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Abstract
The storage requirement for distributed tracing can be reduced significantly by sam-
pling only the anomalous or interesting traces that occur rarely at runtime. In this 
paper, we introduce an unsupervised sampling pipeline for distributed tracing that 
ensures high sampling accuracy while reducing the storage requirement. The pro-
posed method, SampleHST-X, extends our recent work SampleHST. It operates 
based on a budget which limits the percentage of traces to be sampled while adjust-
ing the storage quota of normal and anomalous traces depending on the size of this 
budget. The sampling process relies on accurately defining clusters of normal and 
anomalous traces by leveraging the distribution of mass scores, which characterize 
the probability of observing different traces, obtained from a forest of Half Space 
Trees (HST). In our experiments, using traces from a cloud data center, SampleHST 
yields 2.3× to 9.5× better sampling performance. SampleHST-X further extends the 
SampleHST approach by incorporating a novel class of Half Space Trees, namely 
Approximate HST, that uses approximate counters to update the mass scores. These 
counters significantly reduces the space requirement for HST while the sampling 
performance remains similar. In addition to this extension, SampleHST-X includes 
a Family of Graph Spectral Distances (FGSD) based trace characterization compo-
nent, which, in addition to point anomalies, enables it to sample traces with collec-
tive anomalies. For such traces, we observe that the SampleHST-X approach can 
yield 1.2× to 19× better sampling performance.
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1 Introduction

The distributed tracing approach is tailored primarily to monitor and profile appli-
cations built with the microservices architecture [1]. In a microservice ecosystem, 
as the size of the architecture increases, the volume of the trace data increases 
correspondingly [2]. In a typical production setup, this volume can be in the order 
of several terabytes, and only a fraction of these traces helps in troubleshooting. 
Hence, a storage budget is often applied to discard the majority of the traces [3]. 
However, this can result in important data to characterize system events. In this 
paper, we study the problem of how to sample the most interesting traces that will 
help in future troubleshooting. This entails not only sampling the traces that rep-
resent the overall user behavior but also sampling the anomalous ones.

A common industry practice, to accommodate the storage budget, is to lever-
age uniform sampling [3] also known as head-based sampling. This strategy has 
a lower hit rate of anomalous traces as the sampling decision is taken before ana-
lyzing the trace. This could be addressed with a tail-based sampling strategy [4]. 
Such a strategy reasons on the information contained in the trace before taking a 
sampling decision. Ideally, such a sampling strategy needs to be online and work 
with streaming data. This requires that we must decide to save or discard a trace 
on-the-fly at runtime.

In recent years, multiple tail-based sampling approaches have been proposed 
[3, 5, 6]. However, these works have issues such as high dimensionality of clus-
tering data, batch processing requirement, low amplitude characterization for 
anomalous traces, and no explicit consideration of the storage budget. These 
shortcomings are addressed in our recent work SampleHST [7]. When the storage 
budget is comparatively lower than the expected anomalies, SampleHST focuses 
on sampling only anomalous traces. When the budget is higher, both the normal 
and anomalous traces are sampled, with a bias towards anomalous ones. This bias 
is fair because, among the sampled traces, the bias increases the representation 
of anomalous traces groups that are rare compared to the normal groups. In other 
words, such a bias allows representative sampling [3, 5].

SampleHST relies on the Bag of Words (BoW) model [8] to transform a trace, 
which is essentially a text document, to a count based representation. This BoW-
based representation includes the frequency of unique terms in a document, which 
is inherently useful for detecting point anomalies [9]. By taking such count-based 
representation as input, SampleHST generates a distribution of the mass values 
obtained from a forest of a tree-based classifier, namely Half Space Trees (HST) 
[10]. This mass distribution is subsequently used to perform an online clustering 
of the traces. The clustering algorithm, we have designed, is based on the mean-
shift clustering algorithm family [11, 12]. Once the clustering process is com-
pleted, the sampling decision is taken based on the trace-cluster association, i.e., 
the trace is likely to be sampled if it is associated with a cluster with low mass 
values because such clusters represent the rare traces.

This paper presents SampleHST-X, which builds on the ideas of Sampl-
eHST and incorporates two main extensions. The first extension relates to the 
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space requirement for the HST. Depending on the depth the of trees, the storage 
requirement of the HST increases exponentially. Even though a tree node only 
stores a mass value, which can be stored in an integer, reducing the space require-
ment allows to use more HST with higher depths. SampleHST-X realizes this 
with a novel variant of HST, which we name Approximate HST, that leverages 
approximate counting to record the mass values in the tree nodes [13]. This can 
bring advantages when the method is deployed in memory constrained environ-
ments as the size of the HST is significantly compressed; such scenario arises 
for example in use cases that apply tail-sampling directly at the edge close to 
micro-services connected with Internet-of-Things (IoT) devices, where discarding 
traces can greatly reduce the cost of communication between edge and backend 
clouds. The second extension is focused on the detection of collective anomalies 
[9] in traces using the same sampling pipeline. For this purpose, SampleHST-X 
leverages the Family of Spectral Graph Distances (FGSD) graph model [14] to 
characterize a trace. Such a graph model produces a count-based representation 
of the trace, focusing on its underlying structure and communication pattern. This 
count-based representation can be used with the online clustering method without 
additional adaptations.

We first evaluate the performance of SampleHST, with data provided by a 
commercial cloud service operator, comparing the results with a recently pro-
posed approach for point anomalies [3]. For this production dataset, we see that 
SampleHST yields 2.3× to 9.5× better sampling performance in terms of preci-
sion, recall and F1-Score than prior work. When we consider representative sam-
pling in a high budget scenario, we see SampleHST is 1.6× fairer with respect 
to the Jain fairness index [15]. When we incorporate approximate HST, i.e., use 
the SampleHST-X approach, we see a similar performance. While SampleHST-X 
requires less space for HST, it does not affect the sampling accuracy. To test the 
performance in case of collective anomalies, we use a dataset generated from a 
local deployment of the Death Star Bench (DSB) microservice suite [16], which 
is already used in literature to demonstrate the effectiveness of a trace sampler 
[5]. We compare the performance of SampleHST-X with the trace sampler pro-
posed in [5]. Here, we also observe that SampleHST-X produces a high sampling 
performance. In comparison, the sampling performance is 1.2× to 19× better 
across all the budgets.

In summary, the key contributions of this paper are:

• A trace sampling pipeline SampleHST-X, that extends our recent work Sampl-
eHST [7], tailored for distributed tracing in a cloud data center.

• An online clustering method, generalizing the mean shift algorithm [11], that 
considers non-spherical cluster shapes such as hyper-cubes and hyper-rectan-
gles.

• A novel class of HST, namely Approximate HST, that allow memory savings for 
HST and reduce the overall resource footprint of distributed trace sampling.

• Simultaneous use of different trace models for anomaly detection with the same 
sampling pipeline, in particular a BoW-based model for point anomalies and 
FGSD-based model for collective anomalies.
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Experiments using real-world data and a dataset from the literature to compare the 
sampling performance of our proposed approach with a recent tail-based sampling 
approach [3] indicate the effectiveness of the SampleHST-X as well as its potential 
for less resource consumption while maintaining high sampling accuracy.

The rest of the paper is organized as follows. In Sect. 2 we demonstrate the moti-
vation for developing SampleHST-X and how to evaluate such sampling methods. 
Trace representation and anomaly detection is discussed in Sect. 3. The key aspects 
of the SampleHST method is presented in Sects. 4–6. The evaluation with indus-
try data is presented in Sect.  7. Subsequently, we present how approximate HST 
is incorporated in SampleHST-X in Sect.  8. The extension for collective anoma-
lies is presented in Sect. 9. We discuss the related work in Sect. 10. The threats to 
the validity of SampleHST-X is presented in Sect. 11. The paper is concluded with 
future research directions in Sect. 12.

2  Motivation

Unlike head-based sampling, a tail-based sampling strategy takes the sampling 
decision after the response is served, i.e., when the entire trace is available [4]. 
As a result, the information of the traces can be utilized, which can the propor-
tion of interesting traces in the sample. Before evaluating these samplers, we first 
need to define the interesting traces and the evaluation criteria. In this section, we 
first provide this definition and criteria. This is followed by a demonstration show-
ing the limitations of the current samplers that motivates us to the development of 
SampleHST-X.

2.1  Trace Anomaly Definition

A key point before designing a tail-based sampling strategy is to define what makes 
a trace more interesting or anomalous. For the rest of the paper, we use the term 
anomalous traces to indicate interesting traces. In the context of this work, we use 
the broad definition of anomalies provided in [9]. Precisely, we consider two types 
of anomalies—point anomalies and collective anomalies.

Point anomalies involve a trace with an abnormally low or high value for one or 
more trace properties. For example, suppose we define a trace property that counts 
the occurrence of HTTP code 203 among its spans. If there is a large deviation 
than the mean value, it can be considered an anomaly. On the other hand, collective 
anomalies are those where there is an abnormal workflow pattern within traces. For 
example, if a group of span always creates the same call-chain (like span A calls 
span B and span B calls span C) and in a particular trace we see a deviation, this 
trace can be considered an anomaly.

