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Abstract

Towards Knowledge-Grounded Natural Language Understanding and

Generation

by Chenxi Jia WHITEHOUSE

This thesis investigates how natural language understanding and generation

with transformer models can benefit from grounding the models with knowledge

representations. Currently, the most prevailing paradigm for training language mod-

els is through pre-training on abundant raw text data and fine-tuning on down-

stream tasks. Although language models continue to advance, especially the recent

trend of Large Language Models (LLMs) such as ChatGPT, there seem to be limits to

what can be achieved with text data alone and it is desirable to study the impact of

applying and integrating rich forms of knowledge representation to improve model

performance.

The most widely used form of knowledge for language modelling is structured

knowledge in the form of triples consisting of entities and their relationships, of-

ten in English. This thesis explores beyond this conventional approach and aims to

address several key questions:

• Can knowledge of entities extend its benefits beyond entity-centric tasks such

as entity linking?

• How can we faithfully and effectively extract such structured knowledge from

raw text, especially noisy web text?

• How do other types of knowledge, beyond structured knowledge, contribute

to improving NLP tasks?
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To this end, we study various tasks including multimodal and multilingual ap-

plications and consider a wide spectrum of knowledge, structured knowledge that

is typically represented as triples with entities and their relations, and unstructured

knowledge including parametric knowledge preserved in language models, knowl-

edge distilled from Large Language Models, etc.

Knowledge-grounding with structured knowledge.

We begin by investigating the integration of structured knowledge into language

models. Knowledge of entities has shown benefits for entity-centric tasks such as

entity linking and relation extraction, however, most studies have been limited to

monolingual settings. We expand knowledge-grounding with structured knowl-

edge, specifically entities, in two directions of research.

Firstly, we study whether knowledge of entities can benefit real-world fake news

detection. We hypothesise that the world knowledge embedded in entities can con-

tribute to assessing the truthfulness of news statements. Evaluation of various knowl-

edge integration approaches on distinct datasets reveals that knowledge-enhanced

language models improve fake news detection when incorporated with a relevant

and up-to-date knowledge base.

The second direction expands beyond English and focuses on multilingual en-

tities. We introduce EntityCS, where we first construct a code-switched (CS) train-

ing corpus from Wikipedia, by switching entities in English to their counterparts

in other languages. Then we intermediate-train a pretrained multilingual model

on this corpus for joint masked language modelling and entity prediction. Sub-

sequent fine-tuning of the model on entity-centric downstream tasks consistently

improves zero-shot cross-lingual transferability, demonstrating the benefit of inte-

grating knowledge of multilingual entities.

Extracting structured knowledge from web text.

We continue by studying effective, faithful, and robust extraction of structured knowl-

edge from web text. Most existing information extraction (IE) datasets are con-

strained to Wikipedia articles, and models trained on such a rich factual text corpus
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show poor performance when applied to more noisy text from the web. To address

these challenges, we introduce WebIE, a new dataset that takes raw sentences as in-

put and structured triples as output. WebIE emphasises data quality by introducing

negative examples and undergoing rigorous human annotation. We also propose

faithful generative information extraction pipelines. Our experiments with entity

planning training and prefix-trie decoding show improvement in accurately extract-

ing knowledge on the web.

Knowledge-grounding beyond structured knowledge.

To address our last research question, we study the impact of a broader sense of

knowledge, including parametric knowledge (knowledge stored in the latent pa-

rameters of the models) derived from a model’s self-explanations and knowledge

distilled from LLMs via data augmentation.

We expand the application to multimodal language models and study knowledge-

intensive visual question answering (VQA). We introduce a unified approach for

fine-tuning multimodal models for jointly generating answers and explanations.

Our experiments demonstrate enhancement in both answer accuracy and explana-

tion quality.

Lastly, as LLMs continue to advance in performance and size, we explore the

utility of distilling commonsense knowledge from general-purpose LLMs to benefit

smaller task-specific models. We prompt various LLMs to generate diverse exam-

ples on several challenging and scarce multilingual commonsense datasets. This

augmentation shows consistent enhancements on fine-tuned smaller models, shed-

ding light on data augmentation strategies for scenarios with limited training data.

In summary, this thesis explores the role of knowledge grounding in natural lan-

guage understanding and generation across a broad spectrum of tasks. We found

that incorporating relevant and up-to-date knowledge of entities benefits fake news

detection, and entity-focused code-switching significantly enhances zero-shot cross-

lingual transfer on entity-centric tasks. In terms of effective and faithful approaches
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to extracting structured knowledge, our study found that integrating negative ex-

amples and training with entity planning significantly improves performance. Ad-

ditionally, we established that other general forms of knowledge, such as para-

metric and distilled knowledge, enhance multimodal and multilingual knowledge-

intensive tasks. This research shows the tangible benefits of diverse knowledge in-

tegration and motivates further exploration in this direction.
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Chapter 1

Introduction

Natural Language Processing (NLP) has witnessed significant progress in recent

years, particularly since the emergence of transformer-based (Vaswani et al., 2017)

language models. Most representative transformer models include BERT (Devlin et

al., 2019), RoBERTa (Yinhan Liu et al., 2019), BART (M. Lewis et al., 2020), T5 (Raf-

fel et al., 2020a), to name a few, which are typically pre-trained on raw, unlabelled

textual inputs with objectives such as Masked Language Modelling (Devlin et al.,

2019), and then fine-tuned on labelled task-specific downstream tasks. Although

this pre-training and fine-tuning paradigm has proven effective and achieved new

start-of-the-art performance on various NLP tasks (Devlin et al., 2019), it presents

limitations in adapting to the ever-evolving world knowledge (Zhengyan Zhang et

al., 2019; Weijie Liu et al., 2020). Figure 1.1 shows an example where the knowl-

edge base is crucial for the model generation when the parametric knowledge stored

within the model parameters becomes stale.

To address this, a growing need has emerged to explore the integration of di-

verse knowledge representations and grounding into the language models to en-

hance their capabilities in tasks particularly requiring intensive knowledge (P. Lewis

et al., 2020; Izacard et al., 2023) or in-depth context understanding (T.-Y. Chang et al.,

2020; Bauer and Bansal, 2021).

The most commonly used knowledge for such integration is structured knowl-

edge, typically represented in knowledge bases consisting of entities and their re-

lationships (X. Chen, S. Jia, and Y. Xiang, 2020; C. Zhu et al., 2022). Knowledge
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 The name of the
current president of

the US is ...
Barack Obama

 The name of the
current president of

the US is ...
Joe Biden

LM

LM

(President of the United States, 
of�ceholder, Joe Biden)

Without KB

With KB

FIGURE 1.1: Illustration of the role of knowledge bases in text generation: When
the parametric knowledge stored in the language model becomes outdated
(such as with GPT-2, trained in 2017), it is important to incorporate up-to-date
knowledge bases for deriving correct answers, especially when using the frozen
model at inference time.

bases, such as Wikidata,1 provide a rich source of human-curated factual knowl-

edge, which can be used as a complement to unlabelled raw text. Considerable re-

search has focused on incorporating structured knowledge, especially entity-based

knowledge (i.e., knowledge of entities), into language models (Zhengyan Zhang et

al., 2019; Peters et al., 2019; R. Wang et al., 2021; Xiaozhi Wang et al., 2021). Although

these prior works have proven the advantages of knowledge integration in specific

tasks such as entity linking, named entity recognition, etc., the potential of a wider

spectrum of knowledge representations (e.g., unstructured knowledge) and appli-

cations (e.g., beyond entity-centric tasks) remains relatively under-explored. This

motivates us to conduct a more extensive investigation into the following research

questions.

1.1 Research Questions

This thesis aims to address the research questions outlined in the following three

aspects.

1https://www.wikidata.org/wiki/Wikidata:Main_Page

https://www.wikidata.org/wiki/Wikidata:Main_Page


1.1. Research Questions 3

Expanding the Utilisation of Structured Knowledge

The first question we study is: Can the advantages of entity-based knowledge be extended

to multilingual setups and beyond entity-centric tasks?

Prior work such as KnowBert (Peters et al., 2019), ERNIE (Zhengyan Zhang et

al., 2019), K-BERT (Weijie Liu et al., 2020), etc. have demonstrated the success of

integrating knowledge of entities into language model pre-training. However, their

predominant focuses are limited to monolingual language models (specifically, En-

glish only), and downstream tasks that are exclusively related to entities, such as

entity linking and named entity recognition. This thesis broadens the application

scope of structured knowledge in two ways: (i) we evaluate the effectiveness of

knowledge-enhanced language models on the more complex task of fake news de-

tection (Chapter 3), and (ii) we propose the use of multilingual entity knowledge in

an entity-centric code-switching method, ENTITYCS, to improve cross-lingual trans-

ferability on low-resource languages (Chapter 4).

Effective Extraction of Structured Knowledge

We continue to explore: How can structured knowledge be extracted effectively and accu-

rately from diverse sources, particularly noisy web text?

Prior work introduced above as well as our first studies (Whitehouse et al., 2022;

Whitehouse, Christopoulou, and Iacobacci, 2022) demonstrate the benefit of struc-

tured knowledge in various NLP tasks. Yet the challenge lies in how to effectively

obtain such knowledge, which is essential to adding new facts, keeping the rele-

vance and accuracy of existing facts, etc. Hence, there is a compelling need to de-

velop models capable of automatically extracting structured knowledge from vast

textual sources (Y. Yao et al., 2019; Y. Yao et al., 2021; Ormandi et al., 2021), which re-

quires high-quality information extraction datasets. The majority of existing knowl-

edge or information extraction datasets that are used to train such models are con-

structed based on clean and fact-rich resources such as Wikipedia (Trisedya et al.,

2019; Huguet Cabot and Navigli, 2021; Seganti et al., 2021). As a result, models
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trained on them may encounter difficulties when applied to noisy web text, as re-

vealed in our preliminary studies. Therefore, this thesis addresses the critical chal-

lenge by proposing a more generalised dataset, WEBIE, as well as modelling ap-

proaches that are suitable for knowledge extraction from the web text (Chapter 5).

Exploration of Diverse Knowledge Forms

The final question explored in this thesis focuses on: How can broader forms of unstruc-

tured knowledge contribute to enhancing language models?

The preceding two directions focus on the investigation of structured knowl-

edge. However, there exists a diverse range of unstructured knowledge represen-

tations, such as those found in raw text (C. Zhu et al., 2022; J. Z. Pan et al., 2023),

knowledge derived from the language models after pre-training (i.e., stored in the

latent parameters) (Petroni et al., 2019; Zhiyuan Zhang et al., 2020; Xintao Wang

et al., 2022; Neeman et al., 2023). In this part of the thesis, we aim to broaden the

scope beyond structured knowledge and explore unstructured knowledge, includ-

ing parametric knowledge (Neeman et al., 2023) embedded within language mod-

els, through grounded answer and explanation generation in knowledge-intensive

Visual Question Answering (VQA) (Chapter 6), and knowledge distilled from Large

Language Models via data augmentation (Chapter 7). Emphasis is placed on the

application of these studies in multimodal and multilingual use cases.

1.2 Structure of the Thesis

The thesis begins with an introduction that outlines the background of transform-

ers, knowledge in NLP, and knowledge-enhanced language models in Chapter 2,

which sets out the foundation for all the subsequent studies conducted. The main

body of the thesis is structured around five chapters, each focusing on a published

conference paper.

The first focus is on knowledge-grounding with entities and structured knowl-

edge. Chapter 3 concentrates on knowledge-enhanced language models for the ap-

plication of fake news detection. We evaluate the effectiveness of various approaches
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that incorporate entity knowledge in language models on fake news detection accu-

racy, covering news datasets in different domains (i.e., politics and COVID-19) with

different linguistic features, where we find the benefit of incorporating knowledge

that is relevant and up-to-date.

Chapter 4 focuses on studying the effectiveness of multilingual entity knowl-

edge in zero-shot cross-lingual transfer. We propose ENTITYCS, where we utilise

entity-centric code-switching with Wikipedia and Wikidata knowledge base to in-

termediate train a cross-lingual pre-trained language model. Subsequent fine-tuned

models on entity-centric tasks, e.g., named entity recognition, slot filling, and fact

retrieval, demonstrate strong performance compared to the baseline.

Chapter 5 addresses the extraction of faithful and robust structured knowledge

from the web domain. Information extraction is essential for knowledge base con-

struction and population, which also provides reliable knowledge sources for train-

ing knowledge-enhanced models. In this chapter, we introduce the collection of a

new dataset, WEBIE, via crowdsourcing and propose various joint training strate-

gies for mitigating the hallucination issues in generative information extraction.

The subsequent two chapters explore knowledge-grounding beyond structured

knowledge. Chapter 6 expands the application to multimodal language models and

studies knowledge-intensive VQA, utilising parametric knowledge derived from a

model’s self-explanations. We propose a novel direction of jointly generating an-

swers and explanations with multimodal generative models making use of artificial

special tokens, enabling the distinction of different tasks and datasets while learning

shared semantics among different tasks.

As LLMs become ever more powerful, in Chapter 7, we explore the utility of

distilling commonsense knowledge from general-purpose LLMs to benefit smaller

task-specific models. We prompt various LLMs to generate diverse examples on sev-

eral challenging and scarce multilingual commonsense datasets. This augmentation

shows consistent enhancements on fine-tuned smaller models, compared to those

trained on limited human-created data.

In Chapter 8, we provide a summary of the thesis with insights and key take-

aways, as well as motivations for promising future research directions.
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1.3 Publications

The main work proposed in this thesis has been published as conference papers.

Chapter 3-7 contain existing, improved or extended results to the following publica-

tions:

1. Evaluation of Fake News Detection with Knowledge-Enhanced Language Mod-

els (Whitehouse et al., 2022)

• Main content included in Chapter 3

• Proceedings of the Sixteenth International AAAI Conference on Web and Social

Media (AAAI-ICWSM 2022)

2. EntityCS: Improving Zero-Shot Cross-lingual Transfer with Entity-Centric Code

Switching (Whitehouse, Christopoulou, and Iacobacci, 2022)

• Main content included in Chapter 4

• Findings of the Association for Computational Linguistics: EMNLP 2022

• Work conducted as Research Intern at Huawei Noah’s Ark Lab, London,

United Kingdom, 2021

3. Towards a Unified Model for Generating Answers and Explanations in Visual

Question Answering (Whitehouse, Weyde, and Madhyastha, 2023)

• Main content included in Chapter 6

• Findings of the Association for Computational Linguistics: EACL 2023

4. WebIE: Faithful and Robust Information Extraction on the Web (Whitehouse

et al., 2023b)

• Main content included in Chapter 5

• Proceedings of the 61st Annual Meeting of the Association for Computational

Linguistics (ACL 2023)

• Work conducted as Research Intern at Amazon Alexa AI, Cambridge,

United Kingdom, 2022
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5. LLM-powered Data Augmentation for Enhanced Cross-lingual Performance

(Whitehouse, Choudhury, and Aji, 2023)

• Main content included in Chapter 7

• Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2023)

• Work conducted in collaboration with MBZUAI and Microsoft

Other Publications during the PhD

Throughout the course of my doctoral studies, there are several additional pa-

pers that are not incorporated in the thesis, from my collaboration with re-

searchers from Google DeepMind and MBZUAI.

6. Low-Rank Adaptation Multilingual Summarization: An Empirical Study (White-

house et al., 2023a)

• Findings of the Association for Computational Linguistics: NAACL 2024

• Work conducted as Research Intern at Google DeepMind, Amsterdam,

Netherlands, 2023

7. M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-

Generated Text Detection (Yuxia Wang et al., 2024)

• Proceedings of the 18th Conference of the European Chapter of the Association

for Computational Linguistics (EACL 2024)

• Work conducted in collaboration with MBZUAI, 2023
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Chapter 2

Background: Transformer,

Knowledge, Knowledge-Enhanced

PLMs

This section provides a background overview of three fundamental aspects: (i) the

Transformer. All the modelling approaches in this thesis are based on the trans-

former architecture, (ii) knowledge sources and knowledge representation, and (iii)

knowledge-enhanced Pre-trained Language Models (PLMs). These topics collec-

tively establish the foundation for the core focus of this thesis: knowledge-grounding

in language models.

2.1 The Transformer

The transformer architecture, proposed by Vaswani et al. (2017), has revolutionised

the NLP field. Compared to its predecessors, including RNN and LSTM (Hochreiter

and Schmidhuber, 1997), transformers distinguish themselves in the following key

aspects. Firstly, transformers employ an attention mechanism to alleviate the limita-

tions associated with long-term dependencies. Secondly, unlike previous sequential

models, transformers can process input sequences in parallel, making them more ef-

ficient. Transformers are also highly scalable. The stacked architecture can be easily

scaled to be optimised for larger datasets and more complex tasks by adding more

layers or units, which is a key factor in the development of recent powerful LLMs

(Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020a; Anil et al., 2023).
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Thanks to their advantages, transformers have become the cornerstone of the

current NLP field. All the models included in this thesis are based on transformers.

We first provide an overview of the transformer architecture and then introduce sev-

eral representative model categories, including encoder-only models, decoder-only

models, and sequence-to-sequence models. Finally, we briefly touch upon multi-

modal vision-language models.

2.1.1 Transformer Architecture

The originally proposed transformer architecture, as illustrated in Figure 2.1, follows

a sequence-to-sequence structure, which takes a sequence as input and outputs a

new sequence. Its key innovation is the self-attention mechanism, which allows

the model to weigh the relevance of each word in a sequence to every other word,

enabling the capture of long-range dependencies and context in text data.

At its core, the transformer architecture contains a stack of encoder layers (left)

and decoder layers (right). Both the encoder stack and decoder stack have their

corresponding Embedding layers to process the input, represented by the Input

Embedding and Output Embedding layers in Figure 2.1. Within each layer, Multi-Head

Attention is applied independently to all subwords or tokens in the input sequence,

and the outputs are passed through Feed Forward neural network layers. In the end,

the output of the last layer of the decoder stack is fed to a Linear layer and a Softmax

layer to obtain the final output sequence.

2.1.1.1 Attention Mechanism

Given a set of key-value pair vectors and a query vector, attention is a technique to

compute a weighted sum of the values, dependent on the association of the query

and the corresponding keys, i.e., the query attends to the values (Vaswani et al.,

2017).

The core innovation of the Transformer is the incorporation of the attention mech-

anism. Unlike traditional models that linearly process sequences, the self-attention
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FIGURE 2.1: The Transformer Model Architecture. It is composed of a stack of
N encoders (on the left) and N decoders (on the right). Each sublayer comprises
a multi-head attention layer and a feed-forward layer. Layer Normalisation and
Residual connections are applied after each layer. Source: Vaswani et al. (2017).

mechanism allows the model to weigh the significance of different words in a se-

quence when making predictions for a particular word. This mechanism enables the

model to consider global context and dependencies within the input window.

Self-Attention

Vaswani et al. (2017) introduce the Scaled Dot-Product Attention mechanism, il-

lustrated in the left plot of Figure 2.2. Input vectors (input text embedding + po-

sitional embedding) are passed through three trainable matrices, Q, K, and V, to
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Scaled Dot-Product Attention Multi-Head Attention

FIGURE 2.2: Illustration of Multi-Head Attention. Input is passed through learnt
query (Q), key (K), and value (V) matrices to compute attention scores with re-
spect to other tokens in the sequence. Multi-head attention (on the right) en-
ables the calculation of attention individually and projects the input sequence
into different subspaces. The outputs of all the heads are then concatenated and
linearly transformed to produce the final output. Source: Vaswani et al. (2017).

compute the Query vector, Key vector, and Value vector. These vectors share the

same dimensions as the input vector.

The initial step involves calculating a score that signifies the attention of one

token, token_i, in a sequence to another token, token_j. This score is determined by

the dot product of the Query vector of token_i and the Key vector of token_j. To

prevent the dot products from becoming too large as the dimensionality increases,

which can lead to gradients becoming too small during backpropagation, a scaling

factor of
√

dk is applied to the dot product, with dk representing the dimension of K,

the Key matrix.

After computing the score for each token (including token_i itself), the results are

passed through a Softmax operation, which normalises the scores to positive num-

bers and a cumulative sum of 1. The normalised score at each position concerning

the query token determines the level of attention that the query token allocates to

each position. Finally, the output of the attention layer is computed as the sum of

the Value vectors of each position weighted by the normalised scores.

In practice, a set of input vectors is packed into a matrix and simultaneously
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multiplied by the Q, K and V matrices. Therefore the attention mechanism can be

represented as:

Attention(Q, K, V) = so f tmax(QKT/
√

dk)V

Self-attention denotes applying the attention mechanism to tokens within the

same sequence, and is employed in both encoder and decoder layers. The only dis-

tinction in the decoder layer lies in the masked attention mechanism, which only

permits a token to attend to all the tokens that precede it but not those that follow.

This prevents the leakage of information from future tokens during training.

Cross-Attention

In addition to the self-attention layers, cross-attention is also utilised in the

transformer. Here, Query vectors are from the decoder, while both Key and Value

vectors are derived from the encoder output. Cross-attention enables each position

in the decoder of a sequence-to-sequence model to effectively attend to all positions

in the input sequence.

Multi-Head Attention

To enhance the expressive power of self-attention, the transformer uses multiple at-

tention heads, i.e., Multi-Head Attention. Instead of applying one attention opera-

tion with the entire Query, Key, Value vectors, Vaswani et al. (2017) find that dividing

the vectors into multiple chunks with different learned linear projections achieves

more efficient use of the model’s capacity: e.g., for English-to-German translation,

the performance of the model with eight heads is almost 1 BLEU point higher than

that of a model of the same size with single-head attention (Vaswani et al., 2017).

As illustrated in the right plot of Figure 2.2, each head focuses on different parts of

the input sequence, capturing diverse information. Afterwards, the outputs from

multiple heads are concatenated and linearly transformed.

2.1.1.2 Other Components in the Transformer

Apart from the multi-head attention mechanism, the following components play

important roles in the transformer architecture.
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Input Embedding and Position Embedding

The transformer utilises learned embeddings to represent the input. Input sequences

are first tokenised into tokens or subwords and then converted into high-dimensional

vectors through the input embedding layers. The embedding layers are linear trans-

formation layers at the bottom of both the encoder and the decoder stack (see Fig-

ure 2.1).

As the transformer does not inherently capture the sequential order of tokens,

positional encoding is incorporated into the input embeddings to convey informa-

tion about token positions. Vaswani et al. (2017) employ sine and cosine functions

of varying frequencies to represent position information, with the positional embed-

dings typically sharing the same dimensions as the input embeddings. In addition

to absolute position embeddings, as seen in Vaswani et al. (2017), various positional

embeddings such as relative positional embeddings (Shaw, Uszkoreit, and Vaswani,

2018) and fully learnable embeddings (Devlin et al., 2019; Yinhan Liu et al., 2019;

Radford et al., 2019) have also been proposed in the literature.

The two embeddings are often added before being fed to the encoder and de-

coder stack. Input text embeddings encapsulate the semantic meaning of the input

tokens, while positional embeddings capture the sequential order of the tokens in a

high-dimensional vector space.

Position-wise Feed-Forward Networks

Each encoder and decoder layer contains a fully connected feed-forward network

(FFN) layer, which processes the output from the attention mechanism independently

on each position in the sequence. FFN layers typically consist of two linear transfor-

mations and a non-linear activation function such as ReLU (Vaswani et al., 2017).

FFN layers are crucial in transformers to capture complex, non-linear relationships

within the input sequence.
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Layer Normalisation and Residual Connections

To enhance training stability, each sub-layer (multi-head attention and FFN layer)

within both the encoder and decoder layers contains layer normalisation and a resid-

ual connection. Layer normalisation (Ba, Kiros, and Hinton, 2016) plays a crucial role

in mitigating uninformative variations within the hidden vector values. It achieves

this by normalising the values to a unit mean and standard deviation within each

layer, facilitating more stable and faster training. Residual connection (He et al.,

2016a) is beneficial for easier backpropagation and contributes to a smoother loss

curve. These components help prevent vanishing or exploding gradients, making it

easier to train deep architectures.

Final Output Softmax Layer

In the last output layer of the decoder stack, a learned linear transformation layer is

used to convert the output vector into logits. This linear layer at the output shares

the same weight matrix with the two input embedding layers of the encoder and

the decoder, with the logits representing the scores against each vocabulary item.

Subsequently, a Softmax function is applied to convert the logits to predict the prob-

abilities of the next tokens. Different decoding strategies can then be employed to

sample the tokens to produce the generated sequence.

2.1.2 Transformer Models

In this section, we provide an overview of three fundamental categories of the trans-

former models: encoder-only models, decoder-only models, and encoder-decoder or

sequence-to-sequence models. Additionally, we briefly introduce multimodal trans-

formers, specifically vision-language models.

2.1.2.1 Encoder-Only Models

The first category of the transformer models comprises only the encoder, with BERT

(Devlin et al., 2019) standing as one of the most widely adopted models to date.
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BERT is trained on the English Wikipedia and Google’s BooksCorpus (Y. Zhu et

al., 2015), focusing on two primary pre-training objectives: Masked Language Mod-

elling (MLM) and Next Sentence Prediction. Next Sentence Prediction is a binary

classification task that determines whether a given pair of consecutive sentences in

a text corpus follow each other logically and semantically, while MLM enables bidi-

rectional learning from the text data. MLM is shown to be more potent than either a

left-to-right model or a shallow concatenation of left-to-right and right-to-left mod-

els (Devlin et al., 2019).

Initially, the training text is tokenised using WordPiece (M. Johnson et al., 2017),

encompassing a 30K token vocabulary. To prevent the models from directly see-

ing future words, Devlin et al. (2019) propose a masking strategy, which randomly

masks 15% of the tokens in a sentence and trains BERT to predict the original token.

To enhance robustness, the randomly selected tokens to be masked are replaced by

[MASK] 80% of the time, by a random token 10% of the time, and left unchanged the

remaining 10% of the time. The prediction is optimised using cross-entropy.

MLM has been widely adopted in the training of many models, including pop-

ular ones such as RoBERTa (Yinhan Liu et al., 2019), ALBERT (Lan et al., 2020), and

ELECTRA (K. Clark et al., 2020), among others.

The tokenised input to the models is first represented as the addition of the token

embedding and the positional embedding, then fed to the stack of transformer lay-

ers, i.e., the output of the lower layer is treated as the input of the next layer, adopt-

ing the same attention mechanism as introduced in Vaswani et al. (2017). BERT is

available in two different sizes: a base model with a total of 110M parameters across

12 transformer layers, and a large model with 340M parameters spanning 24 trans-

former layers.

After pre-training, BERT can then be fine-tuned on downstream tasks. The final

representation vector in the last layer is used as the encoded representation of the

input sentence, which can later be applied to various tasks such as text classification.

With BERT setting the new state-of-the-art performance in various downstream NLP

tasks, the pre-training and fine-tuning paradigm has proven to be highly effective

and remains the predominant method for training language models in the current

literature.
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2.1.2.2 Decoder-Only Models

The second category of transformer models exclusively features the decoder, where

the input data directly enters the decoder without being transformed into a higher,

more abstract representation by an encoder. Representative models in this category

include GPT (Generative Pre-trained Transformer) from OpenAI, along with its suc-

cessive iterations like GPT-2 and GPT-3 (Radford et al., 2019; Brown et al., 2020b).

For instance, GPT-2 uses Byte Pair Encoding (BPE) (Sennrich, Haddow, and Birch,

2016) to tokenise the text and is trained on the objective of causal language modelling

to predict the subsequent token in a sequence, typically with cross-entropy loss. The

decoder in GPT models employs a specific type of attention mechanism known as

masked self-attention, which allows a token to attend only to previous tokens, pre-

venting access to future tokens during training.

The left-to-right decoder-only models are effective at generation tasks in an Auto-

Regressive (AR) fashion. The process commences by introducing a start token <s>

to the model, which traverses through a series of transformer decoder layers, gener-

ating token_0 conditioned on <s>. Subsequently, token_0 becomes part of the input

to the model, alongside the start token, used for generating the subsequent tokens.

This sequence continues until the end-of-sequence token <e> is generated, indicat-

ing the completion of the sequence. Fine-tuned GPT models have also demonstrated

considerable potential in tasks such as translation, summarisation, and question an-

swering (Radford et al., 2019).

The decoder-only architecture simplifies the model, enhancing its efficiency for

specific tasks, such as language modelling. By eliminating the encoder, GPT models

can process input data more directly and generate output more rapidly. This design

also enables GPT models to be trained on a substantial amount of unlabelled data, a

significant advantage in NLP where labelled data is often limited. Thanks to the ef-

ficiency and generative capabilities, decoder-only models continue to be developed
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with improved size and performance. Most recent LLMs adopt decoder-only trans-

former architectures, including GPT-3 (175B),1 OPT (S. Zhang et al., 2022) (125M-

175B), PaLM (Chowdhery et al., 2023) (8B-540B), LLaMA (Touvron et al., 2023a) (7B-

65B), LLaMA 2 (Touvron et al., 2023b) (7B-70B), to name a few.

2.1.2.3 Sequence-to-Sequence Models

The next category of the transformer model is the Sequence-to-Sequence (Seq2Seq)

model, also referred to as the encoder-decoder transformer model, which contains

both an encoder and a decoder. This architecture is highly versatile and has demon-

strated effectiveness in various NLP applications.

Both the input and output of the Seq2Seq model are sequences. Input sequences

first undergo initial processing by the encoder. Subsequently, the high-dimensional

representation is passed on to the decoder through the cross-attention mechanism.

In each decoding step, the decoder attends not only to its previously generated to-

kens but also to the most relevant parts of the input sequence. This is achieved

through a process similar to self-attention but with an additional step that combines

information from both the history of the decoder and the encoded input, enabling

the generation of the next token in the output sequence.

Popular models within this category include BART (M. Lewis et al., 2020), T5

(Text-to-Text Transfer Transformer) (Raffel et al., 2020a), among others. BART is

pre-trained on diverse tasks such as denoising auto-encoding, text infilling, and text

generation. This pre-training allows it to excel in various NLP tasks as it learns a

broad range of linguistic patterns. T5, on the other hand, is designed with a text-

to-text framework, unifying diverse NLP tasks into a single system. It showcases

flexibility by casting different tasks as text generation problems, allowing a seamless

approach to different tasks with a unified mechanism.

Seq2Seq models,are preferred for handling diverse language-related tasks by ef-

fectively processing inputs, leveraging cross-attention mechanisms, and generating

high-quality output sequences. Compared to decoder-only models, fewer LLMs

adopt the encoder-decoder transformers, examples include AlexaTM (Soltan et al.,

2022) (20B), Flan-T5 (Chung et al., 2022) (80M-11B).

1Numbers in the bracket show the model sizes in the number of parameters.



2.1. The Transformer 19

2.1.2.4 Multimodal Transformers

Since the success of the transformer architecture in language processing, it has been

adapted to other modalities such as image and audio processing.

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)
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Linear Projection of Flattened Patches
*  Extra learnable
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FIGURE 2.3: Vision Transformer. Images are split into fixed-size patches and
linearly embedded as sequences. Then position embeddings are added and the
resulting vectors are fed to a standard Transformer encoder. Source: Dosovitskiy
et al. (2021).

The Vision Transformer (ViT) model is introduced by Dosovitskiy et al. (2021),

closely following the design principles of the BERT model. An illustration of ViT is

shown in Figure 2.3. Images are split into a sequence of fixed-sized P × P patches,

where P is the patch size. These flattened 2-D image patches are then linearly pro-

jected to match the transformer’s embedding dimension. ViT is pre-trained using

supervised image classification such as ImageNet, which has demonstrated its capa-

bility to match or surpass previous stat-of-the-art CNN-based networks like ResNet

(He et al., 2016b) on common downstream image classification benchmarks, partic-

ularly when ample data is available (Dosovitskiy et al., 2021).

Building on the success of vision transformers, the integration of multiple modal-

ities, such as images and language, has become an active research area. Vision-

language transformers, which are typically encoder-decoder transformers, fuse these

diverse modalities. In the encoding phase, methods for vision-language models are

categorised into two primary architectures: single-stream and dual-stream models.
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The single-stream models encode both modalities within the same module. Em-

bedded textual input and image features are either concatenated or combined via

cross-modal cross-attention, leveraging Query vectors from one modality while Key

and Value vectors come from another. Although different vision-language tasks re-

quire different input formats, single-stream architecture is proven effective in mod-

els such as VisualBERT (L. H. Li et al., 2019), V-L BERT (W. Su et al., 2020), OSCAR

(Xiujun Li et al., 2020), and OFA (P. Wang et al., 2022), etc.

On the other hand, dual-stream models employ two single-modal encoders to in-

dependently process vision and text information. They then employ straightforward

methods, such as shallow attention layers (K.-H. Lee et al., 2018) or dot products (C.

Jia et al., 2021) to project image and text embeddings into the same semantic space.

Without the complex cross-attention mechanisms, the dual encoder strategy is often

more efficient in modelling vision-language interactions. Models such as ViLBERT

(Lu et al., 2019), and LXMERT (H. Tan and Bansal, 2019) fall into this category.

2.2 Knowledge Types and Sources

The precedent sections introduced the advances in transformer-based language mod-

els that set the new state-of-the-art performance for a wide variety of NLP tasks, es-

tablishing the new paradigm of learning informative contextualised representations

for text via training on the large-scale unlabelled corpus. While existing research has

showcased the implicit storage of certain knowledge within the latent parameters of

language models (Petroni et al., 2019; Roberts, Raffel, and Shazeer, 2020; C. Wang, P.

Liu, and Yue Zhang, 2021; B. Cao et al., 2021), PLMs still face challenges in achieving

reliable performance in knowledge-intensive tasks such as fact verification (Thorne

et al., 2018) and question answering (Kwiatkowski et al., 2019), etc.

Addressing this limitation, the research community has actively explored the

integration of explicit knowledge, such as knowledge bases and Wikipedia articles,

into large-scale PLMs. In this section, we provide an overview of knowledge types

and knowledge sources.

Knowledge comprises a wide spectrum of concepts, e.g., Wikipedia states that
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Knowledge is an awareness of facts, a familiarity with individuals and situations, or a prac-

tical skill.2 In the context of NLP, knowledge can be broadly classified into two cate-

gories: structured knowledge and unstructured knowledge (C. Zhu et al., 2022).

Structured Knowledge includes Knowledge Bases (KB) or knowledge graphs

(KG), dictionaries (W. Yu et al., 2022), syntax-trees (Zhou et al., 2020; Bai et al.,

2021), etc. Knowledge Bases are the most common source of structured knowledge

utilised in NLP (C. Zhu et al., 2022). Widely-used KBs include Wikidata,3 DBpedia,4

WordNet (Miller, 1993), ConceptNet,5 among others. Both Wikidata and DBpedia

are developed around Wikipedia, where structured knowledge is stored as triples,

i.e., <subject, relation, object>, with subject and object being entities. World

knowledge and facts can effectively be represented by such triples, for example,

<United Kingdom, Capital, London>.

Johannes Kepler was a German 
astronomer … best known for 
his laws of planetary motion.

Germany is a country in Central 
and Western Europe …

Astronomer
An astronomer is a scientist in 
the field of astronomy …

… are three scientific laws describing 
the motion of planets around the Sun, 
published by Johannes Kepler.

… is an independent agency … 
for the civilian space program …

launched by NASA … Named 
after Johannes Kepler.

Named after

Ethnic group

Occupation
Operator

Published by

Kepler's laws

Kepler space telescopeJohannes Kepler

NASA

German

FIGURE 2.4: An example of a knowledge graph in Wikidata, which contains
the information of entities, their relations, and the descriptions of the entities.
Source: Xiaozhi Wang et al. (2021).

Wikidata is a dynamic and collaborative knowledge base that represents and

links entire Wikipedia articles. It provides document-oriented knowledge repre-

sentation, making it a comprehensive source of diverse information. Wikidata also

provides textual descriptions of entities, Figure 2.4 shows an example (source from

2https://en.wikipedia.org/wiki/Knowledge
3https://www.wikidata.org/wiki/Wikidata:Main_Page
4https://www.dbpedia.org/
5https://conceptnet.io/

https://en.wikipedia.org/wiki/Knowledge
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.dbpedia.org/
https://conceptnet.io/
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Xiaozhi Wang et al. (2021)). DBpedia aims at extracting structured knowledge from

Wikipedia and transforming it into a machine-readable format.

WordNet is a lexical database of the English language, which categorises words

into synsets, making it particularly useful for tasks such as word sense disambigua-

tion. ConceptNet is a multilingual knowledge base, representing words, phrases,

and the commonsense relationships between them. The knowledge in ConceptNet

is collected from a variety of resources including crowdsourcing.

Unstructured knowledge takes on various forms, with one prevalent example

being text corpora utilised in language model pre-training. Prior research has shown

that language models store or memorise knowledge after they are trained, hence can

also be treated as an unstructured knowledge source (Petroni et al., 2019; Heinzer-

ling and Inui, 2021).

Neeman et al. (2023) categorise unstructured knowledge into two distinct sources:

parametric knowledge, which is encoded in or memorised by the model parameters,

and contextual knowledge, referring to knowledge encapsulated within external tex-

tual sources provided to the model at inference time of the downstream tasks, such

as paragraphs retrieved based on the question query in question answering.

Knowledge is a theme throughout the thesis. In Chapter 3-5, we primarily con-

sider Structured Knowledge, especially the entity and the relations stored in knowl-

edge bases, i.e., WikiData. In Chapters 6 and 7, the exploration of knowledge will

be expanded to more flexible forms, including the unstructured Parametric Knowl-

edge via self-explanation (Chapter 6), and Distilled Knowledge - extraction of knowl-

edge from recent LLMs to power smaller task-specific models via data augmentation

(Chapter 7). Particularly in Chapter 4, 5, and 7, we also study zero-shot cross-lingual

transfer for multilingual tasks.

2.3 Knowledge-Enhanced Language Models

Now that we have presented the fundamentals of transformer-based language mod-

els and knowledge representation, this section continues to introduce the techniques

for combining them. Specifically, we categorise knowledge integration methods for

pre-trained language models into (i) the incorporation of entity embeddings, (ii) the
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utilisation of external memory, (iii) the addition of knowledge-related auxiliary pre-

training tasks, (iv) the employment of adapters, and (v) the augmentation of retrieval

components into the language models.

