

City, University of London Institutional Repository

Citation: Gias, A., Gao, Y., Sheldon, M., Perusquia, J. A., O'Brien, O. & Casale, G. (2024).

SampleHST-X: A Point and Collective Anomaly-Aware Trace Sampling Pipeline with
Approximate Half Space Trees. Journal of Network and Systems Management, 32(3), 44.
doi: 10.1007/s10922-024-09818-8

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/32709/

Link to published version: https://doi.org/10.1007/s10922-024-09818-8

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Vol.:(0123456789)

Journal of Network and Systems Management (2024) 32:44
https://doi.org/10.1007/s10922-024-09818-8

1 3

SampleHST‑X: A Point and Collective Anomaly‑Aware Trace
Sampling Pipeline with Approximate Half Space Trees

Alim Ul Gias1 · Yicheng Gao2 · Matthew Sheldon2 · José A. Perusquía3 ·
Owen O’Brien4 · Giuliano Casale2

Received: 24 November 2023 / Revised: 27 February 2024 / Accepted: 13 March 2024
© The Author(s) 2024

Abstract
The storage requirement for distributed tracing can be reduced significantly by sam-
pling only the anomalous or interesting traces that occur rarely at runtime. In this
paper, we introduce an unsupervised sampling pipeline for distributed tracing that
ensures high sampling accuracy while reducing the storage requirement. The pro-
posed method, SampleHST-X, extends our recent work SampleHST. It operates
based on a budget which limits the percentage of traces to be sampled while adjust-
ing the storage quota of normal and anomalous traces depending on the size of this
budget. The sampling process relies on accurately defining clusters of normal and
anomalous traces by leveraging the distribution of mass scores, which characterize
the probability of observing different traces, obtained from a forest of Half Space
Trees (HST). In our experiments, using traces from a cloud data center, SampleHST
yields 2.3× to 9.5× better sampling performance. SampleHST-X further extends the
SampleHST approach by incorporating a novel class of Half Space Trees, namely
Approximate HST, that uses approximate counters to update the mass scores. These
counters significantly reduces the space requirement for HST while the sampling
performance remains similar. In addition to this extension, SampleHST-X includes
a Family of Graph Spectral Distances (FGSD) based trace characterization compo-
nent, which, in addition to point anomalies, enables it to sample traces with collec-
tive anomalies. For such traces, we observe that the SampleHST-X approach can
yield 1.2× to 19× better sampling performance.

Keywords Distributed tracing · Microservices · Anomaly detection · Sampling

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-024-09818-8&domain=pdf

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 2 of 38

1 Introduction

The distributed tracing approach is tailored primarily to monitor and profile appli-
cations built with the microservices architecture [1]. In a microservice ecosystem,
as the size of the architecture increases, the volume of the trace data increases
correspondingly [2]. In a typical production setup, this volume can be in the order
of several terabytes, and only a fraction of these traces helps in troubleshooting.
Hence, a storage budget is often applied to discard the majority of the traces [3].
However, this can result in important data to characterize system events. In this
paper, we study the problem of how to sample the most interesting traces that will
help in future troubleshooting. This entails not only sampling the traces that rep-
resent the overall user behavior but also sampling the anomalous ones.

A common industry practice, to accommodate the storage budget, is to lever-
age uniform sampling [3] also known as head-based sampling. This strategy has
a lower hit rate of anomalous traces as the sampling decision is taken before ana-
lyzing the trace. This could be addressed with a tail-based sampling strategy [4].
Such a strategy reasons on the information contained in the trace before taking a
sampling decision. Ideally, such a sampling strategy needs to be online and work
with streaming data. This requires that we must decide to save or discard a trace
on-the-fly at runtime.

In recent years, multiple tail-based sampling approaches have been proposed
[3, 5, 6]. However, these works have issues such as high dimensionality of clus-
tering data, batch processing requirement, low amplitude characterization for
anomalous traces, and no explicit consideration of the storage budget. These
shortcomings are addressed in our recent work SampleHST [7]. When the storage
budget is comparatively lower than the expected anomalies, SampleHST focuses
on sampling only anomalous traces. When the budget is higher, both the normal
and anomalous traces are sampled, with a bias towards anomalous ones. This bias
is fair because, among the sampled traces, the bias increases the representation
of anomalous traces groups that are rare compared to the normal groups. In other
words, such a bias allows representative sampling [3, 5].

SampleHST relies on the Bag of Words (BoW) model [8] to transform a trace,
which is essentially a text document, to a count based representation. This BoW-
based representation includes the frequency of unique terms in a document, which
is inherently useful for detecting point anomalies [9]. By taking such count-based
representation as input, SampleHST generates a distribution of the mass values
obtained from a forest of a tree-based classifier, namely Half Space Trees (HST)
[10]. This mass distribution is subsequently used to perform an online clustering
of the traces. The clustering algorithm, we have designed, is based on the mean-
shift clustering algorithm family [11, 12]. Once the clustering process is com-
pleted, the sampling decision is taken based on the trace-cluster association, i.e.,
the trace is likely to be sampled if it is associated with a cluster with low mass
values because such clusters represent the rare traces.

