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Abstract—Detecting complex behavioural patterns in temporal data, like moving
object trajectories, often relies on precise formal specifications derived from
vague domain concepts. However, such methods are sensitive to noise and minor
fluctuations, leading to missed pattern occurrences. Conversely, machine learning
(ML) approaches require abundant labeled examples, posing practical challenges.
Our visual analytics approach enables domain experts to derive, test, and combine
interval-based features to discriminate patterns and generate training data for ML
algorithms. Visual aids enhance recognition and characterisation of expected pat-
terns and discovery of unexpected ones. Case studies demonstrate feasibility and
effectiveness of the approach, which offers a novel framework for integrating human
expertise and analytical reasoning with ML techniques, advancing data analytics.

ne of common tasks in analysing time-

referenced data, such as multivariate time

series and trajectories of moving objects, is to
find time intervals where the manner, or pattern, of data
variation is indicative of particular kinds of dynamic
behaviour. Automatic detection of such patterns by
means of computer algorithms requires precise spec-
ification of what values of attributes may occur and
how the data are expected to vary. In many application
domains, however, patterns of interest have no exact
definitions. What can be elicited from domain experts
is often far from being distinct and precise, for example,
“A flock is a large enough group of objects moving
close to each other for a certain time”. Translation
of such description to a form suitable for automated
search involves introducing parameters and thresh-
olds; see, for example, the formal definition of the flock
pattern [1]: “Let m, k € N, and let r > 0 be a constant.
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Consider a set of trajectories, where each trajectory
consists of T line segments. A flock in a time interval
I = [, 1], where j — i+ 1 > k, consists of at least m
entities such that for every point in time within / there
is a disk of radius r that contains all the m entities”.

Formalisation of vague definitions elicited from do-
main experts entails two problems. First, the choice
of appropriate parameter settings may not be obvious,
while different choices may lead to very diverse results.
Second, after the parameters are set, the definitions
become rigid and intolerant to even minor data noise
and small deviations from the thresholds. Imagine, for
example, that just for a single time moment one of the
m entities moving in a flock steps out from the disk of
radius r. This breaks the time interval / in which the
conditions of the formal definition of a flock hold. If the
lengths of the sub-intervals are less than k, the flock
will not be detected.

We encountered the problem of definition rigidity
in exploring the work of a knowledge-based system
designed to detect complex activity patterns in vessel
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FIGURE 1. Trajectory of one selected fishing vessel is shown
on a map (left) and in a space-time cube (right). Segments in-
volved in automatically identified trawling patterns are painted
in red, and the remaining segments in blue. It can be seen
that most of the loop-shaped segments indicating trawling
activities have not been recognised as trawling.

movement [2]. The system applies Event Calculus [3]
to a set of formal definitions, many of which involve
constant thresholds such as speed bounds, minimal
change in movement direction, frequency of changes,
and minimal duration of an activity. Upon observing
that the system fails to recognise a significant number
of visually identifiable pattern instances (as illustrated
in Fig. 1 by example of one vessel trajectory), we
employed interactive visualisation to investigate the
data used for the inference. We found that the min-
imal activity duration was often not formally reached
due to occasional breaks in the fulfillment of the rule
conditions, which, in turn, happened because of data
noise and small variations of attribute values around
the thresholds.

Hence, formalisation of human-defined concepts
may not be a good approach in tasks requiring the
tolerance and flexibility of human reasoning. Proba-
bilistic methods of pattern recognition (e.g., [4]) can
be less sensitive to data noise, but they still assume
that pattern specifications obtained from experts are
complete and precise, which is not always the case.

Opposite to specification-driven approaches, ma-
chine learning methods strive to acquire the ability of
pattern recognition by generalising from labelled data
examples. Due to the generalisation, the resulting clas-
sification models can be sufficiently flexible regarding
data variability. However, machine learning methods
require an abundant supply of representative training
examples, which may be very problematic. While do-
main experts can usually easily identify a pattern (or
pattern absence) given an appropriately represented
piece of data, their time is too costly to be spent for
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considering and labelling a large number of individually
shown examples.

The inherent problems of the knowledge- and data-
driven approaches call for hybrid solutions that would
be able to effectively leverage expert knowledge while
accommodating the flexibility of human reasoning [5],
[6], abstractive perception and capability to give mean-
ing to visual patterns [7].

To address this challenge, we propose a novel
visual analytics approach (see Fig. 2), in which domain
knowledge is used for constructing features capable of
effectively distinguishing patterns of interest from other
types of behaviour. It is essential to note that these
features need to characterise the behaviour of relevant
variables on time intervals, whereas raw data consist
of elementary values referring to individual time steps.
Hence, feature construction requires knowledge of (a)
what aspects of the behaviour are important, e.g., the
range of the values or the development trend, and
(b) what kinds of computationally derivable aggregate
characteristics can represent these aspects. The ca-
pability of the features to characterise and differentiate
patterns is explored using interactive visualisations,
which allow an expert to check whether groups of data
items that are similar in terms of the features instanti-
ate the same behaviour patterns and whether groups
instantiating different patterns are well separated by
the features. The visual aids also allow the expert to
select and label groups of representative examples
of different pattern types and check the suitability
and sufficiency of these examples for generating an
automated classifier by means of a machine learning
algorithm.

By actively involving a human analyst in the pro-
cess, our approach achieves flexibility in utilising do-
main knowledge and accommodating data variations.
The interactive visual interface enables simultaneous
consideration and labelling of multiple data items,
which saves the precious time of the human while
allowing creation of a sufficiently large set of data
examples for model training.