2.3.1 Adding Entity Embeddings

The first line of work involves the identification of entities in a sentence, enhancing

the original input embeddings with entity knowledge represented in triples by in-

corporating entity embeddings. Entity embeddings can take the form of pre-trained

embedding vectors or share the embedding layer of the transformer model.

Diverse approaches have emerged to representing entities in knowledge bases

via entity embeddings. Knowledge graph embedding methods such as TransE (Bor-

des et al., 2013) and TransR (Y. Lin et al., 2015), employ score functions to measure the

distance of two associated entities by their relation. The underlying intuition is that

entities linked by a relation are proximal in the vector space, i.e., entity embeddings

encapsulate relationship representations from the knowledge graph. Word-entity

co-occurrence methods such as Wikipedia2Vec (Yamada et al., 2020a), concurrently

learn embeddings of words and entities by identifying co-occurring words around a

given entity and placing similar words and entities in close proximity within a con-

tinuous embedding space. Another category of methods, like BLINK (L. Wu et al.,

2020), utilises entity descriptions encoded by transformer-based PLMs to represent

entities.

Models that integrate knowledge by specific entity embeddings include ERNIE

(Zhengyan Zhang et al., 2019), KnowBert (Peters et al., 2019), K-BERT (Weijie Liu et

al., 2020), etc. These models typically use an existing entity linker or jointly train an

entity linker to identify mentions of entities in knowledge bases in the input text, and

then retrieve the pre-trained entity embeddings or embed the corresponding entities.

Note that the dimensions of the pre-trained entity embeddings are generally much

lower than those of the transformer encoders, where a fusion layer is typically added

to effectively incorporate entity embeddings from a different embedding space and

combine context and entity information.
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coder and an additional knowledge encoder. An aggregator (on the right) is
applied for the mutual integration of the input tokens and entities. The infor-
mation fusion layer takes both token embedding and the concatenation of the
token embedding and entity embedding as input, and outputs new token em-
beddings and entity embeddings for the next layer. Source: Zhengyan Zhang
et al. (2019).

ERNIE, for instance, employs TAGME (Ferragina and Scaiella, 2010) to link en-

tities to Wikidata. TAMGE identifies entity mentions in the input text, links them

to associated TransE entity embeddings, and fuses them into corresponding posi-

tions in the text, as illustrated in Figure 2.5. The knowledge-based learning objective

involves predicting correct token-entity alignments, enabling ERNIE to outperform

BERT in tasks including entity typing and relation classification (Zhengyan Zhang

et al., 2019). However, challenges arise from the need for pre-annotated and linked

entities, introducing potential noise through entity linkers like TAGME.

KnowBert, on the other hand, extends BERT by jointly training an entity linker

using a knowledge attention and re-contextualisation mechanism, as illustrated in

Figure 2.6. It identifies entity spans in the input text and incorporates an inte-

grated entity linker to retrieve entity embeddings from a knowledge base. The entity

linker is responsible for entity disambiguation, considering 30 entity candidates and

using their weighted average embedding. Knowledge-enhanced entity-span rep-

resentations are then re-contextualised with a word-to-entity attention technique.

When entity-linking supervision is available, the model is trained with an additional
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S, and contextualised into Se using mention-span self-attention (3). An inte-
grated entity linker computes weighted average entity embeddings Ẽ (4), which
are used to enhance the span representations with knowledge from the KB (5),
computing S′e. Finally, the BERT word piece representations are recontextu-
alised with word-to-entity-span attention (6) and projected back to the BERT
dimension (7) resulting in H′

i. Source: Peters et al. (2019).

knowledge-aware log-likelihood or max-margin objective. KnowBert has demon-

strated improvements in relationship extraction, entity typing, and word sense dis-

ambiguation over BERT and ERNIE (Peters et al., 2019).

K-BERT expands language representation with adaptable knowledge bases via

a knowledge layer. This layer detects and injects relevant triples from a knowledge

base into the input sentence, converting it into a knowledge-rich sentence tree. The

enriched sentence is then processed by the embeddings layer. Soft-position and vis-

ible matrix techniques are employed to control the utilisation of knowledge while

maintaining the semantic meaning of the sentence close to the original input. K-

BERT showcases advantages in knowledge-driven domain-specific tasks, such as

question answering and named entity recognition in fields like law, finance, and

medicine (Weijie Liu et al., 2020). Moreover, K-BERT also offers flexibility in adapt-

ing to different knowledge bases without the need for re-training when changing

the KB integrated.

2.3.2 Using External Memory

Another category of approaches involves the use of external memory to seamlessly

integrate factual knowledge into language models. This external memory typically
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acts as a key-value store, providing access to knowledge base triples or contextual

information. This methodology can better facilitate the incorporation and updating

of knowledge from knowledge bases into PLMs, often without the need for extensive

re-training.

Models that leverage external memory include KGLM (Logan et al., 2019), KNN-

LM (Khandelwal et al., 2020), and others. The key idea of KGLM is to condition

the language model on a knowledge graph. Unlike most of the models discussed

in this thesis, KGLM uses LSTM instead of transformer-based PLMs. In addition

to predicting the next word given the previous words in the sequence, KGLM also

predicts the next entity given the previous words and entities in the sequence. As

KGLM iterates over the sequence, it builds a local knowledge graph which is a subset

of the full KG with only entities relevant to the sequence. LSTM is then used to

predict the next word as well as its type: related entity, a new entity, or not an entity.

KGLM is found to outperform GPT-2 on fact completion tasks. Qualitatively, KGLM

tends to predict more specific tokens compared to GPT-2.

KNN-LM learns the similarities between text sequences and stores all representa-

tions of text sequences in a nearest neighbour data store. During inference, KNN-LM

identifies the k most similar sequences in the data store for a given input, retrieves

the corresponding target (e.g., the next word) from these k sequences, and combines

the KNN probabilities with the probabilities computed by the language model for

the final prediction.

2.3.3 Adding Knowledge-Related Auxiliary Pre-training Tasks

The next set of methods focuses on integrating knowledge by designing auxiliary

knowledge-related pre-training tasks, extending beyond traditional training objec-

tives like masked language modelling. These tasks encompass Masked Entity Pre-

diction, Entity Prediction from Descriptions, Entity-Relation Discrimination, etc.

Many models in the literature fall within this category. Since the model archi-

tecture is typically not modified, these methods provide flexibility and entail no

additional inference overhead during deployment. Below we review some repre-

sentative models in this category.
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FIGURE 2.7: Illustration of the KEPLER framework. A language model is jointly
trained on knowledge embedding (KE) and masked language modelling (MLM)
objectives, where three types of entity embeddings are studied for the knowl-
edge embedding task: entity descriptions as embeddings, entity and relation
descriptions as embeddings, and entity embeddings conditioned on relations.
Source: Xiaozhi Wang et al. (2021).

Xiong et al. (2020) train a model, WKLM, using Wikipedia articles. The mentions

in the text are replaced with different entities of the same type from WikiData to

create negative knowledge statements that are still linguistically correct. An entity

replacement loss is introduced to train WKLM to distinguish between true and false

knowledge, together with the MLM objective for pre-training. Sun et al. (2019) adopt

a masking strategy at both the phrase and entity levels during training. This intro-

duces tasks that necessitate factual knowledge for model comprehension. Roberts,

Raffel, and Shazeer (2020) leverage salient span masking introduced by Guu et al.

(2020), to mask out salient spans such as entities and dates. This approach demon-

strates enhancements over T5, particularly in question answering.

KEPLER (Xiaozhi Wang et al., 2021), illustrated in Figure 2.7, introduces a knowl-

edge embedding objective with supervision from a knowledge base and optimises

jointly with language modelling objectives. KEPLER is specifically trained to en-

code entities from their contextual descriptions, enhancing the ability of PLMs to ex-

tract knowledge from text. Calixto, Raganato, and Pasini (2021) train a multilingual

model using Wikipedia articles in 100 languages together with BabelNet (Navigli

and Ponzetto, 2012), a multilingual sense-inventory for Word Sense Disambigua-

tion, by predicting Wikipedia hyperlinks.

One of our works from this thesis, EntityCS (Whitehouse, Christopoulou, and

Iacobacci, 2022), detailed in Chapter 4, also utilises the entity prediction objectives
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on a code-switched training corpus constructed from Wikipedia and Wikidata.

2.3.4 Adding Adapters

Adapters are typically light-weighted or smaller transformer blocks with fewer lay-

ers. Keeping the pre-trained language model parameters frozen, the adapter-based

models provide efficiency in training and show advantages in mitigating the risk of

catastrophic forgetting (T. Vu et al., 2022). In addition to the common use case of

adapter for parameter-efficient fine-tuning (Houlsby et al., 2019), researchers have

also developed models utilising adapters to integrate knowledge into PLMs. We

briefly introduce several such models below.

K-ADAPTER (R. Wang et al., 2021), as illustrated in Figure 2.8, adds learnable

adapters to RoBERTa that are trained in a multi-task setting on relation prediction

and dependency-tree prediction. Two types of knowledge adapters are developed:

factual knowledge obtained from automatically aligned text triples on Wikipedia

and Wikidata, and linguistic knowledge obtained via dependency parsing. Both
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adapters have demonstrated effectiveness in improving relation classification, en-

tity typing, and question answering (R. Wang et al., 2021). Y. Hou et al. (2022) in-

troduce a lightweight adapter set to enhance multilingual PLMs with cross-lingual

entity alignment and facts from multilingual KB for many languages. Their experi-

ments showcase the benefits of incorporating multilingual factual knowledge, par-

ticularly for low-resource languages. Many works focus on enhancing tasks requir-

ing domain-specific knowledge with adapters, for instance, Biomedical NLP (Lai,

Zhai, and H. Ji, 2023), Task-Oriented Dialogue Systems (Emelin et al., 2022), as well

as the exploration of the mixture of domain adapters (Diao et al., 2023).

2.3.5 Retrieval-Augmented Language Models

Retrieval-augmented approaches have gained popularity for expanding contextual

knowledge without the need for extensive model parametrisation. It involves train-

ing a retriever that dynamically retrieves relevant knowledge, such as passages from

Wikipedia or sub-graphs from a KB at runtime. Without the necessity of storing vast

amounts of knowledge within the model, retrieval-augmented language models en-

able more efficient and convenient updates of the evolving knowledge.

Retrieval-augmented models are extensively applied to question-answering and

text-generation tasks. M. Joshi et al. (2020) encode questions and passages alongside

dynamically retrieved textual encyclopedic background knowledge from multiple

documents, particularly focusing on entities mentioned in the text. This method

exhibits effectiveness in tasks emphasising factual reasoning, such as reading com-

prehension.

RAG, Retrieval-Augmented Generation, proposed by P. Lewis et al. (2020), gen-

erates answers by retrieving relevant spans across external texts based on pre-trained

sequence-to-sequence models. As illustrated in Figure 2.9, given a query, RAG lever-

ages the input sequence to retrieve the top K relevant passages and generates output

by conditioning on these latent documents together with the input. REALM, an ex-

tension of RAG proposed by Guu et al. (2020), augments the language model by

retrieving and attending over documents from a large corpus. It consists of two key

components: a neural knowledge retriever implemented with the BERT framework,
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responsible for encoding input data and retrieving potentially helpful documents,

and a knowledge-augmented encoder implemented with a Transformer, used to in-

fuse entities in documents and predict words for question-answering tasks.

Retrieval augmentation has also shown advantages in enhancing the few-shot

learning capability of language models. Izacard et al. (2023) introduce a retrieval-

augmented language model, Atlas, which is designed to handle knowledge-intensive

tasks with very few training examples. Atlas demonstrates robust few-shot perfor-

mance across a diverse range of tasks, including KILT (Petroni et al., 2021), Natural

Questions (Kwiatkowski et al., 2019), etc.

Many new retrieval-augmented approaches have been proposed in the light of

LLMs (B. Wang et al., 2023; Gao et al., 2023; Asai et al., 2024), among which, self-RAG

(Asai et al., 2024) train a LM with reflection tokens. The reflection tokens determine if

retrieval would be helpful and criticise its own output to choose the best generation

path in terms of factuality and overall quality. Thanks to the effectiveness of extend-

ing non-parametric and dynamic knowledge, retrieval-augmented language models

maintain their popularity even amid the latest trends of advanced Large Language

Models (J. Liu et al., 2023; Patil et al., 2023), alleviating the need for frequent and

expensive re-training of ever-larger language models.
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2.4 Summary

The background section provides an overview of the transformer architecture, rep-

resentative transformer-based models, knowledge types and sources, and various

knowledge-enhanced language models. The subsequent chapters focus on distinct

research aspects, with knowledge as a theme throughout, starting with the next

chapter on the application of knowledge-enhanced language models for fake news

detection.
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Chapter 3

Knowledge-Enhanced Language

Models for Fake News Detection

This chapter focuses on evaluating the effectiveness of knowledge-enhanced lan-

guage models on fake news detection tasks. Specifically, we consider structured

knowledge, such as entity knowledge represented in knowledge bases.

The main content is an extended version of the paper “Evaluation of Fake News

Detection with Knowledge-Enhanced Language Models” (Whitehouse et al., 2022),

published in the Sixteenth International AAAI Conference on Web and Social Media.

3.1 Background and Introduction

This chapter studies the fake news detection task, which includes misinformation,

disinformation, rumours, hoaxes, and other forms of rapid spread and factually in-

accurate information (Sharma et al., 2019a). Due to the wide reach of social me-

dia, fake news has been observed to severely impact political processes (Allcott and

Gentzkow, 2017). Misinformation related to medical issues, such as the COVID-19

pandemic, can cost lives (O’Connor and Murphy, 2020). There is a growing desire

to develop automated methods for fake news detection and mitigation, however, it

remains a technically challenging problem (Thorne and Vlachos, 2018).

We focus on content-based fake news detection: methods that assess the truth-

fulness of news items based only on textual information without using metadata.

State-of-the-art models for this task are driven by advances in large-scale pre-trained

language models (PLMs) (C. Liu et al., 2019; Kaliyar, Goswami, and Narang, 2021),
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which are trained on vast amounts of raw web-based text using self-supervised

methods (Rogers, Kovaleva, and Rumshisky, 2020). As discussed in Chapter 2, a

major limitation of these models is the lack of explicit grounding to real-world en-

tities and relations, which makes it difficult to recover factual knowledge (Bender

et al., 2021). On the other hand, knowledge bases (KBs) provide a rich source of

structured and human-curated factual knowledge, often complementary to what is

found in raw text. This has recently led to the development of KB-augmented lan-

guage models (Zhengyan Zhang et al., 2019; Peters et al., 2019). We posit that fake

news detection can particularly benefit from the integration of KBs, making such

models less dependent and reliant on surface-level linguistic features.

In this chapter, we empirically analyse the impact of recent state-of-the-art knowl-

edge integration methods, which enhance PLMs with KBs, for content-based fake

news detection tasks. We evaluate ERNIE (Zhengyan Zhang et al., 2019), KnowBert

(Peters et al., 2019), KEPLER (Xiaozhi Wang et al., 2021), and K-ADAPTER, (R. Wang

et al., 2021) on two distinct publicly available datasets: LIAR (W. Y. Wang, 2017), a po-

litically oriented dataset, and COVID-19 (Sharma et al., 2019a), a dataset related to the

COVID-19 pandemic. We find that integrating knowledge can improve fake news

detection accuracy, given that the knowledge bases are relevant and up-to-date. Our

experiments are not designed to find new state-of-the-art models for these datasets,

but to investigate the effect of knowledge base integration into PLMs.

The main contributions of this chapter are as follows:

• We systematically assess various Knowledge Base integration methods for fake

news detection. To the best of our knowledge, this is the first study towards the

effectiveness of knowledge-enhanced language models on fake news detection

tasks.

• We investigate both model and data aspects that may hinder the effectiveness

of KB integration or pose challenges in its accurate measurement.

• We analyse and discuss the potential real-world applications of knowledge-

enhanced language models for fake news detection, including dynamic adap-

tation, adversarial robustness, and the need for human verification in practical

deployment scenarios.



3.2. Related Work 35

In the following sections, we present a brief overview of four state-of-the-art

methods that integrate KBs with the PLMs studied. We then introduce and compare

the datasets, the experiments with different knowledge-enhanced models, and the

effectiveness of entity linking. We discuss our findings with respect to the necessary

conditions for KB integration to be effective and how to assess its effect in application

scenarios. Finally, we discuss the challenges in fake news detection and promising

future directions.

3.2 Related Work

A detailed review of related work on knowledge-enhanced language models is in-

cluded in section 2.2. This section presents an overview of related work on fake

news detection.

3.2.1 Approaches to Fake News Detection

Fake news, including disinformation, misinformation, rumours, hoaxes, etc. (Sharma

et al., 2019b), poses significant risks to society. The widespread influence of so-

cial media can shape public opinion and manipulate political elections (Allcott and

Gentzkow, 2017), and in the case of misinformation related to medical fields and

health problems, such as the COVID-19 pandemic, even lead to direct loss of life

(O’Connor and Murphy, 2020).

Automated and accurate fake news detection and mitigation represent critical

yet technically challenging problems (Sharma et al., 2019a; J. Su, Cardie, and Nakov,

2023). Over the past decade, various fake news detection methods using deep learn-

ing techniques have emerged. These methods can be categorised into three types:

content-based approaches, user behaviour or propagation pattern analysis, and hy-

brid models combining both.

Content-based Methods

Content-based methods focus on the textual statements of fake news (Oshikawa,

Qian, and W. Y. Wang, 2020) and analyse the language features of the content. For

instance, fake news articles and posts often contain more negative and exaggerated



36 Chapter 3. Knowledge-Enhanced Language Models for Fake News Detection

words, which can be leveraged to assess the truthfulness of the news (Rubin et al.,

2016).

The majority of current content-based methods employ neural networks for text

analysis. For example, Convolutional Neural Networks, widely used in text clas-

sification tasks (Oshikawa, Qian, and W. Y. Wang, 2020), have demonstrated su-

perior results on the LIAR dataset compared to traditional neural networks (W. Y.

Wang, 2017). In recent years, larger-scale pre-trained transformer-based models like

BERT have significantly advanced the state-of-the-art for many NLP tasks, including

content-based fake news detection (Kaliyar, Goswami, and Narang, 2021; Farokhian,

Rafe, and Veisi, 2023; J. Su, Cardie, and Nakov, 2023). Most fake news detection ap-

proaches either combine text with metadata (Ding, Y. Hu, and H. Chang, 2020) or

focus solely on the source of the text (Nørregaard, B. D. Horne, and Adali, 2019).

In terms of the two specific datasets we study, for LIAR, Alhindi, Petridis, and

Muresan (2018) extend the data with evidence sentences in a new dataset LIAR-

PLUS to enhance detection. Chernyavskiy and Ilvovsky (2020) introduce a Deep

Averaging Network to model the discursive structure of the text and use Siamese

models on the extended text data. Additionally, C. Liu et al. (2019) predict labels

at two levels of granularity. In the context of the COVID-19 dataset, results from

the CONSTRAINTS 2021 workshop (Chakraborty et al., 2022) showcase a variety of

traditional and neural NLP models. Notably, none of these approaches incorporates

external knowledge, suggesting potential benefits from knowledge base integration.

User Behaviour-based Methods

In contrast to content-based fake news detection, user behaviour-based methods

contend that algorithms focusing on clues from news content are generally less ef-

fective. This is because fake news is often intentionally crafted to mislead users by

mimicking true news (Shu, S. Wang, and Huan Liu, 2019). Instead, these methods

study the social context during the news dissemination process on social media, in-

cluding user profiles and user behaviours such as likes or retweets.

Shu, S. Wang, and Huan Liu (2019) propose a tri-relationship embedding frame-

work called TriFN, which simultaneously models publisher-news relations and user-

news interactions for fake news detection. Another approach by Monti et al. (2019)
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involves an automatic fake news detection model based on geometric deep learning,

offering language independence and improved resilience to adversarial attacks.

Hybrid Methods

The third category of fake news detection methods involves hybrid models that com-

bine content and user behaviour analysis during fake news propagation.

An example of a hybrid deep model is the CSI model (Ruchansky, Seo, and Yan

Liu, 2017). CSI comprises three modules: Capture, Score, and Integrate, correlating

the characteristics of the news text, user response, and publisher behaviour. The

Capture module captures temporal patterns of user responses to a specific news ar-

ticle and extracts latent features of the text using RNN. The Score module learns

source characteristics based on user behaviour, scoring publishers based on user

conduct. In the final Integrate module, the model combines response, text, and

source information to classify each news item as fake or real.

3.3 Models and Datasets

After presenting the background and related work regarding fake news detection,

we now introduce the models that we use in our experiments and provide details of

the datasets and our experimental setup.

3.3.1 Knowledge-Enhanced PLMs

In Chapter 2, we have comprehensively reviewed various methods for integrating

knowledge into PLMs, and in this chapter, we specifically focus on the following

four models:

ERNIE enhances BERT (Devlin et al., 2019) by introducing knowledge through

pre-training on both extensive corpora and KBs. While retaining the text encoder

of BERT, ERNIE adds an additional knowledge encoder. The knowledge encoder

follows the standard transformer architecture, with each layer applying multi-head

attention over entity embeddings and token embeddings. A fusion layer then com-

bines the output of the attention heads. ERNIE uses TAGME (Ferragina and Scaiella,
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2010) to link entities to Wikidata. TAMGE identifies entity mentions in the input text

and links them to associated TransE (Bordes et al., 2013) entity embeddings, which

are then fused into the corresponding positions of the text. Apart from Masked Lan-

guage Modelling and Next Sentence Prediction pre-training tasks as in BERT, ERNIE

also adopts a knowledge-based learning objective which predicts the correct token-

entity alignment. ERNIE demonstrate superior performance over BERT in entity

typing and relation classification (Zhengyan Zhang et al., 2019).

KnowBert incorporates KBs into BERT using knowledge attention and contextu-

alisation mechanism. It identifies entity spans in the input text and incorporates an

integrated entity linker in the model to retrieve entity embeddings from a KB. The

entity linker is responsible for entity disambiguation, which considers 30 entity can-

didates and uses their weighted average embedding. Knowledge-enhanced entity-

span representations are then re-contextualised with a word-to-entity attention tech-

nique. When entity-linking supervision is available, the model is trained with an

additional knowledge-aware log-likelihood or max-margin objective. KnowBert has

shown improvement over BERT in relationship extraction, entity typing and word

sense disambiguation (Peters et al., 2019).

KEPLER integrates factual knowledge into PLMs by adding a knowledge embed-

ding objective with the supervision from a KB and optimising it jointly with lan-

guage modelling objectives. KEPLER is trained to encode the entities from their

contextual descriptions, which enhances the ability of PLMs to extract knowledge

from text. By keeping the original structures of PLMs, KEPLER can be used in gen-

eral downstream NLP tasks without additional inference overhead. Specifically, af-

ter training on Wikidata5M,1 a large KB-aligned dataset with entity descriptions,

KEPLER shows improved performance over RoBERTa (Yinhan Liu et al., 2019) in

relationship extraction, entity typing and link prediction (Xiaozhi Wang et al., 2021).

K-ADAPTER retains the PLMs unchanged, but adds learnable adapter features

that are trained in a multi-task setting on relation prediction and dependency-tree

prediction. Two kinds of knowledge adapters have been developed by R. Wang
1https://deepgraphlearning.github.io/project/wikidata5m

https://deepgraphlearning.github.io/project/wikidata5m


3.3. Models and Datasets 39

et al. (2021): factual knowledge obtained from automatically aligned text triples on

Wikipedia and Wikidata, and linguistic knowledge obtained via dependency pars-

ing. Both adapters have demonstrated effectiveness in improving relation classifica-

tion, entity typing, and question answering (R. Wang et al., 2021).

3.3.2 Fake News Datasets

In our experiments, we use LIAR and COVID-19 to study fake news detection. Both

datasets consist of short statements, however, they differ in content, collection time-

lines, and linguistic features.

LIAR was collected in 2017 from Politifact.2 It includes 12.8k human-labelled short

statements about US politics from various contexts, i.e., news releases, TV inter-

views, campaign speeches, etc. Each statement has been rated for truthfulness by

a Politifact editor using a six-grade scale: pants-fire, false, barely-true, half-true, mostly

true, and true. LIAR also provides metadata (e.g., speaker, context), which we do not

use in our experiments. While W. Y. Wang (2017) has been widely cited, we only

found three other results for our specific task (no metadata, six classes) (Alhindi,

Petridis, and Muresan, 2018; C. Liu et al., 2019; Chernyavskiy and Ilvovsky, 2020),

the latter has the best accuracy of 34.5%.

COVID-19 was collected in 2020 after the COVID-19 outbreak. It consists of 10.5k

posts related to the pandemic which are obtained from different social media sites

including Twitter, Facebook, and Instagram. The fake posts were collected from

various fact-checking websites, i.e., Politifact and NewsChecker,3 and the real posts

were from Twitter using verified Twitter handles. Each post has a label, real or fake. It

was used as a shared task in the CONSTRAINT 2021 workshop (Chakraborty et al.,

2022) with the best-reported accuracy of 98.69%.

Linguistic Feature Analysis

We perform a linguistic feature analysis following the work in B. Horne and Adali

(2017) to investigate the stylistic difference between real and fake news in the datasets.
2https://www.politifact.com
3https://newschecker.in/

https://www.politifact.com
https://newschecker.in/
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FIGURE 3.1: Number of words, POS tags, punctuation, and number-like words
per statement in LIAR and COVID-19, as well as number of https-links per state-
ment in COVID-19. The mean values are shown as white-filled circles in the plots.

We use SpaCy4 to parse the statements and to obtain the Part-of-Speech (POS) tags.

For LIAR, we group pants-fire, false, and barely-true as fake and half-true, mostly true,

and true as real. We compare the distribution of various features including word

count, POS tags (NOUN, PROPN, VERB, ADJ, ADV), punctuation, and number-like

words, in each statement. The results are presented in Figure 3.1.

In terms of statement length, COVID-19 exhibits notable disparities between real

and fake classes, with averages of 32 and 22 words, respectively, as illustrated in

Figure 3.1a. Conversely, LIAR demonstrates a more balanced distribution of state-

ment lengths, with both real and fake statements comprising an average of 18 and

4https://spacy.io/

https://spacy.io/
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17 words, respectively.

In general, COVID-19 presents distinct linguistic features between classes whereas

LIAR shows more comparable features. Notably, COVID-19 incorporates links, pre-

dominantly in the form of https links, forming a separate category with a markedly

skewed distribution, as depicted in Figure 3.1c.

3.4 Experimental Setup

To assess the influence of external knowledge, we compare the performance of each

knowledge-enhanced PLM with the corresponding baseline model. It is noteworthy

that ERNIE and KnowBert incorporate entity embeddings linked to the input, al-

lowing us to visualise the entities contributing to fake news detection in ERNIE and

design experiments to probe the impact of entity disambiguation in KnowBert.

For the evaluation of model performance in fake news detection, we fine-tune

the knowledge-enhanced PLMs on the training set, employing consistent hyper-

parameter settings. The input text undergoes processing by the PLM, followed by

a dropout (p = 0.1) and a linear layer. The output is then directed to a softmax

layer for classification. The optimisation is carried out using the AdamW optimiser

(Loshchilov and Hutter, 2019) with a learning rate of 5e−6, and cross-entropy serves

as the loss function. We set the maximum input length to 128, and the batch size is

fixed at 4. Training is conducted for 10 epochs, with convergence typically observed

after five epochs. Each experiment is run five times, and the average accuracy, along

with the standard deviation, is reported.

As for the models we use, ERNIE and KnowBert are built on BERT-base, whereas

KEPLER and K-ADAPTER are enhanced from RoBERTa-base and RoBERTa-large,

respectively. In terms of hardware, a Nvidia GTX 1080 GPU with 12GB of VRAM

is utilised for experiments involving BERT-base, RoBERTa-base, and models based

on them. To maintain a consistent batch size for RoBERTa-large and K-ADAPTER

models, a T4 with 16GB VRAM is employed.
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3.5 Results and Discussion

We compare ERNIE, three pre-trained KnowBert models with different KBs (Wiki,

WordNet, W+W),5 KEPLER, and K-ADAPTER with three adapters (F, L, F-L)6 in the

published implementation, to the corresponding baselines. This section presents the

main results and discussion.

3.5.1 Detection Accuracy

MODEL BASE LIAR COVID-19

BERT-Base (BB) - 26.36 ±0.58 97.51 ±0.19
RoBERTa-Base (RB) - 26.71 ±0.93 97.61 ±0.26
RoBERTa-Large (RL) - 27.36 ±0.79 97.92 ±0.17

ERNIE BB 27.53 ±0.13 97.30 ±0.18
KnowBert-Wiki BB 27.64 ±0.09 97.37 ±0.09
KEPLER RB 26.77 ±1.15 97.58 ±0.15
K-ADAPTER-F RL 28.63 ±0.90

∗ 97.92 ±0.10

KnowBert-WordNet BB 26.95 ±0.45 97.00 ±0.06
KnowBert-W+W BB 28.95 ±0.64

∗ 97.56 ±0.15
K-ADAPTER-L RL 28.46 ±0.87

∗ 98.07 ±0.09
K-ADAPTER-F-L RL 27.45 ±0.78 98.11 ±0.14

TABLE 3.1: Detection accuracy results (average of five runs). The first section
corresponds to the baseline models. Models in the second section use Wikidata
KB. The third section shows models using other KBs and features. The best val-
ues within each section per dataset are marked in bold. The subscript numbers
with ± show the standard deviation. Results with ∗ indicate statistically sig-
nificant improvements over the baseline, both for the mean (t-test, one-sided,
p < .05) and median (Wilcoxon signed rank test, one-sided, p < .05).

The detection accuracy of the knowledge-enhanced PLMs and their correspond-

ing baselines is detailed in Table 3.1.

To disentangle the effectiveness of knowledge integration methods, specific knowl-

edge resources, and baseline model architectures, we categorise the results into three

groups: baseline performance (top), models integrated with Wikidata knowledge

base (middle), and models utilizing knowledge bases beyond Wikidata (bottom).

Comparing models with Wikidata knowledge and their baselines, we observe con-

sistent enhancements on the LIAR dataset. However, no improvement is observed on

5They refer to Wikipedia, WordNet, and Wikipedia+WordNet as the knowledge base.
6They refer to Factual, Linguistic, and Factual+Linguistic adapters.
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the COVID-19 dataset. This discrepancy underscores the positive impact of relevant

knowledge bases on transformer-based models, irrespective of the diverse integra-

tion approaches employed. Conversely, in scenarios where knowledge bases are

outdated and datasets exhibit stylistic imbalances between classes (as outlined in

section 3.3.2), external knowledge bases may even detrimentally affect performance.

Comparing models employing the same knowledge integration approach but

utilising different knowledge sources reveals intriguing findings. Optimal perfor-

mance on both LIAR and COVID-19 datasets is achieved by models incorporating

multiple knowledge sources. Specifically, KnowBERT-W+W, incorporating both Wiki-

data and WordNet knowledge bases, exhibits the most substantial overall improve-

ment (a notable increase of +2.59 over BERT-base). Simultaneously, K-ADAPTER,

incorporating linguistic adapters, demonstrates the most significant positive impact

on the COVID-19 dataset. This aligns with the observation that COVID-19 exhibits

distinct linguistic stylistic cues between different classes.

Overall, across the LIAR dataset, all knowledge-enhanced methods demonstrate

improvements over the baseline. In contrast, on the COVID-19 dataset, only three out

of eight models show improvement, and these improvements are marginal

The computational cost varies across different approaches. KEPLER maintains

the baseline PLM architecture, incurring no additional overhead. For K-ADAPTER,

the RoBERTa-large layers are frozen, resulting in a manageable overhead ranging

from 9-23% due to the adapters. However, for KnowBert, the overhead is more

substantial, ranging from 40-87%, and for ERNIE, it is even higher at 111-131%.

3.5.2 KB Linking

ERNIE and KnowBert establish links between the text and KB entities at runtime,

and the quality of this linking significantly impacts the output. ERNIE utilises TAGME

and selects only one entity candidate per text span. In Figure 3.2, we present the 50

most frequently selected KB entities for each dataset.

In the case of COVID-19, the most frequently selected entities do not appear content-

related, such as “https” and “twitter”, while the highly relevant term “COVID-19”

is notably absent in the linked entities. Conversely, for LIAR, the linked entities seem
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(A) Linked Entities in COVID-19

(B) Linked Entities in LIAR

FIGURE 3.2: Word cloud for the 50 most frequent entities linked by ERNIE in
LIAR and COVID-19.

more relevant. This discrepancy may be attributed to the fact that LIAR was collected

three years earlier, making it potentially better suited for the entity linker and the KB

used. Another potential factor influencing the effectiveness of KB integration is the

number of linked entities. Unlike ERNIE, KnowBert selects the 30 most probable

entities per text span. In a sensitivity study, we restrict KnowBert-W+W to only one

entity, leading to a reduction in accuracy on LIAR from 28.95% to 27.31%, placing it

below the accuracy of ERNIE (27.53%).

3.5.3 Discussion

The consistent improvement in detection accuracy on LIAR achieved by integrating

PLMs with the Wikidata KB demonstrates the potential of knowledge integration,

surpassing results obtained by W. Y. Wang (2017) which integrated multiple types

of metadata. However, the improvements, while notable, are not dramatic for LIAR,

and they lack consistency for COVID-19. Two critical aspects contributing to these

results are identified in the effective use of knowledge-enhanced models:
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• Currentness and Relevance of the Knowledge Base: Since COVID-19 was col-

lected after most PLMs were trained, certain terms like “COVID-19” may not

be present in the Knowledge Base.

• Quality of the Dataset: The COVID-19 dataset contains confounding factors that

provide strong cues, potentially overshadowing the impact of the knowledge

base. Notably, the prevalence of https links, occurring in 95.3% of real posts but

only 42.3% of fake posts, can act as a shortcut to deriving the correct prediction.

There is also potential to achieve more explainability and interpretability with di-

rect KB integration at runtime. For instance, in the statement from COVID-19: “DNA

Vaccine: injecting genetic material into the host so that host cells create proteins that are

similar to those in the virus against which the host then creates antibodies”, KnowBert-

W+W correctly classifies it as “real”, whereas BERT-base fails. We observe that most

mention spans in the statement, i.e., “DNA”, “injecting”, “genetic”, “genetic material”,

“host”, “cells”, etc. are correctly linked to entities “DNA”, “Injection_(medicine)”, “Ge-

netics”, “Genome”, “Host_(biology)”, “Cell_(biology)”, respectively, suggesting that en-

tity links may have contributed to KnowBert-W+W for this classification. However,

the level of explainability remains limited. The entity linking in both models is gen-

erally of mixed quality as well, as illustrated in the COVID-19 example.

Application Aspects

The application of automatic fake news detection in real-world scenarios introduces

two dynamic aspects that are challenging to test with static datasets, as highlighted

by our experiment on COVID-19:

• Dynamic Adaptation: The system needs to adapt to the changing character-

istics of real and fake news (Silva and Almeida, 2021). Knowledge-enhanced

models that utilise Knowledge Bases at runtime provide an opportunity to up-

date the KB independently of the model. This approach offers the advantage

of recognising fake news as contradicting the KB even before specific examples

of fake news emerge.
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• Adversarial Robustness: Authors of fake news are likely to employ evasive

strategies. Adapting the text style is relatively straightforward and can be au-

tomated, making the detection using stylistic features challenging (see Zellers

et al., 2019b; Schuster et al., 2020).

The deployment of fake news detection in social media is likely to necessitate

human verification, especially when users challenge actions taken against them. In

this context, Knowledge Base integration can provide a valuable advantage by of-

fering insights into the knowledge used in the detection process, thereby enhancing

explainability. This transparency could be crucial in addressing user concerns and

building trust in the fake news detection system.

3.6 Conclusion and Future Work

In this chapter, we study the effectiveness of enhancing PLMs with knowledge bases

for fake news detection. The findings underscore that the success of integrating

knowledge with PLMs is contingent upon the availability of suitable KBs and the

quality of the dataset. While better performance is observed on a static dataset, there

is room for improvement on both the modelling and application levels. To the best

of our knowledge, our work is the first examination of knowledge-enhanced models

in the context of fake news detection. The positive results on the LIAR dataset pro-

vide insights into the effectiveness of considering entity knowledge in areas beyond

traditional tasks like entity linking.

For practical application, more insight into the specific knowledge utilised dur-

ing the detection process could contribute to more transparent and interpretable

models. Furthermore, the potential for dynamic adaptation of models and KBs to

the evolving characteristics of real and fake news is a promising avenue for explo-

ration. The integration of KBs with PLMs presents an opportunity for more robust

and timely fake news detection.

Future work could also investigate the development of a more reliable evaluation

approach, for example involving testing scenarios that simulate dynamic knowledge
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updates as well as the challenges posed by adversarial and automatic fake news gen-

erators. Overall, as the landscape of misinformation evolves, the adaptability and re-

silience of knowledge-enhanced models demonstrate promise in their effectiveness

in real-world applications.

3.7 Limitations

We first discuss the general limitations of incorporating external knowledge resources

for improving Transformer-based models, and then we describe the specific limita-

tions of this chapter.

General Limitations of External KBs for Improving Transformer Models

• Scalability and Efficiency: Transformer models are already computationally

intensive, especially for long contexts, due to the quadratic complexity of the

attention calculation within the window length. Integrating external knowl-

edge sources can further increase computational costs, especially when devel-

oping adaptive approaches that require up-to-date knowledge on demand.

• Domain Adaptation and Generalisation: External knowledge resources of-

ten originate from specific domains or sources, which may not fully align

with the target task or dataset. This misalignment poses a challenge, par-

ticularly as many knowledge integration approaches require linkage to pre-

defined knowledge sources. As large language models evolve toward greater

general-purpose utility, there arises a growing need for effective general-purpose

knowledge fusion approaches.