This paper presents SampleHST-X, which builds on the ideas of Sampl-
eHST and incorporates two main extensions. The first extension relates to the

1 3

Journal of Network and Systems Management (2024) 32:44 Page 3 of 38 44

space requirement for the HST. Depending on the depth the of trees, the storage
requirement of the HST increases exponentially. Even though a tree node only
stores a mass value, which can be stored in an integer, reducing the space require-
ment allows to use more HST with higher depths. SampleHST-X realizes this
with a novel variant of HST, which we name Approximate HST, that leverages
approximate counting to record the mass values in the tree nodes [13]. This can
bring advantages when the method is deployed in memory constrained environ-
ments as the size of the HST is significantly compressed; such scenario arises
for example in use cases that apply tail-sampling directly at the edge close to
micro-services connected with Internet-of-Things (IoT) devices, where discarding
traces can greatly reduce the cost of communication between edge and backend
clouds. The second extension is focused on the detection of collective anomalies
[9] in traces using the same sampling pipeline. For this purpose, SampleHST-X
leverages the Family of Spectral Graph Distances (FGSD) graph model [14] to
characterize a trace. Such a graph model produces a count-based representation
of the trace, focusing on its underlying structure and communication pattern. This
count-based representation can be used with the online clustering method without
additional adaptations.

We first evaluate the performance of SampleHST, with data provided by a
commercial cloud service operator, comparing the results with a recently pro-
posed approach for point anomalies [3]. For this production dataset, we see that
SampleHST yields 2.3× to 9.5× better sampling performance in terms of preci-
sion, recall and F1-Score than prior work. When we consider representative sam-
pling in a high budget scenario, we see SampleHST is 1.6× fairer with respect
to the Jain fairness index [15]. When we incorporate approximate HST, i.e., use
the SampleHST-X approach, we see a similar performance. While SampleHST-X
requires less space for HST, it does not affect the sampling accuracy. To test the
performance in case of collective anomalies, we use a dataset generated from a
local deployment of the Death Star Bench (DSB) microservice suite [16], which
is already used in literature to demonstrate the effectiveness of a trace sampler
[5]. We compare the performance of SampleHST-X with the trace sampler pro-
posed in [5]. Here, we also observe that SampleHST-X produces a high sampling
performance. In comparison, the sampling performance is 1.2× to 19× better
across all the budgets.

In summary, the key contributions of this paper are:

• A trace sampling pipeline SampleHST-X, that extends our recent work Sampl-
eHST [7], tailored for distributed tracing in a cloud data center.

• An online clustering method, generalizing the mean shift algorithm [11], that
considers non-spherical cluster shapes such as hyper-cubes and hyper-rectan-
gles.

• A novel class of HST, namely Approximate HST, that allow memory savings for
HST and reduce the overall resource footprint of distributed trace sampling.

• Simultaneous use of different trace models for anomaly detection with the same
sampling pipeline, in particular a BoW-based model for point anomalies and
FGSD-based model for collective anomalies.

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 4 of 38

Experiments using real-world data and a dataset from the literature to compare the
sampling performance of our proposed approach with a recent tail-based sampling
approach [3] indicate the effectiveness of the SampleHST-X as well as its potential
for less resource consumption while maintaining high sampling accuracy.

The rest of the paper is organized as follows. In Sect. 2 we demonstrate the moti-
vation for developing SampleHST-X and how to evaluate such sampling methods.
Trace representation and anomaly detection is discussed in Sect. 3. The key aspects
of the SampleHST method is presented in Sects. 4–6. The evaluation with indus-
try data is presented in Sect. 7. Subsequently, we present how approximate HST
is incorporated in SampleHST-X in Sect. 8. The extension for collective anoma-
lies is presented in Sect. 9. We discuss the related work in Sect. 10. The threats to
the validity of SampleHST-X is presented in Sect. 11. The paper is concluded with
future research directions in Sect. 12.

2 Motivation

Unlike head-based sampling, a tail-based sampling strategy takes the sampling
decision after the response is served, i.e., when the entire trace is available [4].
As a result, the information of the traces can be utilized, which can the propor-
tion of interesting traces in the sample. Before evaluating these samplers, we first
need to define the interesting traces and the evaluation criteria. In this section, we
first provide this definition and criteria. This is followed by a demonstration show-
ing the limitations of the current samplers that motivates us to the development of
SampleHST-X.

2.1 Trace Anomaly Definition

A key point before designing a tail-based sampling strategy is to define what makes
a trace more interesting or anomalous. For the rest of the paper, we use the term
anomalous traces to indicate interesting traces. In the context of this work, we use
the broad definition of anomalies provided in [9]. Precisely, we consider two types
of anomalies—point anomalies and collective anomalies.

Point anomalies involve a trace with an abnormally low or high value for one or
more trace properties. For example, suppose we define a trace property that counts
the occurrence of HTTP code 203 among its spans. If there is a large deviation
than the mean value, it can be considered an anomaly. On the other hand, collective
anomalies are those where there is an abnormal workflow pattern within traces. For
example, if a group of span always creates the same call-chain (like span A calls
span B and span B calls span C) and in a particular trace we see a deviation, this
trace can be considered an anomaly.