We evaluated the effectiveness of our approach
through case studies focused on detecting trawling ac-
tivities in fishing vessel trajectories and discriminating
different types of offensive play in football (soccer).
However, our approach is sufficiently general to be
applicable to other domains facing similar challenges.

The key component of our approach is characteri-
sation of behaviours of time-dependent attributes by
expressive features. This kind of task, known as feature
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FIGURE 2. A schematic representation of the workflow of the visual analytics approach to involving domain expertise and human
cognition in acquisition of training data for creation of a pattern classification model.

engineering [8], is a very important step in the data
science pipeline [9]. It is a non-trivial process in which
domain knowledge of real-world behaviours to be clas-
sified or recognised is translated to appropriate mea-
sures summarising and expressing relevant aspects
of behaviours of attributes on time intervals. A large
number of summary characteristics can be derived
from time series [10]. Selecting appropriate ones for
specific datasets and tasks is a non-trivial endeavour.
Consequently, exploring various feature combinations
becomes necessary, facilitated by visual aids to dis-
cern how effectively different behaviours are delineated
based on chosen features. Despite the abundance of
visualization and interaction techniques for temporal
data [11], there have been no specific research focus-
ing on visual support for feature engineering.

Another challenge we address in our work is acqui-
sition of labelled data examples for training of machine
learning models. This problem is given much attention
in the ML research. To reduce the workload of domain
experts on providing class labels, the paradigms of
active learning [12] and semi-supervised learning [13]
have appeared. The former devises strategies and
develops algorithms to choose informative unlabeled
examples for asking a human “oracle” to provide labels.
As discussed in the literature [5], it may be frustrating
for the human to repeatedly perform the same kind of
routine tasks. Semi-supervised learning designs model
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training algorithms that leverage a small number of
labelled data together with unlabelled data. These
algorithms exploit some measure of similarity between
data items, assuming that similar items belong to
the same class. Both paradigms presuppose that the
data already contain features that are characteristic
for the classes and sulfficient for distinguishing them,
which is often not the case. We propose a workflow
including feature engineering and subsequent testing
of the capability of the chosen candidate features to
distinguish the classes. In particular, this allows to
verify the key assumption of both active and semi-
supervised learning paradigms that similar (in terms
of the chosen features) data items belong to the same
class. Moreover, in applications where a class may
include dissimilar items, our approach allows a domain
expert to discover the existence of different variants of
data that should be in the same class and refine the
categorisation by defining subclasses. Thus, in the first
case study, different movement patterns pertinent to
trawling activities were discovered.

Given: A dataset comprising one or more time series
representing activities or movements of discrete enti-
ties or varying states of dynamic processes through
values of multiple numeric attributes. One time series
is a sequence of tuples each including a time stamp
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and values of the attributes attained at the specified
time.

Goal: Prepare training data for generating a ma-
chine learning model capable of automated detec-
tion of time intervals encapsulating specific types of
activities, behaviours, or development trends, termed
patterns.

Requirements: (1) The time intervals need to be
characterised by relevant features allowing differentia-
tion of pattern types. (2) A substantial number of la-
belled pattern examples for subsequent model training
need to be acquired.

Challenges: (1) While the values in original data
refer to time points, the required relevant features need
to characterise behaviours within intervals. (2) Labelled
pattern examples either do not exist or are insufficient
for model creation. (3) It may not be known in advance
what combinations of features can effectively distin-
guish pattern types.

Background: Domain knowledge is available re-
garding the characteristics of the patterns of interest,
yet there might not be precise mapping of known char-
acteristics to their manifestation in the data. However,
it is feasible to represent the data from a time interval
in a way that allows a domain expert to recognise the
presence or absence of a given pattern or classify the
representation as demonstrating a specific pattern.

Example 1 (Maritime traffic monitoring). In the
domain of maritime traffic monitoring, there is a task of
detecting trawling activities of fishing vessels, which is
important for controlling traffic safety and protecting the
environment. The available data are trajectories of the
vessels having the form of time series where consecu-
tive tuples include geographic coordinates, speed and
movement direction of a vessel at different time mo-
ments. It is known that trawling typically spans several
hours and is characterised by low speed and repeated
changes in the movement direction. While specific
speed ranges, frequencies of turns, and minimal ac-
tivity duration are not clearly defined, an expert can
recognise trawling by visually inspecting the trajectory
shape on a map or in a space-time cube (see Fig. 1).

Example 2 (Playing styles in football). In football
(a.k.a. soccer), there is a notion of playing style of a
team. The most common concepts occurring in litera-
ture and media are direct playing, possession playing,
and counter attacking [14]. Direct playing is described
as using a small number of passes and prevalence
of direct forward passes. Possession playing involves
a large number of typically short consecutive passes
and slow progression through the midfield. Counter
attacking involves the regain of the ball by a defending
player close to their goal, followed immediately by a
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rapid attacking transition towards the opposition’s goal.
These concepts are quite vague, and domain experts
can hardly specify precise boundaries between long
and short passes, small and large number of passes,
and rapid versus slow development of an attack. How-
ever, the shape of the ball trajectory during an attack
is indicative of the style of playing in this attack.

It is crucial to note that patterns occur over time
intervals. Since data consist of attribute values at time
points (instants), detecting pattern manifestations re-
quires transforming the data into higher-level features
that characterise activities or developments during
intervals. This transformation is a form of temporal
abstraction from the initially elementary data.