• Selective Knowledge Incorporation: Existing strategies for leveraging exter-

nal knowledge in Transformer models often adopt a binary approach, either

consistently integrating external knowledge or entirely disregarding it. How-

ever, as LLMs evolve and accumulate knowledge within their parameters, the

benefit of external knowledge integration becomes context-dependent. There
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are instances where querying external knowledge may hinder model perfor-

mance, given the limitations above (i.e., the computational overhead and po-

tential mismatches between the external knowledge and the task at hand). A

recent work, Self-RAG (Asai et al., 2024), which trains the LM to reflect the

necessity to retrieve external knowledge and critique its own generation con-

ditioned on the external knowledge, shines a light into this direction.

Limitations of this Chapter

• Limited Datasets: The experiments were conducted only on two fake news

datasets, both consisting of short statements. Notably, the COVID-19 dataset

already exhibited a very high baseline accuracy. To gain more comprehensive

insights into knowledge-enhanced language models, it would be beneficial to

include more diverse and complex fake news detection datasets.

• Limited Knowledge Sources: The evaluation in this chapter focuses on pre-

trained models that integrate with knowledge bases primarily sourced from

Wikidata and WordNet. However, for the specific use case of COVID-19, there

is a potential value in conducting a comparison that involves integrating med-

ical domain-specific knowledge bases.
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Chapter 4

Entity-Centric Code-Switching for

Enhanced Cross-lingual Transfer

In this chapter, we focus on utilising structured knowledge in a multilingual setup,

for the improved cross-lingual transferability of pre-trained cross-lingual language

models on entity-centric tasks.

The main content of this chapter is based on the paper “ENTITYCS: Improving

Zero-Shot Cross-lingual Transfer with Entity-Centric Code Switching” (Whitehouse,

Christopoulou, and Iacobacci, 2022) published in Findings of the Association for Com-

putational Linguistics: EMNLP 2022.

4.1 Background and Introduction

Cross-lingual pre-trained Language Models (XLMs), such as mBERT (Devlin et al.,

2019) and XLM-R (Conneau et al., 2020a), have achieved state-of-the-art zero-shot

cross-lingual transferability across diverse Natural Language Understanding (NLU)

tasks. These models have been notably enhanced through the incorporation of bilin-

gual parallel sentences, along with alignment methods (Yang et al., 2020; Chi et al.,

2021a; J. Hu et al., 2021; Gritta and Iacobacci, 2021; Feng et al., 2022). However,

acquiring high-quality parallel data is costly, especially for low-resource languages.

Therefore, alternative data augmentation approaches have been proposed, one of

which is Code Switching (CS).

Code Switching is a phenomenon in which multilingual speakers alternate be-

tween languages when they speak, a topic that has been studied for many years
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(Gumperz, 1977; Khanuja et al., 2020; Doğruöz et al., 2021). Code-switched sen-

tences consist of words or phrases in different languages, capturing finer-grained

cross-lingual expressions compared to parallel sentences. They have been utilised

for multilingual intermediate training (Yang et al., 2020) and fine-tuning (Qin et al.,

2020; Krishnan et al., 2021). Nevertheless, manually creating large-scale CS datasets

is expensive, and only a few natural CS texts exist (Lyu et al., 2015; Barik, Mahen-

dra, and Adriani, 2019; R. Xiang et al., 2020; Chakravarthi et al., 2020; Lovenia et al.,

2022). As a result, research has turned to automatic CS data generation.

Some of these approaches generate CS data via dictionaries, often ignoring am-

biguity (Qin et al., 2020; Conneau et al., 2020b). Others require parallel data and an

alignment method to match words or phrases between languages (Yang et al., 2020;

Rizvi et al., 2021). In both cases, what is switched is chosen randomly, potentially

resulting in syntactically odd sentences or switching to words with little semantic

content (e.g., conjunctions). This is in contrast to observations from prior work that

have shown in real code-switched data, such as SEAME (Lyu et al., 2015), where

nouns have the highest rate of code-switching (Çetinoğlu, Schulz, and N. T. Vu,

2016). They also find that people may switch grammar rules when they code-switch,

making automatic code-switching by randomly replacing words in a sentence less

feasible.

On the other hand, entities contain external knowledge and do not alter sentence

syntax when replaced with other entities, mitigating the need for parallel data or

word alignment tools. Motivated by this, we propose ENTITYCS, a code-switching

method that focuses on entities. Resources such as Wikipedia and Wikidata offer

rich cross-lingual entity-level information and have shown benefits in XLMs pre-

training (Z. Jiang et al., 2020; Calixto, Raganato, and Pasini, 2021; X. Jiang et al.,

2022). We use such resources to generate an entity-based CS corpus for the interme-

diate training of XLMs. Entities in wikilinks1 are switched to their counterparts in

other languages retrieved from the Wikidata KB, thus alleviating ambiguity.

Training models on our synthetic entity-level code-switched data offers several

1https://en.wikipedia.org/wiki/Help:Link#Wikilinks_(internal_links)

https://en.wikipedia.org/wiki/Help:Link#Wikilinks_(internal_links)
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advantages over using naturally occurring code-switched text. Firstly, our synthe-

sised data allows for greater control over language diversity. While natural code-

switched text often involves only one or two high-resource non-English languages,

our dataset can incorporate a broader range of languages and combinations. Ad-

ditionally, by focusing on entity-centric training objectives, the models are antici-

pated to capture finer-grained semantics shares across languages, which is partic-

ularly beneficial for downstream tasks that require accurate entity understanding.

However, it is important to note that synthetic data may not fully capture the com-

plexities of naturally occurring code-switched text, which often involves subtle shifts

in language use influenced by cultural, social, and contextual factors (Doğruöz et al.,

2021).

Using the ENTITYCS corpus, we propose a series of masking strategies that fo-

cus on enhancing Entity Prediction (EP) for better cross-lingual entity representa-

tions. We evaluate the models on entity-centric downstream tasks, including Named

Entity Recognition (NER), Fact Retrieval, Slot Filling (SF), and Word Sense Disam-

biguation (WSD). Extensive experiments demonstrate that our models outperform

the baseline on zero-shot cross-lingual transfer, with a +2.8% improvement on NER,

surpassing the prior best result that uses large amounts of parallel data, +10.0% on

Fact Retrieval, +2.4% on Slot Filling, and +1.3% on WSD.

The main contributions of this chapter include:

• Construction of an entity-level CS corpus, ENTITYCS, based on the English

Wikipedia and Wikidata, mitigating the need for parallel data, word-alignment

methods, or dictionaries.

• A series of intermediate training objectives, focusing on Entity Prediction.

• Improvement of zero-shot performance on NER, Fact Retrieval, Slot Filling,

and WSD.

• Further analysis of model errors, the behaviour of different masking strategies

throughout training, as well as the impact across languages, and demonstra-

tion of the particular benefit of non-Latin script languages.
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4.2 Related Work

We introduce the related work of this chapter in the following three aspects:

4.2.1 Cross-Lingual Pre-Training

Most existing cross-lingual pre-trained language models employ parallel data to en-

hance multilingual contextualised word representations for different languages (X.

Ouyang et al., 2021; Luo et al., 2021; Chi et al., 2021b). Adapters have also been

applied to improve zero-shot and few-shot cross-lingual transfer by training only a

small set of model parameters (Pfeiffer et al., 2020; Ansell et al., 2021). Additionally,

meta-learning techniques (Nooralahzadeh et al., 2020; Tarunesh et al., 2021) have

proven highly effective for rapid adaptation to new languages (Dou, K. Yu, and

Anastasopoulos, 2019). In comparison to these approaches, our method aims to en-

hance cross-lingual transferability through intermediate training on an entity-based

code-switching corpus created from Wikipedia wikilinks, without requiring parallel

data.

4.2.2 Code Switching

Code Switching methods have shown success in cross-lingual model pre-training

and fine-tuning across various NLU tasks, including NER (Priyadharshini et al.,

2020; L. Liu et al., 2021), Part-of-Speech Tagging (Ball and Garrette, 2018), Machine

Translation (Srivastava and Singh, 2020), Intent Classification, and Slot Filling (Kr-

ishnan et al., 2021). These methods have also been applied on code-switched datasets

(Rizal and Stymne, 2020; Prasad et al., 2021).

A significant challenge in studying Code Switching is the scarcity of training data

(D. Gupta, Ekbal, and Bhattacharyya, 2020). Existing code-switched corpora mostly

involve English and one other language (e.g., English-Chinese, English-Spanish,

English-Hindi), extracted from social media platforms (Barik, Mahendra, and Adri-

ani, 2019; R. Xiang et al., 2020; Chakravarthi et al., 2020; Lovenia et al., 2022).

Methods for generating code-switched data in multiple languages have been

proposed. Qin et al. (2020) and Conneau et al. (2020b) create code-switched data

from downstream task datasets by randomly switching individual words to a target
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language using translations from bilingual dictionaries. However, this introduces

ambiguity errors and is prone to switching words without significant content. Kr-

ishnan et al. (2021) use Code Switching to improve Intent Classification and Slot Fill-

ing. Instead of switching individual words, they obtain phrase information from the

slot labels and generate phrase-level code-switched sentences via automatic trans-

lations. Yang et al. (2020) create code-switched sentences by randomly substitut-

ing source phrases with their target equivalents in parallel sentences after obtaining

word alignments. Z. Jiang et al. (2020) select a subset of Wikipedia sentences in

four languages that contain multilingual entities from X-FACTR and create code-

switched sentences by switching entities from English to non-English entities and

vice versa, via Wikidata translations.

Our proposed EntityCS shares several similarities. The primary distinctions,

particularly in contrast to Z. Jiang et al. (2020), can be summarised in three key as-

pects: (i)Scale: While Z. Jiang et al. (2020) focuses on a limited subset, we create a

substantial corpus, magnifying the scale by a factor of 1000x, spanning across 93

languages rather than just four; (ii) Diversity: In contrast to the 30% sentence code-

switching and single non-English entity focus in Z. Jiang et al. (2020), our approach

code-switches every sentence to multiple candidate target languages. This modi-

fication enhances the model’s ability to capture cross-lingual information compre-

hensively, resulting in improved cross-lingual transferability; (iii) Entity-Prediction

Objective: A pivotal difference lies in our incorporation of various entity-focused

prediction objectives. This strategic design enhances the entity-awareness of the

intermediate-trained model, which is further shown to contribute to entity-centric

downstream tasks.

4.2.3 Knowledge Integration into Language Models

As detailed in Chapter 2, Pre-trained Language Models may lack explicit grounding

to real-world entities and relations, making it challenging to recover factual knowl-

edge (Bender et al., 2021).

We refer the reader to section 2.3 for techniques of knowledge integration into

PLMs that focus on monolingual models. Integrating multilingual knowledge into
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XLMs has also been recently addressed. X. Jiang et al. (2022) train a model with two

knowledge-related tasks: entity prediction and object entailment. They use Wiki-

Data description embeddings in one language (English and non-English) to predict

an entity in a target language as a classification task, preserving an entity’s vocab-

ulary. Calixto, Raganato, and Pasini (2021) use Wikipedia articles in 100 languages

together with BabelNet (Navigli and Ponzetto, 2012), a multilingual sense-inventory

for WSD, by predicting the WikiData ID of each entity. Another work taking advan-

tage of entities by Ri, Yamada, and Tsuruoka (2022) uses dedicated multilingual en-

tity embeddings on 24 languages and outperforms word-based pre-trained models

in various cross-lingual transfer tasks.

4.3 Methodology

In this section, we provide a comprehensive overview of the ENTITYCS corpus con-

struction and detail various entity-oriented masking strategies employed in our ex-

periments.

4.3.1 ENTITYCS Corpus Construction

Wikipedia is a multilingual online encyclopedia available in more than 300 lan-

guages.2 Structured data of Wikipedia articles are stored in Wikidata, a multilingual

document-oriented database. With more than six million articles, English Wikipedia

has the potential to serve as a rich resource for generating CS data. We use English

Wikipedia and leverage entity information from Wikidata to construct an entity-

based CS corpus.

To achieve this, we make use of wikilinks in Wikipedia, i.e., links from one page

to another. We use the English Wikipedia dump3 and extract raw text with WikiEx-

tractor4 while keeping track of wikilinks. Wikilinks are typically surrounded by

square brackets in Wikipedia dump, in the format of [[entity | display text]], where

entity is the title of the target Wikipedia page it links to, and display text corresponds

2https://en.wikipedia.org/wiki/Wikipedia
3https://dumps.wikimedia.org/enwiki/latest/ (Nov 2021 version)
4https://github.com/attardi/wikiextractor

https://en.wikipedia.org/wiki/Wikipedia
https://dumps.wikimedia.org/enwiki/latest/
https://github.com/attardi/wikiextractor
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to what is displayed in the current article. We then employ SpaCy5 for sentence

segmentation. To focus on entity-level code-switched instances, only sentences con-

taining at least one wikilink are retained, and sentences exceeding 128 words are

excluded from the dataset. This process results in a final ENTITYCS corpus compris-

ing 54.5 million English sentences and 104 million entities.

She was studying [[ computer science ]] and [[ electrical engineering ]] .

Q21198
en: Computer Science
zh: 计算机科学
hi: क��ूटर िव�ान
fr: Informatique

ar: علم الحاسوب
el: Επιστήμη Υπολογιστών

. . .

Q43035
en: Electrical Engineering

el: Ηλεκτρολογία

zh: 电气工程学
hi: िवद्युत अिभया��की

fr: Électrotechnique
ar: ھندسة كھربائیة

. . .

She was studying <e>क��ूटर िव�ान</e> and <e>िवद्युत अिभया��की</e>.
She was studying <e>计算机科学</e> and <e>电气工程学</e>.

She was studying <e>Informatique</e> and <e>Électrotechnique</e>.

computer science Q21198
electrical engineering Q43035

She was studying <e>computer science</e> and <e>electrical engineering</e>.

. . .

FIGURE 4.1: Illustration of generating ENTITYCS sentences from an English sen-
tence extracted from Wikipedia. Entities in double square brackets indicate wik-
ilinks.

As depicted in Figure 4.1, our Code Switching process begins with an English

sentence containing wikilinks. Each entity within these links is mapped to its cor-

responding Wikidata ID, and translations for these entities are retrieved from Wiki-

data. The selection of target languages for Code Switching is based on the availabil-

ity of translations for all entities within a given sentence.

We consider a set of 92 target languages (non-English), representing the overlap

between languages available in Wikidata and those supported by XLM-R (Conneau

et al., 2020a), the model utilised for intermediate training. To ensure coherence, all

5https://spacy.io/

https://spacy.io/
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STATISTIC COUNT

Languages 93
English Sentences 54,469,214
English Entities 104,593,076
Average Sentence Length 23.37
Average Entities per Sentence 2

CS Sentences per EN Sentence ≤ 5
CS Sentences 231,124,422
CS Entities 420,907,878

TABLE 4.1: Statistics of the ENTITYCS Corpus.

entities in a sentence are code-switched to the same target language, mitigating po-

tential noise from introducing too many languages.

To manage the size of the corpus, we generate up to five entity code-switched

sentences for each English sentence. Specifically, if fewer than five languages have

translations available for all entities in a sentence, we create ENTITYCS instances

with all available languages. Otherwise, we randomly select five target languages

from the candidates. If no candidate languages are found, we retain the sentence in

the English corpus without code-switching.

In the final step, we enclose each entity with entity indicators (<e>, </e>). This

ensures clear identification of entities within the code-switched sentences.

The statistical overview of the ENTITYCS corpus is presented in Table 4.1, and

a histogram detailing the number of sentences and entities per language (excluding

English) in the ENTITYCS corpus is illustrated in Figure 4.2.

4.3.2 Masking Strategies

To assess the efficacy of intermediate training on the generated ENTITYCS corpus,

we experiment with various training objectives using an existing pre-trained lan-

guage model. Initially, we adopt the conventional 80-10-10 Masked Language Mod-

elling (MLM) objective, where 15% of sentence subwords or tokens serve as masking

candidates. Among these, we replace tokens with [MASK] 80% of the time, with 10%

using random tokens (from the entire vocabulary), and the remaining 10% left un-

changed (Same).
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FIGURE 4.2: Number of Code-Switched Entities and Sentences in the ENTITYCS
corpus.
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nique_She _was _study _and  _É lec troing [MASK] [MASK]

que_Informati niquetrolec _É

(A) Whole Entity Prediction (WEP)

nique_She _was _study _and troing que[MASK]

que_Informati nique _É lec

[MASK][MASK]

(B) Partial Entity Prediction (PEP)

nique_She _με _and  _É troing que[MASK]

_Informati lec

[MASK]

nique_was

[MASK]

_study

(C) Partial Entity Prediction with MLM (PEP+MLM)

FIGURE 4.3: Illustration of the proposed masking strategies. Random tokens are
chosen from the entire vocabulary and thus can be from different languages. (c)
shows a case where “study” is replaced with a token in Greek.

To integrate entity-level cross-lingual knowledge into the model, we introduce

Entity Prediction objectives, where we exclusively mask tokens belonging to an en-

tity. By predicting the masked entities in ENTITYCS sentences, we anticipate the

model capturing the semantics of the same entity in different languages. Two dis-

tinct masking strategies are proposed for predicting entities: Whole Entity Predic-

tion (WEP) and Partial Entity Prediction (PEP).

In WEP, inspired by Sun et al. (2019) where whole-word masking is also em-

ployed, we consider all the words (and consequently subwords or tokens) inside

an entity as masking candidates. Subsequently, 80% of the time, we mask every to-

ken inside an entity, leaving 20% unchanged. Notably, to predict the entire masked

entity, we refrain from replacing it with random tokens, as it might introduce noise,

leading to the model predicting incorrect entities. After masking entities, we remove

the entity indicators <e>, </e> from the sentences before feeding them to the model.

Figure 4.3a provides an example of WEP.

For PEP, we also consider all entities as masking candidates. Unlike WEP, we do

not enforce tokens belonging to one entity to be either all masked or all unmasked.

Instead, each individual entity token is masked 80% of the time. For the remaining

20% of masking candidates, we experiment with three different replacements.

PEPMRS corresponds to the conventional 80-10-10 masking strategy, where 10%

of the remaining tokens are replaced with random tokens, and the other 10% are left
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MASKING

STRATEGY

ENTITY (%) NON-ENTITY (%)
p MASK RND SAME p MASK RND SAME

MLM 15 80 10 10 15 80 10 10

WEP 100 80 0 20 0 – – –
PEPMRS 100 80 10 10 0 – – –
PEPMS 100 80 0 10 0 – – –
PEPM 100 80 0 0 0 – – –

WEP

+ MLM

50 80 0 20 15 80 10 10
PEPMRS 50 80 10 10 15 80 10 10
PEPMS 50 80 0 10 15 80 10 10
PEPM 50 80 0 0 15 80 10 10

TABLE 4.2: Summary of the proposed masking strategies. p corresponds to the
probability of choosing candidate items (entity/non-entity tokens) for masking.
MASK, RND, SAME represent the percentage of replacing a candidate with Mask,
Random or the Same item. When combining WEP/PEP with MLM (+MLM), we
lower p to 50%.

unchanged. In PEPMS, we remove the 10% random tokens substitution, predicting

only the 80% masked tokens and 10% Same tokens from the masking candidates. In

PEPM, we further eliminate the 10% Same tokens prediction, essentially predicting

only the masked tokens. An example of PEP is illustrated in Figure 4.3b. Previous

work has demonstrated the effectiveness of combining Entity Prediction with MLM

for cross-lingual transfer (Z. Jiang et al., 2020). Therefore, we investigate the combi-

nation of Entity Prediction objectives with MLM on non-entity tokens. Specifically,

when combined with MLM, we lower the entity masking probability (p) to 50% to

maintain roughly the same overall masking percentage. Figure 4.3c illustrates an

example of PEP combined with MLM on non-entity tokens.

A summary of the masking strategies is presented in Table 4.2, along with the

corresponding masking percentages.

4.4 Experimental Setup

After constructing the ENTITYCS corpus, we proceed to further train an XLM model,

utilising XLM-R-base6 for our experiments. We explore the effectiveness of WEP,

PEP, MLM, and the joint objectives in intermediate training.

6https://huggingface.co/xlm-roberta-base

https://huggingface.co/xlm-roberta-base
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We adopt the sampling strategy proposed by Conneau and Lample (2019), where

we down-sample high-resource languages and increase the sampling frequency for

low-resource languages. Recognising that semantic features are often emphasised

in higher layers of pre-trained language encoders (Tenney, Das, and Pavlick, 2019;

Rogers, Kovaleva, and Rumshisky, 2020), we restrict training to the embedding layer

and the last two layers of the model. This approach helps prevent catastrophic for-

getting, a phenomenon observed in preliminary experiments when updating the

entire network. We randomly select 100 sentences from each language to serve as a

validation set, measuring perplexity every 10K training steps.

4.4.1 Datasets

As the ENTITYCS corpus is constructed with Code Switching at the entity level,

we expect our models to mostly improve entity-centric tasks. Thus, we choose the

following datasets: WikiAnn (X. Pan et al., 2017) for NER, X-FACTR (Z. Jiang et

al., 2020) for Fact Retrieval, MultiATIS++ (W. Xu, Haider, and Mansour, 2020) and

MTOP (Haoran Li et al., 2021) for Slot Filling, and XL-WiC (Raganato et al., 2020) for

WSD.7 The details of the datasets are introduced below.

WikiAnn (X. Pan et al., 2017) is a cross-lingual name tagging and linking dataset

based on Wikipedia articles, where named entities are annotated as location (LOC),

organisation (ORG) and person (PER) tags following the IOB2 format. The original

dataset contains 282 languages. We evaluate our models on the 40 languages from

WikiAnn that are included in the XTREME benchmark (J. Hu et al., 2020).

X-FACTR (Z. Jiang et al., 2020) is a multilingual fact retrieval benchmark similar

to LAMA (Petroni et al., 2019). It probes factual knowledge stored in pre-trained

language models by prompt-based fill-in-the-blank cloze queries, covering 23 lan-

guages. X-FACTR includes both single- and multi-token entities, and two decoding

methods (independent and confidence-based) are proposed.

7The result reported on the XL-WiC for prior work is our re-implementation based on https://
github.com/pasinit/xlwic-runs.

https://github.com/pasinit/xlwic-runs
https://github.com/pasinit/xlwic-runs
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MultiATIS++ (W. Xu, Haider, and Mansour, 2020) is an expansion of the Multilin-

gual ATIS (Upadhyay et al., 2018) dataset, which includes nine languages (English,

Spanish, German, French, Portuguese, Chinese, Japanese, Hindi and Turkish) from

four language families (Indo-European, Sino-Tibetan, Japonic and Altaic). It con-

tains dialogues in a single domain, Air Travel Information Services. While process-

ing the dataset, we noticed that 14 examples in the test set do not have a matching

number of tokens and slot labels, which we ignored during the evaluation.

MTOP (Haoran Li et al., 2021) is a Multilingual Task-Oriented Parsing dataset that

includes six languages from 11 domains that are related to interactions with a per-

sonal assistant. We use the standard flat labels as reported in Haoran Li et al. (2021).

XL-WiC (Raganato et al., 2020) is a cross-lingual word disambiguation dataset (Word

in Context), formed as a binary classification problem. Given a target word and two

contexts, the goal is to identify if the word is used in the same sense in both contexts.

The dataset contains both nouns and verbs as target words, covers 12 languages

and was created as an extension to the English WiC dataset (Pilehvar and Camacho-

Collados, 2019).

4.4.2 Hyper-Parameter Settings

We introduce below the detailed setting of our intermediate training and down-

stream tasks fine-tuning.

Intermediate Training

We use 8 Nvidia V100 32GB GPUs for training our models on the ENTITYCS corpus,

with the Hugging Face library (Wolf et al., 2020). During fine-tuning, all models

were run on a single Nvidia V100 32GB GPU. We set the batch size to 16 and gradient

accumulation steps to 2, resulting in an effective batch size of 256. For speedup, we

employ half-precision (fp16) in the experiments. In each batch, we allow examples

from multiple languages, based on the sampling strategy followed by Conneau and

Lample (2019). We train for a single epoch with a maximum learning rate 5e−5 and

linear decay scheduler, no warmup or weight decay, gradient clipping equal to 1.0,
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PARAMETER WIKI-ANN
MULTIATIS++ MTOP

XL-WIC
SF Joint SF Joint

LEARNING RATE 1e−5 3e−5 3e−5 2e−5 3e−5 1e−5

WARMUP RATIO 0.1 0.0 0.0 0.1 0.1 0.0
BATCH SIZE 8 8 8 8 8 8

TABLE 4.3: Best hyper-parameters used for the datasets.

and early stopping if perplexity does not drop after 20 consecutive evaluations (we

evaluate every 10K training steps).

Downstream Tasks

After intermediate training on the ENTITYCS corpus, we evaluate the zero-shot

cross-lingual transfer of the models on downstream tasks by fine-tuning the model

on task-specific English training data. For downstream tasks, we evaluate models

on the English validation set five times per epoch following Dodge et al. (2020).

For fine-tuning XLM-R-base on WikiAnn, MultiATIS++, MTOP and XL-WiC, we

fix the number of training epochs to 10, gradient clipping to 1.0, and maximum

sequence length to 128. We select the batch size from {8, 32}, learning rate from

{1e−5, 2e−5, 3e−5, 4e−6, 5e−6, 6e−6}, and warm up ratio from {0, 0.1}.

The best hyper-parameters per task are reported in Table 4.3. We choose the

checkpoints with the best performance on the English validation set. For all exper-

iments except X-FACTR, we fine-tune models with five random seeds and report

average performance and standard deviation.

4.4.3 Languages for Intermediate Training

Given the size of the ENTITYCS corpus, we primarily select a subset from the total

93 languages, that covers most of the languages used in the downstream tasks. This

subset contains 39 languages, from WikiAnn, excluding Yoruba.8 We train XLM-R-

base on this subset, and subsequently fine-tune the new checkpoints on the English

training set of each dataset, with evaluations spanning all available languages.

8Yoruba is not included in the ENTITYCS corpus, as we only consider languages that XLM-R is
pre-trained on.
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MODEL

NER (F1) FACT RETR. (ACC.) SLOT FILLING (F1, F1/ACC.) WSD (ACC.)
WIKIANN X-FACTR MULTIATIS++ MTOP XL-WIC

all single multi SF SF / Intent SF SF / Intent

XLM-RPRIOR 61.8 3.5 9.4 2.6 – – – – 58.0
XLM-ROURS 61.6 0.3 3.5 9.4 2.6 71.8 2.0 73.0 0.7 / 89.1 1.0 73.2 0.9 72.5 0.8 / 86.0 0.7 59.1 1.5

MLM 63.5 0.5 2.5 6.4 1.7 72.1 2.3 74.0 0.7 / 89.6 1.4 72.8 0.6 72.7 0.3 / 86.3 0.4 59.3 0.4
WEP 62.4 0.7 6.1 19.4 3.0 71.6 1.2 71.7 0.8 / 89.7 1.3 72.2 0.6 73.0 0.5 / 86.0 0.4 60.4 1.0
PEPMS 63.3 0.7 6.0 15.0 4.3 73.4 1.7 74.4 0.7 / 90.0 0.9 71.5 0.7 72.7 0.6 / 86.1 0.5 60.2 0.9
PEPMS+MLM 64.4 0.5 5.7 13.9 3.9 74.2 0.4 74.3 0.8 / 89.0 0.9 73.0 0.3 72.5 0.6 / 85.8 0.8 59.8 0.8

TABLE 4.4: Average performance across languages on the test set of downstream
tasks. XLM-RPRIOR corresponds to previous reported results with XLM-R-base,
referring to Chi et al. (2021b) for WikiAnn, Z. Jiang et al. (2020) for X-FACTR and
Raganato et al. (2020) for XL-WiC. XLM-ROURS shows our re-implemented results
with XLM-R-base. Results (excluding X-FACTR) are averaged across five seeds
with standard deviation reported as a subscript.

4.5 Main Results

The main results are reported in Table 4.4 where we compare models trained on the

ENTITYCS corpus with MLM, WEP, PEPMS and PEPMS+MLM masking strategies.

For MultiATIS++ and MTOP, we report results of training only Slot Filling (SF), as

well as joint training of Slot Filling and Intent Classification (SF/Intent).

4.5.1 Named Entity Recognition

In NER, models with CS intermediate training consistently demonstrate improve-

ment on WikiAnn over the baseline, with PEPMS+MLM exhibiting a substantial

+2.8% absolute improvement. This outperformance extends to XLM-Align9 (Chi et

al., 2021b), which employs a significant amount of parallel data (see Table 4.7). The

conventional MLM objective proves similarly effective with PEP, potentially due to

the overlap in entities chosen as masking candidates. However, WEP yields lower

performance, suggesting that predicting entire entities from the surrounding context

poses greater challenges.

Performance per language for PEPMS and PEPMS+MLM is detailed in Table 4.5.10

Notably, nearly all languages benefit from training on the ENTITYCS corpus. In the

9https://huggingface.co/microsoft/xlm-align-base
10Per-language results on WikiAnn for other models are reported in Table A.1 in Appendix A.

https://huggingface.co/microsoft/xlm-align-base
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MODEL AR HE VI ID JV MS TL EU ML TA TE AF NL EN

XLM-ROURS 44.6 51.9 68.3 48.6 59.6 63.3 72.5 61.2 63.2 54.3 49.3 76.3 80.7 83.4
PEPMS 49.6 53.0 70.0 58.5 62.0 64.9 75.7 59.8 63.3 57.7 52.1 76.4 80.9 83.8
PEPMS+MLM 51.5 54.0 70.9 61.1 59.3 69.9 74.6 59.3 66.3 57.6 54.8 77.9 81.5 84.2

DE EL BN HI MR UR FA FR IT PT ES BG RU JA

XLM-ROURS 75.4 74.2 67.9 68.3 61.8 55.8 47.6 78.0 78.2 78.9 76.2 77.3 63.9 22.9
PEPMS 75.1 76.3 72.5 70.1 66.8 61.5 55.6 78.8 78.5 78.6 75.8 78.0 66.4 21.3
PEPMS+MLM 75.5 77.1 74.6 70.7 66.3 65.9 54.2 79.5 78.9 80.1 78.2 79.6 67.7 23.2

KA KO TH SW YO MY ZH KK TR ET FI HU

XLM-ROURS 66.4 48.8 4.3 68.3 45.4 52.7 27.7 44.2 76.9 72.4 75.6 76.9
PEPMS 67.0 50.2 4.6 66.9 44.7 55.2 26.9 48.9 77.4 73.4 76.6 77.8
PEPMS+MLM 68.2 52.1 4.0 66.4 48.4 56.1 29.8 52.0 78.6 71.9 76.8 78.8

TABLE 4.5: F1-score per language on the WikiAnn test set. Results are averaged
across five seeds.

optimal setting, PEPMS+MLM, languages AR, ID, and UR exhibit the most substan-

tial improvement (approximately +10% in AR and ID). However, EU and SW result

in lower performance compared to the baseline.

Given this, we conduct a detailed analysis of the PEPMS+MLM model, specifi-

cally focusing on NER errors categorised into five types: Tag, Span, Tag+Span, Miss-

ing Extraction, and Extra Extraction. In this context, Missing Extraction denotes

instances where the model fails to identify an entity, while Extra Extraction refers to

errors where a non-entity is incorrectly predicted as an entity. For this analysis, we

select EU and SW (with lower F1-scores than the baseline),11 as well as AR, ID, and

UR (languages with the most significant improvement). The delta bar plot in Fig-

ure 4.4 illustrates the comparative analysis.

Compared to the baseline, AR, ID, and UR consistently improve in Tag+Span

and Extra Extraction categories. All except ID show enhancement in Span detection,

while most languages exhibit poorer performance in Missing Extraction. On the flip

side, EU and SW result in slightly worse Span and Extra Extraction errors.

We further investigate the reasons for this behaviour. In ID, we observe that

around 80% of the Span errors are due to additionally identifying the token “ALIH”

(means “moving”, “changing” in English) as the start of an entity. For example,

for the input [“ALIH”, “Indofood”, “Sukses”, “Makmur”], the gold entity is “ORG:

Indofood Sukses Makmur”, whereas the model predicts “ORG: ALIH Indofood Sukses

11Thai is excluded due to problematic tokenisation in WikiAnn, where everything is tokenised into
individual characters.
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FIGURE 4.4: Error Delta (lower is better) for different types of errors in the
WikiAnn test set between vanilla XLM-R-base and PEPMS+MLM. We show er-
ror count differences for AR, ID and UR, the three languages with the largest
F1-score improvement, as well as EU and SW, the two languages that underper-
form the baseline.

Makmur”. This pattern is also observed in XLM-R, accounting for 68% of the span

errors. Consultation with a native speaker reveals this may be an inaccuracy of the

dataset (“ALIH” should not appear before the actual entities in WikiAnn).

As for EU, a lower overlap between WikiAnn entities and Wikipedia (only 47%

compared to the average of 57% across all WikiAnn languages) might explain the

prediction of additional entities not present in the dataset.

4.5.2 Fact Retrieval

For X-FACTR, models trained with Entity Prediction consistently outperform the

baseline, while MLM performs worse than vanilla XLM-R, as anticipated. Notably,

WEP achieves the best results for single-token classification, showcasing a remark-

able +10% gain over XLM-R. On the other hand, PEPMS, which involves masking

part of the entity tokens for prediction, excels when dealing with multi-token en-

tities. Interestingly, models trained on large parallel data, such as InfoXLM12 (Chi

et al., 2021a) and XLM-Align (Chi et al., 2021b), demonstrate poor performance with

12https://huggingface.co/microsoft/infoxlm-base

https://huggingface.co/microsoft/infoxlm-base
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MODEL
LATIN SCRIPT NON LATIN SCRIPT

ES DE FR PT TR avg ZH JA HI avg

XLM-ROURS 81.5 79.8 74.8 76.5 43.0 71.1 77.2 56.8 50.6 61.5

MLM 78.8 78.0 74.4 74.6 39.7 69.1 76.4 70.3 61.5 69.4
PEPMS 79.3 79.7 75.3 76.2 45.3 71.1 77.8 69.0 62.9 69.9
PEPMS+MLM 81.3 81.4 78.2 76.1 42.1 71.8 78.8 68.8 65.8 71.1

TABLE 4.6: F1-score (average across five seeds) for languages with Latin and
Non-Latin script on MultiATIS++ test set when using SF-only training.

single-token accuracy of 3% and 5%, respectively, and less than 1% multi-token accu-

racy. This discrepancy can be attributed to their focus on sentence-level alignment.

Results per language for X-FACTR are available in Table A.2 of Appendix A.

4.5.3 Slot Filling

In the case of SF-only training, the most effective model is PEPMS+MLM, showcas-

ing a +2.4% gain over XLM-R on MultiATIS++. This performance is competitive

with the best result from XLM-Align (74.4, see Appendix A). Conversely, no im-

provements are observed in MTOP over the baseline. A manual inspection of the

dataset reveals that this disparity can be attributed to domain differences. Multi-

ATIS++ contains entities such as city names, whereas MTOP consists of dialogues

with a personal assistant, involving tasks like setting up reminders, where fewer

entities occur, limiting the benefits of entity-centric CS training.

When jointly optimising SF and Intent Classification, models also demonstrate

improvements over the baseline on SF (+1.4% for MultiATIS++ and +0.5% for MTOP),

albeit with lower gains. We speculate that the additional intent labels offer comple-

mentary information to the task, mitigating the impact of external information.

We subsequently categorise languages in MultiATIS++ based on whether they

share the same script as English (Latin) and scrutinise their performance in SF-only

training. As evident in Table 4.6, models trained on the ENTITYCS corpus exhibit

significant improvements in languages with non-Latin scripts, achieving an average

gain of +9.6%. This suggests that entity-focused training enables models to cap-

ture information that proves particularly beneficial for languages featuring scripts
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different from English. Language-specific results on MultiATIS++ can be found in

Table A.3 of Appendix A.

4.5.4 Word Sense Disambiguation

In the case of XL-WiC, we note the modest improvement across tasks, with WEP

yielding the best performance at +1.3% over the baseline. This trend can be at-

tributed to the task’s nature, where our entity-based training objectives assume that

disambiguation has already been addressed and is treated as implicit external infor-

mation. Notably, in the evaluation of XLM-Align, which leverages parallel data, we

observe no enhancement in disambiguating word-level semantics across languages

(57% accuracy). Per-language performance on WSD is included in Table A.4 of Ap-

pendix A.

4.5.5 Comparison with Models trained with Parallel Data

We summarise the comparison with InfoXLM and XLM-Align in Table 4.7. Although

these results are not fair comparisons for ENTITYCS, given that InfoXLM and XLM-

Align utilise parallel data, it is evident that ENTITYCS consistently demonstrates

competitive or superior performance across the board.

MODEL

NER (F1) FACT RETR. (ACC.) SLOT FILLING (F1) WSD (ACC.)
WIKIANN X-FACTR MULTIATIS++ MTOP XL-WIC

all single multi SF SF

XLM-ROURS 61.6 0.28 3.5 9.4 2.6 70.6 1.55 72.3 0.98 59.1 1.52
INFOXLM * 62.8 1.1 3.3 0.6 73.9 1.95 74.7 0.30 56.9 0.81
XLM-ALIGN ** 63.7 1.5 5.0 1.0 74.4 0.29 74.9 0.36 56.9 1.22

WEP 62.4 0.68 6.1 19.4 3.0 71.6 1.20 73.2 0.89 60.4 0.97
PEPMS 63.3 0.70 6.0 15.0 4.3 73.4 1.70 71.5 0.67 60.2 0.85
PEPMS+MLM 64.4 0.50 5.7 13.9 3.9 74.2 0.43 73.0 0.33 59.8 0.75

TABLE 4.7: Comparison with models using parallel data. Results for InfoXLM
and XLM-Align are obtained from Chi et al. (2021a) and Chi et al. (2021b), re-
spectively.
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MODEL WIKIANN
X-FACTR MULTIATIS++

all single multi SF SF / Intent

XLM-ROURS 61.6 3.5 9.4 2.6 70.6 73.0 / 88.9

MLM

EN 61.0 1.1 2.7 0.7 71.5 72.1 / 89.6
39 63.5 2.6 6.4 1.7 72.5 73.8 / 90.2
93 63.3 2.7 6.8 1.8 72.7 73.4 / 89.6

WEP

EN 61.9 3.3 8.5 1.6 71.8 72.2 / 91.1
39 62.4 6.1 19.4 3.0 71.1 71.7 / 89.7
93 59.4 5.8 18.6 2.7 70.4 72.9 / 90.3

PEPMS

+MLM

EN 61.2 2.7 6.6 1.6 71.3 72.3 / 90.7
39 64.4 5.7 13.9 3.9 73.4 74.4 / 90.0
93 63.6 5.5 13.2 3.8 72.8 72.7 / 90.8

TABLE 4.8: Results (average over five seeds) with a different number of pre-
training languages.

