

City, University of London Institutional Repository

Citation: Peeroo, K., Popov, P. T., Stankovic, V. & Weyde, T. (2024). Machine Learning for

Performance Prediction of Data Distribution Service (DDS). Paper presented at the
European Dependable Computing Conference, 8-11 Apr 2024, Leuven, Belgium. doi:
10.1109/edcc61798.2024.00032

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/32652/

Link to published version: https://doi.org/10.1109/edcc61798.2024.00032

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Machine Learning for Performance Prediction of
Data Distribution Service (DDS)

Kaleem Peeroo
City, University of London

London, UK
Kaleem.Peeroo@city.ac.uk

Peter Popov
City, University of London

London, UK
P.T.Popov@city.ac.uk

Vladimir Stankovic
City, University of London

London, UK
Vladimir.Stankovic.1@city.ac.uk

Tillman Weyde
City, University of London

London, UK
T.E.Weyde@city.ac.uk

Abstract—Networking middleware following the Data Distri-
bution Service (DDS) specification is used in real-time mission-
critical systems such as autonomous vehicles, energy manage-
ment systems, and air traffic control. DDS follows the publish-
subscribe communication pattern and offers a set of Quality of
Service (QoS) parameters, allowing the users to align the data
communication to the needs of the application.

Configuring DDS to achieve the required performance is a
difficult task, given the large space of QoS parameter values.
Experimental evaluation of performance levels with a real DDS
system for different QoS configurations can be complex and
require substantial time and resources.

We propose the use of Machine Learning (ML) models to pre-
dict the performance metric distribution of DDS under different
configurations. This is done by using performance measurements
of some configurations to train an ML model. The trained model
can then be used to predict the performance distribution of
DDS under other system configurations. Since the prediction is
computationally inexpensive, we can predict the performance of
many different configurations to find a suitable one for given
requirements. To the best of our knowledge, this is the first time
this approach has been applied to DDS performance evaluation.

We used random forests (RF) as an ML method and linear
regression (LR) as a baseline. We selected thirteen performance
metrics, and for each, we trained an RF model and tuned
its hyperparameters. We tested the final models on system
configurations unseen during training, both for parameter values
within the training range (interpolation) and outside the training
range (extrapolation).

The RF models show better predictive accuracy than the
LR baseline. This paper focuses on the models for throughput
and latency - the two well-established performance metrics. The
models demonstrate coefficients of determination greater than 0.9
and 0.8, respectively, for different unseen system configurations
in interpolation, but work less well in extrapolation cases.

We conclude that the proposed ML models offer a way of
predicting the performance distribution of a range of config-
urations when interpolation is used. Since model prediction is
computationally much cheaper than relying on experimentation,
it is a useful tool to guide DDS system parametrisation and
design.

Index Terms—Data Distribution Service, Machine Learning,
Linear Regression, Random Forests, Performance Prediction

I. INTRODUCTION

A. Data Distribution Service and its Configuration Parameters
The Data Distribution Service (DDS) [1] specification
addresses networking middleware employed in real-time,
mission-critical systems such as autonomous vehicles and air
traffic control. DDS follows the publish-subscribe paradigm,

where publishers distribute data and subscribers receive it,
with data organised into topics. The DDS specification is
maintained by the Object Management Group (OMG) and
delineates 22 Quality-of-Service (QoS) parameters for com-
munication. There are also non-QoS system parameters, such
as message data length, the number of publishers/subscribers,
and multicast usage.

Performance measures like latency or throughput are essen-
tial for determining if real-time requirements are met for DDS
implementations. Different combinations of configuration pa-
rameters, including both QoS and non-QoS, can significantly
impact performance. However, the selection of an ideal setup
is challenging due to the millions of possible configurations.
Conducting experiments for each possible configuration is
prohibitive in terms of time and computational cost. This paper
presents a solution to efficiently evaluate DDS performance
amidst this vast array of combinations. We propose using
a small set of measurements to train a Machine Learning
(ML) model, allowing for cost-effective exploration of the
DDS configuration design space. This approach enables the
identification of configurations that are likely good enough
or even best in some sense. The actual performance of the
chosen configurations can then be confirmed with a small set
of experiments.