We propose a visual analytics approach to address
the problem, enabling collaboration between a domain
expert and a computer system. The objective is to
derive interval-based features capable of distinguish-
ing behavioural patterns and to generate a sufficient
number of labelled pattern examples. This sets the
stage for the subsequent development of a machine
learning model dedicated to pattern recognition in new
data. The approach encompasses the following key
components (see Fig. 2):

1) Representation of time series: Convert time
series into sequences of episodes, each of an
appropriate duration to encapsulate occurrences
of patterns of interest.

2) Temporal abstraction and feature generation:
Abstract elementary data to interval-based fea-
tures, capturing pertinent aspects of behaviour
or development during the episodes.

3) Feature assessment and selection: Explore
and assess the utility of the individual features in
discriminating patterns. Choose a combination of
features that comprehensively represents differ-
ent aspects of the patterns. If necessary, return
to step 2 to generate additional features.

4) Grouping, examining, and labelling:

¢ Identify groups of similar episodes in terms
of the chosen features.

e Examine whether the episodes within the
groups encapsulate the same pattern types.
If not, return to the step of feature selection
(step 3) or feature generation (step 2).

e Label the group members as occurrences of
known patterns, thereby producing labelled
examples.
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5) Evaluation of the training data: Check the suit-
ability of the produced training data for derivation
of a classification model, i.e., whether unlabelled
data can be correctly classified based on their
similarity to the labelled examples.

The efficacy of the entire process hinges on the apt
representation of pertinent dynamics in attribute values
through interval-based features. Key aspects, includ-
ing value level, variability, general trend, curvature,
and fluctuations, can be effectively captured through
various computationally derivable interval-based at-
tributes. These attributes encompass:

e Value level: minimum, maximum, mean of the
attribute values, quantiles, histograms of relative
value frequencies (proportions within predefined
intervals).

e Variability: summary statistics of the positive
and negative changes between consecutive time
steps, such as the mean of the changes, their
variance, amplitude, etc.

e General trend: parameters A and B of the trend
line y = Ax + B; alternatively, the trend can
be described by the angle of the trend line
inclination.

e Curvature: ratio of the sum of consecutive value
changes to the difference between the maximum
and minimum, sums of positive and negative
deviations from the trend line.

e Fluctuations: numbers of positive and negative
deviations from the trend line, number of inter-
sections of the trend line.

Other potentially useful features and alternative repre-
sentations for a given aspect may exist [10]. The effec-
tiveness of different features in distinguishing patterns
can be assessed by examining the distributions of fea-
ture values and visually exploring groups of episodes
with low, high, and medium values.

If an initial set of pattern examples is available, it
serves as a valuable resource for assessing the con-
sistency and distinctiveness of feature values. Thus,
in our case study 1, which is described in the next
section, we had results of automated pattern detec-
tion by a knowledge-based computer system, which
used predefined pattern specifications. Although the
system missed numerous pattern occurrences due to
data fluctuations, as discussed in the introduction, the
successfully recognised pattern instances were used
as supporting material for evaluating the effectiveness
of candidate interval-based features. Notably, the gen-
eral approach is versatile and does not hinge on the
availability of such supporting material. In the second
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case study, the methodology was equally applicable,
although no prior examples of successful recognition
were available.

Regardless of the availability of initial pattern ex-
amples, successful feature engineering and selection
requires involvement of domain knowledge, including
descriptions of patterns of interest and criteria for
distinguishing these patterns from the rest of the data.
These criteria are translated into appropriate interval-
based features, as introduced earlier. In the maritime
activities case study, knowledge was encapsulated in
formal rules established through prior communication
with domain experts. For the football application, es-
sential information was derived from specialised liter-
ature, such as [14].

Given the significant reliance of the approach on
the cognitive capabilities of a human analyst, interac-
tive visualisations play a crucial role. They empower
the analyst to assess the distinctiveness of features,
choose representative examples of pattern classes,
and evaluate the outcomes of example-based pattern
recognition.

We would like to clarify that we aim to introduce
a general approach rather than a specific software
system. Consequently, we abstain from detailing the
user interfaces and interaction tools, focusing instead
on presenting a flexible framework that can be im-
plemented in diverse ways to suit different applica-
tions and user needs. Rather than testing the use of
tools, we assess the effectiveness of our approach by
evaluating its ability to produce the expected result: a
comprehensive and representative set of labelled ex-
amples that capture significant patterns or behaviours
in the data. The suitability of this example set for model
development is evaluated using the kNN (k-Nearest
Neighbour) algorithm [15], which tells us whether new
pieces of data encapsulate the same patterns as the
labelled examples they are similar to.

The task in this case study is to detect movement
patterns indicating trawling activities in trajectories of
71 fishing vessels operating in the waters northwest of
France between October 1, 2015, and March 31, 2016.
This is a subset of an openly accessible dataset avail-
able at the URL https://zenodo.org/records/1167595
and described in [16].