2.2 Evaluation Criteria

It is important to set appropriate criteria for evaluating the performance of a
tail-based sampler. In some recent works, researchers have used the notion of

1 3

Journal of Network and Systems Management (2024) 32:44 Page 5 of 38 44

representative sampling to evaluate their proposed method [3, 5]. Although, this
adoption of representative sampling provides a visualization of sampling fairness,
it is not a numeric metric that can be used for comparison. Further, it does not pro-
vide the accuracy of the method, with respect to the storage budget and the fraction
of anomalous traces in the data. For example, if the budget (0–1) is smaller than
the expected fraction (0–1) of the anomalous or interesting traces, rather than rep-
resentative sampling, the focus should be on sampling the anomalous traces. This
is because, with such a small budget the goal should be to identify the faults in the
system, which will appear in the anomalous traces. Representative sampling will
increase the number of normal traces being sampled, which is not ideal in this case.

Considering this, we select the evaluation metric depending on the ratio of the
anomalies versus the storage budget:

• For infrequent anomalous traces, where the prevalence of anomalies is less than
the storage budget, the primary evaluation metric should be the Recall.

• For low storage budgets, where the prevalence of anomalies is greater than the
storage budget, the primary evaluation metric should be the Precision.

• When sampling N traces from a collection of traces containing N anomalies, the
evaluation metric is the F1-Score.

Here, the definition of precision and recall is same as the definition in the machine
learning domain. The F1-Score is the harmonic mean of precision and recall.

2.3 Demonstration

We now demonstrate our motivation for a new tail-based sampler. For this demon-
stration, we have chosen two recently proposed samplers, one for the point anoma-
lies and the other for the collective anomalies scenario.

For the point anomalies scenario, we use a method [3] based on a hierarchical
clustering algorithm, namely Purity Enhancing Rotations for Cluster Hierarchies
(PERCH) [17]. In short, this PERCH-based method maintains a fixed size balanced
binary tree of the traces and samples from the tree periodically. The tree is main-
tained in such a way that the frequent traces are more likely to be removed when
there is a space shortage. For the collective anomalies scenario, we use the Sifter
approach [5]. It considers a trace as a directed acyclic graph (DAG) and predicts the
anomalies by inspecting all the k-length paths from the DAG. Here, each path is rep-
resented as a n-gram i.e., a sequence of n words. The association among these words
are learnt using a variant of word2vec algorithm [18]. The traces are sampled based
on the familiarity of these n-grams. We have implemented both these approaches
using python libraries12.

We now consider a case with production data from a cloud data center. The data
contains ∼ 5% point anomalies. We provide a storage budget of 5% to PERCH-based

1 PERCH - https:// github. com/ iesl/ xclus ter
2 Gensim - https:// radim rehur ek. com/ gensim/ models/ word2 vec. html

https://github.com/iesl/xcluster
https://radimrehurek.com/gensim/models/word2vec.html

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 6 of 38

method and executed it. As mentioned before, since the budget and the percentage
of anomalies are roughly the same, the evaluation criteria should be F1-Score. After
the execution we observe an F1-Score of 0.1, just slightly above the value of random
sampling 0.05. Although, for a low budget of 0.5% , where the evaluation criteria is
precision, we see the precision value of the method is 0.41. Under random sampling,
this is equal to 0.04. This shows that the PERCH-based method is significantly more
applicable in low budget scenarios than moderate budget ones, which underscores
the motivation for a sampling technique that works with a wide variety of budgets.

The primary drawback of such clustering method is it is hard to do clustering in
high number of dimensions [19], which can be often the case for point anomalies
scenario. Thus, for clustering, we need to find a representation that uses less number
of dimensions. In addition, this PERCH-based method is a batch process as it needs
to maintain a binary tree. This is a major problem when we have no mechanism for
temporary storage and need to immediately take the sampling decision.

The production data we have do not contain any collective anomalies. Thus, we
use the Death Star Bench (DSB) traces used in [5]. We consider the Compose Post
API for this experiment. The trace repository3 contains both the traces with nor-
mal and broken executions, where the broken executions are the ones with runtime
faults. Following the approach in [5], we consider the broken traces as anomalies
and created dataset where 5% of the traces are broken i.e., anomalous. We than exe-
cute the Sifter method with 5% budget and obtain an F1-Score of 0.35, which is bet-
ter than the point anomalies case, but has scope for improvement.

We attribute the limited performance of Sifter to its probabilistic approach of
sampling. If the sampling probabilities for the anomalies are not large enough, the
trace may not be sampled. To be certain that our implementation is not producing
small probabilities, we have checked the probabilities reported for Sifter [5]. The
highest probability obtained for Compose Post API is ∼ 0.3 , which is confirmed
from our experiments. This mean that around two out of three anomalous traces
might not be sampled. In addition, trace transformation in Sifter is potentially a slow
process for large traces, as it checks every path of the corresponding DAG. If we
consider data with runtime faults, the normal and erroneous executions will be dif-
ferent and so will be their traces. Thus, rather than checking every path, we can con-
sider the overall DAG structure of trace, reducing the time for trace transformation.

3 Anomaly Detection from Trace Stream

The first step of building a tail-based sampler is to be able to differentiate between
normal and anomalous traces. Subsequently, we need to decide how to use that
information to sample the traces. In this section, we discuss the first step that is
differentiating between the normal and anomalous traces. Here we have used the
production trace data containing point anomalies. We present how we can represent
these traces and evaluate the performance of different state of the art anomaly detec-
tion methods using the representation. Finally, we discuss the adjustments we made

3 Death Star Bench Traces https:// gitlab. mpi- sws. org/ cld/ trace- datas ets/ death starb ench_ traces

https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_traces

1 3

Journal of Network and Systems Management (2024) 32:44 Page 7 of 38 44

to Half Space Trees [10], the method that performed best, to better suit our case of
distributed tracing.