4.6 Analysis

We conduct further analysis on different masking strategies, examining their impact

across languages and training steps during intermediate training on the ENTITYCS

corpus. Our primary focus is on WikiAnn, which encompasses the largest number

of languages from the datasets we evaluate.

4.6.1 Performance vs Languages in Intermediate Training

For WikiAnn, X-FACTR, and MultiATIS++, we conduct additional experiments by

training MLM, WEP, and PEPMS+MLM with varying numbers of languages in the

ENTITYCS corpus. We explore three scenarios: using English only (no Code Switch-

ing), employing the subset of 39 languages (as mentioned in subsection 4.4.3), and

incorporating all 93 languages.

As shown in Table 4.8, models trained solely on English sentences do not exhibit

a noticeable improvement in average performance across languages (except for In-

tent Classification accuracy and WikiAnn with WEP over the baseline). However,

English-only training proves beneficial for English performance, with an average

gain of +23.1% for single-token and +5.6% for multi-token predictions in X-FACTR

over the baseline XLM-R, using WEP.

When trained with all 93 languages, models employing all masking strategies

demonstrate improved performance compared to XLM-R. However, the prevailing
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trend indicates that training on a more restricted set of languages generally results

in better performance. This suggests that incorporating a broader array of languages

may not necessarily contribute to superior results, underscoring the non-trivial chal-

lenge of scaling to too many languages. Notably, the subset of 39 languages already

covers most languages in the downstream tasks. In scenarios where additional lan-

guages are introduced, an increase in the number of pre-training languages could

potentially lead to improved performance.

4.6.2 Performance vs Training Steps

Figure 4.5 provides a comparative analysis of different training objectives on the EN-

TITYCS corpus, showcasing their performance across the number of training steps

on the WikiAnn test set. The figure reveals that most masking strategies reach a

plateau after the middle of training. Notably, objectives involving MLM training

exhibit a clear performance increase across the board, underscoring the benefits of

joint training for entities and non-entities, not only in terms of performance but also

in terms of smoother learning curves. Importantly, all objectives consistently out-

perform the baseline throughout the training process.

It’s worth noting that the observed gains from Code Switching intermediate

training do not stem from additional training data. This is substantiated by Ta-

ble 4.8, where the WikiAnn F1-score trained on English-only sentences (without

Code Switching) shows that additional English-only training data does not improve

upon the XLM-R baseline (61.6). This observation is further supported by Figure 4.5

at step 200K, corresponding to the steps required for training on the English-only

sentences. At this point, all models exhibit an F1 score above 62.3, indicating that

the NER performance gain can be attributed to the design of the ENTITYCS corpus

and the associated training objectives.

4.6.3 Random and Same Token Prediction

We further investigate the influence of Random token substitution and Same token

prediction when implementing PEP. By comparing PEPMRS, PEPMS, and PEPM in

Figure 4.5, a clear trend emerges: incorporating Random token substitution in PEP
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FIGURE 4.5: F1-score comparison on WikiAnn test set (average across five seeds)
as a function of the number of training steps (in ten thousands) with various
masking objectives. EP-only strategies are on the left, and EP + MLM strategies
are on the right.

leads to inferior performance while omitting the prediction of Same tokens has a

negligible effect.

Intuitively, Random token substitution introduces the risk of predicting an incor-

rect entity, potentially undermining the model’s learning by steering it towards in-

accurate predictions from the randomly replaced tokens. On the contrary, predicting

the Same token involves a more straightforward task of replicating the input entity

to the output. Consequently, models appear to neither gain nor lose performance

with or without the Same token prediction.

These observations align with the findings in Wettig et al. (2023), albeit their

focus on monolingual settings. A similar pattern can also be observed when com-

bining PEP with MLM.

4.6.4 Entity Masking Percentage

To assess the impact of the percentage of the entity masking candidates during train-

ing, we increment the masking probability (p) from 50% to 80% and 100% for the best

model, PEPMS+MLM, and evaluate its effects on the WikiAnn test set.

Notably, we observe that a further increase in the masking percentage leads to

a performance decline, from a 64.4±0.5 F1-score to 63.8±0.7 at 80%, and 64.0±0.4 at
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100%. We posit that masking too many tokens renders the task of entity prediction

from the remaining context more challenging. However, the minimal performance

difference between percentages is noteworthy, likely stemming from the observation

that, on average, only two entities exist per sentence, as demonstrated in Table 4.1.

4.7 Conclusion and Future Work

In summary, this chapter underscores the valuable role of multilingual knowledge

sourced from Wikipedia and Wikidata in enhancing zero-shot transfer learning for

entity-oriented tasks through entity-level Code Switching. The creation of the EN-

TITYCS corpus, leveraging English Wikipedia and Wikidata, facilitates the substi-

tution of entities in wikilinks with their counterparts in multiple languages. By in-

troducing entity-oriented training objectives, we consistently improve performance

across various datasets, including Named Entity Recognition, Fact Retrieval, and

Word Sense Disambiguation, surpassing baseline models and outperforming previ-

ous methods relying on extensive parallel data. Notably, our approach demonstrates

competitive performance in Slot Filling.

Our findings highlight the task-specific optimal nature of different masking strate-

gies, revealing that Whole Entity Prediction excels when emphasising single-token

factual knowledge, while Partial Entity Prediction is particularly beneficial for entity

typing and multi-token factual retrieval. Simultaneously predicting non-entity and

entity tokens proves advantageous for tasks where the entire input context plays a

crucial role, with a notable impact on languages with non-Latin scripts.

The generic nature of our corpus construction process allows scalability to a more

extensive range of languages, underlining the broader applicability of our method-

ology. Further research could explore Code Switching beyond entities, encompass-

ing verbs and phrases. However, it is important to acknowledge the potential chal-

lenges associated with automatically code-switching parts of sentences beyond enti-

ties, particularly in the absence of readily available aligned corpora. We hypothesise

that a specifically trained module is likely required to discern suitable target candi-

dates, especially when multiple translations are available. This module would need
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to understand the context of the sentence and ensure the selection of the most ap-

propriate option for code-switching that does not alter the semantic meaning or the

syntax of the original sentence. On the other hand, future works may consider in-

corporating additional sources beyond Wikipedia and Wikidata (which requires an

entity linking module), which provide insights into the approach on the more gen-

eral domains. Overall, our study reinforces the potential of leveraging multilingual

knowledge sources in advancing cross-lingual transfer learning.

4.8 Limitations

The limitations of this chapter are outlined as follows:

• Morphological Inflexion Oversight: Before code-switching an entity, its mor-

phological inflexion is not verified. This can potentially introduce errors, as the

form of the code-switched entity might not align with the surrounding context

(e.g., plural form). Addressing this issue is crucial for future versions of the

corpus.

• Language Diversity Constraint: The diversity of languages in the ENTITYCS

corpus is constrained to the overlap between WikiData and XLM-R pre-training

languages. While this decision facilitates a more robust model comparison,

there is potential to enrich the corpus with additional languages not covered

by XLM-R.

• Task Specificity in Evaluation: The proposed approach’s primary evaluation

is centred on entity-centric tasks. The exploration of broader natural language

understanding tasks, such as Natural Language Inference, is feasible, and in-

vestigating the impact on such tasks may provide more insights into the gen-

eralisability of the models.

• Unidirectional Code-Switching: Code-switching is performed only from En-

glish to other languages while maintaining the context in English. Although

the choice is based on the abundance of English resources for studying cross-

lingual transfer, exploring bidirectional code-switching, particularly from non-

English articles to English, is a promising direction for future research. We
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anticipate that a model trained using bidirectional code-switching could yield

similar enhancements, as observed in prior work by Z. Jiang et al. (2020), how-

ever, one limiting factor may be the availability of Wikipedia articles in very

low-resource languages.

• Model Size: The experiments were conducted solely with base-sized models

for speed considerations. Extending these experiments to larger models is a

logical progression that could provide valuable insights into scalability and

performance improvements.
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Chapter 5

Faithful and Robust Knowledge

Extraction on the Web

In the previous two chapters, we explored how structured knowledge enhances NLP

applications, including fake news detection and multilingual entity-centric tasks.

This chapter focuses on investigating faithful and robust methods for extracting in-

formation or structured knowledge from web text.

The main content of the chapter is based on the paper “WEBIE: Faithful and

Robust Information Extraction on the Web” (Whitehouse et al., 2023b) published in

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics

(ACL 2023).

5.1 Background and Introduction

Information Extraction (IE) is the task of extracting structured information from un-

structured text, typically presented in the form of triples <subject, relation, object>. It

is essential for many Natural Language Processing applications such as knowledge

base population, question answering, faithful summarisation, and fake news detec-

tion (Trisedya et al., 2019; Huguet Cabot and Navigli, 2021; Narayan et al., 2021;

Whitehouse et al., 2022).

Closed IE systems, specifically those extracting triples with predefined entities

and relations from a knowledge base (KB), require two essential pieces of informa-

tion: (i) the entities mentioned in the text and (ii) the relations between each pair of

entities. Due to the expense of annotations, most existing IE datasets, like WikiNRE
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(Trisedya et al., 2019) or REBEL (Huguet Cabot and Navigli, 2021), are constructed

using Wikipedia. Entities are linked through wikilinks, and relations are automati-

cally extracted using a distant supervision (DS) approach (Mintz et al., 2009) based

on a KB such as Wikidata, which assumes that if two entities share a relation in a KB,

sentences mentioning both entities express that relation.

While models trained only on this fact-rich domain1 have shown to be useful for

IE applications, they have limited capacity when applied to extracting information in

other web domains, which often contains noisy text or text without any factual infor-

mation. For example, AllenAI’s C4 dataset,2 an open-sourced version of Google’s C4

(Raffel et al., 2020b) dataset based on Common Crawl, demonstrate this challenge.

Our analysis using the DS approach reveals that fewer than 15% of the sentences

contain triples (refer to subsection 5.2.3). In other words, the remaining sentences

extracted from C4 either do not contain entities or do not have entities that share a

relation. In such cases, faithful IE models are expected not to output triples. How-

ever, a state-of-the-art generative IE model, GenIE (Josifoski et al., 2022), trained on

REBEL, generates triples for nearly every sentence, leading to a high false positive

rate and hallucination issues.

To address these challenges and facilitate future work on IE on the web, we

present WEBIE, the first large-scale, entity-linked closed IE dataset collected from

web sources. The WEBIE dataset is collected from the 200 most frequent URL do-

mains from the C4 dataset. First, we use ReFinED (Ayoola et al., 2022), a state-of-the-

art Entity Linking (EL) model to identify mention spans of the entities and link them

to Wikidata. We then apply the DS approach to extract triples and use a Natural

Language Inference (NLI) model to filter out triples not expressed by the sentence.

We also include negative examples, i.e., sentences without any factual information,

to better reflect the data on the web. Our final dataset consists of 1.6M sentences, and

we annotate a subset of ∼21K triples through crowdsourcing. The annotated set is

exclusively used as part of the test set to allow more reliable evaluation. Finally, we

introduce mWEBIE, which contains human-corrected translations of the annotated

version of WEBIE in four languages: French, Spanish, Portuguese, and Hindi.

1We use the term domain to refer to the URL domain.
2We use the dataset from https://huggingface.co/datasets/allenai/c4.

https://huggingface.co/datasets/allenai/c4.


5.1. Background and Introduction 77

Previous studies have highlighted the superiority of generative models over dis-

criminative pipelines, which often suffer from accumulative errors due to separate

Entity Linking and Relation Extraction (RE) steps (Mesquita et al., 2019; Trisedya et

al., 2019; Josifoski et al., 2022). Therefore, we primarily benchmark WEBIE with gen-

erative, transformer-based encoder-decoder models, BART (M. Lewis et al., 2020)

and mBART (Tang et al., 2021). The latter is used for zero-shot cross-lingual transfer

performance evaluation on mWEBIE.

Additionally, we propose three training strategies (subsection 5.3.2) that utilise

entity linking as an auxiliary task for generative IE: joint generation with the linked-

entity prompt (ENTITY-PROMPT), multi-task learning with distinguished artificial

prompt tokens (ARTIFICIAL-PROMPT), and training with an additional task-specific

language model (LM) head (2LM-HEADS). Our experiments demonstrate that in-

corporating entity-linking objectives leads to better and more faithful IE results. An

illustration of these training strategies is provided in Figure 5.1.

Our experiments reveal that models trained on WEBIE are more robust and gen-

eralisable compared to models trained solely on Wikipedia datasets. These models

achieve a new state-of-the-art performance on REBEL (section 5.5) and competitive

zero-shot performance on WikiNRE. We demonstrate that WEBIE serves as a com-

plementary dataset to existing Wikipedia-based datasets and emphasise the signifi-

cance of including negative examples to address false positives in generative IE.

Our main contributions are as follows:

• We introduce (m)WEBIE, the first large-scale, entity-linked IE dataset from the

web, with a subset annotated by humans and translated into four other lan-

guages.

• We propose and assess the effectiveness of using entity linking as an auxiliary

task for generative IE through various training strategies.

• Comprehensive experiments demonstrate that models trained on WEBIE ex-

hibit enhanced generalisability in Information Extraction from the web do-

main, including competitive zero-shot performance on IE tasks on Wikipedia.
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BART

[ENTITY] Obama # Barack Obama | Honolulu # 
Honolulu | Hawaii # Hawaii [TRIPLE]<sub> Barack 
Obama <rel> place of birth <obj> Honolulu <et> <sub> 
Barack Obama <rel> place of birth <obj> Hawaii <et> 
<sub> Honolulu <rel> located in <obj> Hawaii <et> …

+ ENTITY-PROMPT

BART
Obama was born in 
Honolulu, Hawaii.

<sub> Barack Obama <rel> place of birth <obj> 
Honolulu <et> <sub> Barack Obama <rel> place 
of birth <obj> Hawaii <et> <sub> Honolulu <rel> 
located in <obj> Hawaii <et> …

BART
Obama was born in 
Honolulu, Hawaii.

LM-Head
 1

LM-Head 2

+ 2LM-HEADS

+ ARTIFICIAL-PROMPT

<#tri#> Obama was 
born in Honolulu, Hawaii.

<#el#> Obama was born 
in Honolulu, Hawaii.

Obama # Barack Obama | Honolulu
# Honolulu | Hawaii # Hawaii

<sub> Barack Obama <rel> place of birth 
<obj> Honolulu <et> <sub> Barack Obama 
<rel> place of birth <obj> Hawaii <et> <sub> 
Honolulu <rel> located in <obj> Hawaii <et> …

BART

BART
Obama was born in 
Honolulu, Hawaii.

Obama # Barack Obama | Honolulu
# Honolulu | Hawaii # Hawaii

<sub> Barack Obama <rel> place of birth 
<obj> Honolulu <et> <sub> Barack Obama 
<rel> place of birth <obj> Hawaii <et> <sub> 
Honolulu <rel> located in <obj> Hawaii <et> …

FIGURE 5.1: Illustration of the training strategies. The blue and green text re-
fer to mention span and its corresponding Wikipedia title (used as entity labels).
For standard BART training, the target output is the linearised triples (subsec-
tion 5.3.1). For ENTITY-PROMPT, the target is the EL output (subsection 5.3.2)
concatenated with the linearised triples. In ARTIFICIAL-PROMPT, we prepend
an artificial token to the input to indicate the desired output, EL (yellow box) or
linearised triples. For 2LM-HEADS, we add an additional task-specific LM head
to the decoder for the EL task (grey box).

5.2 Related Work

We review the related work from the following two aspects: datasets and approaches

for Information Extraction.
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5.2.1 Information Extraction Datasets

The term Information Extraction has been used for different tasks in the literature.

Most existing IE datasets are collected from Wikipedia articles aligned with Wiki-

data, including sentence-level IE datasets such as REBEL, WikiNRE, FewRel (Han et

al., 2018), T-REx (Elsahar et al., 2018); document-level Relation Extraction3 datasets,

e.g., DocRED (Y. Yao et al., 2019), CodRED (Y. Yao et al., 2021). SMiLER (Seganti et

al., 2021) is a multilingual sentence-level IE dataset that is also based on Wikipedia,

covering 14 languages and 36 relations. These sentence-level IE datasets typically

do not contain negative examples. Although it is possible to augment these datasets

with negative instances sourced from Wikipedia, they do not adequately reflect the

true data distribution on the web. To enable more general information extraction

models beyond solely relying on Wikipedia articles, we argue for the necessity of

datasets that accurately mirror web data – a point later confirmed in our experi-

ments (refer to section 5.5).

Datasets such as TACRED (Yuhao Zhang et al., 2017), RE-TACRED (Stoica, Pla-

tanios, and Poczos, 2021), and WebRED (Ormandi et al., 2021) contain negative re-

lation examples, but they lack linkage to knowledge bases. Furthermore, applying

entity linking to a knowledge base in a post-hoc fashion is not trivial, as these rela-

tion extraction datasets like WebRED primarily focus on relation, where the subject

and object in a triple can be a name such as Alice, which may not be linkable to a KB.

Therefore, our proposed dataset WEBIE stands out from existing datasets in that it

pertains to the web domain, is entity-linked, and includes negative examples.

5.2.2 Information Extraction Approaches

IE approaches can be classified into two categories: pipeline systems with discrimi-

native models, and sequence-to-sequence systems with generative models. Pipeline

models typically include separate modules for Named Entity Recognition (NER),

Entity Linking and Relation Extraction (Chaganty et al., 2017; Yamada et al., 2020b).

3We consider RE dataset as the ones that focus on extracting relations but without entity spans
and/or linking information.
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Systems that jointly train NER, EL, and RE, have also been explored, taking advan-

tage of the information shared among the tasks (B. Ji et al., 2020; Eberts and Ulges,

2020).

In recent years, generative IE has gained a lot of attention. Nayak and Ng (2020)

utilise an LTSM model and propose a pointer network-based decoding. More re-

cent approaches, e.g., as introduced in REBEL and GenIE, train a transformer-based

encoder-decoder model with standard maximum-likelihood objectives to convert

sentences to linearised output. KnowGL (Rossiello et al., 2023) improves upon REBEL

with additional entity type information added to the linearised output. Our work ex-

tends GenIE and experiments with three different approaches where we incorporate

explicit EL information as an auxiliary task with adapted constraint Trie decoding.

5.2.3 WEBIE Collection

In this section, we provide a detailed explanation of the dataset collection process

for (m)WEBIE.

Data Pre-processing

We begin the process with the English segment of AllenAI’s C4 dataset, retaining

the most frequent 200 URL domains. Subsequently, one million documents are ran-

domly sampled, and SpaCy4 is employed for sentence segmentation. Sentences con-

taining fewer than 10 words are removed, resulting in approximately 20 million sen-

tences.

Entity Linking and DS Dataset

Next, we run ReFinED (Ayoola et al., 2022), a state-of-the-art EL model on the sen-

tences to identify entity spans and link them to their corresponding Wikidata ID.

Besides named entities, ReFinED also extracts numerical entities that do not have

Wikidata ID. In this work, we only consider numerical entities that express dates

and map them to the corresponding year for simplicity.5 Some examples of ReFinED

processed output are included in Table B.2 in Appendix B.

4https://spacy.io/
5For example, “October 10, 2018” will be mapped to “2018”.

https://spacy.io/
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After obtaining the entity-linked sentences, we apply the DS paradigm to re-

trieve the set of relations that exist between each pair of entities in each sentence

using Wikidata (September 2022 dump) as our KB and build a DS dataset. After

the above steps, we obtain WEBIE DS dataset consisting of 21.2M entities and 4.8M

triples.

Entailment Filtering

One major drawback of the DS approach is that the triples extracted may or may not

be expressed by the source sentence (Riedel, L. Yao, and McCallum, 2010). Follow-

ing previous work on obtaining a cleaner version of the DS dataset (Huguet Cabot

and Navigli, 2021; Vania, Grace Lee, and Pierleoni, 2022), we apply an NLI model,

nli-deberta-v3-large,6 that is trained on SNLI (S. R. Bowman et al., 2015) and

MultiNLI (Williams, Nangia, and S. Bowman, 2018), to filter out triples that do not

entail the sentence. Each source sentence is treated as the premise and we use manu-

ally created templates (similar to Vania, Grace Lee, and Pierleoni (2022)) to convert

a DS triple to one or more hypotheses.

We then obtain the entailment probability score for each premise-hypothesis pair

and take the maximum score for cases with multiple converted hypotheses. We set

the threshold to be 0.7, similar to Huguet Cabot and Navigli (2021), and only keep

triples with an entailment score above the threshold. We retain 2.1M triples (44% of

the previous DS triples, see Table 5.1) after this filtering process.

Negative Examples

After the DS creation and NLI filtering steps, only less than 10% of the original sen-

tences contain triples. To train models for extracting facts from the web and alleviate

false positives, we include two kinds of negative examples in WEBIE: (i) sentences

with one or zero entities, and (ii) sentences with two or more entities, but without

any factual information (i.e., no relation between the entities). We randomly sample

negative instances covering both cases evenly and add them to WEBIE. In the end,

WEBIE consists of 1.6M sentences, where 50% are negative examples. A summary of

6https://huggingface.co/cross-encoder/nli-deberta-v3-large achieved superior results
among the models we evaluated in our preliminary experiments.

https://huggingface.co/cross-encoder/nli-deberta-v3-large
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Dataset Domain Entity
Linked

Relation
Type

Sentence Train† Val† Test† Triple Anno.
Triple

Negative
Instance

Language
(Test Set)

TACRED Web ✗ 42 106,264 68,124 22,631 15,509 106,264 106,264 79.5% 1
WebRED Web ✗ 523 117,717 – – – 117,717 117,717 65% 1

WikiNRE Wikipedia ✓ 158 255,654 224,881 988 29,785 330,005 0 0 1
REBEL Wikipedia ✓ 1146 3,059,894 2,754,387 152,672 152,835 10,311,293 0 0 1
WebIE Web ✓ 661 1,649,167 1,480,223 82,914 86,030 1,905,205 21,113 50% 5

TABLE 5.1: Statistics of WebIE and comparison with other sentence-level RE
(top two rows) and IE datasets. Sentences correspond to the number of dis-
tinct sentences. We report the publicly available version of WebRED. † shows
the number of examples in each split. Anno. Triple represents the number of
human-annotated triples.

the statistics of WEBIE with a comparison with other datasets is shown in Table 5.1.

The dataset is randomly split into train/validation/test sets using a 90/5/5 split.

5.2.4 Human Annotation

Existing IE datasets, such as REBEL, are often automatically annotated using the

DS approach, hence the labels can be noisy. To allow a more reliable evaluation of

WEBIE, we randomly sample ∼21K triples from the most frequent 200 relations and

annotate them with MTurk. Given a sentence, each HIT (Human Intelligence Task)

is designed to verify if a DS triple is correctly expressed in the sentence.7 First, the

annotators are asked to verify if the head entity (subject) and tail entity (object) are

linked correctly. For each entity, we provide its Wikipedia title and link to its Wiki-

data page as additional context. After that, the annotators are asked to verify if the

triple relation is correctly inferred from the sentence. Here, we provide the relation

descriptions and example use cases of each relation. We ask three MTurk workers to

annotate each DS triple and take the majority vote as the final label for each triple.

A triple is considered valid if both entities are linked to the correct Wikidata entities

and the relation is inferred8 by the sentence. An annotation interface is shown in

Appendix B.

To ensure the annotation quality, we set qualifications with additional require-

ments for MTurk workers (see Appendix B for details). The agreement among the

three annotators is high: 99.4% for the head entities, 99.2% for the tail entities, and

7We ensure all DS triples in a selected sentence are annotated.
8We ask for inferred instead of explicit expression since some relations may not be explicitly ex-

pressed in the sentence, e.g., “located in” (London, UK) or “date of birth” XX (1986-2022).
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76.1% for the relations have all three annotators agreeing on the same label. After

the majority vote, 92.1% of the triples are labelled as inferred and therefore kept as

valid triples.

5.2.5 Multilingual WEBIE

To enable zero-shot cross-lingual transfer evaluation on WEBIE, we further extend

the annotated subset, with additional negative examples, to four other languages:

French, Spanish, Portuguese, and Hindi. First, we use a neural machine translation

model, the distilled 1.3B variant,9 of NLLB-200 (Costa-jussà et al., 2022) to translate

the English sentences into the target languages. We then use MTurk to verify the

translation and add entity span information in the translated sentences. We provide

the English sentence (with the entity spans highlighted) and its translation, and first,

ask the annotators to correct the translation. After that, MTurk workers are asked to

mark the corresponding entity spans in the target language. We ask two annotators

to complete the aforementioned HIT, and an additional worker to select the better

translation, which is used in our final dataset. To obtain translations with higher

quality, we restrict the region of the workers to countries where the target language is

the official language.10 The final mWEBIE consists of 9K instances in each language,

which corresponds to roughly 90% of the 21K annotated triples.

5.3 Generative Information Extraction

This section describes the training strategies we use for benchmarking (m)WEBIE.

5.3.1 Sentence-to-Triples Generation

We use BART and mBART for all of our experiments. Given a sentence s as input,

we train the model to autoregressively generate the linearised triples t as an out-

put. Following the practice from Huguet Cabot and Navigli (2021) and Josifoski et

al. (2022), we linearise a triple ti by converting it into “<sub> head entity label

9https://huggingface.co/facebook/nllb-200-distilled-1.3B
10See details for mWEBIE annotations in section B.3.

https://huggingface.co/facebook/nllb-200-distilled-1.3B
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<rel> relation <obj> tail entity label <et>”, where the tags in brackets rep-

resent subject, relation, object, and the end of triple, respectively. Head/tail entity

label refers to the Wikipedia title that the mention span in the sentence is mapped

to, which also has a one-to-one correspondence with the Wikidata ID.11

For each sentence, we order its linearised triples according to the order in which

they appear in the input sentence; first by the order of the appearance of the head

entity, and then by the order of the tail entity (for cases when the head entities are

the same). The conditional probability of generating t is formulated as p(t|s) =

∏N
t=0 p(ti|t<i, s). We use the standard cross-entropy loss and maximise the output

sequence likelihood with teacher forcing (Sutskever, Vinyals, and Le, 2014). An ex-

ample of input and output can be seen at the top of Figure 5.1.

5.3.2 Entity-Linking as an Auxiliary Task

The standard linearised triples output only contains the label of the entity and not

the span. As a result, it may be difficult to trace back from which input span an entity

is generated, especially in the case when the model hallucinates (e.g., by generating

an entity that is not mentioned in the sentence). To encourage models to generate

faithful and interpretable output, we also experiment with models that are jointly

optimised for generating triples and EL. The goal of the EL task is to identify and

extract entity spans from the input sentence and link them to their corresponding

KB entities. We posit that adding the EL task as an additional training objective will

teach the model to attend to the input spans when generating the output.

We experiment with the following three approaches.

ENTITY-PROMPT

Narayan et al. (2021) and Narayan et al. (2022) have shown that generation with

entity-chain planning, i.e., generating the desired entities first before the actual out-

put, is effective in improving the faithfulness and controlling hallucinations in text

generation tasks such as abstractive summarisation. For generative IE tasks, EL can

be used as an intermediate plan to ground the generation of the linearised triples. We

11For example, a mention span of “UK” is linked to Wikipedia title “United Kingdom” and mapped
to Q145 in Wikidata.
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define the Entity-Linking target in the format of “Mention Span1 # Entity Label1

| Mention Span2 # Entity Label2 | ...”, where we order the entity spans as they

appear in the text. We then prepend the Entity-Linking target to the linearised triples

target, using special symbols as separators, i.e., “[ENTITY] Entity-Linking target

[TRIPLE] Linearised Triples Target”. Here “[ENTITY]” is the start symbol be-

fore generating the EL output, and “[TRIPLE]” is the start symbol before generating

the linearised triples. Given an input sentence, we essentially train the decoder to

first generate the EL chain and then generate the triples, conditioned on both the

input sentence and the EL output.12

ARTIFICIAL-PROMPT

Artificial Prompt tokens are symbols placed in front of the input sequence, which

has previously been explored in areas such as neural machine translation to distin-

guish the language of the target output translation (M. Johnson et al., 2017). We

adapt this approach for jointly training our models for Entity Linking and genera-

tive IE. Specifically, we use an artificial prompt token <#el#> at the beginning of the

input sentence when training for the Entity-Linking target, and use <#tri#>13 for the

linearised output target. Training instances for both tasks are mixed and randomly

shuffled for training.

2LM-HEADS

Finally, inspired by Gontier, Reddy, and Pal (2022), the third approach that we ex-

periment with is the addition of a second language model (LM) head in the decoder,

which is initialised with the same weights as the first (standard) LM head. The first

LM head is optimised for generating the linearised triples while the second LM head

is optimised for the EL task, thus each training instance has two different target out-

puts. During training, the input sentence is fed to the encoder once, and different

12The EL target only includes mention spans that contribute to valid triples, consistent with the
triples that are later generated conditioned on the linked entities.

13Both artificial prompt tokens are added as the special tokens to the tokenizer to avoid bias from
pre-trained embeddings, but are intended to be biased to the associated task.
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target outputs are given to the same decoder. Each task-specific LM head is then re-

sponsible for generating output targeted for it. The training loss is then formulated

as a weighted sum of the losses from both tasks: L = αLIE + (1 − α)LEL.

5.3.3 Inference with a Constraint Trie

In addition to standard beam search decoding, we experiment with constraint de-

coding by restricting the generated output to be valid Wikipedia titles and Wikidata

relations using a prefix Trie, following the ideas proposed in GENRE (N. D. Cao et

al., 2021) and GenIE (Josifoski et al., 2022). The constraint Trie improves generative

IE by ensuring that the generated strings are valid entities or relations. We construct

two constraint Tries: an entity Trie and a relation Trie, following the same method

as introduced by N. D. Cao et al. (2021). The entity Trie is built using all Wikipedia

titles (as the entity labels), and the relation Trie is built using all Wikidata relation

property labels.

We use four special symbols, <sub>, <rel>, <obj> and <et> to define the state of

the generation. We apply both constraint Tries as follows. We adopt the constraint

Trie so that, in the very first decoding state, the model is allowed to either (i) return

an empty string for a negative example, or (ii) generate <sub>, which is the start

symbol for generating a triple. If the <sub> symbol is generated, then we generate

the head entity using the entity Trie, i.e., only valid entities will be considered. Once

the generation of the head entity is completed, the model proceeds to generate <rel>

(i.e., the start symbol for generating relation string) and then subsequently generate

allowed tokens from the relation Trie which is built from the relations in Wikidata.

After that, the model generates <obj> and the tail entity, in the same manner, using

the entity Trie. After generating the full triple (indicated by <et> generated after the

tail entity), the decoder can either stop the generation or start a new iteration for

generating the next triple.

For the ENTITY-PROMPT models, since the entity mention spans are text from

the input sentences and usually are not the same as the entity labels in Wikidata, we

propose a partial constraint generation approach. Specifically, we start the standard
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beam search for the EL target output and only activate the Trie constraints after that

when generating the linearised triples.

5.4 Experimental Setup

In this section, we explain the datasets used in the experiments and the detailed

modelling setup.

5.4.1 Dataset

In addition to our proposed WEBIE dataset, we also use the following datasets for

our experiments.

WikiNRE (Trisedya et al., 2019) is an IE dataset based on Wikipedia which is au-

tomatically constructed by aligning Wikipedia sentences to Wikidata triples using

the DS approach. The authors apply a coreference resolution model (K. Clark and

Manning, 2016) to obtain sentences with implicit entity names and use a paraphrase

detection model (Ganitkevitch, Van Durme, and Callison-Burch, 2013; Grycner and

Weikum, 2016) to filter out sentences that do not express the DS triples. In our ex-

periments, we only use WikiNRE for zero-shot evaluation.

REBEL (Huguet Cabot and Navigli, 2021) is a large-scale IE dataset constructed

automatically from Wikipedia abstracts. Using the Wikipedia hyperlinks in the ab-

stracts, as well as numerical values and dates, they map the entity spans to their

corresponding Wikidata entities. They then use the DS approach to identify triples

in each sentence. To filter out false positives, the authors use an NLI model by con-

catenating the entities and the relation as the hypothesis. In our experiment, we use

the REBEL dataset that is sub-sampled by Josifoski et al. (2022), where 857 relations

are considered. Both WikiNRE and REBEL do not contain negative examples and

are not annotated by humans.
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5.4.2 Models

We experiment with BART using two settings: BARTPLM with the pre-trained weights

from M. Lewis et al. (2020),14 and BARTRAND, using the same configuration and ar-

chitecture but randomly initialised weights. Across the two settings, Josifoski et

al. (2022) find that BARTRAND generates better results than BARTPLM on REBEL. For

mWEBIE, we experiment with the mBART-5015 model (for simplicity we refer to it

as mBART in this thesis).

To compare models trained on different datasets, we train both BARTPLM and

BARTRAND on REBEL (R), WEBIE (W), and both datasets together (R+W). We eval-

uate the performance of the generated triples by parsing the linearised output to a

list of triples and comparing it to the gold label to calculate precision, recall, and

F1 scores. For WEBIE, we also calculate the accuracy of the prediction of negative

instances, where a prediction is considered correct if the model accurately generates

empty strings rather than hallucinating triples.

For training with EL as an auxiliary task, we primarily experiment with the

BARTRAND. We prepare the training instances as described in subsection 5.3.2, and

train separate models on REBEL and on WEBIE. For the 2LM-HEADS, we conduct

experiments with different values of the α parameter in the combined loss function,

specifically, we set it to 0.5 and 0.75.

We use 8 GPUs, each with 32G VRAM, for all experiments. We set the batch size

to 8 and the accumulated gradient batches to 32. We follow the hyper-parameters

settings from Josifoski et al. (2022) and set the learning rate to 3e−5, weight decay to

0.01, and warmup steps to 5K.16 We train for up to 30 epochs with early stopping

(patience 10), validate twice per epoch, and take the last checkpoint for evaluation.

Training one epoch takes approximately 1.5 hours for BART and 2 hours for mBART.

5.5 Results and Analysis

This section presents the main results of (m)WEBIE and compare different training

strategies.

14https://huggingface.co/facebook/bart-large
15https://huggingface.co/facebook/mbart-large-50
16For BARTPLM(W) we find it is necessary to use a lower learning rate 5e−6 for more stable training.

https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/mbart-large-50
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MODEL
WEBIE (ALL TEST) WEBIE (ANNO. TEST) REBEL WIKI-NRE

P R F1 Acc-N P R F1 Acc-N P R F1 P R F1
U

N
C

O
N

ST
R

A
IN

E
D BARTRAND (R) 10.83 16.00 12.92 0.00 10.70 13.26 11.84 0.00 64.34 67.90 66.07 15.83 52.09 24.28

BARTPLM (R) 17.58 34.20 23.23 2.28 17.95 30.02 22.47 1.97 63.83 76.66 69.66 18.34 65.04 28.62

BARTRAND (W) 55.06 54.90 54.98 89.67 51.64 44.46 47.78 94.74 22.45 20.42 21.39 10.95 31.49 16.25
BARTPLM (W) 54.81 70.29 61.59 87.59 53.40 62.36 57.53 93.58 28.05 37.28 32.01 15.55 60.45 24.73

BARTRAND (R+W) 51.34 61.22 55.85 86.80 49.64 51.62 50.61 93.15 64.38 69.57 66.87 17.68 65.96 27.89
BARTPLM (R+W) 53.04 75.29 62.23 76.66 53.18 68.41 59.84 82.96 63.49 75.30 68.89 18.93 73.52 30.11

C
O

N
S T

R
A

IN
T

T
R

IE BARTRAND (R) 11.93 18.91 14.63 0.00 11.82 15.63 13.46 0.00 66.89 70.37 68.58 27.61 66.73 39.06
BARTPLM (R) 15.24 39.30 21.96 0.00 15.98 34.92 21.93 0.00 66.28 76.78 71.14 25.39 77.45 38.24

BARTRAND (W) 55.47 57.25 56.35 90.07 52.95 46.60 49.57 95.04 27.47 23.13 25.12 18.98 43.75 26.48
BARTPLM (W) 57.92 74.19 64.91 87.99 57.00 65.91 61.13 94.18 35.81 43.00 39.08 24.30 78.01 37.06

BARTRAND (R+W) 52.79 64.15 57.92 87.45 51.89 54.28 53.06 93.71 66.87 72.24 69.45 29.02 82.35 42.91
BARTPLM ((R+W) 54.63 78.43 64.40 76.43 55.22 71.25 62.22 82.59 66.42 78.29 71.87 29.25 86.38 43.70

TABLE 5.2: Experiment results for beam search with and without constraint Trie.
P and R refer to precision and recall, respectively, and Acc-N shows the accuracy
of the negative examples. BARTRAND corresponds to models with BART config-
uration but randomly initialised weights. BARTPLM are models with pretrained
weights from M. Lewis et al. (2020). (R), (W), (R+W) refer to models trained on
REBEL, WEBIE, and both datasets, respectively. For WEBIE we show the overall
performance and the accuracy on negative samples. Results in blue shades are
zero-shot performance.

5.5.1 Main Results

Table 5.2 shows our benchmarking results on WEBIE. We report results with the

constraint Trie in decoding since it overall achieves better results. Contrary to the

findings from Josifoski et al. (2022), we find that BART models with pre-trained

weights are better than randomly initialised weights. Constraint Trie decoding ben-

efits REBEL, WikiNRE, and the recall performance of WEBIE, but may compromise

the precision since the models are also trained to handle negative examples.

Models trained on both REBEL and WEBIE (R+W) obtain overall better F1 scores

on the two datasets compared to models trained on each dataset separately. Sim-

ilar performance can also be observed in the zero-shot performance on WikiNRE.