We extended Real-Time Innovation’s (RTI) Perftest [2], a
widely used performance testing benchmark, to evaluate DDS
performance. While performance could be described using
just average and variance, our approach involves character-
ising distributions using multiple statistics, including mean,
standard deviation, lower/upper quartiles, median, all deciles,
and specific percentiles that capture the head and tail of
the distribution. This analysis comprehensively captures the
behaviour of the system, particularly worst-case performance,
such as the tail of the latency distribution, which is essential
for meeting real-time requirements. Although further analysis
may be necessary for determining upper bounds in worst-case
scenarios, our method can identify relevant configurations for
in-depth study. Our work is distinctive in accounting for the
entire distribution, unlike other studies, empirical or otherwise,
that typically focus only on predicting the expected value and
variance.

Our study concentrates on two types of predictions: inter-
polation, predicting inside the range of training values, and

1

Fig. 1. Interpolation vs Extrapolation within the gridspace

extrapolation, predicting for configurations outside the training
value range. This paper presents selected results for predicting
DDS performance, with comprehensive details available in the
accompanying technical report [3].
B. Perftest
As mentioned above, we employ Perftest to assess DDS per-
formance. While Perftest is beneficial, it is not ideal due to its
benchmark nature; evaluating DDS performance using a real-
life application would provide a more meaningful assessment
of the middleware. However, our focus is to demonstrate
our method for obtaining performance estimates for various
configurations, which applies to any workload, with Perftest
used here merely for demonstration purposes. Notably, Perftest
allows manipulation of only two of the 22 QoS parameters:
durability and reliability.
C. Machine Learning
ML methods aim to learn complex patterns for making accu-
rate predictions and are used here to predict the performance of
DDS configurations. We employ random forests and compare
it with linear regression as a baseline. Linear regression
assumes a linear relationship between variables, which can
be enhanced to fit the data better using various transformation
functions like logarithmic or exponential. In contrast, random
forests, an ensemble of decision trees, can directly model
non-linear patterns. All ML models are trained on sample
data aiming to minimise an error metric and evaluated on
unseen test data. We use two prediction metrics: RMSE (Root
Mean Square Error) and R2 [4]. RMSE, the square root of
the average squared difference between actual and predicted
values, is more intuitive as it is in the same units as the
target variable; a lower value indicates better predictions. R2,
indicating the proportion of variance in the target variable
explained by the model, typically ranges from 0 to 1; a
higher number signifies better fit and allows for comparing
the goodness of fit of models across different scenarios.

The remainder of this paper is structured as follows: Section
II looks at related works, Section III explains our approach,
including how the performance tests were carried out and how

the data was processed and used to train the ML models.
Section IV provides an overview of the prediction results.
Section V summarises the findings and possible future work.

II. RELATED WORK

To the best of our knowledge, ML models have not been
applied to predict DDS performance. We discovered, however,
potentially relevant works under a different umbrella term:
Performance Prediction of Configurable Systems using ML.

Much work is done on the performance prediction of sys-
tems, which have configurable parameters whose values affect
the system’s performance. Most of these works do rely on ML
techniques, but only predict a single statistic characterising the
chosen performance metric (e.g. the mean value).

In [5], a comparison-based model based on random forests
is used to find the optimal configuration that maximises the
throughput. A combination of ML techniques and sampling
strategies to predict the performance of configurable systems
is given in [6] and [7]. These sampling strategies determine
which data to train on regarding the configuration locations
within an n-dimensional space determined by the values of the
configuration parameters. A performance prediction of multi-
ple configurations using a deep feed-forward neural network is
given in [8]. This approach results in just a single performance
statistic.

The ML techniques used in our work originate from [9],
a survey paper looking at works that involve a combination
of ML techniques and sampling strategies for predicting the
performance of configurable systems. The survey paper recom-
mends using 3 main ML techniques: random forests, multiple
linear regression, and classification and regression trees.

III. METHOD

A. Configuration Space Exploration
We conducted 1470 tests with predefined and random config-
urations where the publisher/subscriber count ranged from 1
to 25 and the data length from 100 bytes to 64KB. The results
were divided for interpolation and extrapolation purposes,

2

TABLE I
PREDICTION PERFORMANCE PER DDS METRIC FOR RANDOM FORESTS AND LINEAR REGRESSION (INT = INTERPOLATION, EXT = EXTRAPOLATION).

Metric
LR Int

R2

LR Ext

R2

RF Int

R2

RF Ext

R2

LR Int

RMSE

LR Ext

RMSE

RF Int

RMSE

RF Ext

RMSE

Metric

Avg.