3.1 Bag of Words Model for Point Anomalies

The production data that we consider consists of spans in the scale of hundreds of
thousands. These data originate from a heterogeneous collection of microservices
within a cloud data center, which are in the form of spans that can be grouped into
traces. A span is an immutable data structure that supplies the value of a collection
of categorical and continuous variables at a particular point in time. The spans con-
tain a traceId, based on which they can be grouped to form traces.

We consider each trace as a document where the span properties are considered
as terms or words. The properties that are uninformative (meaning they are either
same or unique for all the traces, e.g., productName or id) are ignored. The traceId
is used only for trace reconstruction, not for trace representation. Continuous fields
related to latency have not been used as they require non-standard distance meas-
ures for integration in an approach since the other variables are discrete. In addition,
identifying latency anomalies falls into a separate class of problem, which is not in
the scope of this research.

Since we are considering point anomalies [9], the trace document can be con-
verted to a bag of words [8] which in essence is a count vector. We represent a trace
as x = (x1,… , xd,… , xD) , where D is the number of different terms that have been
seen across all the traces in the dataset. For example, the HTTP code 200 is one term
and a specific URL could be another one. Each dimension xd ≥ 0 is an integer value
counting how many times a particular term appears in a trace. The resulting count
data is agnostic of assumptions on the dataset, except knowledge of the total dimen-
sion D and what each dimension means. We can acquire such knowledge from an
initial monitoring period. This knowledge base can also be updated in frequent inter-
vals depending on the changes in microservices and their deployment architecture.

3.2 Comparing State‑of‑the‑Art AD Methods

Since anomaly detection is a key step for a sampling process, we here illustrate
which off-the-shelf anomaly detection methods could fit our purpose. We consider
the following popular techniques: 1) local density estimate: K-Nearest Neighbor
(KNN) and Local Outlier Factor (LOF), 2) tree-based classification: Isolation For-
est and Half Space Trees (HST) [10], 3) boosting: Lightweight Online Detection of
Anomalies (LODA) [20], and 4) neural network: Deep Belief Net and One Class
Support Vector Machine (DBN+OCSVM) [21].

We have considered a production dataset from a cloud service operator consist-
ing of 77577 traces from six consecutive days. The trace data have not been labelled
by the operator. Thus, using the popular offline DBSCAN clustering algorithm, we
have labeled the smallest clusters as anomalies, accounting for ∼ 5% of the total
traces. We evaluate the ability of the above-listed methods to obtain similar results.

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 8 of 38

The choice of DBSCAN is driven by the fact that it is considered as a generally reli-
able technique in industry [22].

The results of the experiment are presented in Table 1. We see that HST is the
best method with respect to F1-Score. This motivates further investigation into HST
methods to address the problem under study. In addition, HST has other benefits
from the perspective of a streaming platform. Due to the way HSTs are designed, for
a particular trace, we only need to update a single mass value [23] per tree. To deter-
mine whether a trace is normal or anomalous, the mean mass value (m) of the HSTs,
for that particular trace, is compared against a threshold. The use of HSTs also
results in a very low computational footprint, as it only needs to query its already
stored mass values.

3.3 Half Space Trees for Anomaly Detection

Half Space Trees (HST) [10] are an ensemble of binary decision trees, with depth d,
where the corresponding binary tree has 2d+1 − 1 nodes. Each tree stores split points
among a random subset of dimensions, and possibly multiple splits per dimension.
The leaves of the tree store how many points are within the subspace defined by the
paths leading to them, which is referred as the mass. Since mass is defined as a count
of data points, it is easier to calculate than density measures used in other methods,
e.g., those that require likelihood estimation. Normally, an ensemble of t Binary
Trees is used, with identical depth h, which are independently trained on a data win-
dow w. In this study, we assume that the data points will be available for continu-
ously arriving streams of spans from a heterogeneous collection of microservices.

In production, there could be relatively few types of traces that occur repeatedly.
Thus, once the spans are vectorized to count data, this sparsity could cause the HST
mass to be accumulated within a small set of terminal nodes. This is confirmed from
our production data where only 0.004% of the trace count vectors are unique. We
thus focus on a variant of HST known as HS*-Trees (HS*T) [23], which deals with
the sparsity in the tree structure. In HS*T, nodes that have fewer than SizeLimit sam-
ples are not further expanded during the training phase. This reduces memory con-
sumption and also the time to traverse the trees. Thus, we have opted for HS*T as
our chosen HST variant. In the rest of the study, we use the terms HST and HS*T
interchangeably.

Furthermore, we have incorporated two further modifications to HS*T. Firstly,
we opted for depth-dependent split dimension. This means that when splitting a

Table 1 Results of different AD methods on the production dataset

The F1-Score, highlighted in bold, is highest for the HST method

Isolation forest KNN LOF LODA DBN + OCSVM HST

Precision 0.73 0.77 0.73 0.62 0.47 0.94
Recall 0.72 0.72 0.72 0.60 0.97 0.70
F1-score 0.73 0.74 0.73 0.61 0.64 0.80

1 3

Journal of Network and Systems Management (2024) 32:44 Page 9 of 38 44

node, instead of using the normal procedure of picking a dimension at random, we
require all nodes at the same depth level to use the same split dimension, which
largely reduces memory usage since a single dimension is stored at each level. Sec-
ondly, as suggested in [10], we opted for a [0, 1] workspace. This means that the
maximum and minimum values of the features are assumed by the HS*T to be 1.0
and 0.0, rather than in the min-max range observed in the data. That is why for a
better partitioning of the input data, as shown in Fig. 1, we have opted for the fol-
lowing transformation

In our experiments, we have found it is sufficient to use g(x) = x , but other trans-
formations could be used, e.g., g(x) = log(x) , to consider large values of x. We have
used the production data to test these modifications, considering a day as a window
and using the first day to build the trees. These changes improve the F1-Score from
0.8 to 0.97, indicating the changes aid in anomaly detection from the trace streams.