Data representation. The data are trajectories
consisting of all vessel positions recorded during the
6-months period. Obviously, not all parts of the trajec-
tories correspond to the trawling activities. Such long-
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term trajectories or time series need to be partitioned
into segments (episodes) by dividing the time into
intervals of appropriate duration based on the expected
length of the behaviours or activities under investiga-
tion. To achieve this, a sliding time window technique
is employed [8]. This method ensures that the data
segments overlap partially, preventing the oversight
of patterns of interest caused by fragmentation into
disjoint parts. In this case study, we segment the tra-
jectories into episodes of 3-hour duration, determined
through interactive examination of visually identified
trawling movements in sampled trajectories. Employing
a sliding window shifted by 1 hour ensures that each
occurrence of trawling activity is captured in at least
one episode being either fully contained in the time
span of the activity or significantly overlapping with it.

Feature engineering. From the expert knowledge
encapsulated in the pattern specification, we learn that
relevant criteria for recognising trawling are low speed
and repeated turns. These criteria need to be repre-
sented by appropriate interval-based features derived
from the attribute values associated with the vessel
positions. The original data include point-based values
of speed and movement direction (heading), but both
attributes are not ideally suited for deriving expressive
interval-based features.

To mitigate potential noise and outliers in point-
based speed values, we compute a smoother and
more robust measure — average speed over a 5-
minute time buffer around each point. It is calculated
by dividing the traveled distance by the buffer duration
(slightly variable due to irregular time intervals between
position recordings). The selection of the buffer du-
ration was made empirically, after experimenting with
smaller lengths that failed to eliminate unrealistically
high speed values.

The relevant aspect of speed dynamics is the value
level. We represent it by the combination of the mini-
mum and the third quartile of the point-based values
of the smoothed (averaged) speed. The frequency
histogram of the third quartiles of the mean speed is
shown on the top left of Fig. 3.

The movement direction poses a different chal-
lenge due to the cyclic arrangement of the value
domain of this attribute, with a cycle length of 360
degrees. While arithmetic differences between low and
high values (e.g., between 0° and 359°) are large,
the real directional changes are minimal. Deriving suit-
able interval-based features directly from such attribute
proves difficult. Instead, we compute a proxy attribute
— the distance of each point from the starting point
of an episode. The linear increase of this distance
during an episode signifies straight movement, while
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the presence of turns is reflected in the curvature
of the value progression (or, more precisely, the line
representing this progression in a line graph). Conse-
quently, we compute a feature expressing curvature as
the sum of the absolute changes from one point to the
next, divided by the difference between the maximal
and minimal values. A value of 1 indicates straight
movement, while the presence of turns results in higher
values for this feature.

Feature assessment and selection. Visualising
the frequency distribution of the computed curvature
values reveals an extreme left-skewed and long-tailed
distribution, making it unsuitable for effective pattern
recognition and classification due to low discriminabil-
ity. The very high values (up to 177) correspond to
episodes where vessels remain anchored. In these
instances, the accuracy of determining vessel positions
diminishes significantly, leading to chaotic scattering of
recorded positions around the actual position and cre-
ation of a false zigzag-shaped trajectory, as depicted
in Fig. 3 (top right). To mitigate the skewness of the
feature, a logarithmic transformation is applied to the
values. The resulting values now range from 0 (indi-
cating straight movement) to 2.25 (indicating a vessel
at anchor), providing a more balanced representation
suitable for subsequent analysis.

To assess the adequacy of the speed- and
curvature-based features, we employ interactive filter-
ing to select the subset of episodes with low values of
speed and values of the curvature logarithm not less
than 0.01. A visual examination on the map (Fig. 3,
bottom) reveals that the selected subset includes
episodes with shapes indicative of trawling move-
ments. However, the dataset also contains numerous
instances of vessels entering the port of Douarnenez,
displaying low speed and curved trajectories, but un-
likely to involve trawling activities. Evidently, the chosen
features are insufficient for effectively distinguishing
trawling from port entry movements. To address this
limitation, we compute additional time series repre-
senting the distance to the nearest port, utilising the
coordinates of nine ports within the study area. Sum-
mary features computed for these time series include
the value at the start, value at the end, minimum,
and maximum. Employing interactive filtering, we ex-
plore the discriminatory potential of these features. The
minimum distance to a port emerges as a promising
discriminator for episodes of port entry or exit against
other episodes. However, due to the highly left-skewed
distribution of the feature values, we apply a logarith-
mic transformation, consistent with our approach for
the curvature feature.

Grouping. We employ dimensionality reduction to
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FIGURE 3. Top left: Frequency distribution of the feature
‘3rd quartile of mean speed in 5 minutes’. Four distinctly
coloured groups of bars correspond to intervals in the value
range containing the majority of the data. Bottom: Selection of
episodes with low speed and high curvature, identified through
interactive filtering. Trajectories are colour-coded to match the
corresponding histogram bars on the top left.

construct a 2D spatial embedding (projection) based
on four selected features: the minimum and third quar-
tile of the speed, the logarithm of the curvature, and
the logarithm of the minimal distance to the nearest
port (Fig. 4, top left). The purpose of the embedding
is to expose groups of episodes with similar feature
values and enable interactive selection of groups for in-
spection and eventual labelling. We employ the UMAP
method [17] oriented to preserving local neighbour-
hoods. This means that the method prioritises plac-
ing close neighbours in proximity in the embedding,
albeit at the expense of potentially distorting distances
between non-neighbouring objects. Hence, groups of
similar episodes manifest as compact clusters of points
in the projection, enabling easy visual detection and
interactive selection for inspection. UMAP has two
main parameters, number of neighbours to consider
n_neighbors and the minimal distance between points
in the final projection min_dist, which controls how
tightly UMAP is allowed to pack points together. In
our studies, we found the results of UMAP to be
highly consistent across various combinations of pa-
rameter values. The specific projection demonstrated
in Fig. 4 and the following figures has been achieved
with n_neighbors = 50 and min_dist = 0.25.
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FIGURE 4. Top left: 2D embedding of the episodes based on
four features reflecting speed, curvature, and minimal distance
to a port. Top right: Episodes with at least 50% of the points
recognised as involved in trawling according to the pattern
specification are marked in the embedding by colours from
orange (50 to 70% of trawling points) to dark red (90% or
more), while the remaining episodes are muted (shown in
light gray). Bottom: A continuous colour map spread over the
projection space is used to colour episodes according to their
positions in the projection.

