflectance standard with a broad, dif-

fuse reflectance over the wavelength range of 800–2400 nm 

was used.  

For each virus sample, 10 NIR spectra of 512 variables were 

acquired in reflectance mode using the OceanView software. 

The Spectralon reflectivity is 85%–98% across the wavelength 

range which was approximated to 100% reflectance. The reflec-

tance of the test sample was determined as a relative value com-

pared to this reflectance standard. To minimise the boundary 

effect, only the 51st to 412th variables (wavelengths range: 

981.71–1641.9 nm) were retained for data analysis.  

C. Data Processing 

The data analysis scheme used in this study is shown in Fig. 

1. The raw spectral data were first pre-processed and randomly 

divided into training set and test set according to the ratio of 4:1. 

All spectra of each virus sample were grouped together for 

training or testing so that no virus’ spectra were used in both 

training and testing. The testing result should therefore be reli-

able. 5-fold cross-validation was performed on the training set 

to optimise the model parameter. Then the optimised model was 

used to classify the test set. Classification performance was as-

sessed by accuracy, recall, precision and F1 measures [26]. The 

above process was repeated 20 times, and the performance over 

the 20 repetitions was averaged.  

In this study, standard normal variate (SNV) normalization 

and Savitzky-Golay (SG) derivative were employed to improve 

classification performance. For a given spectrum, SNV sub-

tracts the mean value of the spectrum from each variable. The 

obtained values are divided by the standard deviation of the 

spectrum. SG derivative is a commonly used pre-processing 

technique in spectroscopy, which includes smoothing and dif-

ferentiation after the polynomial fitting [27]. PLS is a standard 

chemometrics method to tackle high-dimensional and high-col-

linear issues. It searches for linear combinations of independent 

variables called latent variables (LVs) that maximize the covar-

iance between the independent variables and the response. For 

classification purposes, the categorical response can be trans-

formed into numerical responses using dummy matrix coding 

[28].  

Further, competitive adaptive reweighted sampling (CARS) 

was used to select important variables based on the absolute 

values of PLS regression coefficients [29]. It adopts Monte 

Carlo simulations to select some sets of variables, and im-

portant variables are determined using the exponentially de-

creasing function (EDF) based enforced variable selection and 

adaptive reweighted sampling based competitive variable selec-

tion. The separability of virus concentrations was investigated 

TABLE I 
THE INFORMATION OF THE THREE GROUPS OF RSV AND SEV SAMPLES 

 Samples RSV/SeV Spectra Medium Sessions Date 

L-PBS 44 16:28 440 PBS 4 2020/10/15, 2020/10/29, 2020/11/20, 2020/12/10 

L-DMEM 44 16:28 440 DMEM 4 2020/10/15, 2020/10/29, 2020/11/20, 2020/12/10 

S-PBS 54 19:35 540 PBS 5 2021/02/04 

 

 

 
 

Fig. 1.  Schematic diagram of NIRS virus data analysis. 
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using t-distributed stochastic neighbour embedding (t-SNE) 

[30], which transforms the high-dimensional spectra into two-

dimensional space to visualise their distribution. The spectra 

pre-processing, variable selection and data classification were 

implemented in MATLAB R2018b environment (The Math-

Works Inc., Natick, MA, USA).  

III. RESULTS AND DISCUSSION 

A. Classification of RSV and SeV 

Fig. 2 shows the raw and pre-processed NIR spectra meas-

ured in PBS and DMEM, where the pre-processed spectra are 

tightly constricted compared to the raw spectra. Due to low-cost 

measurement and less controlled environments, the RSV and 

SeV NIR spectra show notable similarities in region 981.7–

1641.9 nm. Table II compares the training accuracy of different 

pre-processing methods, including first-order derivative (1st 

Der), second-order derivative (2nd Der), SNV, multiplicative 

signal correction (MSC) and smoothing (Smth). The average 

accuracy of L-PBS, L-DMEM and S-PBS data is increased by 

2.7%, 4% and 3.8%, respectively, when data pre-processing is 

applied. More specifically, the L-PBS and S-PBS data are pre-

processed by the SG first-order derivative (second-order poly-

nomial) and SNV, with the moving window of SG derivatives 

being 7 and 5 points, respectively. The L-DMEM data are pre-

processed by SNV normalization. Moreover, the average opti-

mal number of LVs in the L-PBS and S-PBS data is reduced 

from 6.5 to 5.9 and 7.9 to 4.7, respectively, indicating that pre-

processing (SG derivatives and SNV normalisation) can im-

prove the simplicity of the PLS-DA model. 