Models trained solely on the REBEL dataset (Wikipedia-domain) show poor gener-

alisability on WEBIE17 and always generate false positives thus resulting in 0% ac-

curacy for negative instances in WEBIE. This indicates that Wikipedia-domain data

is not adequate for training robust models for the web, and the absence of negative

examples in these datasets leads to a prominent issue of hallucination when applied

to the web.
17For positive examples it only achieves 20 F1 points.
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LANGUAGE
UNCONSTRAINED CONSTRAINT TRIE

P R F1 Empty-Pos% Acc-N P R F1 Empty-Pos% Acc-N

ENGLISH 57.72 61.26 59.43 2.48 95.69 60.29 64.29 62.22 2.63 96.11
FRENCH 43.27 36.13 39.38 11.89 96.19 46.52 40.26 43.16 12.63 96.64
SPANISH 41.93 34.63 37.93 12.34 96.74 45.13 38.89 41.78 12.80 96.97
PORTUGUESE 41.17 32.37 36.24 14.07 96.91 44.15 36.61 40.02 14.82 97.22
HINDI 4.28 1.62 2.35 67.38 98.64 4.23 1.67 2.40 67.55 98.64

TABLE 5.3: Performance on mWEBIE with mBART. Results for non-English are
zero-shot. Empty-Pos(itive)% shows false negatives percentage, revealing zero-
shot performance has a high rate of empty results for positive examples.

BARTPLM (R+W) also achieves a new state-of-the-art F1 score of 71.87 on REBEL,

surpassing the performance of 68.93 from GenIE (Josifoski et al., 2022) and 70.74

from KnowGL (Rossiello et al., 2023), the latter of which trains with additional infor-

mation including entity type. The results demonstrate the benefit of WEBIE, which

contributes to the generalisability of the models.

5.5.2 Cross-lingual Transfer with mBART

We train mBART on the training set of WEBIE and evaluate the zero-shot cross-

lingual transfer on mWEBIE. Similar to prior experiments, results in Table 5.3 show

that constraint Trie decoding obtains higher performance than standard decoding.18

For English, mBART achieves higher overall performance than BARTPLM (see Ta-

ble 5.2). The zero-shot results reveal that Hindi has a significant decline in perfor-

mance compared to the other three non-English languages, French, Spanish, and

Portuguese. As these three languages utilise the Latin script as in English, which

may result in an overlap of entity surface forms. In contrast, the transfer is more

difficult for Hindi as it employs a different writing system. Manual analysis indi-

cates that mBART tends to produce a high rate of false negatives in Hindi examples,

where the correct extraction mostly occurs when the entities in the sentences share

similar surface forms with the English counterparts.

5.5.3 Results with Additional EL Training

Table 5.4 shows the results of training with Entity-Linking as an auxiliary task. For

REBEL, the best results are achieved with the 2LM-HEADS approach, where the α

18We report results using EN as the source language token for mBART, as it produces better perfor-
mance compared to the actual source language token. See more details in section B.1.
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MODEL

REBEL WebIE (Anno.)
UNCONSTRAINED CONSTRAINT TRIE UNCONSTRAINED CONSTRAINT TRIE

P R F1 P R F1 P R F1 P R F1

BARTRAND 64.34 67.90 66.07 66.89 70.37 68.58 51.64 44.46 47.78 52.95 46.60 49.57
ENTITY-PROMPTS 63.30 63.04 63.17 67.91 67.54 67.72 49.64 51.62 50.61 51.90 54.28 53.06
ARTIFICIAL-PROMPT 64.23 68.23 66.17 66.41 70.72 68.50 52.33 46.21 49.08 53.86 48.18 50.86
2LM-HEADS 65.16 68.70 66.88 67.05 70.88 68.91 49.13 47.67 48.39 51.07 49.59 50.32

TABLE 5.4: Comparison of various training with entity linking as an auxiliary
task, and beam search with and without constraint Trie decoding. WEBIE results
are on the annotated test set. All models use BART configuration with randomly
initialised weights. We show in bold the best result among the training objec-
tives.

parameter is set to 0.75. For WEBIE with negative examples, all EL training models

achieve better F1 performance than BARTRAND, with ENTITY-PROMPT particularly

resulting in better recall. This shows the benefit of joint training with EL to improve

the faithfulness of web domain data. ARTIFICIAL-PROMPT achieves the best preci-

sion in WEBIE but does not show significant differences in performance compared

to BARTRAND. We also note that the performance on negative examples does not

show significant variations among the different training approaches. Nevertheless,

all three approaches provide better interpretability, i.e., providing the information of

the mention spans in the text that contributes to the IE prediction.

ENTITY-PROMPT and ARTIFICIAL-PROMPT do not require additional architec-

tural adaptation over the standard model. ENTITY-PROMPT also does not introduce

training overhead, whereas the other two models may require twice the training

time. 2LM-HEADS offers the flexibility of adapting the weighted combination of

the main task and the auxiliary task by adjusting α in the joint loss formula, which

allows more emphasis on the main target. Regarding extending to more tasks, the

ARTIFICIAL-PROMPT approach can be easily extended by adding additional artifi-

cial tokens as task identifiers, whereas 2LM-HEADS approach would need to add

more LM-heads to include more tasks.

5.6 Conclusion and Future Work

We present (m)WEBIE, the first large-scale, entity-linked closed IE dataset on the

web. A subset of the dataset is further annotated by humans and translated into four
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other languages, French, Spanish, Portuguese, and Hindi, via crowdsourcing. The

main contribution lies in the development of faithful and robust extraction pipelines,

coupled with effective training methods, for structured knowledge on the web.

The high approval rate of the triples obtained from the automatic IE pipeline, as

confirmed by Human annotation, underscores the efficacy of extracting fact triples

through Entity linking, Distance Supervision, and NLI entailment filtering. How-

ever, given the recent surge in powerful Language Model (LLM) capabilities, it is

intriguing to compare the quality of IE datasets obtained using LLM prompting or

via few-shot in-context learning (Y. Ma et al., 2023). While the automatic pipeline ex-

cels in efficiency, LLMs offer greater flexibility since they don’t necessitate restriction

to a single knowledge base as required by distance supervision. Nevertheless, both

distance supervision and LLM-generated triples are prone to false positives, hence

the post-processing such as the NLI filtering remains essential in both scenarios.

We benchmark WEBIE with generative models and compare the models trained

on WEBIE and REBEL (Wikipedia domain). Our results show that models trained on

WEBIE have competitive zero-shot performance when applied to REBEL and Wik-

iNRE, whereas models trained only on REBEL have 0% accuracy on the negative

examples in WEBIE. This highlights the importance of including negative examples

for training more robust models and reducing hallucination in generative IE on the

web. Models trained on both REBEL and WEBIE achieve the best performance on

both datasets, as well as zero-shot results on WikiNRE, positioning WEBIE as a com-

plementary dataset to existing Wikipedia-centric datasets.

Our exploration of approaches integrating Entity Linking as an auxiliary task

reveals that the addition of a task-specific LM head achieves the overall best perfor-

mance for REBEL. Notably, the ENTITY-PROMPT approach demonstrates significant

improvement on WEBIE, particularly enhancing recall.

While our primary benchmarking involves transformer-based encoder-decoder

models on WEBIE, future work could also explore pipeline frameworks and larger

language models for few-shot performance. This chapter underscores the impor-

tance of developing a faithful and robust pipeline for extracting structured knowl-

edge on the web, which can then be incorporated into many other knowledge-

intensive applications.
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5.7 Limitations

We identify several limitations in this work:

• False Negatives: Our current automatic triple extraction pipeline is built using

the DS approach followed by filtering using an NLI model. However, Wikidata

is not complete (Q. Tan et al., 2022). While some triples may not be completely

available in WEBIE, we expect models trained on this dataset can still discover

new triples that do not exist in Wikidata.

• Limited Relations in Annotation: The human annotation is only conducted

on the most frequent 200 relations.

• Limited Languages in mWEBIE: As discussed in subsection 5.2.5 and sec-

tion B.3, the languages in mWEBIE are limited to official languages from ge-

ographical regions where there is a reasonable amount of MTurk workers to

accept the job.

An alternative solution would be to use professional translators, especially for

low-resource languages.

• Fixed Dataset:

Facts might change in the world (and Wikidata). This can lead to a degraded

real-world performance if a system relies exclusively on WebIE for evaluation

when the dataset is not updated accordingly.
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Chapter 6

Grounded Answer and Explanation

in Knowledge-Intensive VQA

In the upcoming two chapters, we shift our focus to a broader format of knowledge

beyond structured knowledge. This chapter, in particular, centres around knowledge-

intensive Visual Question Answering. We explore better utilisation of the paramet-

ric knowledge embedded in pre-trained multimodal language models through self-

explanation.

The main content is an extended version of the paper “Towards a Unified Model

for Generating Answers and Explanations in Visual Question Answering” (White-

house, Weyde, and Madhyastha, 2023) published in Findings of the Association for

Computational Linguistics: EACL 2023.

6.1 Background and Introduction

The focus of this chapter is on knowledge-intensive Visual Question Answering

(VQA) tasks. Contemporary models for Visual Question Answering (VQA) and

Visual Commonsense Reasoning are typically trained discriminatively to select the

best answers from multiple-choice questions or to classify single-word answers from

a predetermined vocabulary (Anderson et al., 2018). However, such settings often

have limitations, such as encouraging models to find superficial correlations (Ye and

Kovashka, 2021) or penalising model performance, even when the answers are plau-

sible. For example, synonyms, multi-word expressions, and morphological varia-

tions are often not considered correct answers.
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Multimodal
Encoder-
Decoder

Transformer

<#AOKA#> What is this place?

<#AOKE#> What is this place? 
roadside stand, this is because
<#AOKAE#> What is this place?

prompt + Question  (+ Answer)Image Objects

<#A#> What are Person1 and
Person2 doing?

<#E#> What are Person1 and
Person2 doing? They are

having dinner together, this is
because

<#AE#> What are Person1 and
Person2 doing?

market

The man is selling vegetables.

market, this is because the man
is selling vegetables.

Answer and/or Explanation

They are having dinner.

They are sitting at a table with
food in front of them.

Person1 and Person2 are having
dinner, this is because they are
seated at a dining table with

food in front of them.

orange carrots,
orange sign,
yellow sign,
white van...

Person2, Person1,
Wineglass3,
dining table,

Wineglass2, chair,
bow, white plate,
white table, green

bottle, ...

FIGURE 6.1: Illustration of UMAE: we train a multimodal encoder-decoder
model on the mix of VQA tasks for jointly optimising answer and explana-
tion, where we distinguish the training instances and target output with arti-
ficial prompt tokens (e.g., <#AOKA#>). The top and bottom examples are from
A-OKVQA and VCR, respectively.

Moreover, most current explanation generation models are trained independently

of the QA model, and explanations are usually generated after the QA model has

provided an answer. Consequently, these explanation models lack access to the pro-

cess that generated the answer, limiting the grounding of the explanation to the an-

swer text.

We posit that a unified model that simultaneously performs answer prediction

and explanation generation is a more effective and consistent approach for VQA.

Generative models, such as GPT-3 (Brown et al., 2020a), T5 (Raffel et al., 2020b), or

OFA (P. Wang et al., 2022), have demonstrated success in rapidly adapting to down-

stream tasks and generating high-quality open-ended text, making them suitable

candidates for this unified approach.

To address this, we propose a multitask learning approach for transformer-based

multimodal encoder-decoder models, creating a Unified Model for Answer and Ex-

planation generation (UMAE). In addition to the prevailing trend of separate answer

prediction and explanation generation based on the answers, our approach adds the

capability of jointly generating answers and explanations. Inspired by the success

of artificial prompt tokens in Neural Machine Translation (NMT) (M. Johnson et al.,

2017), we extend and demonstrate the efficacy of the artificial prompt-based method

for VQA in a multitask setup. Specifically, we augment training instances with artifi-

cial prompt tokens, enabling the model to distinguish different tasks while learning

shared semantic features.
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After the model is trained, we propose to determine the best option among the

multiple choices by directly ranking the options based on the model’s perplexity

against each one. We find this approach to be more optimal compared to mapping

the generated answer to the closest word embedding from the options (D. Schwenk

et al., 2022) or using sentence embedding (concatenating the question and answer)

with BERTScore (T. Zhang et al., 2020). Our method also addresses the surface form

penalisation mentioned earlier (synonyms, multi-word expressions, morphological

variations, etc.) that involves exact match metrics (Y. Goyal et al., 2017).

Experiments on a combination of three knowledge-intensive VQA datasets, OK-

VQA (Marino et al., 2019), A-OKVQA (D. Schwenk et al., 2022), and VCR (Zellers et

al., 2019a), show that UMAE models achieve a new state-of-the-art answer accuracy

on A-OKVQA, a new state-of-the-art explanation score on VCR, and competitive

out-of-domain performance on VQA-X (Park et al., 2018). UMAE supports the gen-

eration of the answer to a question, the explanation for a given question and answer,

and both together jointly, making the model efficient and flexible. An illustration of

the training setup is shown in Figure 6.1. To the best of our knowledge, our pro-

posal is the first to unit grounded answer and explanation generation for VQA. We

specifically focus on knowledge-intensive VQA tasks that are designed to require ac-

cessing a knowledge base for answers. By joint training for answer and explanation

generation, we hypothesise that the model can more effectively leverage parametric

knowledge, potentially enhancing performance even without explicit links to exter-

nal knowledge sources.

In summary, our main contributions are as follows:

• The UMAE framework where answers and explanations can be generated by

a single unified model (subsection 6.3.1).

• A simple and efficient training approach that uses multitask learning with ar-

tificial prompts and demonstrates its ability to generalise across domains (sec-

tion 6.4).

• A method to map generated answers to Multiple-Choice options via evaluat-

ing the perplexity of the generation (subsection 6.3.2).
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• New state-of-the-art results by UMAE particularly for explanation generation,

as well as promising out-of-domain performance (section 6.5).

6.2 Related Work

We introduce the related work to this chapter in the following three aspects.

6.2.1 Multimodal Transformer-based Models

As detailed in Chapter 2, multimodal transformer-based encoder-decoder models

achieve state-of-the-art performance on various vision-language tasks (Y.-C. Chen

et al., 2020; Xiujun Li et al., 2020; Cho et al., 2021; P. Zhang et al., 2021; Z. Wang et al.,

2022). They showcase the possibility of capturing richer multimodal semantic co-

herence than discriminatively trained models and are further capable of generating

self-explanations. Pre-trained on multitask settings with natural language instruc-

tions, e.g., “what does the region describe?”, models like OFA (P. Wang et al., 2022) are

claimed to have the capability to transfer to unseen tasks and domains via similar

instructions. However, contrary to these claims, we observe that pre-trained OFA is

incapable of generating valid explanations through simple natural language instruc-

tions (section 6.5).

6.2.2 Artificial Prompt Tokens

Artificial prompt tokens, introduced by M. Johnson et al. (2017), have primarily

found application in Neural Machine Translation (NMT). In their work on Google’s

multilingual NMT, tokens like 2es are added at the beginning of sentences to indi-

cate the target language for translation is Spanish. By using different prompt tokens,

they jointly train a multilingual NMT model on various language pairs, allowing the

model to learn shared semantics among different instances. This approach proves

beneficial for low-resource languages and is effective for zero-shot performance on

previously unseen language pairs (M. Johnson et al., 2017).

Building on the success observed in NMT, our work exploits a similar approach

with artificial prompts for answer and explanation generation in VQA with a united
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model. This enables the model to learn shared features among tasks and datasets in

various domains.

6.2.3 Explanation Generation for VQA

There has been a growing interest in incorporating explanations into Visual Question

Answering tasks, including Visual Commonsense Reasoning. Various datasets have

been developed where explanations are provided, e.g., VCR (Zellers et al., 2019a),

which provides explanations as candidate options in multiple-choice questions, and

A-OKVQA (D. Schwenk et al., 2022), which includes multiple explanations for the

answer to each question.

Existing VQA datasets have also been extended or corrected with provided tex-

tual explanations, for example, VQA-X (Park et al., 2018), CLEVR-X (Salewski et al.,

2022), and e-SNLI-VE (Kayser et al., 2021) are developed from VQAv2 (Y. Goyal et

al., 2017), CLEVR (J. Johnson et al., 2017), and SNLI-VE (Xie et al., 2019), respectively.

For modelling explanation generation, most recent approaches use separate mod-

els to predict answers and generate explanations (Dua, Kancheti, and Balasubrama-

nian, 2021). J. Wu and Mooney (2019) introduce the concept of Faithful Multimodal

Explanations (FME) for VQA, wherein textual explanations are linked to relevant

image regions attended to by the underlying VQA system. Dua, Kancheti, and Bala-

subramanian (2021) take a two-step approach, training separate modules for answer

generation and explanation generation, with the latter based on previously com-

puted answers. Kayser et al. (2021) develop a model called e-UG, which combines

UNITER (Y.-C. Chen et al., 2020) for processing multimodal input and GPT-2 (Rad-

ford et al., 2019) for generation. In contrast, we propose using a single united model

for more grounded answer and explanation generation.

6.3 Methodology

We introduce the methodology in the following two aspects.
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6.3.1 Multitask Learning with Artificial Prompt Tokens

We formulate three generation settings: Q→A: answer prediction; QA→E: explanation

generation conditioned on the answer; and Q→AE: joint answer and explanation gen-

eration for a given question. We hypothesise that by training the model to generate

both the answer and its explanation simultaneously, the result answer and explana-

tion will be more grounded and consistent.

We use a pre-trained multimodal encoder-decoder transformer as our base model

(here we build on the openly released version of OFA as a strong baseline), and fine-

tune the model on a mix of VQA datasets from different domains.

Different from OFA, for each image in the VQA datasets, we first extract objects

and attributes using a bottom-up top-down attention-based model, which is crucial

for open-domain VQA tasks (Anderson et al., 2018). We then add artificial prompt

tokens at the beginning of the textual input to signal the generation task (answer,

explanation, or both) and the dataset.1 For Q→AE, we concatenate answers and ex-

planations with a separator in between. Finally, we mix all training instances, each

consisting of an image (processed in patches), objects and attributes, and textual

input with artificial prompts.

6.3.2 Perplexity as Multiple Choice Metric

To map the generated output to Multiple-Choice options, in previous work the pre-

dictions are loosely matched with options or gold answers using embedding-based

methods, such as GloVe embedding similarity (D. Schwenk et al., 2022). In con-

trast to these approaches, we propose to evaluate each option as a text generation

task, by feeding the model the information that was used to generate the answer as

a prompt and calculating the likelihood of each option being generated. Formally,

given an option Y = (y1, y2, ..., yt) with t tokens, we calculate the probability of each

token yi being generated by feeding the image, objects, and question, as well as the

first i − 1 tokens from Y to the model pθ . The perplexity is then calculated with:

1Artificial prompt tokens are added as special tokens to the tokeniser to avoid bias in the pre-
trained embeddings. However, we note that these tokens may be biased regarding their association
with specific tasks after training, which is an intended effect.
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PPL(Y) = exp
{
− 1

t ∑t
i log pθ (yi|y<i)

}
, which reflects the probability of option Y be-

ing generated by the model. Finally, the option with the lowest perplexity is chosen

as the answer.

We also compare the performance of our approach, using perplexity as the met-

ric, with GloVe embedding similarity for A-OKVQA (see Table 6.1).

6.4 Experimental Setup

We primarily evaluate our proposed UMAE approach using pre-trained OFA2 as the

base model on three knowledge-intensive VQA datasets: OK-VQA, A-OKVQA and

VCR. The datasets are introduced below.

6.4.1 Datasets

OK-VQA (Marino et al., 2019) is a knowledge-based VQA dataset that requires out-

side knowledge beyond the images to answer the questions. It has train and test

splits of size 9,009 and 5,046. Each question is provided answers by five annotators.

To use the VQA (Antol et al., 2015) metric, each annotated answer is then repeated

twice to form a gold answer set with 10 answers. Since no explanation is provided,

we only train Q→A task on OK-VQA.

A-OKVQA (D. Schwenk et al., 2022) is currently a large-scale knowledge-based

VQA dataset split into 17.1K, 1.1K, and 6.7K for train, validation, and test, respec-

tively. The questions cover four knowledge types: visual, commonsense, knowledge

bases, and physical. For each question, it provides both multiple-choice answers and

10 free-form answers (annotated by 10 different people), as well as three explana-

tions. Images in both OK-VQA and A-OKVQA are from MSCOCO (T.-Y. Lin et al.,

2014), and answers in both datasets are in single words or short phrases.

VCR (Zellers et al., 2019a) is a large multiple-choice dataset for Visual Common-

sense Reasoning. The train, validation, and test splits have 191.6k, 21.3k, and 26.5k

instances, respectively. Each question has four answer options in sentences, and the

2https://github.com/OFA-Sys/OFA

https://github.com/OFA-Sys/OFA
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correct answer is further provided with four explanation options. Images in VCR are

from movie clips (Rohrbach et al., 2017). Bounding boxes of entities are provided as-

sociated with mentions such as Person1 in questions, answers and explanations. We

follow Zellers et al. (2021) and draw coloured highlights around the referenced en-

tity on the images, where entity names and the coloured highlights are consistent in

the entire dataset, expecting the model to learn the association between the coloured

bounding box and the entity.

VQA-X (Park et al., 2018) contains a subset from the VQAv2 (Y. Goyal et al., 2017)

dataset and further provides three explanations for each question. The image-question

pairs are split into train, validation, and test with 29.5k, 1.5k, and 2k instances, re-

spectively. We only use the original test set to evaluate the zero-shot performance of

the trained models.

6.4.2 Training Setup and Hyper-parameters

We begin with the pre-trained weights from the original OFA-large,3 which is trained

on vision-only tasks including Image Classification, language-only tasks including

Sentence Classification and text Summarisation, as well as various vision-language

tasks including Image Captioning, Visual Question Answering and Visual Entail-

ment (P. Wang et al., 2022).

We split the original train set into train and validation sets (95/5 split) for all

three datasets. Since the test set is not publicly available for A-OKVQA and VCR,

we use the original validation set for experimental analyses. We prepare training

instances as introduced in subsection 6.3.1. Specifically, we add <#OKA#> for OK-

VQA (only answers are available), <#A#>, <#E#>, <#AE#> for VCR, and <#AOKA#>,

<#AOKE#>, <#AOKAE#> for A-OKVQA. Additionally, for VCR, we draw coloured high-

lighted boxes around the referenced entity on the images as described. To account

for the imbalance in size among the datasets, we up-sample instances in OK-VQA

and A-OKVQA, and shuffle all instances to train a model denoted as UMAEALL.

3https://github.com/OFA-Sys/OFA

https://github.com/OFA-Sys/OFA
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For ablation studies, we fine-tune OFA for separate answer prediction (OFAQ->A)

and explanation generation conditioned on answers (OFAQA->E). To better under-

stand the impact of mixing datasets from different domains, we also train models

UMAEA-OKVQA and UMAEVCR, focusing on all three answer and explanation genera-

tion tasks but only using data from a single dataset: either with A-OKVQA or with

VCR. Adam is used as the optimiser and cross-entropy is the loss function.

We set the learning rate to 10e−5, the warm-up ratio to 0.4, and the patch image

size to 480. We shuffle all the training examples and use batch size 16. Due to the

large size of VCR, we train for 30 epochs on models involving VCR (OFAQ->A for

VCR, UMAEVCR and UMAEALL), and up to 100 epochs for other models. We report

the empirical performance with checkpoints that perform best on the validation set

(the 5% split from the original train set). For A-OKVQA, we additionally report the

answer accuracy on the original test set.

6.4.3 NLG Evaluation Metrics

We use beam search for generating answers and additionally experiment with dif-

ferent decoding methods including top-k sampling, Nucleus sampling (Holtzman

et al., 2020), and Typical sampling (Meister et al., 2023), for generating explana-

tions. We evaluate answer accuracy as well as explanation quality with automatic

NLG metrics and e-ViL scores, following Kayser et al. (2021) for better comparison.

Specifically, e-ViL scores consist of ST (task, i.e., answer accuracy), SE (explanation

score), and overall SO (product of ST and SE), where SE is defined by Kayser et al.

(2021) as the harmonic mean of NGRAMScore (the harmonic mean of n-gram scores

ROUGE-L (C.-Y. Lin and Och, 2004), METEOR (Banerjee and Lavie, 2005), CIDEr

(Vedantam, Lawrence Zitnick, and Parikh, 2015), and SPICE (Anderson et al., 2016))

and additionally the BERTScore (T. Zhang et al., 2020), a learned similarity metric

over contextual representations of sentences.

We elaborate and discuss different aspects of these NLG metrics. Each of the n-

gram scores targets distinct aspects of the output. ROUGE-L focuses on assessing the
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overlap of contiguous sequences of words between the generated text and the refer-

ence text by measuring the precision, recall, and F1 score of the longest common sub-

sequences between the generated and reference texts. METEOR emphasises seman-

tic similarity and incorporates stemming, synonymy, and word order information to

compute a score that better reflects the semantic equivalence between the generated

and reference texts. CIDEr assesses the consensus between human judgements and

machine-generated texts by calculating a score based on the similarity of n-grams

between the generated text and multiple reference texts provided by human anno-

tators. SPICE focuses on the precision and recall of generated linguistic structures

and evaluates the structural similarity between the generated and reference texts

by analysing syntactic and semantic components. On the other hand, BERTScore

is a trained metric that leverages contextual embeddings obtained from pre-trained

transformer models like BERT to measure the similarity between sentences at a more

granular level.

To summarise, higher ROUGE-L scores suggest higher degrees of lexical overlap

between the generated and reference texts; higher METEOR scores indicate greater

semantic similarity between the generated and reference texts; higher CIDEr scores

imply better alignment with human judgements and consensus among multiple ref-

erence texts; higher SPICE scores reflect greater precision and recall of generated

linguistic structures; and higher BERTScores signify increased similarity between

sentences at a contextual level. Although these metrics target different aspects of the

generated text, experimental results reveal a consistent trend across various metrics:

if a generation scores higher in one metric, it often scores higher in others as well

(refer to subsection 6.5.2).

However, it is worth noting that none of these metrics directly measure the hu-

man interpretability of the generated explanations. N-gram metrics overlook se-

mantic meanings, coherence, and relevance of the generated text, while BERTScore

is also biased with the lengths of the generation greatly differing. More discussions

on the limitation of the NLG metric are included in subsection 6.5.2 and section 6.7.
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MODEL

OK-VQA A-OKVQA VCR

direct answer multiple choice direct answer multiple choice BERTScore
TEST VAL (ppl) VAL (GloVe) TEST VAL TEST VAL (ppl) VAL

OFA* 40.40 24.54 56.19 47.40 48.09 39.77 33.55 64.55
OFAQ->A 49.93 74.32 65.30 61.71 63.00 53.91 54.89 83.85
UMAEALL 51.77 74.59 65.67 63.26 63.29 56.14 56.66 85.97

PRIOR-BEST 54.41 – 60.30 53.70 48.60 40.70 (77.10)† –

TABLE 6.1: Performance of models for answer generation. Better results are in
bold. OFA* refers to the pre-trained OFA. Prior-best results for the three datasets
are from Gui et al. (2022), D. Schwenk et al. (2022), Yanan Wang et al. (2023),
respectively. † is from a discriminative model and thus not comparable (see Ye
and Kovashka, 2021).

6.5 Main Results

In this section, we show the results for generated answers and explanations, com-

pare models and analyse errors.

6.5.1 Answer Accuracy

Table 6.1 presents our observations for answer accuracy on Q->A task over the three

datasets. We also evaluate VCR answers using BERTScore as the answers for VCR

are usually sentences. We observe that UMAEALL outperforms OFAQ->A on all datasets,

improves the prior state-of-the-art on A-OKVQA by 10∼15%, and achieves compet-

itive results on OK-VQA. For models that are fine-tuned on A-OKVQA, we also see

a salient improvement (+9%) with the proposed mapping of options by perplexity

in Multiple-Choice, instead of GloVe embeddings similarity.4

QUESTION OBJECTS IMAGES ACCURACY

✓ ✓ original 50.39
✓ ✗ ✗ 39.16
✓ ✗ random 33.48
✓ ✓ ✗ 33.28

TABLE 6.2: Ablation on the modality dependency for answer accuracy of A-
OKVQA.

4Preliminary experiments with NLG metrics (BERTScore and BLEU) for selecting the options given
generation were sub-optimal.
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DATASET MODEL
e-ViL SCORES N-GRAM SCORES LEARNT SC.
SO ST SE BLEU4 R-L MET. CIDEr SPICE BERTSCORE

A-OKVQA

OFA* 4.44 56.19 7.90 0.30 4.45 3.26 4.82 4.62 68.64
OFAQ->A+OFAQA->E 35.82 74.32 48.29 22.18 48.51 23.56 86.76 22.46 85.96
UMAEA-OKVQA 37.10 73.97 50.15 27.61 52.23 24.06 104.39 22.88 87.86
UMAEALL 37.91 74.59 50.82 27.35 52.56 24.83 101.09 23.33 88.21

VCR

e-UG 19.30 69.80 27.60 4.30 22.50 11.80 32.70 12.60 79.00
UMAEVCR 22.57 56.68 39.82 12.25 28.87 16.67 48.14 27.36 81.77
UMAEALL 22.82 56.66 40.27 13.44 29.53 17.54 47.33 26.45 81.91

VQA-X
e-UG 36.50 80.50 45.40 23.20 45.70 22.10 74.10 20.10 87.00
UMAEALL 31.58 77.65 40.67 14.63 35.12 20.29 50.35 19.13 85.40

TABLE 6.3: Explanation Scores. R-L, MET. stand for ROUGE-L, METEOR, respec-
tively. OFA* is the pre-trained OFA, showing the transferability of OFA for gen-
erating explanations with natural language instructions. Results with e-UG are
from Kayser et al. (2021). We show the best results of A-OKVQA and VCR in
bold. The last row in blue shade shows out-of-domain performance.

We conducted several ablation studies to investigate the dependency of object

features and images on the performance of our model UMAEALL for answer accu-

racy of A-OKVQA, where we removed images, replaced them with random images,

and removed extracted attributes and features. Results in Table 6.2 show that the vi-

sual encoder is crucial for performance and that visual objects alone are not sufficient

for answer prediction. Using a random image would introduce noise and therefore

performs worse than not including the image at all. We did not test removing the

question because we believe the model needs the questions to be able to provide

answers.

6.5.2 Explanation Evaluation

Table 6.3 shows e-ViL sores and individual NLG evaluation results for explanations

using automatic NLG metrics.5 Following the same setup as in Kayser et al. (2021),

an explanation is evaluated only if the answer predicted by the system is correct.6

We observe that pre-trained OFA with natural language prompts, e.g., “what is the

5Nucleus sampling shows the best results and is reported. Detailed scores with different decoding
methods are shown in section C.1.

6A limitation of evaluating all explanations is that explanations of wrong answers may get high
scores with n-gram metrics, even though they are justifying wrong answers and should be penalised.
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Question: What time of year
was the picture likely taken?
Answer: fall

Ground Truth Explanations:
1) The child is wearing a
long sleeve shirt and pants
but no coat.
2) There are brown leaves
on the sidewalk.
3) The time is fall.

Generated Explanations:
Beam Search: The time is
fall.
Top-k: The leaves are
dropping.
Nucleus: The leaves are fall.
Typical: The leaves are
brown and dry.

Question: Which two words were said by
both the person in black and the person
in white here? 
Answer: i do

Ground Truth Explanations:
1)  The people got married.
2) There is a wedding cake. the smiling
people in the suit and white dress are the
bride and groom.
3) The photo was obviously taken at a
wedding with the bride and groom at the
center of it. it is traditional that they say
"i do" when taking their vows.

Generated Explanations:
Beam Search: They are at a wedding.
Top-k: The words are ""i"".".
Nucleus: The person in black and the
person in white are in a wedding.
Typical: The people are just after getting
married.

Question: What is Person1 going to
do? 
Answer: Person1 is going to lead a
business meeting.

Ground Truth Explanation:
Person1 is at the head of a table of
men in suits.

Generated Explanations:
Beam Search: Person1 is sitting at
the head of the table, which is
where leaders sit.
Top-k: Person1 appears to be in
charge of the board room.
Nucleus: Person1 is sitting at the
head of the table, which is where
leaders sit during business
meetings.
Typical: Person1 is sitting at the
head of the table, which is often the
place for leaders.

Question: What is Person1
doing? 
Answer: Person1 is turning the
wheel.

Ground Truth Explanation:
Person1 has his hands on the
wheel and is exerting force.

Generated Explanations:
Beam Search: He has his
hands on the wheel.
Top-k: Person1 is hunched
over and has his hands on the
wheel.
Nucleus: Person1 is leaning
over the wheel and has his
hand on it.
Typical: The man is leaning
forward and his hand is on the
wheel.

Person1

FIGURE 6.2: Examples of generated explanations from MIX model with different
decoding strategies. Two examples on the left are from A-OKVQA and the other
two on the right are from VCR.

explanation for the answer?” or “this is because” performs poorly, as most generated ex-

planations are words (“yes/no”) or short-phrases.7 We compare UMAE models (on

all and individual datasets) with prior best results from e-UG (see section 6.2), and

standard separated trained baselines (OFAQ->A+OFAQA->E). UMAEALL achieves better

results across all datasets, showing the advantage of mixing tasks and datasets in

different domains. For out-of-domain evaluation on VQA-X, UMAEALL also shows

mostly competitive results. Examples of explanation generation are shown in Fig-

ure 6.2 as well as in section C.2 in Appendix C.

Since e-ViL only evaluates an explanation if a model generates the correct an-

swer, the subset of explanations evaluated varies by model. To fairly compare expla-

nations on the same subset, we propose only using the subset of samples where all

models provide correct answers for explanation prediction. Table 6.4 shows the re-

sults on A-OKVQA with such a subset of 770 candidates, where UMAEALL shows an

even higher explanation score. This highlights that UMAEALL generates explanations

that overlap significantly better with gold explanations.

7BERTScore in not representative of the validity of outputs from OFA*. We refer the reader to an
exposition of the problems associated with NLG metrics in Caglayan, Madhyastha, and Specia (2020).
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MODEL SE BLEU4 R-L MET. CIDEr SPICE BERTSCORE

OFAQ->A+OFAQA->E 42.4 20.0 44.2 19.3 66.7 19.1 85.1
UMAEA-OKVQA 45.8 23.6 47.9 21.7 78.0 20.5 86.9
UMAEALL 46.8 24.9 49.5 22.3 84.1 20.8 87.3

TABLE 6.4: Explanation scores on the same subset of A-OKVQA.

6.5.3 Joint Answer and Explanation Generation

We further present the results of the proposed Q→AE task where answers and expla-

nations are jointly generated. We parse the generated sequence to the answer and

the explanation and use the same sets of metrics as the separate generation for eval-

uation. Results for answers in Table 6.5 and explanations in Table 6.6. For answers,

since the perplexity metric does not directly compare the generation, we show the

Multiple-Choice accuracy using the Glove metric for A-OKVQA and BERTScore for

VCR answer sentences.

TASK
A-OKVQA VCR VQA-X

MULTIPLE-CHOICE BERTSCORE DIRECT ANSWER

Q->A 65.67 81.91 77.65
Q->AE 65.67 82.30 69.60

TABLE 6.5: Evaluation of answers generated given questions (Q->A) and jointly
generated with explanations (Q->AE). The last column with a blue shadow indi-
cates out-of-domain performance. For simplicity, we use the Glove metric for
selecting answers for Multiple-Choice questions in A-OKVQA.

DATASET
SE NGRAMSCORE BERTSCORE

QA->E Q->AE QA->E Q->AE QA->E Q->AE

A-OKVQA 50.82 47.01 35.69 32.15 88.21 87.39
VCR 40.27 37.02 26.70 24.02 81.91 80.68
VQA-X 40.67 39.67 26.69 25.85 85.40 85.21

TABLE 6.6: Scores of explanations generated given answers (QA->E) and jointly
generated with answers (Q->AE). The last row with a blue shadow indicates out-
of-domain performance.

In summary, our experiments demonstrate that the UMAE model leads to im-

proved answer and explanation generation and allows for the flexibility to generate

different types of outputs, including answers, explanations, or both. We observe that
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UMAE exhibits promising results in jointly generating both the answer and expla-

nation.

6.6 Analysis and Discussion

In this section, we analyse the errors in answer and explanation generation, show-

case the issues existing in the datasets, and discuss the limitations in the explanation

evaluation metrics.

6.6.1 Error Analysis

To better understand the generated answers and errors, we randomly sample 50

errors in OK-VQA and A-OKVQA. Our analysis reveals the following main error

types, where the first three are related to model performance:

• Knowledge: the implicit knowledge learned by the model is insufficient for an-

swering some of the knowledge-intensive questions, such as questions asking

when a certain sport was invented.

• Visual: the model fails to identify the visual attributes correctly, such as ques-

tions about recognising object shape or material.

• Semantic disassociation: the model misinterprets questions or fails to match the

intended semantic meaning. For example, it may answer what an object is in-

stead of a more complex question such as what is commonly packed in it (e.g.,

answering “suitcase” instead of “clothes”).

• Metric: the evaluation metric may penalise some of the plausible answers, es-

pecially when searching for exact match answers (mostly due to the difference

of singular/plural or phrases with/without space in between).

• Dataset: errors due to issues in the datasets themselves.

We discuss prominent issues in dataset quality briefly in Appendix C and further

present the distribution of error types in Figure 6.3.
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FIGURE 6.3: Distribution of error types in direct answers from 50 error samples
in OK-VQA and A-OKVQA.

Person2
Person3

Person6

Question:  
Who is eating a
snack?

Ground Truth Answer:  
Person2 and
Person3 are eating.

Generation:  
Person6 is eating a
snack.

FIGURE 6.4: Example of misassociation between coloured highlights and enti-
ties. The model fails to associate purple box with Person2 and green box with
Person3.

We also observe misassociation between bounding boxes and entities in VCR.

Many questions in VCR provide extra context assisting the association, for exam-

ple, questions like “Why are the eyes of Person2 closed?” helps the model to identify

Person2 as “the person with closed eyes” in the image, but questions that specifically

need the correct association without context can become problematic. Figure 6.4

shows an example revealing that the model struggles with the association. This may

be related to the limitation of patch image processing used in OFA. The assumption

that the model would learn the association via the coloured highlights in the images

is not always valid.