Examination of groups. To evaluate the effective-
ness of the feature combination, we interactively select
groups of points from different regions of the projection
plot using brushing and observe the shapes of the
selected episodes on the map, along with the distribu-
tions of their speed characteristics in histograms. Dif-
ferent regions of the projection correspond to distinct
movement patterns. This is illustrated in Fig. 4, bottom.
A continuous 2D colour scale is spread over the pro-
jection space, and the colours corresponding to point
positions are used in the map for paining the episodes.
Here, we use a 2D colour space named Cube Diagonal
Cut B-C-Y-R, which was highly rated in a task-based
evaluation study [18]. Despite high overlapping of the
lines, the transparency enables seeing that the points
in the lower part of the projection plot (purple to red
region) represent episodes with shapes characteristic
for trawling activities.

Having the results of automated pattern recogni-
tion based on a formal specification as supporting
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material, we conduct an additional test to assess the
effectiveness of our selected features. To ensure com-
parability between the system’s results (which pertain
to individual points) and our features (which refer to
time intervals), we calculate the proportions of recog-
nised trawling points within the episodes. We focus
on episodes where at least 50% of the points are
recognised as trawling. These episodes are visualised
as points coloured from orange to dark red in the top-
right projection plot of Fig. 4 while the remaining points
are filtered out and shown in light gray. The coloured
points form a relatively compact cluster, with a few
scattered points distant from the main cluster. Interac-
tive selection and examination of these episodes on the
map reveal them to be false positives. This comparison
provides additional evidence that the extracted features
effectively capture the manifestation of trawling activi-
ties in trajectory data and can be used for separating
trawling from other types of movements.

Selection and labelling of pattern examples.
One possible way to create a sufficiently large set of
labelled examples is to select groups of points directly
in the projection plot by means of brushing, view the
shapes and speed characteristics of the respective
episodes, and assign class labels, if the episodes are
deemed suitable to serve as class examples. This
process needs to be supported by a visualisation that
enables seeing the whole group of selected episodes
rather than considering them one by one. In this way,
a domain expert can create many examples simulta-
neously. It is important to note that it is, generally,
insufficient to create only examples of one or a few
patterns of interest, for example, only examples of
trawling in this case. There may be multiple ways in
which episodes that do not contain the patterns of
interest differ from episodes that do. The diversity of
the existing patterns can be judged from the distri-
bution of the points in the projection plot. Therefore,
it is essential to select and label groups of negative
examples (i.e., those with patterns other than the ones
of interest) from different regions of the projection
where clusters of points exist.

Another effective method for creating class ex-
amples is through clustering based on the selected
features. Having obtained clusters of episodes with
similar combinations of feature values, one can then
focus on the core elements within these clusters, inter-
preting and labelling them as representative examples
of different patterns. For instance, in partition-based
clustering algorithms like k-means, which we used in
our case studies, elements near the cluster centres
can be deemed core elements. Alternatively, the rep-
resentativeness of cluster members can be assessed
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FIGURE 5. Utilising clustering for creation of pattern exam-
ples. Top left: The points in the projection plot are coloured ac-
cording to their cluster membership. Middle left: The histogram
of the silhouette scores of the cluster members. Top right:
The points in the projection with the silhouette scores below
0.55 are filtered out (shown in light grey). Middle right: The
appearance of the histogram after the filtering. Bottom: The
episodes belonging to the cluster cores, i.e., having silhouette
scores of at least 0.55, are painted in the colours of the
clusters. The numbers in the legend are the total cluster sizes
followed by the counts of the members satisfying the filter.

using silhouette scores, which indicate how similar an
object is to other members within its cluster compared
to members in other clusters. A high score suggests
that the object can be considered representative for
its own cluster. Determining the appropriate number of
clusters, which is a parameter in partition-based clus-
tering algorithms, can be done by assessing the point
distribution in the projection and fine-tuning through
small adjustments of the parameter value.