Based on the above optimised PLS-DA models, the classifi-

cation accuracies of the L-PBS, L-DMEM and S-PBS test sets 

are 76.4%, 85.8% and 99.7%, respectively. Such results suggest 

the feasibility of portable NIRS combined with chemometrics 

to classify RSV and SeV. Table III shows the confusion matrix 

containing information about true (column) and predicted (row) 

classes over 20 repetitions. For example, in the L-PBS test set, 

18.5 out of 26.5 (18.5+8) RSV predictions are correct and the 

remaining 8 RSV predictions are incorrect. So, the recall of 

RSV is 69.8% (18.5/26.5). For the precision of RSV, 18.5 out 

of 31.7 (18.5+13.2) true RSV cases are correctly predicted and 

the remaining 13.2 true RSV cases are incorrectly predicted, so 

the precision of RSV is 58.4% (18.5/31.7). In comparison, the 

 

 
 

Fig. 2.  The raw and pre-processed NIR spectra of RSV and SeV samples. The L-PBS and S-PBS spectra were pre-processed by SG 
first-order derivative and SNV, and the L-DMEM spectra were pre-processed by SNV. 

TABLE II 
THE AVERAGE TRAINING ACCURACY (%) ON RAW AND PRE-PROCESSED NIR 

VIRUS DATA 

 L-PBS L-DMEM S-PBS 

Raw 72.1 83.9 95.5 

1st Der 72.4 82.4 99.2 

2st Der 71.5 82.2 99.1 

SNV 72.3 87.9 96.1 

MSC 73.1 79.8 96.2 

Smth 71.9 83.7 95.3 

1st Der + SNV 74.8 87.1 99.3 

1st Der + MSC 74.2 82.8 99.3 

SNV + Smth 72.1 87.8 96.1 
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recall and precision of RSV are significantly improved in the L-

DMEM test set, reaching 77.6% and 85.2%, respectively. 

Moreover, the recall of SeV increases from 79.2% to 91.2%. 

Notably, due to the less controlled sampling environment and 

the limited number of training samples, the applicability do-

main of the model may not cover all of the test data. Therefore, 

the random splitting of data into training and test sets can some-

times lead to unsatisfactory test results on the long-term data. 

For the short-term data measured in PBS, the recall, precision 

and F1 score are close to 100% for each class.  

Spectral peak overlapping and shifting caused by low-cost 

measurement can drastically degrade data quality, resulting in 

weak spectral fingerprints. As a data-driven approach, we use 

an ensemble variable selection strategy to identify spectral fin-

gerprints [31][32]. Fig. 3 shows the selection of important 

wavelengths, based on the CARS method, that contributes to 

the classification of RSV and SeV spectra. A subset of variables 

is first selected based on the training samples in each random 

data split. Using the subset of variables, a PLS-DA model is 

constructed and used to predict the labels of test samples. The 

wavelengths with high frequencies are useful variables and will 

appear in most of the models. Specifically, in the L-PBS and S-

PBS data, 8 wavelengths obtain frequencies exceeding 18 

(1126.8 nm, 1244.7 nm, 1300.9 nm, 1332.9 nm, 1392.1 nm, 

1438.4 nm and 1440 nm) and equal to 20 (1180.2 nm, 1233.4 

nm, 1243.1 nm, 1278.4 nm, 1288.1 nm, 1510 nm, 1533.9 nm 

and 1616.5 nm), respectively. In the DMEM data, 69 of the 412 

wavelengths reach 20 frequencies. Furthermore, the wave-

lengths of 1030.8 nm, 1069.9 nm, 1231.8 nm, 1273.6 nm and 

1541.8 nm are high frequencies (>12) among the three datasets. 

Using the CARS method, the average number of variables of L-

PBS, L-DMEM and S-PBS data after 20 repetition runs is re-

duced from 412 to 77.5, 291.6, and 105.3, respectively. The av-

erage test accuracy on the three datasets remains at the same 

level, which is 78.7%, 83.6% and 96.7%, respectively. 

B. Virus Concentration Detection 

In this section, we study the distinction of RSV/SeV samples 

with different concentrations by performing dimensionality re-

duction and data classification on the short-term data (S-PBS). 

TABLE III 
CONFUSION MATRIX FOR RSV AND SEV CLASSIFICATION USING PLS-DA 

 Virus RSV SeV Recall (%) Precision (%) F1 score 

L-PBS RSV 18.5 8.0 69.8 58.4 63.6 

 SeV 13.2 50.3 79.2 86.3 82.6 

L-DMEM RSV 27.6 8.0 77.6 85.2 81.2 

 SeV 4.8 49.7 91.2 86.2 88.6 

S-PBS RSV 44.9 0.1 99.8 99.6 99.7 

 SeV 0.2 64.8 99.7 99.8 99.8 

 

 

 
 

Fig. 3.  The selection of important wavelengths using CARS. The 
frequency represents the number of times the wavelength is selected 
in 20 repetition tests. The average spectrum after pre-processing is 

shown in yellow. 