2.2  Evaluation Criteria

It is important to set appropriate criteria for evaluating the performance of a 
tail-based sampler. In some recent works, researchers have used the notion of 
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representative sampling to evaluate their proposed method [3, 5]. Although, this 
adoption of representative sampling provides a visualization of sampling fairness, 
it is not a numeric metric that can be used for comparison. Further, it does not pro-
vide the accuracy of the method, with respect to the storage budget and the fraction 
of anomalous traces in the data. For example, if the budget (0–1) is smaller than 
the expected fraction (0–1) of the anomalous or interesting traces, rather than rep-
resentative sampling, the focus should be on sampling the anomalous traces. This 
is because, with such a small budget the goal should be to identify the faults in the 
system, which will appear in the anomalous traces. Representative sampling will 
increase the number of normal traces being sampled, which is not ideal in this case.

Considering this, we select the evaluation metric depending on the ratio of the 
anomalies versus the storage budget:

• For infrequent anomalous traces, where the prevalence of anomalies is less than 
the storage budget, the primary evaluation metric should be the Recall.

• For low storage budgets, where the prevalence of anomalies is greater than the 
storage budget, the primary evaluation metric should be the Precision.

• When sampling N traces from a collection of traces containing N anomalies, the 
evaluation metric is the F1-Score.

Here, the definition of precision and recall is same as the definition in the machine 
learning domain. The F1-Score is the harmonic mean of precision and recall.

2.3  Demonstration

We now demonstrate our motivation for a new tail-based sampler. For this demon-
stration, we have chosen two recently proposed samplers, one for the point anoma-
lies and the other for the collective anomalies scenario.

For the point anomalies scenario, we use a method [3] based on a hierarchical 
clustering algorithm, namely Purity Enhancing Rotations for Cluster Hierarchies 
(PERCH) [17]. In short, this PERCH-based method maintains a fixed size balanced 
binary tree of the traces and samples from the tree periodically. The tree is main-
tained in such a way that the frequent traces are more likely to be removed when 
there is a space shortage. For the collective anomalies scenario, we use the Sifter 
approach [5]. It considers a trace as a directed acyclic graph (DAG) and predicts the 
anomalies by inspecting all the k-length paths from the DAG. Here, each path is rep-
resented as a n-gram i.e., a sequence of n words. The association among these words 
are learnt using a variant of word2vec algorithm [18]. The traces are sampled based 
on the familiarity of these n-grams. We have implemented both these approaches 
using python libraries12.

We now consider a case with production data from a cloud data center. The data 
contains ∼ 5% point anomalies. We provide a storage budget of 5% to PERCH-based 

1 PERCH - https:// github. com/ iesl/ xclus ter
2 Gensim - https:// radim rehur ek. com/ gensim/ models/ word2 vec. html

https://github.com/iesl/xcluster
https://radimrehurek.com/gensim/models/word2vec.html
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method and executed it. As mentioned before, since the budget and the percentage 
of anomalies are roughly the same, the evaluation criteria should be F1-Score. After 
the execution we observe an F1-Score of 0.1, just slightly above the value of random 
sampling 0.05. Although, for a low budget of 0.5% , where the evaluation criteria is 
precision, we see the precision value of the method is 0.41. Under random sampling, 
this is equal to 0.04. This shows that the PERCH-based method is significantly more 
applicable in low budget scenarios than moderate budget ones, which underscores 
the motivation for a sampling technique that works with a wide variety of budgets.

The primary drawback of such clustering method is it is hard to do clustering in 
high number of dimensions [19], which can be often the case for point anomalies 
scenario. Thus, for clustering, we need to find a representation that uses less number 
of dimensions. In addition, this PERCH-based method is a batch process as it needs 
to maintain a binary tree. This is a major problem when we have no mechanism for 
temporary storage and need to immediately take the sampling decision.

The production data we have do not contain any collective anomalies. Thus, we 
use the Death Star Bench (DSB) traces used in [5]. We consider the Compose Post 
API for this experiment. The trace repository3 contains both the traces with nor-
mal and broken executions, where the broken executions are the ones with runtime 
faults. Following the approach in [5], we consider the broken traces as anomalies 
and created dataset where 5% of the traces are broken i.e., anomalous. We than exe-
cute the Sifter method with 5% budget and obtain an F1-Score of 0.35, which is bet-
ter than the point anomalies case, but has scope for improvement.

We attribute the limited performance of Sifter to its probabilistic approach of 
sampling. If the sampling probabilities for the anomalies are not large enough, the 
trace may not be sampled. To be certain that our implementation is not producing 
small probabilities, we have checked the probabilities reported for Sifter [5]. The 
highest probability obtained for Compose Post API is ∼ 0.3 , which is confirmed 
from our experiments. This mean that around two out of three anomalous traces 
might not be sampled. In addition, trace transformation in Sifter is potentially a slow 
process for large traces, as it checks every path of the corresponding DAG. If we 
consider data with runtime faults, the normal and erroneous executions will be dif-
ferent and so will be their traces. Thus, rather than checking every path, we can con-
sider the overall DAG structure of trace, reducing the time for trace transformation.

3  Anomaly Detection from Trace Stream

The first step of building a tail-based sampler is to be able to differentiate between 
normal and anomalous traces. Subsequently, we need to decide how to use that 
information to sample the traces. In this section, we discuss the first step that is 
differentiating between the normal and anomalous traces. Here we have used the 
production trace data containing point anomalies. We present how we can represent 
these traces and evaluate the performance of different state of the art anomaly detec-
tion methods using the representation. Finally, we discuss the adjustments we made 

3 Death Star Bench Traces https:// gitlab. mpi- sws. org/ cld/ trace- datas ets/ death starb ench_ traces

https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_traces
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to Half Space Trees [10], the method that performed best, to better suit our case of 
distributed tracing.

3.1  Bag of Words Model for Point Anomalies

The production data that we consider consists of spans in the scale of hundreds of 
thousands. These data originate from a heterogeneous collection of microservices 
within a cloud data center, which are in the form of spans that can be grouped into 
traces. A span is an immutable data structure that supplies the value of a collection 
of categorical and continuous variables at a particular point in time. The spans con-
tain a traceId, based on which they can be grouped to form traces.

We consider each trace as a document where the span properties are considered 
as terms or words. The properties that are uninformative (meaning they are either 
same or unique for all the traces, e.g., productName or id) are ignored. The traceId 
is used only for trace reconstruction, not for trace representation. Continuous fields 
related to latency have not been used as they require non-standard distance meas-
ures for integration in an approach since the other variables are discrete. In addition, 
identifying latency anomalies falls into a separate class of problem, which is not in 
the scope of this research.

Since we are considering point anomalies [9], the trace document can be con-
verted to a bag of words [8] which in essence is a count vector. We represent a trace 
as x = (x1,… , xd,… , xD) , where D is the number of different terms that have been 
seen across all the traces in the dataset. For example, the HTTP code 200 is one term 
and a specific URL could be another one. Each dimension xd ≥ 0 is an integer value 
counting how many times a particular term appears in a trace. The resulting count 
data is agnostic of assumptions on the dataset, except knowledge of the total dimen-
sion D and what each dimension means. We can acquire such knowledge from an 
initial monitoring period. This knowledge base can also be updated in frequent inter-
vals depending on the changes in microservices and their deployment architecture.

3.2  Comparing State‑of‑the‑Art AD Methods

Since anomaly detection is a key step for a sampling process, we here illustrate 
which off-the-shelf anomaly detection methods could fit our purpose. We consider 
the following popular techniques: 1) local density estimate: K-Nearest Neighbor 
(KNN) and Local Outlier Factor (LOF), 2) tree-based classification: Isolation For-
est and Half Space Trees (HST) [10], 3) boosting: Lightweight Online Detection of 
Anomalies (LODA) [20], and 4) neural network: Deep Belief Net and One Class 
Support Vector Machine (DBN+OCSVM) [21].

We have considered a production dataset from a cloud service operator consist-
ing of 77577 traces from six consecutive days. The trace data have not been labelled 
by the operator. Thus, using the popular offline DBSCAN clustering algorithm, we 
have labeled the smallest clusters as anomalies, accounting for ∼ 5% of the total 
traces. We evaluate the ability of the above-listed methods to obtain similar results. 
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The choice of DBSCAN is driven by the fact that it is considered as a generally reli-
able technique in industry [22].

The results of the experiment are presented in Table 1. We see that HST is the 
best method with respect to F1-Score. This motivates further investigation into HST 
methods to address the problem under study. In addition, HST has other benefits 
from the perspective of a streaming platform. Due to the way HSTs are designed, for 
a particular trace, we only need to update a single mass value [23] per tree. To deter-
mine whether a trace is normal or anomalous, the mean mass value (m) of the HSTs, 
for that particular trace, is compared against a threshold. The use of HSTs also 
results in a very low computational footprint, as it only needs to query its already 
stored mass values.