Latency (us) Mean 0.26 0.03 0.83 0.27 1,228,465 8,106,697 583,673 6,285,378 1,080,019

Latency (us) 99th Percentile 0.32 0.04 0.83 0.07 3,010,601 19,932,462 1,498,101 19,550,963 1,080,019

Avg. Throughput (mbps) Mean 0.57 0.16 0.99 0.94 27.22 32 9 4 39

Avg. Throughput (mbps) 1st Percentile 0.52 0.38 0.93 0.93 29 28 10 11 39

between inside and outside a parameter value boundary. The
split is 83%-17% between inside and outside the boundary,
as shown in Figure 1. Training for both interpolation and
extrapolation occurred within the boundary, whereas testing
for interpolation and extrapolation used data from inside and
outside the boundary, respectively.
B. Experimental Setup (Testbed)
Our experiment used 3 Raspberry Pis: a main controller
(Raspberry Pi 4 Model B, 2018) and two endpoints (Raspberry
Pi 3 Model B V1.2, 2015) communicating with each other.
Tests were conducted using ‘Autoperf’, our bespoke tool,
derived from Perftest, that varies parameter values, running
different test configurations in sequence with reboots between
tests to avoid interactions between configurations. Each test
configuration ran for 10 minutes, measuring latency every 100
messages to balance measurement frequency and performance
impact. Latency was measured on publishers by timestamping
messages before sending and upon return, avoiding clock skew.
Throughput was measured by each subscriber every second.
C. Dataset Preprocessing
Latency measurements in our tests were taken only from the
first publisher (a Perftest characteristic). On each subscriber,
we measured throughput, sample rate, lost and received sample
counts, and percentages every second. Our dataset includes
both configuration details and statistics for distribution recre-
ation per performance metric. Thirteen performance metrics
were recorded: latency, average and total throughput, sam-
ple rates, received and lost sample counts and percentages,
averaged or totalled over all subscribers. Transient periods
observed in most tests led to the removal of the initial 20%
of raw observations.
D. Model Training & Evaluation
Linear regression and random forests models were trained
individually for each DDS metric (such as latency or average
throughput). The models receive 6 input parameters (data
length, publisher count, subscriber count, durability, reliability,
and multicast usage) and predicts for each performance metric
20 distribution statistics: mean, standard deviation, median,
min, max, and the following percentiles: 1, 2, 5, 10, 20, 25,
30, 40, 60, 70, 75, 80, 90, 95, and 99. We tested the following
input data standardisation methods: none, z-score [10], min-
max [11], and robust scaler [12]. For both models, we tested
the following transformations of the label data: log, log(1+x),
and square root. We hypothesised that this would mitigate

the impact of very high latency values on overall predictions.
These transformations were inverted before the calculation of
prediction metrics. Our focus here is on R2 and RMSE, though
MSE, MAE, MAPE, and MedAE, and explained variance were
also recorded [3].

IV. RESULTS

A. Overview
Different models were trained for each combination of stan-
dardisation and transformation for each DDS metric. This
section discusses the results of interpolation and extrapolation
for both linear regression and random forests models. Table I
presents the prediction RMSE and R2 for two relevant statis-
tics (mean and first/last percentile) for throughput and latency.
The metric average column has been included in the table to
provide context for the RMSE values. The full set of results
is available in the technical report [3].
B. Linear Regression vs Random Forests
The results show that random forest models consistently
outperform linear regression. Linear regression shows worse
interpolation predictions than random forests and notably poor
extrapolation, especially for latency (R2 values are 0.03 and
0.04). On the other hand, random forests show consistently
high R2 for interpolation, while extrapolation of latency is
less successful. The RMSE values for all throughput models
are lower than their respective metric averages. In contrast,
the prediction of latency is less reliable, in particular for
extrapolation. For the 99th percentile, this effect is even more
pronounced. To avoid high errors in latency prediction, it will
be necessary to train models on the full range of relevant
parameter values.
C. Latency Model Analysis
In this section, we focus on the latency metric, which is
essential for assessing if the DDS application meets real-time
requirements. Figure 2 shows four tested configurations, two
good and two bad, with their results depicted in empirical cu-
mulative distribution functions (CDFs, on the left) and scatter
plots (on the right) comparing actual and predicted values.
The model shown in plot 1, has an average R2 of 0.64 (over
all R2 values for the twenty statistic) and RMSE of 770,000,
closely matches actual and predicted values, with only a 3%
difference in the highest latency value. The second plot shows
a systematic left shift of the latency distribution. The third plot
is a scatter plot showing a majority of points aligning well,
albeit with slightly optimistic predictions for the highest value.