4 Mass‑Based Clustering for Sampling

Although HSTs can help in classifying the anomalous traces, in reality, we need
to utilize this classification output in a sampling process. This process is complex
because of the trade-off between sampling normal and anomalous traces. While sam-
pling, the proportion of the storage budget and the expected percentage of anomalies
should be taken into account. If the budget is lower than the anomaly percentage, the
focus should be on sampling mostly the anomalous traces. The normal traces should
gain more attention only when the budget is higher than the anomaly percentage. In
addition, while sampling the anomalous traces, the target should be representative
sampling from that group of traces i.e. sampling from different “groups” of traces
fairly.

To achieve this, we propose to cluster the traces and decide whether to sam-
ple a trace or not based on its cluster association. However, when clustering in a

(1)f (x) =
1

1 + g(x)

0 1000 2000 3000 4000 5000
Trace #

0

0.2

0.4

0.6

0.8

1
Fe

at
ur

e
va

lu
e

(0
-1

)

(a) Min-Max Scaling

0 1000 2000 3000 4000 5000
Trace #

0

0.2

0.4

0.6

0.8

1

Fe
at

ur
e

va
lu

e
(0

-1
)

(b) Transformation function f

Fig. 1 Comparing the scaled value of HTTP 200 code counts with min-max scaling and the transforma-
tion function f

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 10 of 38

high-dimensional space it is harder to achieve accurate density estimation [19], in
addition to incurring a higher computational cost. Therefore, we propose a new
approach considering the distribution of mass across the trees in the HS*T for-
est and selecting a mean mass score m and a low percentile of the mass score p.
Low percentiles are expected to significantly differ from the mean when there is
at least a subset of trees in the forest that identifies the trace as an anomaly. We
refer to this method as SampleHST as we are using the mass distribution of HST
to perform sampling.

Since we want to use a low percentile (p) value along with the mean (m), we
represent each trace with a unique pair (m, p) that will be used for clustering. The
projection of the production traces in this 2-dimensional space is shown in Fig. 2.
It shows the clusters, in different colors, obtained by DBSCAN. We see that the
mass-based properties cluster the traces in distinct groups and the cluster cent-
ers are also appropriately detected using a baseline streaming clustering method
[24]. Another potential benefit of using the low percentile value is a better sepa-
ration of trace groups. As seen from Fig. 2, ignoring the percentile value will
result in multiple trace groups being merged together, eventually affecting the
sampling performance.

This mass-based clustering is at the core of SampleHST approach shown in
Fig. 3. It starts the sampling process by receiving the spans related to a micros-
ervice. Its trace aggregator component composes them to form the traces and
then convert them to either BoW-based or FGSD-based data format, depending
on the choice of the SampleHST user. Finally, its sampler component decides
whether to save the trace or not. Apart from the HSTs, the sampler contains a
decision-making service, which is composed of two sub-components:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean Mass Score

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5t
h

P
er

ce
nt

ile
 o

f M
as

s

Cluster
Center

Outlier

Fig. 2 The production trace plotted using the mass-based properties. The colors and markers indicate the
DBSCAN clusters. The cluster centers are estimated with a baseline online clustering method

1 3

Journal of Network and Systems Management (2024) 32:44 Page 11 of 38 44

• SampleHST Clustering: Creates cluster of traces based on their mass based
properties.

• SampleHST Controller: Makes the sampling decision based on budget and
trace-cluster association.

We now discuss the details of these sub-components in the next sections.

5 SampleHST Clustering

SampleHST Clustering is primarily based on the underlying theory of mean-
shift analysis [12] and the CEDAS algorithm [24], yielding a data-driven online
approach that generalizes the hyper-sphere cluster shape commonly assumed
in the literature to hyper-rectangles and hyper-cubes. Broadly speaking, our
method receives the mass score of a trace in the form of a pair (m, p), which is
generated using the HST mass distribution. Subsequently, the method aims to
find the association of the new trace with an existing cluster, if the associated
condition is not met a new cluster is created and a signal is sent. Furthermore,
the method is able to remove clusters that have not received a new trace for a
pre-defined period of time modulated by the decay and the life (energy) param-
eters. It can also merge clusters together whenever an overlapping occurs. These
steps can be broadly grouped into two sets of tasks: trace association and cluster
management. We now discuss the key aspects of these tasks.

5.1 Trace Association

Cluster Shape. A common assumption for online clustering algorithms for data
streams is that the cluster shape is a hyper-sphere [12, 24]. However, in our set-
ting, hyper-spheres can lead to inaccurate partitioning of the traces because the

Microservices

Sampler

SampleHST
Decision
Service

Sampler

SampleHST
Decision
Service

Trace
Data

HSTsHSTs

Mass Scores

Decision

Trace
Aggregator

Save?