3.3  Half Space Trees for Anomaly Detection

Half Space Trees (HST) [10] are an ensemble of binary decision trees, with depth d, 
where the corresponding binary tree has 2d+1 − 1 nodes. Each tree stores split points 
among a random subset of dimensions, and possibly multiple splits per dimension. 
The leaves of the tree store how many points are within the subspace defined by the 
paths leading to them, which is referred as the mass. Since mass is defined as a count 
of data points, it is easier to calculate than density measures used in other methods, 
e.g., those that require likelihood estimation. Normally, an ensemble of t Binary 
Trees is used, with identical depth h, which are independently trained on a data win-
dow w. In this study, we assume that the data points will be available for continu-
ously arriving streams of spans from a heterogeneous collection of microservices.

In production, there could be relatively few types of traces that occur repeatedly. 
Thus, once the spans are vectorized to count data, this sparsity could cause the HST 
mass to be accumulated within a small set of terminal nodes. This is confirmed from 
our production data where only 0.004% of the trace count vectors are unique. We 
thus focus on a variant of HST known as HS*-Trees (HS*T) [23], which deals with 
the sparsity in the tree structure. In HS*T, nodes that have fewer than SizeLimit sam-
ples are not further expanded during the training phase. This reduces memory con-
sumption and also the time to traverse the trees. Thus, we have opted for HS*T as 
our chosen HST variant. In the rest of the study, we use the terms HST and HS*T 
interchangeably.

Furthermore, we have incorporated two further modifications to HS*T. Firstly, 
we opted for depth-dependent split dimension. This means that when splitting a 

Table 1  Results of different AD methods on the production dataset

The F1-Score, highlighted in bold, is highest for the HST method

Isolation forest KNN LOF LODA DBN + OCSVM HST

Precision 0.73 0.77 0.73 0.62 0.47 0.94
Recall 0.72 0.72 0.72 0.60 0.97 0.70
F1-score 0.73 0.74 0.73 0.61 0.64 0.80
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node, instead of using the normal procedure of picking a dimension at random, we 
require all nodes at the same depth level to use the same split dimension, which 
largely reduces memory usage since a single dimension is stored at each level. Sec-
ondly, as suggested in [10], we opted for a [0, 1] workspace. This means that the 
maximum and minimum values of the features are assumed by the HS*T to be 1.0 
and 0.0, rather than in the min-max range observed in the data. That is why for a 
better partitioning of the input data, as shown in Fig. 1, we have opted for the fol-
lowing transformation

In our experiments, we have found it is sufficient to use g(x) = x , but other trans-
formations could be used, e.g., g(x) = log(x) , to consider large values of x. We have 
used the production data to test these modifications, considering a day as a window 
and using the first day to build the trees. These changes improve the F1-Score from 
0.8 to 0.97, indicating the changes aid in anomaly detection from the trace streams.

4  Mass‑Based Clustering for Sampling

Although HSTs can help in classifying the anomalous traces, in reality, we need 
to utilize this classification output in a sampling process. This process is complex 
because of the trade-off between sampling normal and anomalous traces. While sam-
pling, the proportion of the storage budget and the expected percentage of anomalies 
should be taken into account. If the budget is lower than the anomaly percentage, the 
focus should be on sampling mostly the anomalous traces. The normal traces should 
gain more attention only when the budget is higher than the anomaly percentage. In 
addition, while sampling the anomalous traces, the target should be representative 
sampling from that group of traces i.e. sampling from different “groups” of traces 
fairly.

To achieve this, we propose to cluster the traces and decide whether to sam-
ple a trace or not based on its cluster association. However, when clustering in a 
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Fig. 1  Comparing the scaled value of HTTP 200 code counts with min-max scaling and the transforma-
tion function f 
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high-dimensional space it is harder to achieve accurate density estimation [19], in 
addition to incurring a higher computational cost. Therefore, we propose a new 
approach considering the distribution of mass across the trees in the HS*T for-
est and selecting a mean mass score m and a low percentile of the mass score p. 
Low percentiles are expected to significantly differ from the mean when there is 
at least a subset of trees in the forest that identifies the trace as an anomaly. We 
refer to this method as SampleHST as we are using the mass distribution of HST 
to perform sampling.

Since we want to use a low percentile (p) value along with the mean (m), we 
represent each trace with a unique pair (m, p) that will be used for clustering. The 
projection of the production traces in this 2-dimensional space is shown in Fig. 2. 
It shows the clusters, in different colors, obtained by DBSCAN. We see that the 
mass-based properties cluster the traces in distinct groups and the cluster cent-
ers are also appropriately detected using a baseline streaming clustering method 
[24]. Another potential benefit of using the low percentile value is a better sepa-
ration of trace groups. As seen from Fig.  2, ignoring the percentile value will 
result in multiple trace groups being merged together, eventually affecting the 
sampling performance.

This mass-based clustering is at the core of SampleHST approach shown in 
Fig. 3. It starts the sampling process by receiving the spans related to a micros-
ervice. Its trace aggregator component composes them to form the traces and 
then convert them to either BoW-based or FGSD-based data format, depending 
on the choice of the SampleHST user. Finally, its sampler component decides 
whether to save the trace or not. Apart from the HSTs, the sampler contains a 
decision-making service, which is composed of two sub-components:
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DBSCAN clusters. The cluster centers are estimated with a baseline online clustering method
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• SampleHST Clustering: Creates cluster of traces based on their mass based 
properties.

• SampleHST Controller: Makes the sampling decision based on budget and 
trace-cluster association.

We now discuss the details of these sub-components in the next sections.

5  SampleHST Clustering

SampleHST Clustering is primarily based on the underlying theory of mean-
shift analysis [12] and the CEDAS algorithm [24], yielding a data-driven online 
approach that generalizes the hyper-sphere cluster shape commonly assumed 
in the literature to hyper-rectangles and hyper-cubes. Broadly speaking, our 
method receives the mass score of a trace in the form of a pair (m, p), which is 
generated using the HST mass distribution. Subsequently, the method aims to 
find the association of the new trace with an existing cluster, if the associated 
condition is not met a new cluster is created and a signal is sent. Furthermore, 
the method is able to remove clusters that have not received a new trace for a 
pre-defined period of time modulated by the decay and the life (energy) param-
eters. It can also merge clusters together whenever an overlapping occurs. These 
steps can be broadly grouped into two sets of tasks: trace association and cluster 
management. We now discuss the key aspects of these tasks.

5.1  Trace Association

Cluster Shape. A common assumption for online clustering algorithms for data 
streams is that the cluster shape is a hyper-sphere [12, 24]. However, in our set-
ting, hyper-spheres can lead to inaccurate partitioning of the traces because the 
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Fig. 3  An overview of the SampleHST approach
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normalized values of the unique pair (m,  p) belong to the unit hyper-cube. To 
address this issue we consider instead an arithmetic average kernel whose support 
is a hyper-rectangle [25]. Assuming d data dimensions, the kernel considered is pre-
sented in (2) for which we further show in Theorem 1 that the mean-shift property is 
achieved if the clustering bandwidth [26] is equal in all dimensions.

Theorem 1 For the additive kernel defined as

the mean-shift algorithm at each iteration shifts each sample with a value equal to 
the local mean if the support is given by a hyper-cube.

Proof Assume that we have N observations {xi}Ni=1 , with each data point having d 
dimensions, that is xi = (xi,1, ..., xi,d) , then we can define the density gradient esti-
mate ∇̂p(x) ≡ ∇p̂(x) at x = (x1, ..., xd) as

where p̂(x) is the kernel density estimator [12, 25] for an unknown density p, h is the 
bandwidth in all d dimension, K(⋅) is the kernel function and ek is the k-th standard 
unit vector. Now using (2) as our kernel function, we get

Substituting ∇K(⋅) in (3) with (4), the density gradient estimate is

(2)Kd(u1,… ud) =

⎧
⎪⎨⎪⎩

3

d2d+1

d∑
k=1

�
1 − u2

k

�
if �uk� < 1,∀k

0 otherwise,

(3)

∇p̂(x) =
1

Nhd

N∑
i=1

∇K
(x1 − xi,1

h
,… ,

xd − xi,d

h

)

=
1

Nhd

N∑
i=1

d∑
k=1

𝜕

𝜕xk
K
(x1 − xi,1

h
,… ,

xd − xi,d

h

)
⋅ ek

(4)

d∑
k=1

�

�xk
K
(x1 − xi,1

h
,… ,

xd − xi,d

h

)
⋅ ek

=

d∑
k=1

�

�xk

[
3

d2d+1

d∑
l=1

(
1 −

(xl − xi,l

h

)2
)]

⋅ ek

=
3

d2d+1

d∑
k=1

�

�xk

(
1 −

(xk − xi,k

h

)2
)
⋅ ek

=
3

d2dh2

d∑
k=1

(
xi,k − xk

)
⋅ ek
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Here, in (5), Nx is the number of data points for a region Ah(x) , �k is the mean of all 
the data points in that region along the kth dimension. Note that, the volume of the 
region Ah(x) is hd and the probability density estimate p̂(x) over the region using a 
uniform kernel is Nx

Nhd
.

The objective of the mean shift algorithm is to move away from the valley and 
toward the function mode. This can be achieved through gradient ascent. That is, for 
two consecutive iteration t and t + 1 the shift in the variable xj in kth dimension can 
be expressed as

Now substituting the value of p̂(x) and ∇p̂(x) and considering c = d2dh2

3
 in (6), we 

show in (7) that the shift is equal to the mean of x in dimension k. This means that, 
from the online clustering perspective, with the arrival of each sample, the cluster 
center shifts uk in dimension k.