6.6. Analysis and Discussion 111

6.6.2 Dataset Quality

We observe the following issues in the existing datasets: (i) wrong answers, (ii) sub-

jective or unanswerable questions, (iii) typos or unclear expressions, (iv) not requir-

ing images or knowledge to answer the question as designed.

Unlike OK-VQA and A-OKVQA where the ground truth answers are provided

by multiple people, in VCR instead, answers and explanations for a question are

obtained from the same person who authored the question. This makes the answers

or explanations contain a severe amount of subjectivity. We find that a significant

number of the examples expect an understanding of the movie plot from which the

image is extracted, rather than requiring commonsense reasoning. While human an-

notators have an implicit understanding of the movies, the dataset itself does not

contain relevant contextual information. We provide specific examples of the issues

in section C.3 in Appendix C.

OK-VQA A-OKVQA

DIRECT ANSWER MULTIPLE-CHOICE DIRECT ANSWER

BEST 80.94 80.74 66.20
AVERAGE 54.98 71.53 57.29
WORST 16.37 59.35 41.46

TABLE 6.7: Human performance on OK-VQA and A-OKVQA measured from
the ground truth answers. For simplicity, we use the Glove metric for selecting
answers for Multiple-Choice questions in A-OKVQA.

We further measure the best, average and worst human performance on OK-

VQA and A-OKVQA by selecting the most common answer, a random answer, and

the least common answer, respectively, from the 10 ground truth answers for each

question. We calculate the performance using the VQA metric for direct answers,

and the GloVe metric for multiple choices for simplicity. Note that we also remove

the answer selected from the ground truth answers when measuring human per-

formance. From the results in Table 6.7 we can see that the average performance on

both datasets is relatively poor, which indicates the noise in the datasets. The quality

of the datasets needs to be more carefully inspected so that the model performance

evaluated on these datasets can be more meaningful.
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6.6.3 Explanation Evaluation

Current NLG metrics predominantly evaluate the n-gram scores between generation

and reference. Although human evaluation may be the ultimate criterion (Kayser et

al., 2021), this does not scale. Humans’ judgements on generated explanations are

contextual, especially the images that are predominantly taken into consideration.

However, none of the current widely used metrics considers visual information.

Multimodal evaluation metrics (Madhyastha, J. Wang, and Specia, 2019; M. Jiang

et al., 2019; Hessel et al., 2021) are potentially better approaches to obtain visually

grounded measures for evaluation.

6.7 Conclusion and Future Work

In summary, our proposed Unified Model for Answer and Explanation generation

(UMAE) leverages a multitask learning approach within a multimodal encoder-

decoder framework, incorporating artificial prompt tokens to distinguish distinct

tasks while learning shared semantics.

Evaluation of our approach on various VQA tasks shows that UMAE outper-

forms prior best models and separately trained baselines in both answer and ex-

planation scores, where we also demonstrate the benefit of using perplexity as the

metric for mapping generated answers to Multiple-Choice options.

Additionally, UMAE offers flexibility in output and can generate explanations

for datasets without explanations for training, e.g., OK-VQA, while also improving

answer quality. In-depth case studies and error analyses undertaken in this chapter

reveal valuable insights for future enhancements, underscoring the importance of

continuous improvement in dataset quality.

This chapter highlights the benefit of grounded answer and explanation genera-

tion towards both, showcasing better utilisation of the parametric knowledge stored

in the parameters of the multimodal language models.

6.8 Limitations

We address the limitations of our work in the following two aspects:
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• Model Specificity: Firstly, the experiments conducted with our proposed frame-

work and fine-tuning approach are primarily on the OFA model. While we

posit that our approach applies to any multimodal generative model, broader

insights could be gained by experimenting with a more diverse set of models.

• Evaluation Methodology: Secondly, in terms of evaluating our proposed joint

framework, assessing the generated explanation quality, especially differen-

tiating between explanations generated jointly with answers and those con-

ditioned on the answers, necessitates human judgement. Relying on human

evaluation becomes essential for a nuanced assessment compared to the use of

automatic NLG metrics.
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Chapter 7

Knowledge Distillation via

LLM-powered Data Augmentation

In the final chapter, we explore the utilisation of knowledge from the latest trend

of powerful large language models, in complex and challenging multilingual com-

monsense reasoning tasks.

The main content of this chapter is based on the paper “LLM-powered Data Aug-

mentation for Enhanced Cross-lingual Performance” (Whitehouse, Choudhury, and

Aji, 2023) published in Proceedings of the 2023 Conference on Empirical Methods in Nat-

ural Language Processing: EMNLP 2023.

7.1 Background and Introduction

The success of NLP models greatly depends on the availability and quality of train-

ing data. This poses a significant challenge for multilingual NLP, as data for lan-

guages other than English is typically limited (Ponti et al., 2019; P. Joshi et al., 2020;

Whitehouse, Christopoulou, and Iacobacci, 2022). An approach to address the data

scarcity challenge is through zero-shot cross-lingual transfer or multitask training,

in which a model is trained across data of diverse tasks and languages, exhibiting

the capability to handle unseen tasks, particularly in larger models (Artetxe and H.

Schwenk, 2019; Nooralahzadeh et al., 2020; K.-H. Huang et al., 2021). However,

when aiming for task-specific objectives, a smaller, fine-tuned model dedicated to

that particular task often outperforms larger general-purpose, zero-shot models. In
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DATASET
Train Validation Test

English Non-English English Non-English English Non-English

XCOPA 400 0 100 100 500 500
XWinograd 1858 0 233 0 233 424
XStoryCloze 300 300 60 60 1511 1511

TABLE 7.1: Number of examples available in XCOPA, XWinograd, and XSto-
ryCloze per language. Since a validation split is not specified in XStoryCloze,
we take 60 random examples from the train split for validation.

addition, a smaller task-specific model is more practical and cost-effective for train-

ing and deployment. Nevertheless, developing a powerful task-specific model be-

comes challenging in the absence of training data (Lauscher et al., 2020).

Conversely, recent powerful Large Language Models (LLMs) excel at handling

general instructions and have shown promise in data generation tasks (Yizhong

Wang et al., 2023). In this work, we leverage LLMs to generate synthetic data for var-

ious multilingual commonsense reasoning tasks, XCOPA (Ponti et al., 2020), XWino-

grad (Tikhonov and Ryabinin, 2021), and XStoryCloze (X. V. Lin et al., 2022), where

the training data is limited even for English (see Table 7.1). To augment the training

data, we provide LLMs with instructions and examples from the original training

data, prompting them to generate new and diverse examples. We explore the gen-

eration of synthetic data in English using different LLMs, including open-source

models like Dolly-v21 and StableVicuna2, as well as ChatGPT and GPT-4. Although

the weights and capabilities of the latter two models remain undisclosed, we explore

them as they extend the capability of generating texts in languages beyond English.

We develop task-specific models by fine-tuning multilingual pre-trained lan-

guage models, namely mBERT (Devlin et al., 2019) and XLM-R (Conneau et al.,

2020a), using the generated data. We then compare their performance against mod-

els trained on a limited set of human-created data in the target language whenever

available, and otherwise through zero-shot transfer learning from manually created

English training data. Our experiments demonstrate that training the models with

relatively large synthetically generated datasets yields better performance than train-

ing with limited manually-created datasets. This finding empirically confirms the

1https://github.com/databrickslabs/dolly
2https://github.com/Stability-AI/StableLM

https://github.com/databrickslabs/dolly
https://github.com/Stability-AI/StableLM
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utility of synthetic data generated by LLMs for improving downstream task-specific

models.

We expand the multilingual data synthesis using ChatGPT and GPT-4 on XCOPA

and find that generating multilingual datasets generally surpasses the effectiveness

of the zero-shot cross-lingual transfer. We further assess the quality of the generated

dataset in different languages by asking native speakers to evaluate the naturalness

and logical soundness of the generated dataset compared to the human-written ex-

amples. The annotation results reveal that while ChatGPT and GPT-4 successfully

generate natural text in most languages, they struggle with generating understand-

able text in certain languages such as Tamil. Moreover, a noticeable gap is observed

in terms of commonsense coherence when comparing ChatGPT-generated data to

human-constructed data. On the other hand, GPT-4 significantly narrows this dif-

ference.

To summarise, our work has the following key contributions:

• Leveraging and prompting four LLMs to augment three low-resource, multi-

lingual commonsense reasoning datasets.

• Fine-tuning smaller models, mBERT and XLMR, using the synthesised data

and showcasing the practical value of the LLM-generated data.

• Performing an extensive analysis of the effects of various target languages in

data generation and scaling, as well as a human evaluation of the naturalness

and logical coherence of the data generated in various languages.

• Releasing the synthesised datasets for public use and reproducibility.

7.2 Related Work

We review the related work of the chapter in the following two aspects.

7.2.1 Multilingual and Low-Resource NLP

Recently, there has been increased attention on expanding NLP beyond English, in-

cluding the development of multilingual models (Devlin et al., 2019; Conneau et al.,
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2020a; Xue et al., 2021; Scao et al., 2022) as well as the creation of benchmarks to ad-

dress multilingual challenges (Conneau et al., 2018; Artetxe, Ruder, and Yogatama,

2020; Adelani et al., 2021; Winata et al., 2023). Among the prevailing challenges

faced across various languages, a common theme is the scarcity of available data.

Consequently, when data is lacking, one approach is to employ zero-shot cross-

lingual transfer. Studies conducted by Winata et al. (2023) have demonstrated the

effectiveness of zero-shot cross-lingual transfer for related languages. Additionally,

Muennighoff et al. (2023) show that models fine-tuned only with English instruction

data are capable of understanding multilingual instructions. In this work, we are

tackling a similar scenario where the availability of data is limited.

7.2.2 Multilingual Data Augmentation

Lauscher et al. (2020) show that few-shot can drastically increase the cross-lingual

performance of small models, proving that multilingual data augmentation is an

effective strategy. A series of works try to predict the cross-lingual accuracy of mod-

els through measurements and modelling (Xia et al., 2020), and study strategies for

multilingual data augmentation, such as choosing the transfer languages (Y.-H. Lin

et al., 2019), and predicting multilingual few-shot accuracy leading for optimal data

augmentation approaches (Srinivasan et al., 2022).

Many works focus on synthetic data augmentation for code-mixing, including

utilising linguistic theories (Grandee Lee, Yue, and Haizhou Li, 2019; Pratapa et al.,

2018), machine translation models (Tarunesh, Syamantak Kumar, and Jyothi, 2021),

parallel corpus and Wikipedia (Winata et al., 2019; Whitehouse, Christopoulou, and

Iacobacci, 2022), and employing ChatGPT (H. Dai et al., 2023). To the best of our

knowledge, this is the first work that utilises LLMs for multilingual data augmenta-

tion, comparing data generation in English and then translating and generating in

target languages, with a special focus on the challenging multilingual commonsense

reasoning tasks.
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7.3 Dataset Augmentation

This section explains the datasets used in the experiments and the detailed instruc-

tion setup.

Our experiments use XCOPA, XWinograd, and XStoryCloze, which are selected

due to (i) the limited availability of training data and (ii) commonsense reasoning

datasets present greater challenges for data synthesis. Table 7.1 summarises the

statistics of the three datasets.

XCOPA is a cross-lingual Choice of Plausible Alternatives dataset that translates

and re-annotates the validation and test sets of English (EN) COPA (Roemmele, Be-

jan, and Gordon, 2011) into 11 target languages (ET: Estonian, HT: Haitian Creole,

ID: Indonesian, IT: Italian, QU: Quechua, SW: Swahili, TA: Tamil, TH: Thai, TR:

Turkish, VI: Vietnamese, and ZH: Chinese).3 Each instance consists of a premise, a

question (cause/result), and two alternatives. The task is to predict the more plausi-

ble alternative.

XWinograd is expanded from the original English Winograd Schema Challenge

(WSC) (Levesque, Davis, and Morgenstern, 2012) to five other languages (FR: French,

JA: Japanese, PT: Portuguese, RU: Russian, and ZH),4 which consists of pronoun

resolution problems aiming to evaluate the commonsense reasoning ability of a ma-

chine. Given a statement with two noun phrases and a pronoun, the challenge of

WSC is to determine the referent of the pronoun, which can only be inferred from

the context.

XStoryCloze is collected by X. V. Lin et al. (2022), where the validation split of the

original English StoryCloze dataset (Mostafazadeh et al., 2016) is translated into 10

other typologically diverse languages (RU, ZH, ES: Spanish, AR: Arabic, HI: Hindi,

ID, TE: Telugu, SW, EU: Basque, and MY: Burmese). Each example consists of a

four-sentence commonsense story, a correct ending, as well as a wrong ending.

3https://huggingface.co/datasets/xcopa
4https://huggingface.co/datasets/Muennighoff/xwinograd

https://huggingface.co/datasets/xcopa
https://huggingface.co/datasets/Muennighoff/xwinograd
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7.3.1 LLMs for Data Generation

Our preliminary experiments reveal that language models that are specifically fine-

tuned on downstream NLP tasks, such as BLOOMZ (Scao et al., 2022) and Flan-

T5 (Chung et al., 2022), struggle to follow the complex instructions. Conversely,

more recent LLMs such as Dolly-v2, StableVicuna, ChatGPT, and GPT-4, which are

designed to handle more intricate and general-purpose instructions, have demon-

strated success in following our instructions for data generation. ChatGPT and

GPT-4 also stand out with the capability of generating examples in non-English lan-

guages.

We explore synthetic data generation with the four aforementioned LLMs, bal-

ancing between open-access models and closed models (see subsection 7.5.1). Specif-

ically, we use dolly-v2-12b, which is derived from EleutherAI’s Pythia-12b (Bi-

derman et al., 2023a) and fine-tuned on approximately 15K instructions generated

by Databricks employees; and StableVicuna-13B, an RLHF (reinforcement learning

from human feedback) fine-tuned Vicuna model on various conversational and in-

structional datasets - Vicuna is an open-source LLaMA model (Touvron et al., 2023a)

fine-tuned on user-shared conversations collected from ShareGPT.5

7.3.2 Instructions and Responses

We utilise LLMs to generate synthetic examples for all datasets by prompting them.

We construct instructions using the descriptions from the dataset papers as a ref-

erence and provide LLMs with some examples, randomly sampled from the train

(+validation) split of the original dataset, then ask LLMs to generate similar data

points. We experiment with various instructions and evaluate the synthesised data

on a smaller scale, update the instructions based on the errors, and then choose the

best instruction to generate the final datasets.

The final instructions and responses are in Table 7.2. Our data generation pro-

cess comprises the following key steps: (i) We establish the desired total number of

examples to generate. This quantity can be determined by various factors such as

budget constraints, a fixed ratio concerning the original dataset, etc. (ii) We proceed

5https://github.com/lm-sys/FastChat

https://github.com/lm-sys/FastChat
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XCOPA XWINOGRAD XSTORYCLOZE

We are collecting more
examples for the COPA
dataset which will be used
to test a system’s ability
of Commonsense Causal
Judgments. The format of
the data:
A premise: a statement of
something that happened,
and two choices that could
plausibly {occur as the
result / be the cause} of
the premise. The correct
choice is the alternative
that is more plausible than
the wrong choice.
Here are n examples in
{language}:
Example 1: Premise:
The man wanted to save
money. What happened as
a result? Correct choice:
He cut back on mak-
ing frivolous purchases.
Wrong choice: He with-
drew money from his
savings account. . . . Exam-
ple n: . . .
Based on the examples
above, generate m new
examples in {language}.

We are collecting more
examples for the Wino-
grad Schema Challenge.
Each example has a short
sentence that contains two
noun phrases and one
pronoun replaced by “_”,
and the challenge is to
determine the referent of
the pronoun, which can
only be inferred from the
context.
Here are n examples of the
data:
Example 1: Sentence:
Harley hides from
Dyna because _ is scary.
Who/What is scary?
Correct answer: Dyna.
Wrong answer: Harley. . . .
Example n: . . .
Based on the examples
above, generate m new
examples. Both noun
phrases in each example
can be males, females,
inanimate objects, or
groups of people or ob-
jects. There should only
be one “_” in the sentence.
The correct and wrong an-
swer should be one of the
noun phrases mentioned
in the sentence.

We are collecting more exam-
ples for the Story Cloze dataset.
Each example consists of a 4-
sentence story, one correct end-
ing sentence which is a plausible
continuation of the story, and one
wrong ending sentence which
is logically inconsistent with the
context.
Here are n examples of the data:
Example 1: Sent-1: Tina is very
tired every single morning. Sent-
2: She does not get enough sleep
because of her two jobs. Sent-
3: Tina decides to quit one of
the jobs. Sent-4: She now gets
enough sleep to function every-
day. Correct ending: Tina is well
rested. Wrong ending: Tina is
more tired than ever before. . . .
Example n: . . .
Based on the examples above,
provide m new similar examples.
Requirements: 1) the story should
read like a coherent story, with
a specific beginning and ending,
where something happens in be-
tween 2) both ending sentences
should be entirely reasonable, re-
alistic and sensible when read in
isolation, and 3) both ending sen-
tences should follow up the story
by sharing at least one of the char-
acters of the story.

Premise: The politician
made a controversial state-
ment. What happened as a
result? Correct choice: The
politician faced criticism
from the media. Wrong
choice: The politician’s ap-
proval ratings increased.

Premise: 我裤子口袋里
的钥匙不见了。What was
the cause? Correct choice:
这个口袋上有一个洞。
Wrong choice: 裤子是新
的。

Sentence: Sam gave
Andrew the book because
_ had already read it.
Who/What had already
read the book? Correct an-
swer: Sam. Wrong an-
swer: Andrew.

Sentence: The dog
chased the cat , but _ was
too fast. Who/What was
too fast? Correct answer:
the cat. Wrong answer:
The dog.

Sent-1: Jordan was a high
school student who wanted to be-
come a doctor. Sent-2: He spent
all his free time studying biol-
ogy and chemistry. Sent-3: One
day, his school hosted a science
fair competition. Sent-4: Jordan’s
project won first place. Correct
ending: Jordan went on to study
medicine in college. Wrong end-
ing: Jordan gave up his dream of
becoming a doctor.

TABLE 7.2: Examples of instructions and LLM-responses for XCOPA, XWino-
grad, and XStoryCloze. We use ChatGPT for demonstration.

to generate examples through the following iterative process: (a) To ensure diversity,

we randomly sample a set of n examples from the training datasets. (b) We append
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Model XCOPA XWinograd XStoryCloze

DOLLY-V2 41.6% 22.4% 41.2%
STABLEVICUNA 36.1% 33.8% 36.1%
CHATGPT 86.4% 43.8% 77.6%
GPT-4 89.7% 85.0% 89.3%

TABLE 7.3: Generation Success Rate in English (valid examples obtained / total
examples requested) with different LLMs on the three datasets.

these sampled examples to the instructions and prompt the model to generate an

additional set of m new examples. (c) Afterwards, we perform post-processing and

only add valid and unique examples to the generated set. Typically, the values of n

and m are set to 5 to 10.

We focus on a fixed-budget scenario and first generate a total of 3-4K data points

for each dataset with LLMs. LLMs tend to generate fewer samples than requested

or inconsistent output in invalid formats. We report the success rate for different

LLMs on the three datasets in Table 7.3, which indicates that GPT-4 has the most

robustness.

Among the datasets, LLMs have the lowest generation success rate for XWino-

grad, which is more challenging. XWinograd requires both answers to be from the

generated sentence, with only one pronoun being replaced. One failed example in

generated XWinograd: Sentence: ”The computer crashed and _ lost all of their files”.

Correct answer: the user. Wrong answer: the computer. In addition, we observed

pronoun inconsistency in the generated XWinograd data. Despite the requirement

for interchangeable pronouns in the options, models frequently fail to comply. For

example, “The dog bit the mailman because _ entered the yard.” is generated by

ChatGPT with the options “The dog” or “the mailman”, however, “_” in the sen-

tence cannot be replaced by the same pronoun for the given two options, hence it

may make the task easier and the example is considered sub-optimal.

Despite multiple instructions emphasising the necessity of maintaining consis-

tency between the two phrases to be replaced, all Language Model Models (LLMs)

experimented with, failed to consistently follow this requirement. The best-performing

instruction, as illustrated in Table 7.2, still fell short of achieving perfect consistency.



7.3. Dataset Augmentation 123

FIGURE 7.1: Comparison between the 30 most frequent events in the original
and the ChatGPT-generated English StoryCloze dataset.

We retain these instances within the dataset and further include a human evalua-

tion in subsection 7.6.1. Specifically, we found that among the LLMs studied, GPT-4

demonstrated the highest level of consistency, followed by Chat-GPT, with 76.6%

and 48.9% of the annotated examples exhibiting adherence to the rule, respectively,

as confirmed by annotations from native speakers.

7.3.3 Topic Diversity

As the StoryCloze dataset contains more sentences and has richer content, we anal-

yse the diversity of the generation as well as topic coverage and the most frequent

events, following Specifically, an event is counted as any hyponym of “event” or

“process” in WordNet.

This helps us to determine whether LLM-generated data can capture the corpus

distribution by randomly sampling n examples from the dataset in the instructions.

ChatGPT-generated data is used for demonstration.

In Figure 7.1, we present the results of comparing the generated data points with

the original 300 train set used as few-shot examples in the generation instructions.

We can see that 23 of the 30 most frequent events in the original dataset can also be

found in the 30 most frequent events of the ChatGPT-generated data.
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7.4 Experimental Setup

We first generate synthetic English examples for XCOPA, XWinograd, and XSto-

ryCloze, with Dolly-v2, StableVicuna, ChatGPT, and GPT-4. The size of the final

filtered synthesised data for the three datasets is 3.7K, 2K, and 1.7K, respectively. We

then fine-tune mBERT, XLMR-base, and XLMR-large with the synthesised data and

compare the zero-shot cross-lingual transfer performance across different languages,

where we use the original validation set in target languages.

For XCOPA, we additionally experiment with generating data points directly in

non-English languages, by providing examples in the target language and specify-

ing the language desired for the generated data (see Table 7.2). However, since no

examples for cause are included in TH and TR train/validation data (they do appear

in the test split), we do not generate XCOPA for the two languages. We use ChatGPT

and GPT-4 for multilingual synthetic data generation, as both Dolly-v2 and Stable-

Vicuna exhibit limitations in effectively generating multilingual text. The size of the

multilingual synthesised data is ∼3.6K in each language.

We fine-tune models on all datasets as multiple-choice tasks6 by searching the

best learning rate from {5e−6, 10e−6}, and batch size from {8, 16, 32}. All the fine-

tuning experiments are conducted on a single 40G A100. For generating data with

Dolly-v2 and StableVicuna, we use 2×40G A100. Additionally, for XLMR-large

trained on the original XWinograd dataset, we found that a lower learning rate was

necessary. Therefore, we performed an additional tuning process with a learning

rate of 10e−7.

7.5 Results and Discussion

We now present the main results of fine-tuned models on the three datasets and

compare performance with generated data in different LLMs, languages, and scales.

6In our preliminary experiments, we find that formulating XWinograd as a binary text classification
results poorly, in line with the observation from Haokun Liu et al. (2020) that the task formulation is
essential to the performance of Winograd.
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Finetuned
Model

LLM for
Generation

XCOPA XWINOGRAD XSTORYCLOZE

ORI400 GEN3.7k O+G4.1k ORI1.8k GEN2k O+G3.8k ORI300 GEN1.7k O+G2k

mBERT

Dolly-v2 47.9 53.3 ↑5.4 54.0 ↑6.1 52.9 59.6 ↑6.7 59.3 ↑6.4 65.0 68.7 ↑3.7 68.1 ↑3.1
StableVicuna 47.9 52.9 ↑5.0 54.7 ↑6.8 52.9 53.7 ↑0.8 58.5 ↑5.6 65.0 64.6 ↓0.4 67.3 ↑2.3
ChatGPT 47.9 55.0 ↑7.1 54.1 ↑6.2 52.9 56.0 ↑3.1 58.3 ↑5.4 65.0 64.3 ↓0.7 68.3 ↑3.3
GPT-4 47.9 56.4 ↑8.5 57.2 ↑9.3 52.9 54.9 ↑2.0 57.5 ↑4.6 65.0 68.0 ↑3.0 69.8 ↑4.8

XLMR-
Base

Dolly-v2 54.8 58.1 ↑3.3 58.1 ↑3.3 53.5 56.5 ↑3.0 66.3 ↑12.8 73.0 75.8 ↑2.8 76.5 ↑3.5
StableVicuna 54.8 57.6 ↑2.8 59.3 ↑4.5 53.5 59.0 ↑5.5 66.0 ↑12.5 73.0 69.6 ↓3.4 74.2 ↑1.2
ChatGPT 54.8 58.2 ↑3.4 59.4 ↑4.6 53.5 62.7 ↑9.2 65.9 ↑12.4 73.0 67.4 ↓5.6 74.5 ↑1.5
GPT-4 54.8 62.7 ↑7.9 63.0 ↑8.2 53.5 63.3 ↑9.8 66.9 ↑13.4 73.0 74.6 ↑1.6 79.3 ↑6.3

XLMR-
Large

Dolly-v2 63.0 58.6 ↓4.4 65.0 ↑2.0 80.1 76.9 ↓3.2 83.1 ↑3.0 85.0 84.8 ↓0.2 86.4 ↑1.4
StableVicuna 63.0 64.4 ↑1.4 68.7 ↑5.7 80.1 68.2 ↓11.9 82.0 ↑1.9 85.0 74.6 ↓10.4 84.8 ↓0.2
ChatGPT 63.0 64.6 ↑1.6 68.1 ↑5.1 80.1 73.2 ↓6.9 83.2 ↑3.1 85.0 77.3 ↓7.7 85.8 ↑0.8
GPT-4 63.0 72.1 ↑9.1 72.2 ↑9.2 80.1 76.4 ↓3.7 83.5 ↑3.4 85.0 86.0 ↑1.0 88.4 ↑3.4

TABLE 7.4: Comparison of Average Accuracy across all languages for mBERT,
XLMR-Base, and XLMR-Large on XCOPA, XStoryCloze, and XWinograd. Train-
ing datasets include ORI (original EN data), GEN (LLM-generated EN data),
and O+G (both), with the number of examples used for training indicated by
the subscripts. The best results obtained with the same amount of training data
are highlighted in bold. Green and red subscripts denote improvement and de-
cline in performance compared to the baseline (ORI). See per language results
in Appendix D.

7.5.1 General Result

Table 7.4 presents the average accuracy of fine-tuned mBERT, XLMR-Base, and XLMR-

Large models across all languages on the three datasets. The models are trained

using original data (ORI), different LLM-generated data (GEN), as well as a combi-

nation of both sources (O+G) in English.

Across different datasets, LLMs, and fine-tuned models, consistent improve-

ments are observed when using both original and LLM-generated data. Among

the models, Dolly-v2 performs the best on XWinograd when fine-tuned on mBERT,

while GPT-4 achieves the highest accuracy in other settings. The most significant

improvement is shown in XWinograd with XLMR-Base, where the addition of an

extra 2k data points leads to an average accuracy enhancement of 12.8 compared to

the baseline, across all four LLMs.

We observe the following from the results: (i) In instances where the baseline

performance is below 60, exemplified by XCOPA and XWinograd tasks using small

models like mBERT and XLMR-Base, leveraging LLM-generated data either solely

or in conjunction with original data consistently enhances performance across the
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board; (ii) As the baseline performance increases, notably exceeding 80 accuracy as

seen in the case of XStoryCloze, relying solely on LLM-generated data might ad-

versely impact performance. However, even in such cases, utilising data generated

solely by GPT-4 still yields improvements across all fine-tuned models; (iii) Combin-

ing original data with LLM-generated data consistently demonstrates enhancements

over using original data alone, irrespective of the baseline performance or the spe-

cific datasets and fine-tuned models employed. This trend holds true across various

scenarios, with the exception of XStoryCloze with XLMR-Large, where there’s only

a marginal 0.2 score difference.

Overall, we can see that LLM-based data augmentation particularly benefits sce-

narios where baseline performance is moderate to low, while stronger LLMs show

more promises in generating high-quality data, as exemplified by GPT-4.

For smaller models with When using only LLM-generated data, smaller mod-

els like mBERT and XLMR-Base generally outperform the baseline. However, with

XLMR-Large, which achieves stronger baselines, e.g., >80 in XWinograd and XSto-

ryCloze, the accuracy remains similar or even worse compared to using the original

data. GPT-4-generated data demonstrates the best robustness but still experiences

a decline in performance in XWinograd when the generated data size is similar to

the original data. This highlights the challenges of generating data at a human-level

quality.

7.5.2 Multilingual Data Generation

We investigate whether the synthetically generated multilingual dataset outperforms

training solely in English. We choose the XCOPA dataset and explore two settings:

synthetic multilingual data by asking LLMs to generate responses in the target lan-

guages directly and translating the English-generated data to target languages with

Google Translate API. We exclude Dolly-v2 and StableVicuna due to their limited

effectiveness in generating non-English text. Although GPT-4 exhibits the most

promising performance, it is significantly costlier compared to ChatGPT. Therefore,

we also consider ChatGPT as a contrasting experiment under resource-constrained

conditions.
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Finetuned LLM Training data AVG EN ET HT ID IT SW TA VI ZH

Baseline ORI 47.2 53.8 44.2 48.6 47.2 46.2 45.4 48.4 43.6 47.4

GENEN + ORI 54.6 59.6 56.4 53.6 53.8 51.4 51.6 50.4 55.0 59.2
GENXX + ORI 56.8 59.6 58.8 54.6 56.2 61.2 54.6 53.6 52.0 60.2ChatGPT
GENTrans

EN + ORI 58.7 59.6 59.8 58.2 62.8 61.0 52.6 56.8 58.2 59.4

GENEN + ORI 59.3 72.6 58.8 53.0 62.0 61.0 50.0 54.0 57.6 64.6
GENXX + ORI 61.8 72.6 61.2 58.2 62.2 66.4 57.4 53.4 63.0 61.8

mBERT

GPT-4
GENTrans

EN + ORI 62.6 72.6 58.6 55.2 65.6 65.4 53.8 62.6 64.6 65.4

Baseline ORI 55.6 57.6 54.6 50.6 59.6 54.8 55.0 53.4 54.8 59.6

GENEN + ORI 59.8 63.8 61.6 51.6 62.6 59.8 51.6 60.4 64.8 62.0
GENXX + ORI 59.9 63.8 60.6 55.0 64.6 59.6 54.6 56.4 59.6 64.8ChatGPT
GENTrans

EN + ORI 61.1 63.8 60.0 58.0 65.0 60.8 53.8 60.2 62.6 66.0

GENEN + ORI 63.6 69.6 63.8 51.2 67.2 62.4 58.4 63.8 66.8 69.4
GENXX + ORI 64.0 69.6 62.2 56.2 68.6 63.8 57.8 61.2 66.8 70.0

XLMR-Base

GPT-4
GENTrans

EN + ORI 63.9 69.6 61.6 56.6 68.4 65.2 58.2 60.2 66.0 69.6

Baseline ORI 64.4 71.4 62.8 51.4 69.0 65.8 60.6 62.0 69.4 66.8

GENEN + ORI 69.5 76.4 69.8 48.2 76.0 72.8 63.4 67.8 73.4 77.8
GENXX + ORI 65.2 76.4 62.4 55.2 75.0 62.2 58.2 55.4 66.2 76.2ChatGPT
GENTrans

EN + ORI 67.0 76.4 60.0 59.6 66.2 66.6 59.0 64.8 74.8 75.6

GENEN + ORI 73.7 84.6 70.4 50.0 80.8 80.2 65.8 72.8 78.4 80.4
GENXX + ORI 74.6 84.6 77.0 56.0 82.2 77.0 65.0 73.8 76.2 80.0

XLMR-Large

GPT-4
GENTrans

EN + ORI 74.1 84.6 74.2 57.2 82.0 77.4 62.2 75.0 74.4 79.6

TABLE 7.5: Accuracy on XCOPA. ORI corresponds to the original data, GENEN

and GENXX represents data generated in English and target languages. Trans de-
notes translations of the English-generated data. We show languages that are
available in all settings. Improvement and decline in performance are repre-
sented with green and red shadows.

Table 7.5 shows the results for the languages that are available for all settings,

excluding TR and TH (unavailable for LLM-generation, refer to section 7.4), and QU

(not supported by the Google Translate API). We can see the impact of the gener-

ated data varies across different fine-tuned models and languages, aligning with the

findings of Shanu Kumar, Dandapat, and Choudhury (2022). Training on GPT-4 syn-

thesised data displays consistent improvement across all scenarios and languages,

except the zero-shot cross-lingual result on HT with XLMR-Large.

More fluctuating results can be observed with ChatGPT-generated data. A com-

parison between GENEN +ORI and GENXX +ORI indicates that utilising data gener-

ated in target languages generally leads to improved performance with GPT-4 gen-

erated data, as well as in base models with ChatGPT-generated data. However, for

XLMR-Large, employing ChatGPT-generated data in target languages mostly yields

negative outcomes. In languages such as TA and VI, training on generated data in
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Model
GENEN + ORIEN GENTrans

EN + ORIEN

3.7K 28.6K 3.7K 28.6K

mBERT 54.3 56.0 58.0 60.1
XLMR-Base 60.1 61.8 61.2 61.7
XLMR-Large 69.7 72.4 67.2 71.4

TABLE 7.6: Accuracy on XCOPA when scaling up the generated data to over
28K with ChatGPT. We report average results on all XCOPA languages excl.
QU, since it is not available with the Google Translate API.

the target languages results in more performance degradation compared to zero-

shot cross-lingual transfer. This suggests that ChatGPT performs worse in those

languages than XLMR-Large (Ahuja et al., 2023).

Translating the English dataset generally shows overall better results than train-

ing on the data generated directly in the target languages, except for XLMR-Large

with GPT-4. For SW, both XLMR-Base and XLMR-Large models fined-tuned with

ChatGPT-generated data exhibit performance decline in most cases, even when the

English-generated data benefits all other languages. This observation suggests that

XLMR struggles with SW. In subsection 7.6.1, we select TA, SW, and the two best

languages, ID and ZH, along with EN, for human evaluation.

Furthermore, we explore the effects of incorporating Target Languages in Vali-

dation (TLV). This approach involves training on English examples but evaluating

and testing on the target language. The detailed results are presented in Table D.4 in

Section D. Notably, for smaller models trained on limited data (e.g., 4.1K examples),

integrating target languages during validation led to significant performance boosts

of 3.0 and 0.9 for mBERT and XLMR-Base, respectively. However, when consider-

ing larger models like XLMR-large and smaller models trained with more extensive

datasets (e.g., 29K examples), the impact of including target languages during val-

idation was less pronounced. In these cases, we observe only minor variations in

performance. These findings align with those of Ponti et al. (2020), suggesting that

the effectiveness of TLV may vary depending on factors such as model size and

training data availability.
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Model Ratio XCOPA XWingrad XStoryCloze

mBERT

1× 64.0 50.2 74.6
2× 64.8 51.9 76.8
5× 68.0 57.1 80.6
10× 69.8 65.7 80.3

XLMR-Base

1× 58.0 45.9 70.7
2× 59.0 53.7 79.7
5× 63.0 67.8 81.9
10× 65.8 71.2 84.1

XLMR-Large

1× 56.0 78.1 81.1
2× 61.2 79.8 90.9
5× 81.4 82.0 89.9
10× 85.2 82.8 91.9

TABLE 7.7: Performance on English test examples training on GPT-4-generated
English data and the original data. Original data points selected from the three
datasets are set to 200. 1× corresponds to using only the original data, 2× means
using 200 original data and 200 generated data.

7.5.3 Dataset Scaling Up

We now investigate the impact of training on a larger scale of generated data on

model performance. We focus on the XCOPA dataset and expand the generated

data with ChatGPT (more budget-efficient) to 28.6k examples in English. We also

compare the results of zero-shot cross-lingual transfer with translating the English-

generated data to target languages.

The results in Table 7.6 demonstrate the positive impact of scaling up the gener-

ated data on model performance. Particularly, XLMR-Large exhibits the most signif-

icant improvement.

7.5.4 Fixed Ratio Data Augmentation

We experiment with generating data with a fixed ratio of the original datasets. Specif-

ically, we compare training with the original English data (200 randomly selected

examples) and augment it with different quantities of English examples generated

by GPT-4, where we include original training instances in all cases.

The results in Table 7.7 showcase the performance on English test examples when

fine-tuning mBERT and XLMR models with training data sizes that are 1×, 2×, 5×,

and 10× the size of the original dataset. We can see that performance consistently
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improves as we increase the amount of generated data except XStoryCloze, which

has the highest baselines, echoing the previous findings. The relative performance

gain is generally more pronounced when increasing the data from 2× to 5× for the

other two datasets.

7.6 Human Evaluation

To better evaluate the quality of the generated datasets and compare them with the

human-created data, we ask native speakers to annotate the multilingual data gen-

erated by ChatGPT and GPT-4.

For each dataset, we first select 50 generated examples in English, and then re-

quest two annotators to evaluate the examples in two categories: (i) Text Natural-

ness. The annotators are asked to choose one of the following options for each exam-

ple: “the text sounds natural”, “the text sounds awkward but understandable”, or

“the text is not understandable”, and (ii) Logic Soundness. This category focuses on

the commonsense aspect of the examples. The annotators are required to select the

most appropriate description from: “the correct option is (clearly) more plausible”,

“both options are equally plausible”, “both options are implausible”, or “the wrong

option is more plausible”. We only ask the annotators to evaluate the logic if the text

is at least understandable.

For XWinograd, we introduce an additional evaluation criterion. Annotators

are asked to determine whether the two noun phrases in the examples can be re-

placed by the same pronoun (refer to subsection 7.3.2). For XCOPA, we extend

the annotations to non-English languages, where we choose the two languages that

demonstrate the most notable improvement, namely ZH and ID, as well as the two

languages that exhibit the least improvement or regression in performance with

ChatGPT-generated data, namely TA and SW (see Table 7.5). In addition to the orig-

inal examples and the generated examples in the target languages, we include 50

examples that are translated from the same English-generated examples (that were

selected for annotation).