<Trace, Decision>

File Storage Yes No

Fig. 3 An overview of the SampleHST approach

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 12 of 38

normalized values of the unique pair (m, p) belong to the unit hyper-cube. To
address this issue we consider instead an arithmetic average kernel whose support
is a hyper-rectangle [25]. Assuming d data dimensions, the kernel considered is pre-
sented in (2) for which we further show in Theorem 1 that the mean-shift property is
achieved if the clustering bandwidth [26] is equal in all dimensions.

Theorem 1 For the additive kernel defined as

the mean-shift algorithm at each iteration shifts each sample with a value equal to
the local mean if the support is given by a hyper-cube.

Proof Assume that we have N observations {xi}Ni=1 , with each data point having d
dimensions, that is xi = (xi,1, ..., xi,d) , then we can define the density gradient esti-
mate ∇̂p(x) ≡ ∇p̂(x) at x = (x1, ..., xd) as

where p̂(x) is the kernel density estimator [12, 25] for an unknown density p, h is the
bandwidth in all d dimension, K(⋅) is the kernel function and ek is the k-th standard
unit vector. Now using (2) as our kernel function, we get

Substituting ∇K(⋅) in (3) with (4), the density gradient estimate is

(2)Kd(u1,… ud) =

⎧
⎪⎨⎪⎩

3

d2d+1

d∑
k=1

�
1 − u2

k

�
if �uk� < 1,∀k

0 otherwise,

(3)

∇p̂(x) =
1

Nhd

N∑
i=1

∇K
(x1 − xi,1

h
,… ,

xd − xi,d

h

)

=
1

Nhd

N∑
i=1

d∑
k=1

𝜕

𝜕xk
K
(x1 − xi,1

h
,… ,

xd − xi,d

h

)
⋅ ek

(4)

d∑
k=1

�

�xk
K
(x1 − xi,1

h
,… ,

xd − xi,d

h

)
⋅ ek

=

d∑
k=1

�

�xk

[
3

d2d+1

d∑
l=1

(
1 −

(xl − xi,l

h

)2
)]

⋅ ek

=
3

d2d+1

d∑
k=1

�

�xk

(
1 −

(xk − xi,k

h

)2
)
⋅ ek

=
3

d2dh2

d∑
k=1

(
xi,k − xk

)
⋅ ek

1 3

Journal of Network and Systems Management (2024) 32:44 Page 13 of 38 44

Here, in (5), Nx is the number of data points for a region Ah(x) , �k is the mean of all
the data points in that region along the kth dimension. Note that, the volume of the
region Ah(x) is hd and the probability density estimate p̂(x) over the region using a
uniform kernel is Nx

Nhd
.

The objective of the mean shift algorithm is to move away from the valley and
toward the function mode. This can be achieved through gradient ascent. That is, for
two consecutive iteration t and t + 1 the shift in the variable xj in kth dimension can
be expressed as

Now substituting the value of p̂(x) and ∇p̂(x) and considering c = d2dh2

3
 in (6), we

show in (7) that the shift is equal to the mean of x in dimension k. This means that,
from the online clustering perspective, with the arrival of each sample, the cluster
center shifts uk in dimension k.

Based on (7), we conclude that the mean shift algorithm is applicable to the kernel
in (2) when the cluster bandwidth h is equal in all dimensions.

 ◻

Cluster Assignation. The assignment step requires a pre-defined clustering band-
width. We define the bandwidth vector, H = {h ∈ ℝ

d|∀i = 1,… , d, 0 < hi ≤ 1} ,
where each value hi ∈ H defines the Manhattan distance from the center to
the boundary of the cluster in the ith dimension. Now, if we define a vec-
tor of Manhattan distances between a cluster centroid and a new data point as
M = {m ∈ ℝ

d|∀i = 1,… , d, 0 ≤ mi ≤ 1} , then if ∀i mi ≤ hi , we assign the data
point to that cluster. Otherwise, a new cluster is created with that point.

Centroid Update. Appropriately updating the cluster centroid is critical since
SampleHST uses the centroid distance to decide the mapping of traces to clusters. In
general, it is preferable to update the centroid giving more importance to traces that
are unequivocally within that cluster. This is the concept of cluster kernel region
[24]. Given the clustering bandwidth vector H , we can define the kernel region as
the sub-space within a cluster with bandwidth rH , where the scalar r quantifies the

(5)

∇p̂(x) =
1

Nhd
3

d2dh2

N∑
i=1

d∑
k=1

(
xi,k − xk

)
⋅ ek

=

Nx

Nhd
3

d2dh2

d∑
k=1

1

Nx

∑
xi,k∈Sr(x)

(
xi,k − xk

)
⋅ ek

=

Nx

Nhd
3

d2dh2

d∑
k=1

(
𝜇k − xk

)
⋅ ek

(6)xt+1
j,k

= xt
j,k
+ c

∇p̂(x)

p̂(x)

(7)xt+1
j,k

= xt
j,k
+

(
�k − xt

j,k

)
= �k

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 14 of 38

proportion of the cluster considered as the kernel region. This concept of kernel
region is illustrated in Fig. 4.

5.2 Cluster Management

Cluster Merging. To address the overlaps among clusters as they are indications of
possibly inaccurate clustering, we opt for the policy that merges two clusters only
when the centroid of one overlaps with the boundary of the other. This policy is less
drastic than merging two clusters when their boundaries overlap because one dis-
tant point cannot shift the cluster center unless the cluster has very few samples. An
illustration of this policy is presented in Fig. 5.