Based on (7), we conclude that the mean shift algorithm is applicable to the kernel 
in (2) when the cluster bandwidth h is equal in all dimensions.

  ◻

Cluster Assignation. The assignment step requires a pre-defined clustering band-
width. We define the bandwidth vector, H = {h ∈ ℝ

d|∀i = 1,… , d, 0 < hi ≤ 1} , 
where each value hi ∈ H defines the Manhattan distance from the center to 
the boundary of the cluster in the ith dimension. Now, if we define a vec-
tor of Manhattan distances between a cluster centroid and a new data point as 
M = {m ∈ ℝ

d|∀i = 1,… , d, 0 ≤ mi ≤ 1} , then if ∀i mi ≤ hi , we assign the data 
point to that cluster. Otherwise, a new cluster is created with that point.

Centroid Update. Appropriately updating the cluster centroid is critical since 
SampleHST uses the centroid distance to decide the mapping of traces to clusters. In 
general, it is preferable to update the centroid giving more importance to traces that 
are unequivocally within that cluster. This is the concept of cluster kernel region 
[24]. Given the clustering bandwidth vector H , we can define the kernel region as 
the sub-space within a cluster with bandwidth rH , where the scalar r quantifies the 

(5)

∇p̂(x) =
1

Nhd
3

d2dh2

N∑
i=1

d∑
k=1

(
xi,k − xk

)
⋅ ek

=

Nx

Nhd
3

d2dh2

d∑
k=1

1

Nx

∑
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(
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)
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=

Nx

Nhd
3
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proportion of the cluster considered as the kernel region. This concept of kernel 
region is illustrated in Fig. 4.

5.2  Cluster Management

Cluster Merging. To address the overlaps among clusters as they are indications of 
possibly inaccurate clustering, we opt for the policy that merges two clusters only 
when the centroid of one overlaps with the boundary of the other. This policy is less 
drastic than merging two clusters when their boundaries overlap because one dis-
tant point cannot shift the cluster center unless the cluster has very few samples. An 
illustration of this policy is presented in Fig. 5.

Cluster Removal. We need to regularly remove the clusters whose populations 
have remained static for a while since they are unlikely to be relevant and might 
affect the sampling policy. We realize this by using the decay and life (energy) 
parameters for the clusters as in [24]. The life property is initially set to one and 
gradually reduced using the decay value, which is set as the average number of 
traces in the work cycles, defined as a sequence of consecutive periods where we 
received at least 1 trace, within the sampling window. The overall cluster removal 
process is illustrated in Fig. 6.

Fig. 4  Illustrating the kernel region of the cluster

c1

c4

c2 c3

c1

c4

c2 c3

c1

c4

c3

Fig. 5  Demonstrating cluster merging process. Initially, though there is an overlap between the bound-
ary of cluster c2 and c3 they are not merged. Once their centroids overlap, they are merged into single 
cluster c3 
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We present the overall algorithm for the clustering method in Algorithm 1. The 
functions that have been used in the algorithm is summarized in Table 2. This algo-
rithm is utilized by the controller, which is presented in the next section.

c1

c3

c2

c1

c3

c2

c1

c2

Fig. 6  Demonstrating the cluster removal process. There are 3 clusters initially and each of them has a 
life property. Each time there is a new observation, the life of the corresponding cluster is reset to full 
value, while the life of other clusters are reduced. A cluster is removed once its life ends. We can see that 
cluster c3 is thus removed

Table 2  Auxiliary functions used in Algorithm 1

Function name Description

SpawnCluster Creates a new cluster with the current trace data.
PruneClusters Removes the clusters whose life have expired.
FindAssociation Finds the cluster where the current trace can be assigned. Returns -1 if no cluster 

is found.
AssignToCluster Assigns the current trace to a cluster and update its center if necessary.
FindMergeCandidate Finds whether the cluster associated with the current trace can be merged with 

any other cluster. Returns -1 if no cluster is found.
MergeClusters Merges two clusters. The cluster centroid and its population is duly updated. 

Total number of clusters is reduced by 1.
DecayClusters Reduces the life of each cluster by 1

decay
.
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Algorithm 1  Clustering

6  SampleHST Controller

6.1  Overview

The SampleHST controller takes the sampling decision by utilizing the cluster-
ing method we have presented. The controller initially calculates the number of 
traces ( sw ) that need to be sampled from the next sequence of w traces. We refer 
to this number as the sampling limit and the sequence as a window. For a given 
budget � , the sampling limit is defined as sw = �w . The budget is held constant, 
therefore the sampling limit only varies with w over the runtime. The sampling 
process runs continuously according to Algorithm 2, using HST mass scores xm . 
The functions that we have used in the algorithm are summarized in Table  3. 
The algorithm expects a set of inputs that defines the size of the sampling win-
dow (w), the budget ( � ), the total number of traces to be sampled in this window 
( sw ), the relative position of the current trace in the window ( w(p)

i
 ), the number of 

traces that still remain to be sampled ( sr ), the cluster status (C), which is a tuple 
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containing the cluster centroids, cluster life values, and cluster sizes, the cluster-
ing bandwidth vector (H) and the length of the system work cycle ( �).

Algorithm 2  Sampling

Initially, a series of pre-processing procedures takes place on the received data. 
Subsequently, the locality of the trace, represented by its associated cluster index, is 
determined by SampleHST clustering. The final step is the sampling decision based 
on the inclusion of the trace in a set of prioritized clusters, which we refer to as the 

Table 3  Auxiliary functions used in Algorithm 2

Function name Description

AdjustParameters Adjusts the sampling limit if the current window size is larger than the estima-
tion.

ScaleScores Scales the mass scores using the min-max values. If the min-max value changes 
raises a flag.

HasMaxMinChanged Check whether a flag is raised from the ScaleScores function. The details are 
provided in Sect. 6.2.

ReScaleClusterCenters Re-scale the cluster centers using the previous and current min-max values. The 
details are provided in Sect. 6.2.

GetTraceLocality Use Algorithm 1 to return the cluster index of current mass score.
IsTraceInSelectionPool Determines whether the trace falls in any of the clusters in the selection pool.
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selection pool. This step is skipped if the sampling target has already been reached. 
Since we already discussed the SampleHST clustering method, we now present the 
key aspects of the controller.

6.2  Online Score Scaling

The first step in Algorithm 2 is to make the adjustments to the sampling window 
size estimate and the sampling target when the current window is larger than the 
expected window size. This is followed by log-transformation and min-max scaling 
of mass scores: x(s)

m
= [logb(xm) −min(xs

m
)]∕[max(xm) −min(xm)] . It should be noted 

that before the log transformation, the mass scores are expected to be standardized. 
Since we are using HS*T, we use the mass value m[l]2l , where m[l] is the mass of 
the terminal node where the trace falls into and l is the depth of the corresponding 
tree node. To standardize the mass scores, we scale down the augmented mass using 
the maximum mass value possible, which is w2d where d is the tree depth and w is 
the number of observed traces.

Once the mass scores are processed, it is checked whether the minimum or maxi-
mum values change along with the new mass scores in the current sampling win-
dow. If this is the case, all the cluster centers are re-scaled.

6.3  Sampling Decision

The sampling decision procedure needs to decide on-the-fly whether to sample a 
trace or not. If a new cluster is created by a trace, then the method always samples it. 
For the case where the trace is associated with an existing cluster, we rely instead on 
generating a prioritized pool of clusters, which we refer to as selection pool, and use 
it to take the decision. This is done in three steps, which we describe in the following.

6.3.1  Distance‑Based Cluster Ranking

The first step is to rank the clusters. Two methods of ranking are considered: size of 
the cluster and Euclidean distance from the origin. Cluster size is an obvious method 
of ranking, but since SampleHST creates and deletes clusters in an online manner, 
smaller clusters might not always represent less frequent traces. A cluster might be 
smaller but all of its traces can have high mass values. This means that the traces 
have hit HST nodes with a high mass count which indicates that these traces are 
quite frequent. In addition, the most interesting and possibly smallest clusters are 
likely to be near the origin, which represents a low-mass region in the clustering 
place. Therefore, we choose the Euclidean distance of the centroids to the origin 
(0, 0) and if a cluster is closer to the origin, traces associated with it will be sampled 
first even if that cluster is not the smallest. Thus, if a cluster is closer to the origin, as 
shown in Fig. 7, traces associated with it will be sampled first even if that cluster is 
not the smallest.
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6.3.2  Selection Pool

Once the clusters are ranked, we decide how many of those will form the initial 
selection pool. Clusters are added according to the above ranking, starting with the 
one closest to the origin, until the threshold � is reached. If two clusters are equidis-
tant, the one created first is prioritized.