3

Fig. 2. Examples of actual vs predicted cumulative distribution functions for good (first) and bad (second) cases and examples of actual vs predicted scatter
plots for good (third) and bad (fourth) cases of the best-performing interpolation model for predicting latency distributions. 1KB = 1 kilobyte, 10P = 10
publishers, 10S = 10 subscribers, REL = Reliable, UC = Unicast, MC = Multicast, 1DUR = Durability level 1.

In contrast, plot 4 shows consistently lower predictions than
actual values. Overall interpolation performance is better than
extrapolation. However, specific cases can deviate, as in plot
1 (on the border for the publisher number) and plot 3 (similar
location) show good predictions, while plot 4, with parameters
well inside the boundary of the training data, shows poor
prediction. Further error analysis and exploration of different
transformation techniques are necessary to understand these
varied results and improve prediction accuracy, especially
for extrapolation. However, extrapolation can be avoided in
practice by using training examples that include the range
boundaries for all parameters. This has not been tested here
but is expected to reduce the high latency prediction error for
some configurations.

V. CONCLUSION

This research introduces, to our knowledge for the first
time, a method for predicting DDS performance based on QoS
and non-QoS parameters using machine learining. The models
predict twenty statistics to characterise the the distribution of a
performance metric according to six configuration parameters.

Our study compares linear regression and random forests
for interpolation and extrapolation, finding as expected that
prediction in interpolation scenarios generally outperforms
extrapolation, with a few exceptions. Random forests are more
effective than linear regression, especially for extrapolation.
The throughput predictions by random forests are generally
effective, with high R2 and low RMSE values relative to
the metric average. Latency, a crucial metric for real-time
constraints, is harder to predict, especially for the higher end
of the distribution. While the latency model provides accurate
predictions in the interpolation case, further error analysis
is needed to enhance its performance for extrapolation. In
conclusion, our findings demonstrate that ML models offer
a cost-effective means of estimating DDS performance in
untested conditions.

Our experiments use a particular performance benchmark,
RTI Perftest. However, this method can be applied to different
applications by collecting specified data and training ML
models. We acknowledge, however, that results may vary in

different scenarios. Extensions of this work include training
neural networks and experimenting with different sampling
strategies as mentioned in related works. Also, we aim to
investigate how the location of configurations within the
gridspace impacts the accuracy of predictions.

REFERENCES

[1] “Data Distribution Service (DDS).”
[2] “RTI Perftest.” [Online]. Available:

https://github.com/rticommunity/rtiperftest
[3] K. Peeroo, P. Popov, V. Stankovic, and T. Weyde, “Machine learning

for performance prediction of data distribution service,” Tech. Rep. 1.
[Online]. Available: https://openaccess.city.ac.uk/id/eprint/31554/

[4] Coefficient of Determination. New York, NY: Springer New York,
2008, pp. 88–91. [Online]. Available: https://doi.org/10.1007/978-0-
387-32833-1 62

[5] L. Bao, X. Liu, Xin Liu, Xin Liu, X. Ziheng, and B. Fang, “AutoConfig:
automatic configuration tuning for distributed message systems,” pp. 29–
40, Sep. 2018, mAG ID: 2888705583.

[6] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czar-
necki, A. Wasowski, Huiqun Yu, Huiqun Yu, and H. Yu, “Data-efficient
performance learning for configurable systems,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1826–1867, Jun. 2018, mAG ID:
2769879317.

[7] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering.
Bergamo Italy: ACM, Aug. 2015, pp. 284–294. [Online]. Available:
https://dl.acm.org/doi/10.1145/2786805.2786845

[8] H. Ha, H. Ha, and H. Zhang, “DeepPerf: performance prediction for
configurable software with deep sparse neural network,” pp. 1095–1106,
May 2019, mAG ID: 2954141573.

[9] A. Grebhahn, N. Siegmund, and S. Apel, “Predicting Performance of
Software Configurations: There is no Silver Bullet.” arXiv: Software
Engineering, Nov. 2019, mAG ID: 2991131477.

[10] “sklearn.preprocessing.StandardScaler.” [On-
line]. Available: https://scikit-
learn/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

[11] “sklearn.preprocessing.MinMaxScaler.” [On-
line]. Available: https://scikit-
learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

[12] “sklearn.preprocessing.RobustScaler.” [Online]. Available: https://scikit-
learn/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

4