Our experience indicates that the clustering ap-
proach is more effective than manually selecting rep-
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resentative examples of patterns using the projec-
tion plot. Besides, since any low-dimensional projec-
tion of higher-dimensional data introduces distortions,
neighbouring points in the projection may not be
as similar as their proximity suggests. Consequently,
when a group of points is selected through brushing,
there is no complete assurance that all corresponding
episodes are very similar to each other. Such inter-
actively selected episode groups must be carefully
inspected, increasing the workload for the expert.
The use of clustering for selection of representative
pattern examples is illustrated in Fig. 5. Cluster 1
(purple) includes episodes with shapes and speeds
characteristic for trawling activities. As cluster cores,
we select the subsets of cluster members whose
silhouette scores are not less than 0.55. However,
upon filtering episodes based on the silhouette scores,
we observe that the cores of cluster 2 (light blueish-
green) and 5 (light brown) consist of considerably
fewer members than the cores of the other clusters.
Additionally, a compact group of points from cluster
1, positioned to the left of the large purple cluster in
the projection plot, has been almost entirely filtered
out (Fig. 5, top right). Interactively selecting this group
of points reveals (Fig.6) that they correspond to no-
table instances of looping movements, which should
be included as examples of trawling patterns. So, we
use interactive selection and deselection operations in
the projection plot and silhouette score histogram (to
exclude instances with too low scores) to enhance the
subsets of chosen cluster representatives. The ultimate
outcome of selecting and labelling representative ex-
amples of different patterns is displayed in Fig.7.
Evaluation of the training dataset. As a tool for
evaluation, we employ the kNN algorithm [15]. Being
applied to unlabelled data, it shows whether their sim-
ilarity to the examples in terms of the features implies
the presence of the same patterns as in the examples.
As we have created quite a large number of labelled
examples, we take k = 50, where k is the number of
nearest neighbours used for classification of each data
item. The results are demonstrated in Fig. 8. The total
number of identified episodes of trawling is 2261, of
which 1600 have been previously selected as pattern
examples and the remaining 661 have been recog-
nised as trawling due to their similarity to the examples
regarding the constructed four distinctive features. The
trajectories of these 661 episodes visible in Fig. 8 (top)
closely resemble the chosen pattern examples (Fig. 7,
left), taking the anticipated shapes of vessel trajecto-
ries during trawling. Although the misclassification of
port entering episodes as trawling could not be entirely
avoided, there are only 19 such episodes among the
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FIGURE 6. Creation of additional pattern examples through
interactive selection of points in the projection.

FIGURE 7. Class examples supplied with semantically mean-
ingful labels.

KNN results. In 76 episodes, the movement patterns
were not recognised with sufficient certainty. These
points are depicted in dark grey in the projection plot
in Fig.8 (bottom). Their location at cluster boundaries
indicates that they combine features of two pattern
types. The overall success of the kNN results indicates
that the features and examples are suitable for training
a more sophisticated and more accurate classification
model by means of state-of-the-art ML algorithms.

Concluding notes. The outcomes of our work-
flow can not only contribute to the development of
a classifier but also provide valuable insights for en-
hancing existing specifications employed in automated
knowledge-based pattern recognition [19]. While the
current specifications identified only 530 episodes with
at least 50% of trawling points, and 12 of these
were port entering episodes, our approach signifi-
cantly expanded this capability, correctly recognising
2242 trawling episodes. Remarkably, our method un-
veiled three distinct subtypes of trajectory shapes
corresponding to trawling: wide curves, tight loops,
and slow straight movements alternating with 180°
turns. The latter subtype remained undetected by the
specification-based system due to the predefined up-
per limit on the duration of straight movements. Thus,
our visual analytics approach not only facilitated the
detection of expected patterns but also enabled the
discovery of unexpected ones [20].
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FIGURE 8. Classification of the movement patterns using
KNN algorithm with k = 50. Top: The episodes classified
based on their feature similarity to the pattern examples are
shown on the map. Bottom left: Points in the projection repre-
senting the classified episodes are colour-coded according to
their class membership. Pattern examples created earlier are
subdued (coloured in light grey). Dark grey points represent
episodes where movement patterns were not recognized with
sufficient certainty (at least 60%). Bottom right: Coloured
points signify both pattern examples and patterns identified
by the KNN algorithm.

Data representation. In this case study, our focus is
on episodes from two football (soccer) matches, corre-
sponding to alternating ball possessions by each team.
The objective is to discern various playing styles, such
as direct versus possession-preserving strategies. To
ensure meaningful analysis, we filtered out episodes
with duration below 5 seconds, resulting in a dataset
of 380 episodes.

While each episode is characterised by a multitude
of time-variant attributes, encompassing the positions
and velocities of all players and the ball, the shape
of the ball trajectory within an episode distinctly re-
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flects the manner in which the attack unfolds. The
ball trajectory is easy to visualise and to interpret,
which is essential for the successful application of
our approach. Consequently, we will employ features
that capture the essence of ball movements for the
differentiation and classification of playing styles.

To facilitate consistent comparison among episodes
irrespective of the orientation of the teams’ goals on the
pitch (left or right), we standardised the coordinates
in the ball trajectories (in the context of this case
study, the term “goal” refers to the goal gates and
underlying areas on two opposite sides of the pitch).
The transformation aligns the direction of the attack
with the Y-axis. The pitch is depicted in a vertical
orientation, with the goal of the team in possession
of the ball at the bottom and the target goal, i.e., the
goal being attacked, at the top. This transformation is
illustrated in Fig. 9.