After creating the initial selection pool, we start the second phase by checking the 
actual value of the percentage total population in the selection pool denoted by �̂� . If 
the actual percentage is less than �% of the budget, we add more clusters to the 
selection pool. The clusters are added depending on the magnitude M of the budget 
( � ) in comparison to �̂� . This is defined as M =

⌊
(𝜏 − �̂�)∕�̂� +

1

2

⌋
 . We then make M 

independent attempts to add the clusters in a probabilistic manner, where in the kth 
attempt, the kth closest cluster to the origin, which is not yet included in the selection 
pool, is chosen with a probability Pk . Here each attempt of being successful has the 
same probability P = max(�, S) , where � is the budget and S is the sampling eager-
ness, bounded between [0, 1], defined as

A high eagerness value indicates we should sample more. It is defined in terms of 
the budget utilization (U), which is the ratio of the number of sampled traces to the 
sampling limit, and the relative trace position in the current window (R), which is 
the ratio of the trace index in the current window to the sampling window size.

6.3.3  Decision Process

After the selection pool has been decided, we sample the new trace only if it is asso-
ciated with any of the clusters in the pool. If that is the case, one of two paths may 
be followed. If the budget is greater than or equal to the actual percentage of the 

(8)S = R(1 − U)

Fig. 7  Illustrating the distance based cluster ranking concept
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population in the selection pool ( 𝜏 ≥ �̂� ), we sample the trace straightaway. Con-
versely, if the budget is less than the actual percentage, we follow the second path 
that takes a probabilistic sampling decision. This is to sample cautiously as we may 
have larger clusters in the selection pool containing common traces. In this path, we 
set the probability of sampling as

Here we set the probability based on the cluster size. Firstly, if the size of the cluster 
( Γc ), which is associated with the current trace, is greater than the sum of the mean 
( Γ� ) and k standard deviation ( Γsigma ) of the cluster size in the selection pool, we set 
the sampling probability to 𝜏∕�̂� . This means that, if there are N traces, the size of 
the selection pool will be N�̂� and we would like to sample N� traces from those in 
the selection pool. Secondly, if Γc ≤ Γ� + kΓ� , we set the sampling probability to 1. 
This means if the cluster is sufficiently small, we decide to sample the correspond-
ing trace. The value of k is set using Chebyshev’s inequality [27], which estimates 
the minimum percentage (V) of values within k standard deviation of the mean. For 
a given V, we can solve the inequality to determine the value of k. We notice that 
this percentage V is related to the ratio of 𝜏∕�̂� . Because, if � is much smaller than �̂� , 
we want to sample only if the associated cluster is smaller than the majority of the 
clusters. As the value of � increases compared to �̂� , we can consider the larger clus-
ters i.e., a larger value of V. Thus, considering V̂ = 𝜏∕�̂� , where V̂  is an estimate of 
the minimum percentage V, we can calculate the value of k using (10).

7  Sampling Performance

7.1  Experimental Setup

To test the performance of SampleHST, we use a production data provided by a 
cloud data center composed of 77,577 traces. Each trace contains at least one span 
and the following four categorical features: Service Name, URL, Process Id, and 
Node Id. A span also contains the HTTP return code and HTTP method for the ser-
vice invocation. The traces are represented as a count vector using the BoW model 
as detailed in Sect. 3. Through this, we obtain 105 unique features. To evaluate the 
performance of the trace samplers, we use the performance evaluation criteria men-
tioned in Sect. 2.2.

To test the SampleHST robustness, we consider 5 cases with different storage 
budgets. First, since we have about 5% anomalies in our data, we include a case 
where the budget is 5%. The evaluation criteria for this case is the F1-Score. We 

(9)Ps =

{ 𝜏

�̂�
if Γc > Γ𝜇 + kΓ𝜎

1 otherwise

(10)k =

√
�̂�

�̂� − 𝜏
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have also chosen 3 smaller budgets (0.5%, 1% and 2%) where the evaluation criteria 
is precision. Finally, we also considered a high budget case of 10%, where the evalu-
ation criteria is recall. We compared the results with two other samplers: uniform 
random sampler, implemented following the Head-based sampler in [5], and the 
PERCH-based method [3].

Since sampling methods such as [3, 5] focus on representative sampling, we also 
compare their fairness using the Jain index [15]. The index can be calculated using 
(11) where Xi =

Ti

Oi

 . Here, for each cluster i, Ti is the number of traces sampled by a 
method and Oi is the optimal number of traces that should be sampled. This metric 
indicates what percentage of the groups are treated fairly. In our case, the groups are 
the clusters that we obtained offline from DBSCAN. We calculate the optimal num-
ber of traces that should be sampled offline using the max-min fair allocation 
approach [28].

7.2  Results

SampleHST Clustering Operation. We begin by illustrating in Fig. 8 the operation 
of the SampleHST method. Since this is an online clustering method, we divide the 
total time frame into 20 periods and show the clustering status for those periods. We 
immediately see that in the first window, the data points are less segregated. This is 
because of the online min-max scaling. In the initial period, the min-max values are 
not steady, which affects the data points as well. As we progress toward the end, we 
can see that the clusters are increasingly segregated. We also see that the number of 
clusters continues to change throughout these periods. The clusters around the top 
right corner remain stable, but the ones around the bottom left corner change their 
positions frequently as the top right clusters capture frequent traces whereas the bot-
tom left ones capture infrequent traces. The infrequent trace clusters decay quickly 
by not receiving traces in some work cycles.

Comparative Experiments. We now compare the performance of SampleHST 
against the uniform random and PERCH-based methods. In Table  4 we see that 
SampleHST with a bandwidth of h = 0.1 is the best method across all budgets, with 
the uniform random sampler performing the worst. We also see that the PERCH-
based method does not perform significantly better with respect the precision, recall, 
and F1-Score. From the fairness perspective, the PERCH-based method scores 
much higher than the random sampler, but still it cannot outperform SampleHST. 
The results show that even though the PERCH-based method can achieve a better 

(11)J(X1,X2,… ,Xn) =

�
n∑
i=1

Xi

�2

n
n∑
i=1

X2
i

Xi ≥ 0
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Jain score in low budgets, it is not precise in sampling the anomalous traces as made 
evident by the precision score.

As we mentioned earlier, identifying anomalous traces is difficult for clustering 
methods due to the high number of dimensions of the input data, as in the present 
case with 105 dimensions. SampleHST, on the other hand, eliminates this problem 
by using the mass scores, which are low dimensional.

We now focus on the case with a high budget (10%). Firstly, we see that 
SampleHST easily outperforms the PERCH-based method considering the pri-
mary evaluation criteria recall. Secondly, when we consider representative sam-
pling, we see that the Jain score produced by SampleHST is 1.6× better than 
the PERCH-based method. The reason for SampleHST performing better is as 
follows. The primary objective of SampleHST is to sample as many anomalous 
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Fig. 8  Output of the SampleHST clustering algorithm. The X-axis and Y-axis represent mean and 5th 
percentile of mass respectively. The colored symbols represent different DBSCAN labels. The + signs 
are the cluster centers estimated by the SampleHST clustering algorithm. The output is presented in 20 
windows. As we move from left to right, we move toward the next window
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traces as possible. In high-budget cases, it only shifts focus towards normal 
traces when the primary objective is fulfilled. Anomalous traces can create many 
groups, each with a small size, whereas normal traces create a small number of 
large groups. This is indeed the case with the production data. As a result, when 
SampleHST samples most of the traces from anomalous groups, it satisfies the 
demands of the majority of the groups, making it fairer which is reflected in the 
Jain score.

SampleHST with Hyper-Rectangles. The mass scores work as anomaly sig-
nals to the SampleHST, which are not always likely to be equally strong in all 
clustering dimensions. In such cases, the traces may not be segregated ideally 
in that dimension. This is not a problem as long as we can separate anomalous 
traces from normal ones. However, if the bandwidth in that dimension is small, 
we can have multiple clusters in a particular region in the clustering hyper-plane, 
which represents traces of similar types. Thus rather than using a small clustering 
bandwidth in that dimension, as illustrated in Fig. 9, we can choose a large one to 

Table 4  Performance of 
different samplers with different 
budget

The numbers corresponding to the evaluation criteria for different 
budgets are highlighted in bold

0.5% 1% 2% 5% 10%

Uniform J 0.10 0.10 0.11 0.13 0.18
P 0.05 0.04 0.06 0.05 0.05
R 0.01 0.01 0.03 0.05 0.10
F1 0.01 0.01 0.04 0.05 0.06

PERCH- based J 0.32 0.24 0.32 0.47 0.56
P 0.41 0.18 0.13 0.11 0.09
R 0.03 0.03 0.04 0.09 0.15
F1 0.05 0.04 0.07 0.10 0.11

SampleHST J 0.40 0.59 0.72 0.75 0.88
P 0.84 0.83 0.86 0.92 0.80
R 0.10 0.18 0.37 0.91 0.94
F1 0.17 0.30 0.52 0.92 0.87
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Fig. 9  Comparing clusters with equal and unequal clustering bandwidth
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remove clusters containing similar traces, allowing a more precise clustering. In 
other words, we can opt for hyper-rectangles instead of hyper-cubes.