To ensure impartiality, all the examples are shuffled, and the annotators are not

provided with information regarding the source of the examples (human-created,
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FIGURE 7.2: Human evaluation of 50 random examples from the original
XCOPA, ChatGPT (top) and GPT-4 (bottom) generated data in target languages,
and translation of English generated data. Examples are annotated by two na-
tive speakers in each language. The subplots in the last column show the logic
issues of the XCOPA data, where the three bars for each language represent
Original, GenXX, and GenTrans

EN (from left to right).

LLM-generated, or translated).

7.6.1 Text Naturalness

Figure 7.2 presents the annotation results for XCOPA, averaged from two annotators

for each language. For Text Naturalness, we can see that in EN, ID, ZH, and SW, both

ChatGPT and GPT-4 achieved higher naturalness than the original dataset. This is

particularly prominent in ID, revealing the fluency issue in the original ID data in

XCOPA, which is also confirmed by a native speaker.

Issues with Tamil

In contrast, the performance of the TA dataset is surprisingly low, with a majority

of examples classified as "not understandable." Upon consulting language experts,

we have identified several main issues in Tamil, including (i) the insertion of redun-

dant words with the same meaning, such as “I will retry to try it again” (ii) verb

agreement errors, and (iii) the presence of uncommon and out-of-context words.

It is worth noting that generating Tamil using GPT-4 is both slow and costly. We

suspect that the tokeniser for Tamil, as well as similar languages like Telugu and
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Kannada, are poorly trained, resulting in unusable generation in those languages.

While the low quality of the generated data could explain the significant decline

in the performance of the XLMR-Large model when trained on ChatGPT-generated

data in Tamil, intriguingly, models trained on Tamil data generated by GPT-4 show

improvement over the baselines.

To further investigate this issue, we conduct an experiment where we fine-tune

the models using only five examples from the TA examples generated by GPT-4 that

are identified as natural and sound by the annotators. The improvement on mBERT

under this setting is 50% of the total improvement seen with the entire 3.6K TA ex-

amples. For XLMR-base and XLMR-large, 15% and 3% of the total improvement can

be observed, respectively. Considering that the estimated number of correct samples

in the 3.6k dataset is around 360, it is plausible that training solely on those exam-

ples could raise the accuracy level, or even surpass, what we observe for the entire

dataset.7 An intriguing question that remains to be investigated in future research

is why the remaining 3.2k incorrect or unnatural examples do not negatively impact

the model’s performance.

The translated text is typically less natural than the original and generated data

(apart from ID due to issues in the original data). This result affirms that LLMs

generally excel in generating fluent text for the languages it supports.

7.6.2 Logic Soundness

In terms of logic soundness, ChatGPT falls short compared to the original dataset.

We further illustrate the categorised issues in the last column of the plots in Fig-

ure 7.2. We can see that for ChatGPT, the majority of the examples are labelled

as “both options are equally plausible”, only SW has more problematic examples

with “the wrong option is more plausible”. We suspect that this issue arises from

the instruction provided (taken from the description of the original COPA dataset),

which states that “both options could be plausible, but one is more plausible.” In

some cases, ChatGPT generates two choices that are excessively similar in terms of

plausibility. On the other hand, GPT-4 tends to generate options with more clear-

cut differences in plausibility, mirroring the original data. We note that despite the

7We could not conduct this experiment as the entire dataset was not manually labelled.
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description and instruction that both alternatives could happen, both the original

dataset and the data synthesised by GPT-4 tend to present one plausible and one

implausible option.

For English XWinograd and XStoryCloze, the majority of the examples in both

original and generated examples are evaluated as natural and logically sound. For

XWinograd, although more than 47 examples are evaluated to exhibit high text

quality and follow commonsense logic, as mentioned in subsection 7.3.2, only 23

ChatGPT-generated examples fulfil the requirement that both noun phrases should

be interchangeable with the same pronoun. GPT-4 examples demonstrate better con-

sistency, with 36 following this rule, whereas all original examples are found satis-

factory.

7.7 Conclusion and Future Work

This chapter explores the effectiveness of utilising LLMs for data augmentation in

cross-lingual datasets with limited training data. We specifically focus on common-

sense reasoning tasks that are challenging for data synthesis. Our experiments in-

cluding four LLMs for data generation on three datasets, showcase enhanced cross-

lingual zero-shot transfer on smaller fine-tuned task-specific language models. How-

ever, the impact varies across different datasets and languages. Notably, larger mod-

els such as XLMR-Large, which have higher baselines, demonstrate more difficulty

in achieving performance improvements with LLM-generated data. Among the four

LLMs, GPT-4-generated data exhibits mostly consistent superior performance.

Expanding data generation directly in target languages also shows general im-

provements compared to cross-lingual zero-shot with the English-generated data.

Human evaluation of the synthesised multilingual dataset shows that the ChatGPT

and GPT-4 generated data demonstrate high naturalness in most languages, even

surpassing the original data. However, in certain languages like TA, both models fail

to generate natural text. Additionally, when assessing the logical soundness of the

dataset, examples synthesised by ChatGPT reveal notable inconsistencies regarding

more plausible options compared to the original human-created data. In contrast,

GPT-4 exhibits a performance on par with human-written data.
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In conclusion, leveraging LLMs for data augmentation shows promise. How-

ever, the choice of LLM used for data generation significantly influences the quality

of the resulting data, as well as its applicability to the language under consideration.

In circumstances where a more advanced model such as GPT-4 cannot be accessed,

other models can be utilised, though this might result in performance difficulties in

certain non-English languages, a challenge that also exists for GPT-4, and concerns

regarding logical coherence. A compelling direction for future research could in-

volve exploring the efficacy of more recent instruction-tuned or aligned open-source

LLMs, such as LLaMA 2 (Touvron et al., 2023b) or TÜLU (Zeqiu Wu et al., 2023), in

enhancing data augmentation.

7.8 Limitations

The identified limitations in this chapter are as follows:

• Language Resource Challenges: While LLMs, particularly GPT-4, showcase

promising results in the realm of multilingual commonsense data augmenta-

tion, challenges may arise when applied to extremely low-resource languages.

The effectiveness of these models could be constrained by the availability of

language-specific resources.

• Dependency on Few-Shot Examples: To achieve optimal performance, the

incorporation of few-shot examples in the target language remains necessary

for generating new examples. However, obtaining such examples may pose

challenges, particularly for languages with limited available resources.

• Closed Model Accessibility: The usage of closed models like GPT-4 is re-

stricted by licensing limitations, and the reproducibility of results obtained

from these models may be compromised. Despite these constraints, the con-

ducted experiments in this chapter illustrate the potential advantages of lever-

aging LLMs for multilingual dataset augmentation.

• Black-box LLMs: In addition to the limitation of the closed models, currently,

only a handful of models are truly open with training code, model checkpoints,
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and training data (i.e., BLOOM (Scao et al., 2022), the Pythia suite (Biderman

et al., 2023b), and OLMO (Groeneveld et al., 2024)). All LLMs studied in this

chapter are not truly open or with detailed pre-training data released. This lack

of transparency raises concerns regarding the potential biases and shortcom-

ings embedded within these "black-box" LLMs. Without full disclosure of their

training data sources and methodologies, there exists the possibility that such

models were pre-trained on datasets that overlap with the test sets of public

benchmarks, including those used in our experiments. This scenario could in-

troduce a confounding factor, rendering performance evaluations of LLMs on

downstream tasks and data augmentation unreliable and potentially skewed.
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Chapter 8

Conclusion

This thesis presents five focused studies that explore knowledge-grounded natural

language understanding and generation, covering knowledge-enhanced fake news

detection, multilingual knowledge-enhanced cross-lingual transfer, faithful and ro-

bust knowledge extraction from the web, grounded answer and explanation genera-

tion for knowledge-intensive VQA, and the employment of LLMs for data augmen-

tation in tasks requiring multilingual commonsense knowledge.

Throughout this thesis, our focus centres on studying the utilisation and ex-

traction of knowledge, whether in the form of structured knowledge, multilingual

knowledge, parametric knowledge, or knowledge represented as augmented data

distilled from powerful LLMs.

Addressing the research questions outlined in Chapter 1, we hereby present the

conclusions derived from this thesis.

Application of Structured Knowledge

This thesis investigates the broader applicability of structured knowledge beyond

entity-centric tasks. Through our experiments involving four distinct techniques to

incorporate knowledge related to entities across two diverse fake news detection

datasets, we find that leveraging structured knowledge improves applications such

as fake news detection, if the applied knowledge is relevant and current.

Multilingual Entity Knowledge

This thesis broadens the scope of structured knowledge to a multilingual setup.

Specifically, we find that utilising multilingual entity knowledge via (i) the creation
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of an entity-centric code-switched corpus using data from Wikipedia and Wikidata,

(ii) the intermediate training of a pre-trained multilingual language model, incor-

porating masked language modelling and entity prediction objectives, and (iii) fine-

tuning the intermediate-trained model on downstream tasks, can consistently and

significantly enhance the cross-lingual transferability.

Knowledge Extraction from Web Text

This thesis explores approaches that facilitate the effective and accurate extraction of

information of knowledge from the vast and often noisy web text. Upon collecting

a novel mWEBIE dataset and benchmarking against mWEBIE, we conclude that (i)

the inclusion of negative examples within the dataset, and (ii) the integration of

entity-centric auxiliary tasks, are beneficial to the successful extraction of structured

knowledge from the inherently noisy web text.

Grounded Answer and Explanation Learning

This thesis highlights the benefit of multi-task grounded answer and explanation

generation for knowledge-intensive VQA. Notably, we find that even without ex-

plicitly introducing external knowledge, which is commonly deemed a prerequisite

in the datasets experimented, the adoption of this multi-task learning approach con-

tributes to a notable enhancement in both answer accuracy and explanation quality,

showcasing the advantage of better utilisation of the parametric knowledge stored

within the model’s parameters.

LLM-Powered Data Augmentation

This thesis leverages the inherent knowledge of recent powerful LLMs to enhance

the performance of smaller, task-specific models. We find that data augmentation by

prompting LLMs significantly improves complex and scarce multilingual common-

sense reasoning tasks for smaller models, underscoring promising directions in data

augmentation with LLMs and broader knowledge distillation methods.
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8.1 Future Work

Having summarised key insights aimed at optimising the utilisation of knowledge

in NLP applications throughout this thesis, we conclude with a vision for promising

future research directions as follows.

Dynamic Knowledge Integration with Emphasised Grounding

As the capabilities of LLMs continue to advance, the incorporation of knowledge

emerges as a crucial supplement to maintain the generality of LLMs while ensuring

they remain up-to-date and finely adapted to domain-specific tasks.

Current approaches, including the studies in this thesis, often involve single or

pre-defined knowledge sources based on the targeted downstream tasks. For in-

stance, in Chapters 3-5, we employed static knowledge bases for both pre-training

and downstream tasks. Although these strategies demonstrate effectiveness in bench-

mark tasks, they risk obsolescence without re-training. Hence, there is a growing

need for more adaptive and dynamic knowledge integration methods in real-world

applications.

A promising approach introduced in Chapter 2 is retrieval-augmented language

models for text generation, demonstrating the potential of leveraging dynamic un-

structured knowledge (P. Lewis et al., 2020; Guu et al., 2020; Izacard et al., 2023).

While extensive research focuses on effective retrieval of documents (Borgeaud et al.,

2022; X. Ma et al., 2023; Soares et al., 2023) and ranking of these documents (Zerveas,

Rekabsaz, and Eickhoff, 2023), limited attention is given to how these models are

grounded with the provided context. Questions arise, such as whether the model can

learn to disregard irrelevant retrieved context (Yoran et al., 2024), and how the gener-

ation is impacted by the context retrieved from end-to-end systems versus post hoc

retrieval systems. We posit that a more thorough investigation into the grounding

of retrieval-augmented systems is needed.
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Knowledge Integration with Mixture-of-Experts

In addition to dynamic knowledge integration, aligned with the concept of general-

purpose LLMs, there is a compelling need for a general-purpose knowledge augmen-

tation approach, one that does not necessitate the explicit specification of domain

knowledge.

Revisiting the investigation on fake news detection in Chapter 3, we noted the

importance of knowledge base relevance to the target task. Specifically, the in-

tegration significantly enhances the LIAR datasets but only marginally improves

COVID-19. Consequently, it may become desirable to alleviate the need for prede-

termined knowledge bases for model training.

A promising direction for such exploration involves extending the adapter ap-

proach (R. Wang et al., 2021) as introduced in Chapter 2. This entails leveraging

different knowledge sources to train distinct adapters, thereby enhancing the adapt-

ability of LLMs to various domains. Beyond adapters, broader parameter-efficient

fine-tuning methods, such as Low-Rank Adaptation (LoRA) (E. J. Hu et al., 2022), are

also promising. By retaining the pre-trained weights of powerful LLMs, it becomes

possible to train different versions of knowledge adapters or low-rank matrices. Sub-

sequently, a carefully designed routing mechanism becomes crucial to determine the

appropriate knowledge component for a given context.

While related work has demonstrated the advantages of the mixture of experts

(Du et al., 2022; Shen et al., 2024), the mixture of adapters (Yaqing Wang et al., 2022),

and the mixture of few-shot LoRA learning (C. Huang et al., 2023) for cross-task

generalisation, we believe there exists unexplored potential for knowledge augmen-

tation combined with the mixture of experts (Diao et al., 2023).

Factuality in Text Generation

Recent advanced LLMs excel at text fluency, typically empowered by large-scale

pre-training and methods that leverage rankings over responses, such as reinforce-

ment learning from human feedback (RLHF) (Ziegler et al., 2019; L. Ouyang et al.,

2022). However, language models are susceptible to producing convincing yet fac-

tually inaccurate claims, commonly referred to as “hallucinations” (Tian et al., 2023).
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This underscores the critical need for advancements in factuality and faithfulness in

text generation (Augenstein et al., 2023). An expanded exploration of this thesis on

knowledge grounding, in this context, plays a crucial role in determining what is

factual or faithful, and in controlling the generation (P. Xu et al., 2020; Rashkin et al.,

2021; Brahman et al., 2022).

Researchers have made significant efforts in enhancing actuality in text genera-

tion, such as fine-tuning with automatically generated factuality preference rankings

(Tian et al., 2023), employing factual-nucleus sampling (N. Lee et al., 2022), train-

ing models to self-evaluate for faithfulness (Kadavath et al., 2022), among others.

Despite these advancements, there remains a considerable amount of unexplored

directions, such as the development of better evaluation metrics. Current metrics,

whether n-gram-based or relying on trained neural models like BERTScore (T. Zhang

et al., 2020), often fall short in capturing factuality (E. Clark et al., 2023; Aharoni et

al., 2023). Moreover, commonly used entailment-based Natural Language Inference

scores for faithfulness evaluation (Maynez et al., 2020) offer limited interpretability

and may be biased by the underlying pre-trained models.

Therefore, we anticipate that training models for more faithful and grounded

generation, as well as developing metrics to evaluate factuality performance, will be

highly relevant research directions.

8.2 Summary

In this chapter, we highlight key findings and conclusions of the thesis, along with

exciting and promising directions for future work including dynamic knowledge in-

tegration with emphasised knowledge grounding, knowledge integration with mix-

ture of experts, and knowledge-grounded text generation for enhanced factuality.

Quoting Prof Christopher D. Manning,1 we echo the sentiment of NLP research

“Nothing but blue skies!” as we look forward to the boundless possibilities that

lie ahead in the ever-evolving language technology.

1https://2023.emnlp.org/program/keynotes

https://2023.emnlp.org/program/keynotes
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Appendix A

Language-Specific Results for

ENTITYCS Experiments

We report the per-language results of the experiments on ENTITYCS in the following

tables. WikiAnn results can be found in Table A.1. X-FACTR results in Table A.2,

MultiATIS++ Slot Filling-only training in Table A.3, and XL-WiC in Table A.4.

MODEL AR HE VI ID JV MS TL EU ML TA TE AF NL EN

XLM-ROURS 44.6 51.9 68.3 48.6 59.6 63.3 72.5 61.2 63.2 54.3 49.3 76.3 80.7 83.4

MLM 50.7 53.7 72.7 56.4 59.2 68.4 75.1 58.4 65.1 58.1 53.0 76.3 80.9 84.2
WEP 49.9 52.4 69.8 57.4 60.1 66.7 74.0 60.1 60.8 56.1 48.2 76.5 80.3 83.8
PEPMRS 47.1 52.6 69.8 56.0 60.1 62.4 74.8 56.1 61.6 56.1 50.9 77.9 81.4 83.8
PEPM 47.7 52.9 68.9 59.1 63.1 65.5 76.3 60.0 64.0 57.5 51.6 76.8 80.9 83.9
WEP+MLM 50.3 53.2 69.8 60.8 60.7 69.8 74.5 59.2 64.8 57.2 51.7 76.4 80.9 84.1
PEPMRS+MLM 46.7 53.6 69.6 64.0 60.2 69.2 74.3 57.5 65.6 55.8 52.3 77.5 81.3 84.1
PEPM+MLM 52.4 53.5 70.4 60.3 59.7 69.2 75.5 58.4 66.6 58.1 54.5 77.7 81.2 84.1

DE EL BN HI MR UR FA FR IT PT ES BG RU JA

XLM-ROURS 75.4 74.2 67.9 68.3 61.8 55.8 47.6 78.0 78.2 78.9 76.2 77.3 63.9 22.9

MLM 75.2 76.3 73.9 69.9 64.5 67.0 51.6 79.0 78.6 79.5 77.6 78.6 67.2 22.7
WEP 74.7 74.5 70.8 67.5 61.1 60.7 50.9 77.6 77.7 77.3 74.1 78.7 66.3 20.7
PEPMRS 75.4 74.8 69.6 68.3 64.1 48.7 53.0 78.9 78.6 78.7 77.1 78.6 67.3 21.9
PEPM 75.1 76.5 73.0 69.6 65.8 63.3 55.3 78.5 78.4 78.6 74.3 78.2 67.2 21.0
WEP+MLM 75.4 75.2 72.1 68.9 63.9 58.6 53.4 78.1 78.3 79.0 74.9 78.3 66.6 23.0
PEPMRS+MLM 75.5 76.2 72.2 68.4 64.8 60.1 54.3 79.2 79.1 80.0 76.4 79.1 67.6 23.6
PEPM+MLM 75.3 76.2 74.2 70.0 67.1 64.5 50.0 79.9 78.9 79.7 78.4 79.3 68.2 22.7

KA KO TH SW YO MY ZH KK TR ET FI HU

XLM-ROURS 66.4 48.8 4.3 68.3 45.4 52.7 27.7 44.2 76.9 72.4 75.6 76.9

MLM 66.1 50.8 2.5 65.1 42.9 55.7 29.7 50.7 77.8 71.4 76.2 78.1
WEP 64.8 52.0 2.5 65.8 50.4 52.6 26.1 52.1 75.5 71.9 75.8 76.6
PEPMRS 63.6 51.4 3.7 66.2 45.9 54.6 26.6 49.1 78.0 72.8 77.2 77.7
PEPM 66.7 50.0 5.0 66.8 52.3 56.9 26.7 48.4 77.6 73.2 76.6 77.3
WEP+MLM 65.8 50.4 2.1 63.9 44.9 56.6 29.1 51.0 75.2 71.8 76.9 77.2
PEPMRS+MLM 66.1 50.9 2.4 66.6 41.4 54.5 31.1 51.8 78.4 71.4 77.1 78.7
PEPM+MLM 67.7 51.1 3.3 64.5 43.7 56.6 29.3 51.7 78.2 72.0 76.8 78.6

TABLE A.1: F1-score per language on the WikiAnn test set. Results are averaged
across five seeds.
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MODEL AVG EN FR NL ES RU ZH HE TR KO VI EL MR JA HU BN CEB WAR TL SW PA MG ILO

X
L

M
-R

O
U

R
S

IN
D

A 3.5 8.2 4.7 4.4 6.5 5.3 4.6 2.5 3.1 5.1 8.5 6.3 2.7 2.3 0.9 0.1 1.4 1.2 2.8 3.7 0.2 1.9 0.1
S 9.4 15.2 11.3 11.0 13.4 14.4 11.9 12.3 4.0 16.7 14.2 27.3 19.5 9.2 2.2 0.0 1.7 1.3 5.1 5.6 5.8 3.7 0.4

M 2.1 3.3 2.3 2.6 3.3 3.8 4.5 2.2 2.5 2.6 5.1 2.9 1.1 2.1 0.2 0.1 1.0 1.1 1.4 1.9 0.0 1.6 0.0

C
O

N
F A 3.3 4.4 2.9 2.7 4.3 5.5 5.3 3.0 3.0 5.6 9.5 7.3 3.4 4.4 0.9 0.1 1.2 1.1 2.3 2.9 0.6 1.8 0.5

S 7.5 5.2 4.4 3.6 4.9 14.2 11.8 11.4 3.9 15.9 12.6 25.6 18.9 8.8 2.0 0.0 1.4 1.4 4.4 4.3 5.8 3.5 0.5
M 2.6 3.9 2.3 2.7 4.2 4.1 5.2 2.7 2.4 3.4 7.0 4.3 2.07 4.2 0.3 0.1 1.0 1.1 1.3 1.9 0.4 1.5 0.5

M
L

M

39
IN

D

A 2.3 2.1 3.7 2.9 3.9 2.9 1.9 3.4 1.2 5.0 4.6 4.2 3.6 0.3 0.7 0.0 2.1 1.0 1.4 5.2 0.0 0.0 0.1
S 6.4 5.1 8.7 6.4 9.4 6.0 8.3 8.7 3.1 16.6 9.1 19.3 17.9 2.5 1.8 0.6 2.9 1.1 4.4 8.3 0.3 0.5 0.1

M 1.3 0.9 2.0 2.0 1.9 2.0 1.8 1.9 0.6 2.3 2.4 2.8 2.1 0.2 0.4 0.0 1.8 1.0 0.5 2.2 0.0 0.0 0.1

C
O

N
F A 2.5 2.5 3.6 2.9 4.3 2.6 2.0 4.8 1.1 5.7 6.3 5.2 4.2 0.4 0.6 0.1 2.0 1.0 1.2 5.2 0.0 0.0 0.1

S 5.9 4.9 7.6 5.9 9.0 4.4 7.6 7.4 2.5 16.1 8.5 17.2 16.7 2.5 1.6 0.6 2.8 1.1 3.9 7.8 0.3 0.5 0.0
M 1.7 1.8 2.3 2.2 2.6 2.3 1.9 3.4 0.5 3.4 4.6 4.2 2.9 0.3 0.4 0.0 1.7 1.0 0.4 2.4 0.0 0.0 0.1

W
E

P

E
N

IN
D

A 3.3 18.2 6.1 6.0 5.8 1.1 0.4 0.4 1.1 0.5 8.0 3.5 0.4 0.6 3.7 0.0 3.5 0.6 5.0 4.2 0.1 1.7 1.6
S 8.5 38.3 16.4 18.7 14.9 4.4 3.4 1.4 5.6 2.7 16.8 7.3 4.1 2.5 8.5 0.0 6.9 2.6 9.7 10.3 0.0 6.9 5.4

M 1.6 9.4 2.7 2.9 2.9 0.6 0.3 0.4 0.3 0.3 3.5 1.2 0.1 0.5 2.6 0.0 1.5 0.3 1.5 1.9 0.1 1.1 0.5

C
O

N
F A 3.1 16.2 6.4 5.6 5.4 1.1 0.3 0.4 1.1 0.5 7.6 3.4 0.4 0.6 3.6 0.0 3.4 0.5 4.5 4.1 0.1 1.3 1.7

S 7.9 35.8 15.9 17.2 13.3 4.5 2.7 1.6 5.4 2.4 15.8 7.3 4.1 2.5 8.2 0.0 6.6 2.5 8.6 7.8 0.0 6.4 5.4
M 1.5 7.5 3.3 2.9 2.9 0.6 0.3 0.4 0.2 0.3 3.6 1.1 0.1 0.5 2.6 0.0 1.5 0.2 1.5 2.0 0.1 1.0 0.6

39
IN

D

A 6.1 15.6 9.1 11.5 10.5 2.8 6.7 3.7 3.2 6.7 13.2 7.9 4.0 4.6 6.7 0.9 4.3 2.1 7.4 7.2 0.0 2.3 3.3
S 19.4 36.4 24.1 30.3 25.6 14.3 18.5 34.7 12.2 31.5 23.4 36.0 29.8 17.8 18.5 6.1 8.5 5.0 16.9 21.3 0.0 5.4 9.3

M 3.0 7.2 3.9 4.9 4.6 1.5 6.3 2.6 1.0 2.9 7.3 3.9 1.5 4.1 2.5 0.0 2.2 1.4 1.8 3.3 0.0 1.4 0.6

C
O

N
F A 4.9 12.1 8.2 9.6 8.8 2.4 3.1 3.3 2.9 5.9 9.3 7.4 3.5 1.9 5.6 0.8 4.1 1.7 6.8 5.7 0.0 1.8 3.3

S 17.4 32.6 22.9 26.5 23.4 12.2 16.7 32.4 11.2 28.3 19.3 34.3 27.1 15.9 16.0 5.6 8.2 4.7 14.9 17.2 0.0 5.1 9.2
M 2.1 4.6 3.3 3.6 3.0 1.2 2.6 2.3 0.8 2.7 3.9 3.7 1.4 1.5 1.8 0.0 2.1 1.0 1.9 2.0 0.0 1.0 0.7

93
IN

D

A 5.8 13.9 7.6 10.1 11.2 2.8 7.2 2.9 2.9 5.8 13.6 8.1 4.4 3.2 7.2 0.6 3.1 2.4 6.8 6.6 1.0 2.5 3.2
S 18.5 34.5 20.0 28.9 25.3 14.0 20.1 26.0 13.0 28.6 25.4 35.0 25.6 17.3 18.2 4.9 6.7 7.2 13.6 17.6 11.6 5.7 8.3

M 2.7 6.6 3.0 4.7 5.2 1.3 6.8 2.3 0.9 2.5 7.6 4.3 2.1 2.7 3.1 0.0 1.8 0.9 1.3 1.4 0.2 1.3 0.4

C
O

N
F A 4.6 11.3 6.4 8.6 9.1 2.2 2.7 2.5 2.7 4.9 10.5 7.2 3.5 1.8 6.1 0.6 2.8 2.0 6.2 5.1 0.8 1.4 2.5

S 16.3 31.5 18.4 26.3 22.3 11.8 18.0 24.3 12.2 25.5 22.3 31.3 20.8 14.5 16.4 4.4 6.1 6.6 11.6 15.3 8.9 2.4 7.6
M 1.8 4.7 2.1 3.5 3.4 0.9 2.3 2.0 0.8 2.1 4.9 3.5 1.5 1.4 2.2 0.0 1.6 0.7 1.1 0.9 0.1 0.6 0.4

P
E

P
M

S

39
IN

D

A 4.7 15.1 6.9 11.0 9.6 5.0 3.8 3.2 2.0 7.3 9.0 5.5 3.0 3.3 1.9 0.2 3.3 1.5 5.9 5.5 0.0 0.7 0.6
S 15.0 35.2 18.6 29.4 22.0 16.7 15.7 19.4 8.7 29.3 19.2 30.2 24.5 19.9 4.6 1.7 6.4 2.5 10.3 12.8 0.0 1.1 1.2

M 2.4 7.1 2.4 4.5 4.2 2.1 3.5 2.6 0.7 3.3 4.4 3.5 0.5 2.7 1.0 0.0 2.0 1.2 2.4 2.8 0.0 0.5 0.4

C
O

N
F A 6.0 15.7 8.1 12.5 11.7 5.7 6.9 5.2 2.9 9.2 14.0 6.3 5.1 6.7 3.4 0.4 3.4 1.5 6.4 5.6 0.0 0.5 0.5

S 13.1 31.9 17.1 27.1 19.6 12.1 13.6 17.7 7.6 26.1 16.0 27.1 21.4 16.9 3.9 1.6 5.3 2.2 9.4 9.0 0.0 0.8 1.1
M 4.3 10.0 4.5 7.1 8.6 4.0 6.7 4.7 2.0 6.2 11.8 4.9 3.3 6.4 2.7 0.2 2.4 1.3 3.9 3.8 0.0 0.2 0.3

P
E

P
M

S
+

M
L

M

E
N

IN
D

A 2.6 16.8 5.0 5.2 4.9 1.5 0.2 0.6 0.2 0.6 6.3 3.0 0.4 0.6 1.0 0.0 1.2 0.4 4.5 2.3 0.6 1.8 0.5
S 6.5 35.5 13.4 15.5 12.3 6.2 2.0 4.7 0.5 3.3 13.0 8.7 3.1 3.0 1.9 0.0 2.5 0.5 7.0 5.3 0.7 4.5 0.4

M 1.2 6.6 2.2 2.7 2.3 1.2 0.2 0.5 0.1 0.3 2.8 0.7 0.1 0.5 0.3 0.0 0.6 0.4 1.4 1.0 0.5 1.3 0.5

C
O

N
F A 2.7 18.0 5.3 5.1 4.6 1.5 0.6 1.0 0.2 0.9 6.3 3.0 0.6 0.9 0.9 0.0 1.5 0.3 4.6 2.1 0.6 1.6 0.4

S 5.7 33.1 12.0 13.3 10.2 5.8 2.0 4.4 0.5 2.7 11.1 7.3 3.1 3.0 1.7 0.0 1.7 0.3 6.7 4.6 0.6 1.0 0.3
M 1.6 10.4 3.0 3.2 2.6 1.2 0.5 0.9 0.1 0.8 3.8 1.2 0.3 0.8 0.3 0.0 1.1 0.3 1.8 1.1 0.5 1.2 0.5

39
IN

D

A 4.9 14.9 9.7 10.5 10.5 7.3 5.5 4.4 1.3 7.0 9.4 5.8 2.0 2.6 1.6 0.0 2.8 0.9 4.5 6.5 0.0 0.3 0.4
S 13.9 34.8 24.2 27.7 23.1 20.2 16.0 17.5 5.8 28.6 19.3 25.2 13.5 15.3 4.0 2.4 5.5 1.7 8.3 11.2 0.0 0.3 0.7

M 2.4 6.3 3.4 4.6 4.2 3.8 5.2 2.7 0.5 3.0 4.6 4.1 0.6 2.1 0.7 0.0 1.7 0.8 1.9 3.1 0.0 0.3 0.2

C
O

N
F A 5.7 16.3 10.5 11.0 11.3 7.9 7.0 6.2 1.3 9.2 14.2 6.6 2.8 4.2 1.5 0.3 3.4 1.3 4.1 6.6 0.0 0.3 0.3

S 12.0 30.6 21.6 24.8 20.1 16.6 15.7 16.0 3.0 27.1 15.8 20.8 12.3 12.8 3.4 0.0 4.9 2.0 7.0 9.5 0.0 0.2 0.4
M 3.9 9.4 5.4 6.2 6.7 5.0 6.7 4.5 0.8 6.0 11.8 5.6 1.5 3.8 0.7 0.3 2.8 1.3 2.6 4.5 0.0 0.3 0.2

93
IN

D

A 4.5 14.1 8.6 9.1 8.8 5.8 5.0 3.1 0.8 6.3 9.4 5.7 1.8 1.5 1.5 0.1 2.9 1.7 4.0 5.2 0.7 2.3 0.4
S 13.2 32.7 22.0 24.4 20.3 18.6 17.0 12.8 3.8 26.9 19.4 25.9 12.2 12.0 3.4 0.9 5.0 2.1 9.7 9.5 8.1 3.1 0.9

M 2.3 5.9 3.3 4.4 3.8 3.1 4.7 2.6 0.4 2.8 4.4 3.8 0.4 1.1 0.7 0.0 2.2 1.5 1.2 1.3 0.0 1.9 0.2

C
O

N
F A 5.5 15.7 9.5 9.8 9.3 6.2 6.9 5.0 0.8 8.1 13.5 7.3 2.8 3.0 1.4 0.1 2.6 1.8 4.4 6.8 2.0 2.6 0.4

S 11.9 31.3 19.2 22.0 16.8 15.7 16.3 12.5 3.5 25.0 16.6 23.9 11.3 8.6 2.8 0.6 4.3 2.0 9.0 9.4 7.5 2.7 0.8
M 3.8 8.7 5.2 6.0 5.5 4.2 6.6 4.5 0.5 5.4 10.9 5.9 1.7 2.7 0.7 0.1 2.3 1.8 2.3 3.7 1.5 2.6 0.2

TABLE A.2: X-FACTR results.
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MODEL EN ES DE HI FR PT ZH JA TR

XLM-ROURS 95.6 0.15 81.5 0.71 79.8 2.04 50.6 5.35 74.8 1.90 76.5 1.14 77.2 2.06 56.8 4.99 43.0 2.72

MLM 95.6 0.16 78.8 2.88 78.0 2.56 61.5 7.26 74.4 3.18 74.6 1.39 76.4 1.81 70.3 2.00 39.7 4.09
WEP 95.7 0.15 79.9 1.34 80.3 0.58 52.7 4.15 75.6 0.87 76.3 0.63 78.1 1.43 60.7 7.07 40.4 4.40
PEPMS 95.3 0.06 79.3 2.60 79.7 2.28 62.9 2.30 75.3 2.10 76.2 1.60 77.8 1.30 69.0 4.90 45.3 2.50
PEPMS+MLM 95.6 0.10 81.3 1.90 81.4 0.90 65.8 2.20 78.2 0.30 76.1 1.00 78.8 0.60 68.8 3.30 42.1 3.30

TABLE A.3: F1-score (average across five seeds) on MultiATIS++ SF-only train-
ing.

MODEL BG DA ET FA HR JA

XLM-Rours 57.5 1.03 60.6 2.06 61.7 3.23 62.4 1.05 61.7 2.93 54.0 1.56

MLM 59.3 0.85 59.0 0.72 60.6 1.15 63.5 1.41 62.3 1.87 52.6 1.26
WEP 59.0 1.84 61.3 1.13 62.2 0.74 64.9 1.06 63.7 2.40 54.7 2.69
PEPMS 59.4 0.93 60.7 1.03 64.4 1.72 63.5 1.51 64.2 1.85 53.6 2.60
PEPMS+MLM 59.7 1.04 60.9 1.20 63.9 1.02 63.1 1.63 63.8 1.89 53.2 2.18

MODEL KO NL ZH DE FR IT

XLM-Rours 62.4 1.99 61.5 1.94 56.4 3.83 57.7 1.58 56.4 1.40 57.1 1.35

MLM 63.1 1.38 62.3 0.76 52.4 1.03 57.2 0.54 56.6 0.33 58.0 1.09
WEP 64.6 0.74 63.8 0.77 55.2 3.30 59.6 1.04 57.0 0.98 59.1 1.03
PEPMS 64.6 2.88 63.9 0.79 52.8 3.01 59.5 1.79 57.4 0.64 58.8 1.25
PEPMS+MLM 62.1 3.10 63.0 1.01 53.2 2.24 59.0 0.90 57.3 0.58 58.3 1.00

TABLE A.4: XL-WiC test set accuracy (average across five seeds) across lan-
guages.
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Appendix B

Additional Results and Analysis

for WEBIE

B.1 Additional Results

We show in Table B.1 the results for non-English languages for mWEBIE when spec-

ifying the source language and using the default (English) for the mBART tokenizer.

These results are from beam search without constraint Trie. We can see that specify-

ing the source language mostly harms the performance (except French), especially

for Portuguese. We hypothesise that due to the model being trained solely on En-

glish as the source token, mBART may have difficulty handling other languages.

LANGUAGE
EN as Source Language in mBART Tokenizer XX as Source Language in mBART Tokenizer

P R F1 Empty-Pos% Acc-N P R F1 Empty-Pos% Acc-N

FRENCH 43.27 36.13 39.38 11.89 96.19 41.29 37.73 39.43 8.56 94.87
SPANISH 41.93 34.63 37.93 12.34 96.74 40.47 36.57 38.42 8.56 95.82
PORTUGUESE 41.17 32.37 36.24 14.07 96.91 13.81 1.77 3.14 86.33 98.21
HINDI 4.28 1.62 2.35 67.38 98.64 3.69 1.69 2.31 60.62 98.43

TABLE B.1: Comparison of the zero-shot performance on mWEBIE with mBART
when specifying the source language (XX) and keeping the default setting as
the source language (EN). Results are with standard beam search (without the
constraint Trie).

B.2 Examples of ReFinED Output

We show examples of the sentences processed by ReFinED in Table B.2. For each

input sentence, ReFinED identifies the set of entities in that sentence, and outputs
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Example Id Sentence ReFinED Output

21464177 On Thursday,
British campaigning
group the Environ-
mental Investigation
Agency accused
Italy of trying to
sabotage efforts to
reform the EU ETS.

[[“Thursday”, None, “DATE”],
[“British”, Entity(wikidata_entity_id=Q145,
wikipedia_entity_title=United Kingdom),
“GPE”], ["Environmental Investigation
Agency", Entity(wikidata_entity_id=Q1345905,
wikipedia_entity_title=Environmental
Investigation Agency), "ORG"],
["Italy", Entity(wikidata_entity_id=Q38,
wikipedia_entity_title=Italy), “ORG”],
[“EU”, Entity(wikidata_entity_id=Q458,
wikipedia_entity_title=European Union), “ORG”],
[“ETS”, Entity(wikidata_entity_id=Q899383,
wikipedia_entity_title=ETSI), “ORG”]]

1274217 It culminates in the
decade-long debate
ending in 1913
to turn the Hetch
Hetchy valley in
Yosemite National
Park into a reservoir
for San Francisco.

[[“decade-long22”, None, “DATE”],
[“1913”, Entity(parsed_string=[timepoint:
[“1913”]]), “DATE”], [“Hetch Hetchy”,
Entity(wikidata_entity_id=Q1616130,
wikipedia_entity_title=Hetch Hetchy),
“GPE”], [“Yosemite National Park”,
Entity(wikidata_entity_id=Q180402,
wikipedia_entity_title=Yosemite Na-
tional Park), “FAC”], [“San Fran-
cisco”, Entity(wikidata_entity_id=Q62,
wikipedia_entity_title=San Francisco), “GPE”]]

TABLE B.2: ReFinED outputs on WEBIE validation examples.

mention span, Wikidata id, and Wikipedia title for each entity. For our experiments,

we use the wikipedia_model_with_numbers model with wikipedia entity set.