 

 
 

Fig. 4.  The average spectra of RSV (a) and SeV (b) samples with 
different concentrations in the wavelength range of 1384.1–1395.3 nm. 
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Fig. 4 shows the average spectra of different concentrations in 

a wavelength interval (1384.1–1395.3 nm). As the concentra-

tion increases, the derivatised reflectance increases in its value 

(Concn-1, 2, 3 and 4). However, this concordance between con-

centration and reflectance does not exist for low-concentration 

(Concn-5, 6, 7 and 8) spectra.  

Further, the spectra are projected into a two-dimensional 

space by using t-SNE to present the separability of different 

concentrations, as shown in Fig. 5. The numbers from 1 to 7 

and the 5 colours represent different concentrations and sam-

pling sessions, respectively. The projected RSV data exhibit 

clear concentration separation, except for the Concn-1 spectra 

obtained in the first session. The SeV data in low-dimensional 

space have 4 distinct clusters, including Concn-2, 3, 4 and the 

rest of the concentrations. This suggests that the detection limit 

of short-term measurement will not be lower than Concn-4. In 

addition, the data of the same high concentration are grouped 

regardless of the different sessions, demonstrating good repeat-

ability of high-concentration spectra in short-term measurement.  

20 repetitive tests are performed on 19 RSV (190 spectra) 

and 35 SeV (350 spectra) samples. The average testing results 

of PLS-DA on different concentration samples are listed as con-

fusion matrices in Table IV and Table V. The total concentra-

tion classification accuracy of RSV and SeV samples is 98.9% 

and 85.2%, respectively. High precisions and recalls (≥94.7%) 

are achieved in Conc-1, 2, 3 and 4 samples, and much lower 

precisions and recalls (between 63.3% to 83.3% in most cases) 

are achieved in lower concentration samples.  

 

 
 

Fig. 5.  The t-SNE visualisation of RSV (a) and SeV (b) spectra with different concentrations in S-PBS data. The increases in numbers from 1 
to 4 and 2 to 8 represent a decrease in virus concentration. 

TABLE IV 
CONFUSION MATRIX OF THE CONCENTRATION CLASSIFICATION OF RSV SAMPLES 

 Conc-1 Conc-2 Conc-3 Conc-4 Recall (%) Precision (%) F1 score 

Conc-1 10.05 0 0 0.45 95.7 100 97.8 

Conc-2 0 10.5 0 0 100 100 100 

Conc-3 0 0 11 0 100 100 100 

Conc-4 0 0 0 8 100 94.7 97.3 

 

TABLE V 
CONFUSION MATRIX OF THE CONCENTRATION CLASSIFICATION OF SEV SAMPLES 

 Conc-2 Conc-3 Conc-4 Conc-5 Conc-6 Conc-7 Conc-8 Recall (%) Precision (%) F1 score 

Conc-2 10.5 0 0 0 0 0 0 100 100 100 

Conc-3 0 9.95 0 0 0 0.05 0 99.5 99.5 99.5 

Conc-4 0 0 10 0 0 0 0 100 100 100 

Conc-5 0 0.05 0 4.65 1.05 2.6 1.15 48.9 63.3 55.2 

Conc-6 0 0 0 0.1 9.85 0.5 0.05 93.8 82.4 87.7 

Conc-7 0 0 0 1.5 0.85 6.75 0.4 71.1 63.7 67.2 

Conc-8 0 0 0 1.1 0.2 0.7 8 80 83.3 81.6 
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IV. CONCLUSIONS 

This work presents the use of portable NIRS and PLS-DA to 

classify RSV and SeV spectra. Three sets of samples prepared 

in PBS and DMEM were measured in the long term and short 

term. The raw data were first pre-processed by SNV normalisa-

tion and SG derivative to improve the classification results. 

Then PLS-DA models were trained to build the relationship be-

tween the spectra and the virus labels/concentrations. The high-

dimensional spectral data were projected into low-dimensional 

space to visually study the separability of different classes and 

concentrations. Moreover, important wavelengths that contrib-

ute to the classification of RSV and SeV spectra were identified 

using the CARS variable selection method.  

The accuracy of virus (RSV/SeV) type classification based 

on 20 repetition testing were 76.4%, 85.8% and 99.7% for L-

PBS, L-DMEN and S-PBS datasets, respectively. A clear sepa-

ration between the two classes was obtained in the latent space 

when the virus samples were measured in PBS. Furthermore, in 

short-term measurement, the results of detecting different con-

centrations of RSV and SeV samples were 98.9% and 85.2%, 

respectively. The detection limit was around Concn-4 from the 

t-SNE visualisation and confusion matrix. The long-term and 

short-term experimental results demonstrate the effectiveness 

and reliability of using portable NIRS combined with chemo-

metrics to classify RSV and SeV. Therefore, this simple, fast 

and low-cost approach can be potentially used as a pre-screen-

ing tool for real-time and on-site detection of similar viruses. 

Our future work will include identification of spectral markers, 

virus biomarkers, and further testing of the experimental proto-

col on rhinovirus, influenza virus and SARS-CoV-2. 
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