When we observe the clustering status, as presented in Fig. 9, indeed with hyper-
rectangles there are fewer clusters in the top right corner, that represent normal 
traces. Having less number of traces reduces the probability of sampling from nor-
mal groups, which is essential in the low and moderate budget cases. This is also 
reflected in the sampling performance. In Table 5 we present the results, for the 5% 
budget case and for different sizes of hyper-rectangles. From these results, we can 
appreciate that the F1-Score for bandwidth [0.1, 0.3] reaches 0.95, which is higher 
than the one we achieved for hyper-cubes presented in Table 4. Moreover, and con-
sidering the hyper-rectangle [0.1, 0.3] as our baseline we can see in Table 6 that the 
hyper-rectangles approach yields significantly better results in the metrics consid-
ered. In particular for low-budget scenarios we achieve on average an improvement 
of 1.12× with respect to hyper-cubes.

8  SampleHST‑X: Integrating Approximate HST

As seen in Sect. 7, utilising HSTs clearly endows our sampling methodology with 
significant predictive performance. However, a possible drawback occurs when 
the HSTs grow very large stressing the memory capacity, so that there might be a 
need to save memory usage, even in the scale of tens of megabytes. In particular, if 

Table 5  Performance of 
SampleHST considering hyper-
rectangles

Bandwidths are highlighted in bold

Bandwidth Jain Precision Recall F1-Score

0.05, 0.1 0.76 0.90 0.91 0.91
0.05, 0.2 0.75 0.91 0.91 0.91
0.05, 0.3 0.74 0.93 0.91 0.92
0.1, 0.2 0.74 0.94 0.91 0.92
0.1, 0.3 0.73 0.97 0.92 0.95

Table 6  Sampling results 
with hyper-cubes and hyper-
rectangles

The budgets and numbers corresponding to the evaluation criteria 
for different budgets are highlighted in bold

h = 0.1 [h
1
, h

2
] = [0.1, 0.3]

J P R F1 J P R F1

0.5% 0.40 0.84 0.10 0.17 0.41 0.94 0.10 0.18
1% 0.59 0.83 0.18 0.30 0.50 0.95 0.21 0.34
2% 0.72 0.86 0.37 0.52 0.47 0.96 0.41 0.58
5% 0.75 0.92 0.91 0.92 0.73 0.97 0.92 0.95
10% 0.88 0.80 0.94 0.87 0.88 0.79 0.94 0.86



1 3

Journal of Network and Systems Management           (2024) 32:44  Page 25 of 38    44 

SampleHST-X is deployed to edge devices, which have memory constraints, reduc-
ing memory consumption in the scale of megabytes is also significant. Researchers 
have been working on better memory management of such devices either by propos-
ing novel management method [29] or adopting the machine learning method [30]. 
We focus on the latter strategy and aim to reduce the memory footprint of HST. To 
address this issue, we consider approximate counting methods which are commonly 
used in high-speed network packet counting, see e.g. [31, 32].

The idea behind this novel approach, we propose, is to make the HS*Ts lighter 
by replacing the mass values stored in the HS*Ts nodes, with approximate counters 
that take less space since they require fewer bits to represent them. Theoretically, the 
key idea of approximate counting is to probabilistically increase the counter while 
ensuring that, in the long term, the bias is under control. This is usually achieved 
by introducing a probability indicating whether the counter should increase. In this 
direction, the traditional approach is the Morris’ algorithm [13], where the prob-
ability to increase from l to l + 1 is 1/D(l), with D(l) = A(l + 1) − A(l) and A(l) = 2l . 
The function A(l) is called the estimation function, which represents the value of the 
counter associated to the register value l. If the register ranges in 0,… , L − 1 , the 
maximum number that can be represented will be A(L − 1) = 2L−1 . While Morris’ 
algorithm allows for significant memory savings, it is fairly coarse-grained in the 
count values. Fig. 10a shows an example run of the Morris algorithm. By definition, 
the method takes as little as 4 bits to approximately represent numbers from 0 to 215 . 
However, the approximation is increasingly worse the larger the numbers grow.

In recent years, new expressions for the A(l) function have been proposed that 
trade accuracy for storage. In particular, the following estimation function is optimal 
[33]

where � is a parameter of the algorithm that needs to ensure that A�(L − 1) exceeds 
the desired maximum counter value M. In this case, the trade-off is characterised in 
terms of � , so that for small values of � , the approximation becomes better, whereas 
the storage saving will decrease. Examples for � = 0.10 and � = 0.01 are shown in 
Fig. 10b and  10c, where it can be appreciated the effect just described with � = 0.01 
giving the best approximation with a storage saving of just 1 bit.

(12)A�(l) =
(1 + 2�2)l − 1

2�2
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(a) Morris’ Algo., 4-bit
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(b) ε = 0.10, 9-bit
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(c) ε = 0.01, 14-bit

Fig. 10  Approximate counting methods: counting from 0 to 215
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To test the approximate counting approach, we used the production data as before. 
The main objective of these experiments was to find the effect on the performance 
of the HST with and without approximate counting. This is particularly important, 
because this approach will make the mass values less precise and hence, having a 
negative impact on the F1 score of the anomaly detection method. The results of 
the experiments are shown in Table 7, where we can appreciate that for this data set 
the terminal node in a tree requires 17 bits to represent the mass value. Then, and as 
expected, with approximate counting, we appreciate that for larger values of � , the 
F1-Score decreases. However, it is quite remarkable to see that we can still achieve 
an F1 score of 0.90 while saving 13 bits.

Of course, it is important to remark that this behaviour should not be expected in 
all the cases. For this particular data, we are able to see that the mass values are not 
uniform and can be easily segmented into a small number of groups. So that, high 
F1-Scores can be achieved if the high mass groups can be separated from the low 
mass groups. Overall, these results indicate that there is strong potential of com-
pressing the space taken by HST with approximate counting, while not having such 
a dramatic negative effect on the F1-Score.

When we change the mass update mechanism to approximate from exact in Sam-
pleHST-X, we see no significant difference in performance, as shown in Table 8. 
This is because the scores produced by HST are qualitatively similar in both cases. 
Although approximate counting introduces errors in mass values, the normal and 
anomalous traces can still be separated. This is because of the definition of mass 

Table 7  Anomaly detection 
results with approximate 
counting. All experiments use a 
HS*T with T = 500 trees, depth 
D = 15 . We considered each day 
as a window and used the first 
day to built the trees

The different values of ε are highlighted in bold. Exact means 
approximate counting is not used

� bits Precision Recall F1-score

Exact 17 0.9522 0.9853 0.9669
0.01 14 0.9522 0.9853 0.9669
0.10 9 0.9525 0.9848 0.9667
0.25 7 0.9458 0.985 0.9632
0.5 5 0.9164 0.9895 0.9482
0.75 4 0.8336 0.9952 0.9003

Table 8  Sampling results with 
exact and approximate mass 
(h = 0.1)

The budgets considered are highlighted in bold

Exact mass Approximate mass

J P R F1 J P R F1

0.5% 0.404 0.840 0.093 0.167 0.424 0.829 0.091 0.164
1% 0.590 0.832 0.182 0.298 0.594 0.827 0.180 0.296
2% 0.723 0.860 0.372 0.520 0.726 0.860 0.372 0.520
5% 0.750 0.924 0.907 0.915 0.750 0.924 0.905 0.914
10% 0.88 0.807 0.943 0.869 0.879 0.808 0.941 0.869
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score m[l]2l , where m[l] is the mass of the corresponding node, which is in level l. 
Due to approximate counting, the error propagates through the term m[l] but the 2l 
part balances out the error, particularly in the case where the value of l is high.

Finally, to illustrate the impact of approximate counting, in reducing memory 
usage, we conduct another experiment. Here, we use a C++ programming language 
based implementation of SampleHST-X since it has a minimal abstraction from the 
underlying OS architecture and thus, has less memory overhead. We have profiled 
the memory usage (in terms of resident set size), for two versions of SampleHST-
X, running on 30000 traces with 5000 trees. The first version with approximate 
counting used unsigned short integer, whose size is 16 bits, to store mass values. 
Here, we set the value of � to 0.01. The second version with exact counting used 
unsigned integer, whose size is 32 bits, to store the mass values. The difference in 
memory usage is evident from Table 9. Based on this data, we see a 16% improve-
ment in memory usage with approximate counting. It should be noted that the runt-
ime for approximate counting is higher than exact counting, in-part due to the addi-
tional calculation involved with approximate counting. Considering the number of 
traces, the increase in runtime, in this case, is negligible. Nevertheless, this trade-off 
between memory saving and runtime should be considered when using approximate 
counting.

9  SampleHST‑X: Extension for Collective Anomalies

In the previous sections, we focused on traces with point anomalies. However, a 
trace might not look anomalous from a point anomaly perspective as in such a per-
spective the collection of events are not considered [9]. To address this issue, we 
must consider that traces can contain collective anomalies. In particular, we focus on 
the sequence of events in a trace and how to consider the collection of those events 
during the anomaly detection process. We now present how we can incorporate this 
collective anomalies scenario using SampleHST-X. We demonstrate that, with only 
changing the trace representation, SampleHST-X produces a robust sampling per-
formance for such scenarios.