B.3 MTurk Annotation Details

In this section, we describe the detailed settings for annotating (m)WEBIEwith MTurk.

WEBIE

The first annotation task (HIT) is to verify the correctness of the triples automatically

created from the DS approach and filtered by the NLI model. The guidance and the

interface are shown in Figure B.1 and Figure B.2, respectively.

In each HIT, we provide a sentence with its entities highlighted (head entity in

blue and tail entity in green) and the URL of the web page which the sentence is

extracted from. For the first EL annotation job, we provide both the links to the

Wikipedia and Wikidata pages. Annotators are asked to choose if the highlighted

spans are linked correctly to the KB. Next, the annotators are asked to verify if a
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FIGURE B.1: MTurk HIT guidance entity and relation labelling.

FIGURE B.2: MTurk HIT user interface for entity and relation labelling.

relation (highlighted in orange) can be inferred from the sentence. We provide the

description of the relation and an example use case to facilitate the annotation.

Each triple is annotated by three workers, and we pay $0.2 per HIT. We hire
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MTurk workers with Masters Qualification and set additional requirements includ-

ing (i) having done 2,000 HITs and (ii) having a job approval rate ≥99%.

mWEBIE

Figure B.3 and Figure B.4 illustrates the interface for correcting machine-translated

sentence and identifying corresponding entities in them. As it is challenging to find

qualified crowd workers for the translation task1, we set the geographical regions

for each language to the countries where the language is one of the official lan-

guages. We find that only India and countries in America have an adequate number

of MTurk workers, which highly restricts the options for our target languages. In

the end, the countries we set for the target languages are as follows: Portuguese:

AO, BR, CV, ST, GW, GQ, MZ; Spanish: ES, MX, CO, PE, CL; CA for French, and IN

for Hindi2. It was also necessary to remove the Masters Qualification requirement

for MTurk workers (except Hindi) to find adequate annotators. We then conduct

pilot annotations, where we deliberately introduce errors in the reference machine

translation to verify if the workers under our requirement settings are able to correct

them.

We provide the English sentence paired with the original machine-translated

sentence for the actual HIT. The English sentence is highlighted with its entity spans,

and we instruct the workers to correct the translation while ensuring that the entities

are correctly translated. After confirming the translation, workers are then asked to

highlight the corresponding entities in the target language (in green). For negative

sentences without entity spans, the longest noun phrases were highlighted instead

to prevent workers from simply copying the reference translations. We pay $0.35 per

HIT for positive sentences and $0.25 for negative sentences (since most sentences in

negative examples have only one highlighted entity/noun phrase and it is consid-

ered an easier task).

Two MTurk workers were asked for the translation task, and an additional worker

was asked to select the better translation, for which $0.10 per HIT was paid.

1Preliminary results where we include the USA for the mWEBIE annotation task indicate that
MTurk workers with limited or no knowledge of the target language (or English) still accept the job,
despite our specific requirement for proficiency in both English and the target language.

2For the mapping between country codes and countries, please refer to https://docs.aws.amazon.
com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_LocaleDataStructureArticle.html.

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_LocaleDataStructureArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_LocaleDataStructureArticle.html
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FIGURE B.3: MTurk HIT user interface for correcting the machine-translated
text.

FIGURE B.4: MTurk HIT user interface for entity labelling in the target language.
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Appendix C

Additional Results and Analysis

for UMAE

C.1 Detailed Explanation Scores

For explanation generation on the VQA tasks, we evaluate the performance of beam

search with the size of 5, top-k sampling with k from {50, 100, 200, ..., 1000}, and Nu-

cleus and Typical (Meister et al., 2023) sampling, both with p from {0.1, 0.2, ..., 0.9}.

We show the details of the NLG scores using different decoding strategies for expla-

nations generated from QA→E in Table C.1, and Q→AE in Table C.2.

DATASET DECODING
e-ViL N-GRAM SCORES LEARNT

SE B1 B2 B3 B4 R-L MET. CIDEr SPICE BERTSC.

A-OKVQA

BEAM SEARCH 44.71 52.01 36.69 26.72 19.88 40.39 22.06 68.48 20.94 86.05
TOP-K (k = 100) 44.34 52.56 37.06 27.06 19.72 44.45 21.58 73.44 19.38 86.27
NUCLEUS (p = 0.4) 50.82 58.92 44.66 35.06 27.35 52.56 24.83 101.09 23.33 88.21
TYPICAL (p = 0.6) 47.27 54.18 39.39 29.82 22.18 47.78 22.79 84.43 21.47 86.95

VCR

BEAM SEARCH 40.23 26.41 20.15 15.95 12.47 29.13 16.82 49.72 27.70 81.84
TOP-K (k = 50) 33.19 20.98 14.89 11.18 8.33 23.65 13.72 32.73 21.99 80.31
NUCLEUS (p = 0.1) 40.27 31.42 22.95 17.62 13.44 29.53 17.54 47.33 26.45 81.91
TYPICAL (p = 0.4) 35.12 23.42 16.88 12.83 9.64 25.36 14.70 35.85 23.32 80.70

VQA-X

BEAM SEARCH 35.88 37.84 24.91 16.67 10.97 31.32 17.90 38.23 16.23 84.39
TOP-K (k = 50) 33.28 38.35 23.11 14.21 8.45 29.15 17.05 32.89 15.26 83.41
NUCLEUS (p = 0.1) 40.67 47.56 31.44 21.47 14.63 35.12 20.29 50.35 19.13 85.40
TYPICAL (p = 0.5) 36.31 40.85 25.57 16.82 11.14 31.08 18.15 39.71 16.62 83.93

TABLE C.1: Explanation scores with automatic NLG for generated explanations
(QA→E) from UMAEALL model with different decoding strategies. B1 B4 corre-
spond to BLEU1 BLEU4, R-L means ROUGE-L and MET. means METEOR. The last
two rows (with blue shadow) indicate out-of-domain performance.
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DATASET DECODING
e-ViL N-GRAM SCORES LEARNT

SE B1 B2 B3 B4 R-L MET. CIDEr SPICE BERTSC.

A-OKVQA
BEAM SEARCH 47.01 54.75 41.39 32.08 24.25 49.75 22.54 86.28 20.68 87.39
NUCLEUS (p = 0.5) 46.72 55.53 41.63 31.91 23.67 49.16 22.48 82.37 20.67 87.18

VCR
BEAM SEARCH 37.02 25.00 18.90 14.87 11.54 27.07 15.66 38.77 25.03 80.68
NUCLEUS (p = 0.1) 35.10 27.41 19.36 14.50 10.73 26.18 15.21 34.99 21.88 80.52

VQA-X
BEAM SEARCH 38.13 39.91 26.30 17.99 12.46 31.69 19.11 42.10 18.15 84.95
NUCLEUS (p = 0.1) 39.67 44.92 28.88 19.04 12.55 33.08 20.07 44.28 19.19 85.21

TABLE C.2: Explanation scores with automatic NLG for generated explanations
from Q→AE with UMAEALL model. B1 B4 correspond to BLEU1 BLEU4, R-L means
ROUGE-L and MET. means METEOR. The last two rows (with blue shadow) indi-
cate out-of-domain performance.

C.2 Examples of Generated Explanations

Examples of the explanations generated with beam search and Nucleus sampling

for A-OKVQA are shown in Figure C.2, and VCR in Figure C.1.

In general, Nucleus sampling achieves the best performance across the datasets.

However, top-k and Typical sampling do not show improvement over beam search.

C.3 Examples of Issues in the Datasets

We show some of the issues in the datasets described in subsection 6.6.2.

Figure C.3 shows examples from VCR that require an understanding of the movie

plot to generate answers. Figure C.4 shows examples from OK-VQA where ques-

tions and answers are subjective or ambiguous. Figure C.5 shows examples from

A-OKVQA and VQA-X that either contain wrong answers, questions that do not

need visual input or typos which severely impact the model generation (“house”

should be “horse”).
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Question: What event are Person2 and Person8
walking away from?
Answer: A wedding reception.

Ground Truth Explanation: 
Everyone is really dressed up, and the lights give
the area a fairy tale ambiance which is typical of
a wedding. 

Explanation Generation:
Beam: Person2 is wearing a pink dress and
Person8 is wearing a suit. 
Nucleus: Person2 is wearing a pink dress and
Person8 is holding hands with her. 

Answer + Explanation Generation:
Beam: Person2 and Person8 are walking away
from a wedding, this is because Person2 and
Person8 are holding hands and wearing formal
clothing. 
Nucleus: They are walking away from a wedding,
this is because There are balloons and strings of
lights above them.

Question: Does Person1 drink alcohol? 
Answer: Yes Person1 drinks alcohol.

Ground Truth Explanation:
Person1 has a full beer in front of him.

Question: How does Person2 feel about this
performance? 
Answer: Person2 is slightly impressed by what
she sees.

Ground Truth Explanation:
Person2 has a slight smirk on her face.

Explanation Generation:
Beam: Person2 has her arms crossed and a slight
frown on her face. 
Nucleus: Person2 has her arms crossed and a
slight frown on her face, which suggest she is not
impressed. 

Answer + Explanation Generation:
Beam: Person2 does not like what she is hearing,
this is because Person2 has her arms crossed and
a frown on her face. 
Nucleus: Person2 is not impressed by it, this is
because Person2 is looking down and frowning,
and her arms are crossed, which is a sign of
disapproval.

Explanation Generation:
Beam: Person1 has a cup of beer in front of him. 
Nucleus: Person1 is drinking from Cup2. 

Answer + Explanation Generation:
Beam: Yes, Person1 drinks alcohol, this is
because Person1 has a cup of beer in front of
him. 
Nucleus: Yes, he does drink, this is because He
has Cup2 in front of him and it is full of beer.

Question: What is Person2 doing?
Answer: Telling Person1 something important.

Ground Truth Explanation: 
Person2 is focused on Person1 and waving their
hands to emphasize what they're saying. 

Explanation Generation:
Beam: Person2 is sitting across from Person1 who
is on the phone.
Nucleus: Person2 is sitting in a chair and is
looking at Person1 who is on the phone. 

Answer + Explanation Generation:
Beam: Person2 is listening to Person1 talk on the
phone, this is because Person2 is sitting in a
chair facing Person1 who is on the phone. 
Nucleus: Person2 is telling Person1 a story, this is
because Person2 is sitting in a chair and Person1
is on the phone.

Question: Is Dog2 a living creature? 
Answer: No, Dog2 is a stuffed animal.

Ground Truth Explanation:
Dog2 is immobile, and wouldn't be still with so
much prey around. Dog2 is also obviously a toy,
based on the coloration.

Question: Why does Person1 have a pointy hood
on his cloak? 
Answer: Person1 is a wizard.

Ground Truth Explanation:
Pointy hoods are usually used to depict a wizard
character.

Explanation Generation:
Beam: Wizards often wear pointy hoods. 
Nucleus: Wizards often wear pointy hoods and
robes. 

Answer + Explanation Generation:
Beam: Person1 is trying to hide his identity, this
is because Person1 is standing in front of
Person2 and Person3, and Person4 who are all
looking at him. 
Nucleus: Person1 is a wizard, this is because
Wizards often wear pointy hoods and robes.

Explanation Generation:
Beam: Teddybear1 and Teddybear2, and
Teddybear5 are stuffed animals, Dog2 is a
stuffed animal. 
Nucleus: Dog2 is a stuffed animal, and stuffed
animals are not alive. 

Answer + Explanation Generation:
Beam: No, Dog2 is not a living creature, this is
because Dog2 is a stuffed animal. 
Nucleus: No, Dog2 is not a living creature, this is
because Dog2 is a stuffed animal, stuffed
animals are not alive.

Person2

Person2
Person8

Person1 Person1

Person1

Person2

FIGURE C.1: Examples of generated answers and explanations generation for
VCR.
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Question: Why is the woman wearing
goggles?
Answer: protection 

Ground Truth Explanations: 
0) The woman is wearing goggles for
protections.
1) The snow goggles this woman
wears protects her eyes from the sun
and other bits of debris she might
encounter skiing downhill. 
1) There is a lot of sun glare and snow
flying up when skiing.

Explanation Generation:
Beam: The woman needs protection. 
Nucleus: The woman is skiing and
needs protection. 

Answer + Explanation Generation:
Beam: protection, this is because The
woman wants to protect her eyes. 
Nucleus: protection, this is because The
woman is wearing goggles to protect
her eyes from the sun.

Question: What time of day is it likely
right now? 
Answer: morning

Ground Truth Explanations:
0) It is sunny out. there are fruit on
the table, so it likely is time for
breakfast. 
1) The time is morning. 
2) You can see the light shining in
through the window and door.

Explanation Generation:
Beam: The people are using umbrellas
because it's raining. 
Nucleus: The people are using
umbrellas to keep from getting wet. 

Answer + Explanation Generation:
Beam: rain, this is because The people
are using umbrellas because it is
raining. 
Nucleus: it's raining, this is because The
people are using umbrellas to stay dry.

Question: What has caused the
elephants to turn brown? 
Answer: dirt

Ground Truth Explanations:
0) These elephants have been rolling
around in the mud. 
1) The elephants are covering
themselves in the naturally occurring
brown substance that is near the
water. 
2) The elephants are dirty.

Question: What are the umbrellas
placed in the sand to block? 
Answer: sun

Ground Truth Explanations:
0) They are on a beach on a sunny
day, and the umbrellas give cool and
shade from the sun. 
1) The umbrellas block sun. 
2) Umbrellas provide shade.

Explanation Generation:
Beam: The elephants are in mud. 
Nucleus: The elephants are standing in
dirt. 

Answer + Explanation Generation:
Beam: mud, this is because The
elephants are muddy. 
Nucleus: mud, this is because The
elephants are in the mud.

Explanation Generation:
Beam: The umbrellas block the sun. 
Nucleus: The umbrellas are blocking the
sun. 

Answer + Explanation Generation:
Beam: sun, this is because The
umbrellas block the sun. 
Nucleus: sun, this is because The
umbrellas are placed in the sand to
block the sun.

Ground Truth Explanations: 
0) There is rain and the people are
being sheltered by umbrellas. 
1) The people want rain protection. 
2) They are protecting themselves
from getting wet from the rain.

Question: Why are the people lining up? 
Answer: boarding

Ground Truth Explanations:
0) The people are near a plane as if
they want to get on. 
1) The people are boarding. 
2) The people are lined up facing the
plane. people line up facing
transportation vehicles when they are
preparing to board.

Explanation Generation:
Beam: The people are lined up to board
a plane. 
Nucleus: The people are lined up to
board a plane. 

Answer + Explanation Generation:
Beam: board plane, this is because The
people are lined up to board the plane. 
Nucleus: board plane, this is because
The people are boarding a plane.

Question: What is the white appliance
the people are looking in being used to
store? 
Answer: food

Ground Truth Explanations:
0) The appliance is a fridge. 
1) Perishable food is kept in this little
refrigerator, which is too small for
many people, but just right for one or
two. 
2) There are multiple edible items in
the fridge already.

Question: The layout of buildings most
resembles which period? 
 Answer: historical european

Ground Truth Explanations:
0) The cars are on the left side of the
road, so it is either the united kingdom
or ireland. 
1) The high pitched roofs and the
stone architecture is from then 
2) The layout is from the olden days.

Explanation Generation:
Beam: The appliance is a refrigerator. 
Nucleus: The appliance is a fridge. 

Answer + Explanation Generation:
Beam: food, this is because The
appliance is a fridge. 
Nucleus: food, this is because The
appliance is a fridge.

Explanation Generation:
Beam: The buildings are old. 
Nucleus: The buildings are from the late
nineteenth century. 

Answer + Explanation Generation:
Beam: medieval, this is because The
buildings look like medieval buildings. 
Nucleus: medieval, is because The
buildings look like medieval buildings.

Question: Why are the people using
umbrellas?
Answer: it's raining 

Explanation Generation:
Beam: The people are using umbrellas
because it's raining. 
Nucleus: The people are using
umbrellas to keep from getting wet. 

Answer + Explanation Generation:
Beam: morning, this is because The sun
is shining through the window. 
Nucleus: morning, this is because There
is light coming through the window.

FIGURE C.2: Examples of generated answers and explanations for A-OKVQA.
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Generation: Person3 is on a boat. 

Question: Why is Person 3 wearing a life jacket?

Answer Options: 
0)      The boat has a leak, and Person3 is scared of
drowning. 
1) The boat is sinking and the life jacket will hep them
float. 
2) Person3 is piloting the ship. 
3) Person9 is wearing a life vest in case the ship sinks.

Question: Why did Person1 drop Person3? 
Answer: Person1 dropped Person 3 by accident.

Explanation Options: 
0)       Person1 can upon Person3 in the woods, and kissed her; she awoke,
and he dropped her off the bier. 
1) Person2 is Person3's mother. Person3 is an infant and can't walk on his own. 
2) Person3 is stuck in the toilet as Person1 is pulling her out. 
3) Person3 is bent over and appears unsteady. Person1 looks concerned for her.

Generation: Person1 is kneeling over the body of Person3. 

Person1

Person3

Person3

FIGURE C.3: Questions that require knowledge of the movie plots to generate
the answers from VCR.

Question: Is this legal or illegal?

Ground Truth Answers: 
legal (6), illegal (4)

Generation: legal

Question: In which country are the
transportation regulations loose
enough to allow vehicles like these?
Ground Truth Answers: 
india (8), china (2)

Generation: england

Question: What nationality is this food?

Ground Truth Answers: 
american (4), mediteranian (2),  
greek (2), asian (2) 
 
Generation: italian

Question: How long does it take to cook?

Ground Truth Answers: 
45 minutes (4), 20 minutes (2), 25
minutes (2), minute (2)

Generation: 1 hour

FIGURE C.4: Examples of subjective questions from OK-VQA.

Question: How long does the average
giraffe live? 
Answer: 20-30 years

Ground Truth Explanations:
0) Giraffes can live a long time. 
1) 20-30 years is the lifespan. 
2) I looked up this answer on the
internet since there is no way to tell
the answer from the picture.

Question: What country headquarters this
plane company? 
Answer: usa

Ground Truth Explanations:
0) The headquarters are the us. 
1) The company name is virgin atlantic
that was founded and has headquarters in
london england. 
2) The airplane has virgin atlantic livery.
this company is based in england. 

Question: What is the brown house
doing? 
Answer: walking

Ground Truth Explanations:
0) it has two legs up and two down
and it is moving. 
1) only two feet are touching the
ground. 
2) he is moving slowly on a mountain
range.

FIGURE C.5: Issues in the datasets that severely impact the model generation:
wrong answers (left, from A-OKVQA), questions that do not need visual input
to answer (middle, from A-OKVQA), and typo (right, from VQA-X).
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Appendix D

Additional Results for

LLM-powered Data Augmentation

This section includes the following additional results: Table D.1, Table D.2, and Ta-

ble D.3 show generated data in English with different LLMs on XCOPA, XWinograd,

and XStoryCloze. Table D.4 and Table D.5 show the full result on XCOPA with Chat-

GPT and GPT-4.

Fine-tuned Train Data LLM AVG EN ET HT ID IT QU SW TA TH TR VI ZH

mBERT

GEN

Dolly-v2 54.0 63.4 52.0 52.2 54.0 53.8 47.6 48.6 53.4 53.4 52.8 50.4 58.2
StableVicuna 53.5 62.4 51.6 49.2 55.8 55.8 50.0 50.2 50.2 52.6 51.0 50.4 56.0
ChatGPT 56.0 64.8 54.8 52.6 58.0 57.4 49.8 48.4 55.6 52.8 53.2 53.0 59.0
GPT-4 58.2 69.2 59.2 54.0 60.6 59.2 50.8 48.2 55.0 48.2 53.8 57.6 61.0

GEN+ORI

Dolly-v2 54.4 59.8 52.6 53.2 53.0 56.4 53.8 52.4 50.4 54.8 49.8 52.6 58.8
StableVicuna 55.6 65.2 53.4 50.4 59.0 60.0 51.6 50.4 49.4 52.0 52.4 54.0 58.2
ChatGPT 54.6 59.6 56.4 53.6 53.8 51.4 51.4 51.6 50.4 52.6 54.0 55.0 59.2
GPT-4 59.3 72.6 58.8 53.0 62.0 61.0 53.0 50.0 54.0 48.2 52.0 57.6 64.6

XLMR-Base

GEN

Dolly-v2 59.0 64.4 58.8 52.8 60.8 61.0 50.8 55.6 60.4 58.0 57.2 58.6 59.0
StableVicuna 58.5 60.4 59.4 53.6 60.8 56.8 49.2 56.0 61.2 60.4 54.8 59.6 58.6
ChatGPT 58.8 62.4 56.4 52.4 61.4 58.6 52.2 52.0 63.4 61.2 56.4 59.6 62.8
GPT-4 63.6 67.0 62.4 52.0 68.6 62.6 51.8 58.6 65.4 64.8 63.2 66.6 69.6

GEN+ORI

Dolly-v2 58.7 65.6 57.6 52.2 60.8 58.4 52.4 58.2 57.4 58.0 58.4 58.0 59.8
StableVicuna 61.1 65.0 62.4 49.4 64.2 62.4 46.2 60.4 59.6 58.0 58.0 63.0 63.4
ChatGPT 59.8 63.8 61.6 51.6 62.6 59.8 51.2 51.6 60.4 61.6 61.8 64.8 62.0
GPT-4 63.6 69.6 63.8 51.2 67.2 62.4 52.6 58.4 63.8 66.0 64.2 66.8 69.4

XLMR-Large

GEN

Dolly-v2 59.6 62.4 58.6 49.6 64.8 59.2 50.6 56.8 60.8 58.8 57.0 61.0 63.0
StableVicuna 65.7 71.4 66.2 50.4 71.4 70.2 50.0 60.0 64.0 63.6 68.0 68.2 69.8
ChatGPT 65.2 71.2 64.6 51.6 70.8 66.6 51.0 58.8 66.0 68.2 69.0 68.8 68.8
GPT-4 73.6 83.2 71.2 52.0 81.2 78.2 51.0 62.2 76.6 77.4 75.0 78.4 79.0

GEN+ORI

Dolly-v2 66.4 74.2 62.8 53.0 72.0 70.4 46.2 61.6 65.6 66.2 69.6 67.6 70.6
StableVicuna 69.9 76.0 69.8 51.2 75.0 74.2 51.2 64.4 70.2 71.6 72.2 72.6 75.4
ChatGPT 69.5 76.4 69.8 48.2 76.0 72.8 50.8 63.4 67.8 70.8 70.2 73.4 77.8
GPT-4 73.7 84.6 70.4 50.0 80.8 80.2 51.8 65.8 72.8 76.0 74.8 78.4 80.4

TABLE D.1: Accuracy on XCOPA with different LLM-generated English data.
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Fine-tuned Training data LLM AVG EN FR JA PT RU ZH

mBERT

GEN

Dolly-v2 56.47 71.24 53.01 52.45 53.23 54.92 53.97
StableVicuna 53.73 54.94 56.63 50.26 50.57 52.06 57.94
ChatGPT 56.00 54.94 54.22 54.01 52.09 55.87 64.88
GPT-4 54.90 56.22 56.63 52.55 51.71 52.38 59.92

GEN+ORI

Dolly-v2 59.32 71.24 57.83 53.81 56.65 59.05 57.34
StableVicuna 58.46 57.94 63.86 53.81 57.41 58.41 59.33
ChatGPT 58.26 56.65 66.27 53.60 56.27 60.00 56.75
GPT-4 57.48 53.65 62.65 54.43 55.89 57.14 61.11

XLMR-Base

GEN

Dolly-v2 59.63 71.24 57.83 55.79 57.03 57.78 58.13
StableVicuna 58.95 60.09 55.42 57.35 52.47 58.73 69.64
ChatGPT 62.69 69.10 60.24 61.42 57.03 61.27 67.06
GPT-4 63.32 69.10 61.45 61.52 56.65 60.95 70.24

GEN+ORI

Dolly-v2 66.33 75.54 63.86 65.80 64.26 62.86 65.67
StableVicuna 65.97 64.38 66.27 67.15 63.88 65.71 68.45
ChatGPT 65.94 65.24 60.24 68.93 70.72 62.86 67.66

GPT-4 66.88 68.24 67.47 66.94 63.88 63.49 71.23

XLMR-Large

GEN

Dolly-v2 76.86 87.55 67.47 81.02 76.43 74.29 74.40
StableVicuna 68.22 74.25 63.86 68.20 66.16 63.81 73.02
ChatGPT 73.20 81.97 66.27 73.10 66.92 72.38 78.57
GPT-4 76.37 81.55 74.70 75.91 71.86 75.24 78.97

GEN+ORI

Dolly-v2 83.10 90.56 79.52 85.19 84.03 80.95 78.37
StableVicuna 82.02 83.26 80.72 83.84 86.31 82.22 75.79
ChatGPT 83.22 85.84 80.72 87.38 85.93 80.95 78.50
GPT-4 83.52 85.41 81.93 85.92 86.69 80.63 80.56

TABLE D.2: Accuracy on XWinograd with different LLM-generated English
data.

Fine-tuned Training data LLM AVG EN RU ZH ES AR HI ID TE SW EU MY

Dolly-v2 68.7 78.8 71.3 73.6 74.2 67.4 66.9 69.0 65.0 60.9 66.8 62.0
StableVicuna 64.6 71.4 66.8 68.8 68.1 64.3 63.6 66.1 61.2 58.6 63.6 58.4
ChatGPT 64.3 69.7 66.4 68.1 68.0 64.6 64.5 66.6 59.8 59.2 62.3 58.4

GEN

GPT-4 68.0 75.5 70.8 73.3 70.4 67.6 68.2 69.6 63.1 62.3 65.4 62.2

Dolly-v2 68.1 75.7 71.2 72.4 73.2 66.4 67.1 68.9 64.5 61.4 67.1 61.0
StableVicuna 67.3 77.0 71.0 70.2 71.4 67.2 66.5 68.4 62.4 60.5 64.3 61.4
ChatGPT 68.3 76.4 68.5 72.9 73.0 66.3 68.6 71.1 62.0 62.0 67.4 63.4

mBERT

GEN+ORI

GPT-4 69.8 79.5 73.1 75.3 73.4 68.1 69.8 71.9 64.1 62.0 68.9 61.6

Dolly-v2 75.8 81.4 79.2 80.3 78.0 73.6 74.7 80.7 73.0 68.8 72.2 71.7
StableVicuna 69.6 72.3 71.1 71.5 70.4 68.3 70.4 72.1 68.4 65.7 68.0 67.7
ChatGPT 67.4 69.7 68.9 68.5 68.7 66.1 68.2 68.7 67.0 63.7 65.6 66.6

GEN

GPT-4 74.6 78.2 78.0 78.1 77.0 73.5 75.7 77.6 71.7 68.4 73.6 69.2

Dolly-v2 76.5 81.5 80.0 80.5 79.4 75.1 75.0 79.6 74.5 71.5 72.3 72.6
StableVicuna 74.2 79.2 77.4 77.8 76.4 74.0 74.5 78.2 70.2 67.6 71.7 69.6
ChatGPT 74.5 78.0 76.6 78.8 76.2 72.9 73.9 78.9 71.5 69.6 72.3 71.0

XLMR-Base

GEN+ORI

GPT-4 79.3 85.4 83.2 82.6 83.0 78.0 79.9 82.7 75.9 72.9 74.9 74.3

Dolly-v2 84.8 87.4 87.3 87.8 86.6 83.0 84.4 87.1 84.1 81.0 82.9 81.4
StableVicuna 74.6 76.7 75.9 77.4 76.2 72.9 74.5 76.2 74.3 70.8 73.5 72.5
ChatGPT 77.3 78.6 79.9 78.0 77.9 75.8 77.4 78.0 76.4 73.5 77.1 77.7

GEN

GPT-4 86.0 88.5 88.2 88.2 88.0 84.9 85.7 87.8 83.7 81.3 85.6 84.3

Dolly-v2 86.4 89.2 87.2 89.5 87.1 85.2 86.7 87.7 85.0 83.0 85.7 83.8
StableVicuna 84.8 88.4 87.6 87.8 86.6 82.9 83.3 87.4 83.7 81.3 83.7 80.0
ChatGPT 85.8 88.5 88.0 88.3 87.3 83.7 85.9 87.2 83.7 81.6 85.4 83.8

XLMR-Large

GEN+ORI

GPT-4 88.4 92.3 91.5 91.5 90.5 86.4 88.4 91.1 84.8 83.1 87.4 85.2

TABLE D.3: Accuracy on XStoryCloze with different LLM-generated English
data.
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Model Training Data |Data| AVG EN ET HT ID IT QU SW TA TH TR VI ZH

ORI (BASELINE) 400 47.2 53.8 44.2 48.6 47.2 46.2 50.6 45.4 48.4 49.8 49.8 43.6 47.4
GENEN 3.7k 56.0 64.8 54.8 52.6 58.0 57.4 49.8 48.4 55.6 52.8 53.2 53.0 59.0
GENEN + ORI 4.1k 54.6 59.6 56.4 53.6 53.8 51.4 51.4 51.6 50.4 52.6 54.0 55.0 59.2
GENEN + ORI (TLV) 4.1k 57.6 68.0 55.4 54.0 61.2 59.8 51.8 51.2 55.8 54.4 52.2 53.4 59.2
GENEN 28.6k 57.2 66.2 55.8 50.8 58.6 58.2 53.2 51.2 57.2 53.2 52.0 56.0 61.0
GENEN + ORI 29k 57.0 66.6 55.4 51.4 59.2 58.6 52.4 50.8 53.6 53.2 50.0 54.8 62.8
GENEN + ORI (TLV) 29k 57.0 66.6 55.4 51.4 59.2 58.6 52.4 50.8 53.6 53.2 50.0 54.8 62.8
GENXX 3.6k/lang 57.5 64.8 57.8 57.4 58.0 60.2 54.6 51.4 53.0 – – 53.0 62.0
GENXX + ORI 4k 56.8 59.6 58.8 54.6 56.2 61.2 53.6 54.6 53.6 – – 52.0 60.2
GENTrans

EN + ORI 4k 58.7 59.6 59.8 59.8 62.8 61.0 – 52.6 56.8 53.4 56.2 58.2 59.4

mBERT

GENTrans
EN + ORI 29k/lang 60.6 66.6 61.8 57.8 60.8 62.2 – 53.2 58.4 53.2 63.0 60.6 63.8

ORI (BASELINE) 400 55.6 57.6 54.6 50.6 59.6 54.8 46.0 55.0 53.4 56.2 55.2 54.8 59.6
GENEN 3.7k 58.8 62.4 56.4 52.4 61.4 58.6 52.2 52.0 63.4 61.2 56.4 59.6 62.8
GENEN + ORI 4.1k 59.8 63.8 61.6 51.6 62.6 59.8 51.2 51.6 60.4 61.6 61.8 64.8 62.0
GENEN + ORI (TLV) 4.1k 60.7 63.2 61.6 51.4 64.8 61.2 51.2 53.6 62.6 63.0 58.2 61.0 66.6
GENEN 28.6k 60.8 66.4 57.2 56.0 66.4 61.2 53.0 53.8 60.0 61.6 56.6 61.4 64.6
GENEN + ORI 29k 62.1 64.6 61.8 50.6 66.8 63.6 48.0 55.6 65.8 63.6 57.2 63.2 66.8
GENEN + ORI (TLV) 29k 60.9 66.4 61.8 49.8 66.2 59.8 54.6 53.4 62.4 63.8 58.2 62.8 65.8
GENXX 3.6k/lang 58.8 62.4 57.0 55.6 61.4 59.0 55.6 54.4 56.8 – – 60.6 62.0
GENXX + ORI 4k 59.9 63.8 60.6 55.0 64.6 59.6 52.6 54.6 56.4 – – 59.6 64.8
GENTrans

EN + ORI 4k 61.1 63.8 60.0 58.0 65.0 60.8 – 53.8 60.2 66.2 56.6 62.6 66.0

XLMR-Base

GENTrans
EN + ORI 29k/lang 62.2 64.6 63.2 57.2 64.8 61.2 – 55.0 61.2 59.2 59.5 64.2 68.4

ORI (BASELINE) 400 64.4 71.4 62.8 51.4 69.0 65.8 52.0 60.6 62.0 64.0 61.2 69.4 66.8
GENEN 3.7k 65.2 71.2 64.6 51.6 70.8 66.6 51.0 58.8 66.0 68.2 69.0 68.8 68.8
GENEN + ORI 4.1k 69.5 76.4 69.8 48.2 76.0 72.8 50.8 63.4 67.8 70.8 70.2 73.4 77.8
GENEN + ORI (TLV) 4.1k 71.9 80.6 71.6 50.8 78.6 77.2 51.8 63.0 69.2 71.2 72.8 77.2 78.8
GENEN 28.6k 71.8 80.6 74.4 51.0 78.4 75.2 51.2 63.4 69.8 70.6 69.8 75.6 77.4
GENEN + ORI 29k 72.4 81.0 73.8 54.4 80.2 75.2 48.8 61.4 70.4 73.8 70.4 75.6 79.8
GENEN + ORI (TLV) 29k 72.4 81.0 73.8 54.4 80.2 75.2 48.8 61.0 70.4 73.8 70.4 75.6 79.8
GENXX 3.6k/lang 63.4 71.2 62.6 54.2 71.0 65.8 49.4 53.8 56.4 – – 64.0 71.6
GENXX + ORI 4k 65.2 76.4 62.4 55.2 75.0 62.2 54.0 58.2 55.4 – – 66.2 76.2
GENTrans

EN + ORI 4k 67.0 76.4 60.0 59.6 66.2 66.6 – 59.0 64.8 71.2 65.2 74.8 75.6

XLMR-Large

GENTrans
EN + ORI 29k/lang 71.5 81.0 71.8 57.2 79.8 74.4 – 54.8 71.4 72.6 70.0 77.2 75.6

TABLE D.4: Full results on XCOPA (with ChatGPT-generated data). +TLV cor-
responds to including the original validation set in all Target Languages in the
Validation set. Rows are sorted by the number of instances used in training.
AVG shows average results for languages that are available in all settings (excl.
QU, TH, TR).
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Model Training Data AVG EN ET HT ID IT QU SW TA TH TR VI ZH

mBERT

ORI 47.2 53.8 44.2 48.6 47.2 46.2 50.6 45.4 48.4 49.8 49.8 43.6 47.4
GENEN 58.2 69.2 59.2 54.0 60.6 59.2 50.8 48.2 55.0 48.2 53.8 57.6 61.0
GENEN + ORI 59.3 72.6 58.8 53.0 62.0 61.0 53.0 50.0 54.0 48.2 52.0 57.6 64.6
GENXX 60.2 69.2 59.4 56.2 60.2 63.8 54.4 55.2 54.0 – – 61.2 62.2
GENXX + ORI 61.8 72.6 61.2 58.2 62.2 66.4 54.4 57.4 53.4 – – 63.0 61.8
GENTrans

EN 61.4 69.2 59.2 56.8 65.4 65.2 – 53.4 56.8 52.6 59.6 61.8 65.0
GENTrans

EN + ORI 62.6 72.6 58.6 55.2 65.6 65.4 – 53.8 62.6 53.2 58.8 64.6 65.4

XLMR-Base

ORI 55.6 57.6 54.6 50.6 59.6 54.8 46.0 55.0 53.4 56.2 55.2 54.8 59.6
GENEN 63.6 67.0 62.4 52.0 68.6 62.6 51.8 58.6 65.4 64.8 63.2 66.6 69.6
GENEN + ORI 63.6 69.6 63.8 51.2 67.2 62.4 52.6 58.4 63.8 66.0 64.2 66.8 69.4
GENXX 63.2 67.0 60.8 56.4 68.6 62.4 57.4 58.2 60.2 – – 64.6 70.4
GENXX + ORI 64.0 69.6 62.2 56.2 68.6 63.8 56.8 57.8 61.2 – – 66.8 70.0
GENTrans

EN 62.5 67.0 60.0 55.6 66.0 62.4 – 58.0 60.4 64.4 64.6 64.0 68.8
GENTrans

EN + ORI 63.9 69.6 61.6 56.6 68.4 65.2 – 58.2 60.2 68.0 62.6 66.0 69.6

XLMR-Large

ORI 64.4 71.4 62.8 51.4 69.0 65.8 52.0 60.6 62.0 64.0 61.2 69.4 66.8
GENEN 73.6 83.2 71.2 52.0 81.2 78.2 51.0 62.2 76.6 77.4 75.0 78.4 79.0
GENEN + ORI 73.7 84.6 70.4 50.0 80.8 80.2 51.8 65.8 72.8 76.0 74.8 78.4 80.4
GENXX 72.8 83.2 75.2 55.2 78.4 76.0 52.4 63.0 68.2 – – 77.8 78.6
GENXX + ORI 74.6 84.6 77.0 56.0 82.2 77.0 56.0 65.0 73.8 – – 76.2 80.0
GENTrans

EN 71.0 83.2 72.4 55.6 79.4 78.2 – 60.6 67.8 77.8 72.6 64.0 77.4
GENTrans

EN + ORI 74.1 84.6 74.2 57.2 82.0 77.4 – 62.2 75.0 75.2 72.8 74.4 79.6

TABLE D.5: Accuracy on XCOPA. GENEN and GENXX represents 3.7K and 3.6K
data in English and target languages generated by GPT-4. AVG shows average
results for languages that are available in all settings (excl. QU, TH, TR).
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Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias

Gallé, et al. (2022). Bloom: A 176b-Parameter Open-Access Multilingual Language

Model. In: ArXiv.

Tal Schuster, Roei Schuster, Darsh J. Shah, and Regina Barzilay (June 2020). The Lim-

itations of Stylometry for Detecting Machine-Generated Fake News. In: Computational

Linguistics 46.2, pp. 499–510.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh

Mottaghi (2022). A-OKVQA: A Benchmark for Visual Question Answering Using

World Knowledge. In: European Conference on Computer Vision, pp. 146–162.
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