Cluster Removal. We need to regularly remove the clusters whose populations
have remained static for a while since they are unlikely to be relevant and might
affect the sampling policy. We realize this by using the decay and life (energy)
parameters for the clusters as in [24]. The life property is initially set to one and
gradually reduced using the decay value, which is set as the average number of
traces in the work cycles, defined as a sequence of consecutive periods where we
received at least 1 trace, within the sampling window. The overall cluster removal
process is illustrated in Fig. 6.

Fig. 4 Illustrating the kernel region of the cluster

c1

c4

c2 c3

c1

c4

c2 c3

c1

c4

c3

Fig. 5 Demonstrating cluster merging process. Initially, though there is an overlap between the bound-
ary of cluster c2 and c3 they are not merged. Once their centroids overlap, they are merged into single
cluster c3

1 3

Journal of Network and Systems Management (2024) 32:44 Page 15 of 38 44

We present the overall algorithm for the clustering method in Algorithm 1. The
functions that have been used in the algorithm is summarized in Table 2. This algo-
rithm is utilized by the controller, which is presented in the next section.

c1

c3

c2

c1

c3

c2

c1

c2

Fig. 6 Demonstrating the cluster removal process. There are 3 clusters initially and each of them has a
life property. Each time there is a new observation, the life of the corresponding cluster is reset to full
value, while the life of other clusters are reduced. A cluster is removed once its life ends. We can see that
cluster c3 is thus removed

Table 2 Auxiliary functions used in Algorithm 1

Function name Description

SpawnCluster Creates a new cluster with the current trace data.
PruneClusters Removes the clusters whose life have expired.
FindAssociation Finds the cluster where the current trace can be assigned. Returns -1 if no cluster

is found.
AssignToCluster Assigns the current trace to a cluster and update its center if necessary.
FindMergeCandidate Finds whether the cluster associated with the current trace can be merged with

any other cluster. Returns -1 if no cluster is found.
MergeClusters Merges two clusters. The cluster centroid and its population is duly updated.

Total number of clusters is reduced by 1.
DecayClusters Reduces the life of each cluster by 1

decay
.

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 16 of 38

Algorithm 1 Clustering

6 SampleHST Controller

6.1 Overview

The SampleHST controller takes the sampling decision by utilizing the cluster-
ing method we have presented. The controller initially calculates the number of
traces (sw) that need to be sampled from the next sequence of w traces. We refer
to this number as the sampling limit and the sequence as a window. For a given
budget � , the sampling limit is defined as sw = �w . The budget is held constant,
therefore the sampling limit only varies with w over the runtime. The sampling
process runs continuously according to Algorithm 2, using HST mass scores xm .
The functions that we have used in the algorithm are summarized in Table 3.
The algorithm expects a set of inputs that defines the size of the sampling win-
dow (w), the budget (�), the total number of traces to be sampled in this window
(sw), the relative position of the current trace in the window (w(p)

i
), the number of

traces that still remain to be sampled (sr), the cluster status (C), which is a tuple

1 3

Journal of Network and Systems Management (2024) 32:44 Page 17 of 38 44

containing the cluster centroids, cluster life values, and cluster sizes, the cluster-
ing bandwidth vector (H) and the length of the system work cycle (�).

Algorithm 2 Sampling

Initially, a series of pre-processing procedures takes place on the received data.
Subsequently, the locality of the trace, represented by its associated cluster index, is
determined by SampleHST clustering. The final step is the sampling decision based
on the inclusion of the trace in a set of prioritized clusters, which we refer to as the

Table 3 Auxiliary functions used in Algorithm 2

Function name Description

AdjustParameters Adjusts the sampling limit if the current window size is larger than the estima-
tion.

ScaleScores Scales the mass scores using the min-max values. If the min-max value changes
raises a flag.

HasMaxMinChanged Check whether a flag is raised from the ScaleScores function. The details are
provided in Sect. 6.2.

ReScaleClusterCenters Re-scale the cluster centers using the previous and current min-max values. The
details are provided in Sect. 6.2.

GetTraceLocality Use Algorithm 1 to return the cluster index of current mass score.
IsTraceInSelectionPool Determines whether the trace falls in any of the clusters in the selection pool.

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 18 of 38

selection pool. This step is skipped if the sampling target has already been reached.
Since we already discussed the SampleHST clustering method, we now present the
key aspects of the controller.

6.2 Online Score Scaling

The first step in Algorithm 2 is to make the adjustments to the sampling window
size estimate and the sampling target when the current window is larger than the
expected window size. This is followed by log-transformation and min-max scaling
of mass scores: x(s)

m
= [logb(xm) −min(xs

m
)]∕[max(xm) −min(xm)] . It should be noted

that before the log transformation, the mass scores are expected to be standardized.
Since we are using HS*T, we use the mass value m[l]2l , where m[l] is the mass of
the terminal node where the trace falls into and l is the depth of the corresponding
tree node. To standardize the mass scores, we scale down the augmented mass using
the maximum mass value possible, which is w2d where d is the tree depth and w is
the number of observed traces.

Once the mass scores are processed, it is checked whether the minimum or maxi-
mum values change along with the new mass scores in the current sampling win-
dow. If this is the case, all the cluster centers are re-scaled.