9.1  Graph Model for Collective Anomalies

A single trace commonly spans across multiple microservices. The trace data can 
preserve this information about the call chain among the microservices. As a result, 
we can extract a workflow from the trace. How these call chains are preserved 

Table 9  Memory usage of SampleHST-X using approximate and exact counting

Method Size of mass value Size of HST node Memory usage Runtime

Approximate 16 bits 24 bytes 79.3 MB 97 sec.
Exact 32 bits 30 bytes 94.4 MB 46 sec.
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depends on the trace format. For example, the Death Star Bench (DSB) traces follow 
the X-Trace format [34]. An X-Trace is composed of multiple events from different 
services, which makes is more fine-grained than the spans. Using the source prop-
erty in each trace we can construct a directed acyclic graph (DAG) that represents 
the workflow among the services.

The Sifter method in [5] considers this DAG. It predicts the anomalies by 
inspecting all the k-length paths from the DAG. However, it ignores the overall 
graph, which in many cases is ideal for anomaly detection. For example, consider 
the traces related to the errors within a particular software component. These will 
mostly be structurally different from the typical traces. Thus, using an overall 
graph representation will possibly lead to better anomaly detection. Considering 
this, we need to use an unsupervised way to learn the features that represent the 
overall graph structure.

We have used the FGSD method [14] for this graph-based representation pur-
pose. The main reasons, besides providing befitting graph features, for using 
FGSD is that it works in an unsupervised way and does not require to store pre-
vious traces to provide the current trace representation. FGSD is based on the 
spectral analysis of graphs. In such an analysis, the focus is to study the graph 
properties related to the set of graph eigenvalues. For FGSD the Laplacian matrix 
(the difference between the degree and adjacency matrix) is used to calculate the 
pairwise distances between the graph vertices. The final distance matrix is subse-
quently converted to a histogram, which is considered as the set of features. Since 
FGSD works on a simple connected graph, we first need to convert the DAG to its 
undirected form.

To implement FGSD in a real-time scenario we need to consider two issues, 
with the first one being scalability. Our main concern is the graph size and the 
time it requires to transform it to a feature vector. As mentioned already, the 
feature vector is a histogram of pairwise spectral distances. The number of his-
togram bins and range have no significant impact over the transformation time. 
However, it depends significantly on the number of vertices in the input graph. 
In the context of DSB dataset, it is the number of events. As reported in [14], 
the time complexity of FGSD is O(N2

) where N is the number of vertices in the 
graph, as such the method will not be applicable to all traces.

Fig. 11  Time complexity of 
FGSD algorithm with respect to 
graph sizes
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Although complexity of O(N2
) seems too onerous, we wanted to measure the 

maximum graph sizes that may still be processed in practical scenarios. We have 
tested this time complexity of FGSD using the DSB dataset. Here, we consider 
the traces whose corresponding graph size falls within 5th to 95th percentile. In 
other words, we ignored the graphs that are either too large or too small. We have 
tested each of those selected graphs 1000 times and considered the average time. 
We plotted the average time against the graph sizes in Fig. 11. We see that the 
initial growth in conversion time is roughly linear. The highest encoding time is 
around 50ms and till size 100, it is less than 10ms. Thus, adding this pre-process-
ing layer in an anomaly detection process does not seem impractical if the graph 
sizes are such.

The second issue that we need to consider is graph isomorphism. The goal of 
FGSD is to determine whether two graphs have a similar structure. As a result, if 
two graphs are isomorphic, FGSD will provide a similar feature vector for them. 
Two graphs G and H are isomorphic when for every pair of vertices (u, v) that are 
adjacent in G, we can find a pair (f(u),f(v)) in H that are also adjacent where f is 
a bijection (one-to-one correspondence) between the vertices of G and H. In other 
words, if we can relabel the nodes so that two graphs are identical, they are iso-
morphic. This means that, despite having different parent-child relationship among 
the spans or traces in two separate traces, those two traces will have similar FGSD 
feature vector when the corresponding graphs are isomorphic. However, the method 
will be helpful if the traces differ in length and forking pattern.

For illustration purpose, let us consider three traces of length three (contain-
ing three spans). We present the corresponding directed graphs in Fig. 12a–c. The 

Fig. 12  Examples of directed graphs of traces and the adjacency matrix of their undirected version. 
The last two graphs correspond to traces of length four, the rest are of length three. Only the first three 
directed graphs are isomorphic, whereas the undirected versions of all the graphs are isomorphic
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figures also present the adjacency matrix of the corresponding undirected graphs, 
which is considered by FGSD. As seen in the figure, though the index of the root 
span is different, the structure of the graphs are similar and both the directed and 
undirected version of the graphs are isomorphic. Thus, FGSD will provide a sim-
ilar feature vector for all these traces. In Fig.  12d we present a different orienta-
tion of the same spans. We can see that this directed graph is non-isomorphic to 
the directed graphs in Fig. 12a–c. However, the undirected version of the graph in 
Fig. 12d (as shown by the adjacency matrix), is isomorphic to the undirected version 
of the graphs in Fig. 12a–c. As a result, FGSD will yield the same feature vector for 
this trace as well.

Now we consider two more variants of the above mentioned traces where we add 
one extra span (shown in Fig. 12e-12f). As before, we also present the adjacency 
matrix of the corresponding undirected graphs in the figure. Here, it is clear that 
both the directed and undirected graphs of these traces are non-isomorphic. As a 
result their feature vector will be dissimilar and thus they can be differentiated by a 
anomaly detection algorithm. Note that, unlike FGSD, the count-based feature vec-
tor will yield the same feature vector for both traces.

9.2  Anomaly Detection

We now test how this FGSD-based trace representation aids the half space trees in 
anomaly detection. In this experiment we have used the DSB trace data. We particu-
larly considered two APIs: User Timeline and Compose Post. For the User Timeline 
API, the median graph node size is 56. The Compose Post API, on the other hand, 
contains more complex traces with a median node size of 392. These two APIs give 
us a good mix of small, medium and large traces. They are also used for evaluation 
of the Sifter method [5], which we used for performance comparison. Here, similar 
to [5], we have mixed the normal and broken traces, and marked the broken traces 
as anomalies. Both datasets contain 1000 traces with 5% anomalies. Since there are 
more than 1000 traces available for both those APIs, we have randomly generated 30 
combinations of them and report the average performance.

To understand the impact of FGSD on HST for anomaly detection, we consider 
the HST version for Sect. 3 i.e., we do not apply the HST modifications (presented 
in Sect. 3) for this experiment only. As we want to compare the performance of HST 
with a method intended for collective anomalies, we use a variant of Sifter as an 
anomaly detection method. The concept behind this variant is as follows. Sifter pro-
vides a sampling probability for each trace, which is obtained from the loss while 
training a neural network. Thus, we can apply a threshold over this probability and 
when we observe a trace above this threshold, we mark it as an anomaly. We have 
selected this threshold on a trial and error basis to optimize the anomaly detection 
performance. Note that, the original Sifter method is not intended for anomaly detec-
tion but for sampling and it does not use a threshold. We discuss this in detail in the 
next subsection. We have implemented Sifter based on the loss function provided in 
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the word2vec python library4. In addition to Sifter, we have incorporated a recent 
anomaly detection method DBN+OCSVM [21] with FGSD and also compared its 
result with others. The particular reason for choosing this method is that it provides 
the opportunity to compare the performance of another classifier other than HST, 
when combined with FGSD.

We present the comparison of these methods in Table  10. We see that for the 
Compose Post API, Sifter produces a slightly better F1-Score than FGSD + DBN + 
OCSVM. However, FGSD + DBN + OCSVM significantly outperforms Sifter for 
the User Timeline API. This shows that FGSD can provide a proper representation 
of a trace that can be used for anomaly detection. When we integrate FGSD with 
HST, we even achieve a higher F1-Score. FGSD + HST improves between 6% and 
27% the F1-score of Sifter. HSTs are also 5% to 17% more accurate in F1-score than 
DBN + OCSVM.

Based on these results, it is clear that the FGSD-based trace representation 
and the HST classifier can detect the collective anomalies from trace streams. In 
the next section, we test whether this combination can produce accurate sampling 
performance.

9.3  Sampling Performance

We now apply the SampleHST-X method, with FGSD-based trace representation, 
on two datasets generated from the Compose Post and User Timeline part of the 
DSB traces. To assess the long-term sampling performance, each of those datasets 

Table 10  Comparing the results of three methods on the DSB dataset

User timeline Compose post

P R F1 P R F1

Sifter 0.667 0.922 0.773 0.907 0.881 0.893
FGSD+DBN +OCSVM 0.919 0.943 0.931 0.845 0.889 0.857
FGSD+HST 0.961 0.999 0.980 0.949 0.944 0.946

Table 11  Sampling results for 
different budgets on the DSB 
dataset (compose post)

The budgets considered are highlighted in bold

HST Approximate HST

P R F1 P R F1

0.5% 0.925 0.093 0.17 0.932 0.094 0.171
1% 0.948 0.191 0.317 0.949 0.191 0.318
2% 0.959 0.387 0.552 0.959 0.387 0.552
5% 0.965 0.914 0.939 0.965 0.913 0.938
10% 0.633 0.916 0.748 0.622 0.914 0.74

4 Word2vec embeddings - https:// radim rehur ek. com/ gensim/ models/ word2 vec. html

https://radimrehurek.com/gensim/models/word2vec.html
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contains the same number of traces as the production data. We have injected 5% 
broken traces, which are marked as anomalies. At first, we present the results con-
sidering both HST and approximate HST. The results are presented in Table 11 and 
12. Note that, we do not calculate the Jain score here as there are only two groups: 
normal and anomalies, which reduces the significance of fairness. From the results, 
we see that, in all the cases, SampleHST-X produces high values of corresponding 
evaluation criteria i.e., the evaluation criteria mentioned in Sect. 2.2 in relation to 
budget. The values produced by approximate HST is roughly similar. Like the case 
for point anomalies, this similarity is due to the reason that the mass scores remain 
the same for both the exact and approximate HST.