Feature engineering. Upon careful consideration
of various instances of episodes and consulting the
literature (such as [14]), we observe that distinct styles
of attacks are discernible based on features derived
from the time series of the X- and Y-coordinates of
the ball. Notably, wide amplitude and significant lateral
ball movements (along the X-axis in the transformed
coordinate system) suggest a team’s effort to retain
possession through repeated passes among defenders
and/or midfielders. Conversely, characteristics like low
variation in the X-coordinate and an increase in the Y-
coordinate from the beginning to the end are indicative
of direct playing. Counter-attacks are identifiable by
predominantly forward (upward in the transformed co-
ordinate system) ball movements, starting in proximity
to the goal of the team in possession. Consequently,
we derive the following 8 features for the episodes:

e Range of the X-coordinate, calculated as the
difference between the maximum and minimum.

e Logarithm of the curvature of the X-coordinate
variation. The logarithmic transformation com-
pensates for the skewness in the distribution of
curvature values.

o Initial value of the Y-coordinate at the episode’s
beginning.

e Change in'Y from the beginning to the end of the
episode, representing the advance of the ball up
the pitch.

e Angle of the trend line of the Y-coordinate vari-
ation, reflecting the overall direction and speed
of the ball movement (forward or backward).

e Coefficient of linear correlation between the Y-
coordinate and time, indicating variations in the
directions of ball movements.
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FIGURE 9. Clusters of football episodes. The trajectories are shown on the pitch maps. The profiles of the cluster members in
terms of the features are shown in the parallel coordinates plots below the maps. Each axis represents one feature.

e Sums of (a) positive and (b) negative deviations
of Y values from the trend line, reflecting forth
and back ball movements.

Grouping and examination. As in the first case
study, clustering of episodes by similarity of their fea-
ture values serves as a tool for generating represen-
tative examples of various playing styles. We again
employ UMAP to obtain a 2D embedding based on
the same features to aid in determining an optimal
number of clusters and systematically evaluate the
impact of altering this number. For this purpose, we
paint dots in the embedding in the colours of the
clusters containing the corresponding episodes, as
illustrated in Fig.9. After careful consideration, we de-
cide to use the outcome with 7 clusters. The positions
of the cluster members within the 2D projection are
depicted in Fig.10, left. The projection was produced
by UMAP with n_neighbors = 16 and min_dist = 0.25.
The parameters of the embedding can be seen in the
middle of Fig.10. In contrast to the first case study,
the projection plot does not manifest compact, densely
populated clusters that are well separated. The football
case is different due to a considerably smaller number
of episodes and a lack of partial overlap between them,
resulting in each football episode having few, if any,
close neighbours.

Selection and labelling of pattern examples. We
calculate the silhouette scores of the cluster members.
The diversity among the episodes, even within clusters,
is evident in the relatively low values of the silhouette
scores of the cluster members, ranging from -0.13 to
0.497. We take the cluster cores, encompassing the
members with scores of at least 0.24 (Fig.10, right),
as a base for constructing groups of representative
examples for distinct playing styles. Evaluating the core
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FIGURE 10. Left: Projection with dots coloured according to
the cluster membership. Middle: Parameters of the embed-
ding and the projection display. Right: The dots represent-
ing episodes with low cluster silhouette scores are muted
(coloured in light gray).

members of each cluster through visualisations, we
interpret the patterns and assign meaningful labels.

The examples of playing styles defined in this
manner are shown in Fig.11. The groups of examples
received the following labels: direct play (red), keeping
possession in attack (beige), slow advance (purple),
wing attacks (orange), wing attacks after buildup (blue),
backward passes (yellow), and keeping possession in
centre (turquoise). It can be noted that the data allow
more refined categorisation of playing styles compared
to the few basic styles appearing in the literature
and media. Particularly, possession playing appears in
several variants differing in the pitch area where the
ball mostly moves: close to the target, in the centre, or
in the buildup area close to the own goal. There are
also short episodes, when teams did not manage to
maintain ball possession long enough to demonstrate
one of the basic playing styles. Thus, the group labelled
“wing attacks” consists of such short episodes.
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FIGURE 11. Examples of different playing styles in football episodes.

class=direct play: kNN (k=10) c| class=keeping possession in al class=slow advance: kNN (k=10 class=wing attacks: kNN (k=10

| Dorninant (ma class

direct play (71/37)

|:| keeping possession in attack (100/48)
slow advance (40/22)

.wing attacks (54/29)

. wing attacks after buildup (34/13)

|:| backward passes (41/14)

|:| keeping possession in centre (19/8)
none (21}

FIGURE 12. Instances of playing patterns recognised by means of KNN with k = 10 using the provided pattern examples.
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Evaluation of the training set. Like previously,
we utilise KNN classification (k = 10) to assess the
suitability of the examples and selected features for
developing a ML model. We take a smaller value for
k than in the first case study because we have here
a smaller dataset and, accordingly, smaller groups
of similar episodes. The maps in Fig. 12 portray
the episodes classified as instances of the specified
playing styles, in addition to the provided examples.
Each map contains episodes with non-zero weights
assigned to the respective classes by the KNN al-
gorithm. The trajectories of the ball in the episodes
are colour-coded based on the class with the highest
weight. It can be noticed that the maps in Fig. 12
look messier than in Fig. 11. This is because one
map may include differently coloured trajectories, as
it shows not only the members of one class according
to the kNN classification but also other trajectories with
non-zero weight of this class albeit being members of
other classes. However, trajectories with lower weights
of the represented class are depicted with reduced
opacity. The legend in the lower right corner indicates
the overall sizes of the classes, including the examples,
followed by the number of episodes additionally recog-
nised by the KNN algorithm. Twenty-one episodes
remained unclassified, as none of the class weights
surpassed 50%, signifying that the pattern could not
be identified with sufficient certainty.