We present the results comparing Sifter and SampleHST-X in Table 13 and 14. 
We see that for all the budgets, SampleHST-X outperforms the Sifter method. It may 

Table 12  Sampling results for 
different budgets on the DSB 
dataset (user timeline)

The budgets considered are highlighted in bold

HST Approximate HST

P R F1 P R F1

0.5% 0.892 0.092 0.166 0.891 0.091 0.166
1% 0.923 0.188 0.313 0.923 0.188 0.313
2% 0.949 0.386 0.549 0.949 0.386 0.549
5% 0.976 0.976 0.976 0.976 0.977 0.976
10% 0.976 0.999 0.987 0.976 0.999 0.987

Table 13  Comparing the 
performance of different 
methods on the DSB dataset 
(Compose Post). The 
corresponding evaluation 
criteria is marked in bold

Uniform Sifter SampleHST-X

P R F1 P R F1 P R F1

0.5% 0.04 0 0.01 0.27 0.04 0.07 0.92 0.09 0.17
1% 0.05 0.01 0.02 0.29 0.09 0.13 0.95 0.19 0.32
2% 0.04 0.02 0.02 0.29 0.17 0.21 0.96 0.39 0.55
5% 0.05 0.05 0.05 0.29 0.42 0.35 0.97 0.91 0.94
10% 0.04 0.09 0.06 0.27 0.76 0.40 0.63 0.92 0.75

Table 14  Comparing the 
performance of different 
methods on the DSB dataset 
(User Timeline). The 
corresponding evaluation 
criteria is marked in bold

Uniform Sifter SampleHST-X

P R F1 P R F1 P R F1

0.5% 0.05 0 0.01 0.06 0.01 0.02 0.89 0.1 0.17
1% 0.04 0.01 0.01 0.06 0.02 0.03 0.92 0.19 0.31
2% 0.05 0.02 0.03 0.05 0.03 0.04 0.95 0.39 0.55
5% 0.05 0.05 0.05 0.05 0.08 0.06 0.98 0.98 0.98
10% 0.05 0.1 0.07 0.05 0.15 0.08 0.98 1.0 0.99
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seem counter-intuitive to see that the sampling precision, recall, and F1-score for 
Sifter are much smaller than its anomaly detection values shown in Table 10, but it 
is not. The sampling values are smaller here because, as suggested for Sifter [5], we 
do not apply any threshold here and sample a trace using its sampling probability. 
However, since the sampling probabilities generated by Sifter are low, many of the 
anomalous traces are not sampled. This can be understood by analyzing the sam-
pling probabilities generated by Sifter. For example, let us consider the experiments 
based on the User Timeline traces. We observe that the mean sampling probability 
generated by Sifter is 0.03. The 95th percentile of the generated probability is 0.12, 
which is 4× higher than the mean. Sifter generally associated the anomalous traces 
with probability values above the 95th percentile. Although the anomalous traces 
mostly had a sampling probability at least 4× higher than the normal ones, this still 
has not resulted in the anomalous traces being frequently sampled. A sampling prob-
ability of 0.12 means around 1 out of 8 anomalous traces will be sampled. Thus, for 
a small sampling budget, the sampling performance will be practically similar for 
Sifter and a uniform random sampler. This is evident from the results in Table 14.

We now present the sampling performance considering different clustering band-
widths with the Compose Post API. The results we have presented so far, in this sec-
tion, is considered hyper-rectangles as this yielded the best results for point anoma-
lies. For the Compose Post API, the used bandwidth is [0.1, 0.3] which yielded the 
best sampling performance for the production data in Sect. 7. In Table 15, we pro-
vide results considering both hyper-cubes and hyper-rectangles. Here, the average 
F1-Score is 0.91. This indicates that SampleHST-X is also robust to change in band-
width when we consider the FGSD-based trace representation. We have one interest-
ing observation here. The F1-Score for the smallest bandwidth [0.05, 0.05] is 14% 
lower than the average. The reason for this is with such small bandwidth, we can end 
up with many clusters. This can be a problem as we also have a probabilistic path in 
taking the sampling decision and some clusters may be ignored only because having 
a large number of clusters in the selection pool reduces their selection probability.

From these experiments, it is evident that, like point anomalies, using Sampl-
eHST-X, we can produce a robust sampling performance for collective anomalies. 
This is certainly encouraging as for SampleHST-X, the transition from point to col-
lective anomalies can be done with minimal effort - we only need to change the 
trace model. Since both the trace models are based on count data, the rest of the 
SampleHST-X pipeline can remain the same.

Table 15  Sampling performance 
on the DSB traces (compose 
Post): sensitivity to cluster 
bandwidth

Precision Recall F1-score

0.05,0.05 0.95 0.66 0.78
0.05,0.1 0.96 0.88 0.92
0.05,0.2 0.97 0.92 0.94
0.05,0.3 0.97 0.91 0.94
0.1,0.1 0.96 0.88 0.92
0.1,0.2 0.97 0.92 0.94
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10  Related Work

An important step for a sampler is to differentiate normal and anomalous traces i.e., 
anomaly detection (AD). There are many recent works on AD for microservices 
using trace data. For example, the authors in [35–37] primarily learn from the pat-
terns of call trees and request execution respectively to detect anomalies. Some stud-
ies [38–40] also consider deep learning based methods focusing on different aspects, 
e.g., response times and causal relationships. However, these works do not consider 
transforming the anomaly detection result to a sampling decision.

To the best of our knowledge, there are only a few studies focusing on sampling 
anomalous traces generated by microservices. In [3], the authors proposed a sampler 
based on a hierarchical clustering method PERCH [17]. Although the method can 
potentially achieve representative sampling [3], it inherently incurs the curse of the 
data dimensionality during clustering [41] and requires batch processing, which is 
not preferred under low latency requirements.

Sifter [5] avoids batch processing by taking sampling decisions trace-by-trace. It 
relies on a sampling probability, generated by utilizing the loss of training a neural 
network for a particular trace. For such a loss-based method, anomalous traces may 
still have small probabilities overall, closer to 0 than to 1, allowing several anoma-
lous traces to get not sampled. This problem is studied in a recently proposed sam-
pler, Sieve [6], which uses a threshold to first separate the anomalous traces and then 
amplify the sampling probability. This still leaves an open challenge regarding the 
optimal and automated choice of threshold.

In our recent paper [7], we proposed the SampleHST approach that addresses the 
issues with probabilistic approaches and does not require batch processing. How-
ever, SampleHST itself can require large memory spaces, in the context of edge 
devices, to save the HST forest. In addition it does not consider collective anomalies 
[9]. We address these issues in this paper with the SampleHST-X method.

11  Threats to Validity

To the best of our knowledge, there is no dataset in trace sampling domain that 
includes both point and collective anomalies. Thus, we evaluated SampleHST-X 
with either point or collective anomalies in the traces. We did not generate a syn-
thetic dataset for this purpose as developing such dataset, which represents a practi-
cal scenario, involves separate research challenges and it could be a possible future 
research direction. Once such data is available, the SampleHST-X pipeline requires 
no additional components to run the sampling process.

For the collective anomalies scenario, we compared the performance of Sam-
pleHST-X with Sifter. Recently another approach is proposed namely Sieve that 
unlike Sifter, depending on cases, can amplify the sampling probability. We do not 
implement Sieve to compare the results as, regardless of the amplification, the sam-
pling process is still probabilistic making its approach similar to Sifter. In addition, 
the amplification requires determining a threshold which can significantly effect the 
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sampling performance. Thus, we only considered Sifter for the collective anomaly 
scenario.

12  Conclusion and Future Work

We have proposed SampleHST-X, a novel sampling method for distributed tracing 
with storage budget constraints. The goal of SampleHST-X is to incorporate the 
proportion of sampling budget and the fraction of expected anomalous traces while 
taking sampling decisions. For the case where the budget is lower, sampling the 
anomalous traces receives priority. On the other hand, when the budget is higher, the 
normal traces are sampled alongside the anomalous ones.

SampleHST-X relies on an online clustering mechanism using mass scores of the 
traces, which are generated using a forest of HST. Subsequently, if the budget allows, 
the sampling decisions are taken based on the association of a trace with a clus-
ter, where the clusters more likely to contain anomalous traces are prioritized. Our 
experiments, which consider production data from a cloud service operator, show 
that our approach by far outperforms the recent approach targeting point anoma-
lies. The incorporation of approximate HST yields similar results while reducing the 
space requirement of HST. A graph model, FGSD, based extension demonstrates 
SampleHST-X can produce high sampling accuracy considering collective anoma-
lies as well.

A possible future work could be incorporating continuous trace properties, e.g., 
the response time, to identify also the latency anomalies in an integrated approach.
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