Discussion. While the first case study aimed at
detecting manifestations of concrete activities in data,
the playing styles we aimed to recognise in the sec-
ond case study were rather vague abstract concepts,
and it was unclear how they could manifest in the
data. We found that particular properties of the ball
movements are indicative of the manner in which an
attack was developing, and we used them to reveal
several meaningful patterns. It turned out that the
number of distinct patterns exceeds the number of the
commonly recognised playing styles, but most patterns
can be seen as variations of these playing styles.
Thus, ‘keeping possession in attack’, ‘wing attacks
after buildup’, and ‘keeping possession in centre’ are
variations of the possession-keeping style. The use of
backward passes to the goalkeeper can also be seen
as a tactic to maintain possession, although backward
passes are not explicitly mentioned in the descriptions
of the possession-keeping style occurring in media.
The pattern ‘wing attacks’ is a variant of the direct
playing style, whereas the pattern labelled ‘direct play’
includes also counterattacks.

Concluding notes. In this case study, domain
knowledge allowed us to determine relevant properties
of ball movements that can pertain to different playing
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styles. Using visual analytics, we were able to detect
indications of these playing styles in data, but we
also observed high diversity of the ways to develop
attacks and discovered several variations of realising
the concepts of the playing styles.

Our approach stands out for its primary objective:
rather than merely analysing a specific dataset, it
aims at producing a comprehensive set of labelled
representative examples of data encapsulating various
behavioural patterns. Ultimately, these examples are
intended to serve as the foundation for training a clas-
sification model capable of identifying such patterns in
new datasets.

The approach proves particularly valuable in sce-
narios where patterns of interest lack precise defini-
tions, which is a common challenge in many real-world
applications. Furthermore, it addresses the complexity
of unknown possible manifestations of these patterns
in data. For instance, football experts, accustomed to
differentiating playing styles through direct observation
of a game, do not know how these styles translate
into trajectory data. Similarly, maritime traffic managers
know how fishing vessels typically move while trawling
but have quite little understanding of the corresponding
properties of the vessel tracks.

A crucial step involves temporal abstraction [11,
Section 6.3], where elementary attribute values re-
ferring to individual time steps are transformed into
interval-based summary features expressing the way
in which the elementary values vary. This adaptation is
essential since behaviours inherently occur within time
intervals, whereas the raw data pertains to discrete
time points. We propose a catalogue of summary
attributes meant for expressing different aspects of
distribution and variation of numeric values within inter-
vals. An expert or data analyst can choose potentially
suitable attributes corresponding to the relevant facets
by which distinct behaviours may differ from each
another.

It is worth noting that, although the case studies
demonstrate the approach in application to movement
data, the features employed are not exclusive to move-
ment data but can be derived from any numeric time
series. This means that the approach can find gen-
eral applicability across diverse domains, describing
various behaviors, activities, or dynamic phenomena
through multivariate time series data. For example,
we successfully applied it to time series of population
health and mobility data during the COVID pandemic.
The only prerequisite for using the approach is the
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ability to generate expressive visualisations of groups
of similar episodes. Thus, working with the COVID
morbidity and mobility data, we visualised the tem-
poral progression of the attribute values in groups of
episodes using time series graphs.

Designed to enable involvement of domain experts,
the approach aids in structuring and refining their prior
knowledge and empowers them to explore how ex-
pected patterns manifest in the data by assessing dif-
ferent characteristics of variation within time intervals.
The expert knowledge and evolving understanding of
the data semantics are captured in the form of data-
derived relevant features and labelled examples, which
become vital inputs for training a machine learning
model. This integration of human expertise and ma-
chine learning not only enhances model interpretability
but also ensures alignment with human domain knowl-
edge.

In summary, the main properties of our approach
are its focus on preparation of training data for model
building, adaptability in dealing with loosely defined
patterns, incorporation of temporal abstraction, facil-
itation of expert involvement, and the extraction of
domain knowledge in the form of features and labeled
examples of behavioural patterns. The key role in the
approach belongs to interactive visualisations enabling
human analysts to apply their cognitive capabilities.

On the flip side, our approach does have its weak-
nesses, largely stemming from its reliance on human
involvement. Firstly, while considering groups rather
than individual data items reduces the time burden
on human experts, significant time investment is still
required. Enhancing computational support for data
grouping could help alleviate this issue. Secondly,
human error and the potential oversight of crucial
details are inherent risks. To address this, the approach
needs to be implemented so as to facilitate, encourage,
and perhaps even enforce visual and computational
evaluations of work outcomes. Thirdly, the design of
suitable visualisations and interaction tools, along with
the seamless integration of computations into inter-
active visual interfaces, is crucial for the successful
application of the approach. This places a significant
responsibility on software designers and engineers.

In our paper, we deliberately avoided delving into
implementation specifics, focusing on presenting the
approach itself. To test it and provide illustrations for
the paper, we utilised an in-house multi-functional vi-
sual analytics system. While this system is robust and
fully supports the workflow, we acknowledge that its
complexity may pose a challenge for domain experts
working alone. However, high complexity is a common
trait among software systems designed for handling
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complex tasks. Ultimately, the most effective use of
such systems is achieved when domain experts col-
laborate with data scientists.

In the future, the results of our work can be utilised
in developing an intelligent system assisting domain
specialists by suggesting appropriate features capable
of reflecting various facets of behaviours. Furthermore,
given a set of selected features, the system will be able
to extract and characterise different behavioural pat-
terns, streamlining the process of pattern recognition
and example generation.

This work was supported by Federal Ministry of Ed-
ucation and Research of Germany and the state of
North-Rhine Westphalia as part of the Lamarr Insti-
tute for Machine Learning and Atrtificial Intelligence
(Lamarr22B), and by EU in project CrexData (grant
agreement no. 101092749).
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