6.3 Sampling Decision

The sampling decision procedure needs to decide on-the-fly whether to sample a
trace or not. If a new cluster is created by a trace, then the method always samples it.
For the case where the trace is associated with an existing cluster, we rely instead on
generating a prioritized pool of clusters, which we refer to as selection pool, and use
it to take the decision. This is done in three steps, which we describe in the following.

6.3.1 Distance‑Based Cluster Ranking

The first step is to rank the clusters. Two methods of ranking are considered: size of
the cluster and Euclidean distance from the origin. Cluster size is an obvious method
of ranking, but since SampleHST creates and deletes clusters in an online manner,
smaller clusters might not always represent less frequent traces. A cluster might be
smaller but all of its traces can have high mass values. This means that the traces
have hit HST nodes with a high mass count which indicates that these traces are
quite frequent. In addition, the most interesting and possibly smallest clusters are
likely to be near the origin, which represents a low-mass region in the clustering
place. Therefore, we choose the Euclidean distance of the centroids to the origin
(0, 0) and if a cluster is closer to the origin, traces associated with it will be sampled
first even if that cluster is not the smallest. Thus, if a cluster is closer to the origin, as
shown in Fig. 7, traces associated with it will be sampled first even if that cluster is
not the smallest.

1 3

Journal of Network and Systems Management (2024) 32:44 Page 19 of 38 44

6.3.2 Selection Pool

Once the clusters are ranked, we decide how many of those will form the initial
selection pool. Clusters are added according to the above ranking, starting with the
one closest to the origin, until the threshold � is reached. If two clusters are equidis-
tant, the one created first is prioritized.

After creating the initial selection pool, we start the second phase by checking the
actual value of the percentage total population in the selection pool denoted by �̂� . If
the actual percentage is less than �% of the budget, we add more clusters to the
selection pool. The clusters are added depending on the magnitude M of the budget
(�) in comparison to �̂� . This is defined as M =

⌊
(𝜏 − �̂�)∕�̂� +

1

2

⌋
 . We then make M

independent attempts to add the clusters in a probabilistic manner, where in the kth
attempt, the kth closest cluster to the origin, which is not yet included in the selection
pool, is chosen with a probability Pk . Here each attempt of being successful has the
same probability P = max(�, S) , where � is the budget and S is the sampling eager-
ness, bounded between [0, 1], defined as

A high eagerness value indicates we should sample more. It is defined in terms of
the budget utilization (U), which is the ratio of the number of sampled traces to the
sampling limit, and the relative trace position in the current window (R), which is
the ratio of the trace index in the current window to the sampling window size.

6.3.3 Decision Process

After the selection pool has been decided, we sample the new trace only if it is asso-
ciated with any of the clusters in the pool. If that is the case, one of two paths may
be followed. If the budget is greater than or equal to the actual percentage of the

(8)S = R(1 − U)

Fig. 7 Illustrating the distance based cluster ranking concept

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 20 of 38

population in the selection pool (𝜏 ≥ �̂�), we sample the trace straightaway. Con-
versely, if the budget is less than the actual percentage, we follow the second path
that takes a probabilistic sampling decision. This is to sample cautiously as we may
have larger clusters in the selection pool containing common traces. In this path, we
set the probability of sampling as

Here we set the probability based on the cluster size. Firstly, if the size of the cluster
(Γc), which is associated with the current trace, is greater than the sum of the mean
(Γ�) and k standard deviation (Γsigma) of the cluster size in the selection pool, we set
the sampling probability to 𝜏∕�̂� . This means that, if there are N traces, the size of
the selection pool will be N�̂� and we would like to sample N� traces from those in
the selection pool. Secondly, if Γc ≤ Γ� + kΓ� , we set the sampling probability to 1.
This means if the cluster is sufficiently small, we decide to sample the correspond-
ing trace. The value of k is set using Chebyshev’s inequality [27], which estimates
the minimum percentage (V) of values within k standard deviation of the mean. For
a given V, we can solve the inequality to determine the value of k. We notice that
this percentage V is related to the ratio of 𝜏∕�̂� . Because, if � is much smaller than �̂� ,
we want to sample only if the associated cluster is smaller than the majority of the
clusters. As the value of � increases compared to �̂� , we can consider the larger clus-
ters i.e., a larger value of V. Thus, considering V̂ = 𝜏∕�̂� , where V̂ is an estimate of
the minimum percentage V, we can calculate the value of k using (10).

7 Sampling Performance

7.1 Experimental Setup

To test the performance of SampleHST, we use a production data provided by a
cloud data center composed of 77,577 traces. Each trace contains at least one span
and the following four categorical features: Service Name, URL, Process Id, and
Node Id. A span also contains the HTTP return code and HTTP method for the ser-
vice invocation. The traces are represented as a count vector using the BoW model
as detailed in Sect. 3. Through this, we obtain 105 unique features. To evaluate the
performance of the trace samplers, we use the performance evaluation criteria men-
tioned in Sect. 2.2.

To test the SampleHST robustness, we consider 5 cases with different storage
budgets. First, since we have about 5% anomalies in our data, we include a case
where the budget is 5%. The evaluation criteria for this case is the F1-Score. We

(9)Ps =

{ 𝜏

�̂�
if Γc > Γ𝜇 + kΓ𝜎

1 otherwise

(10)k =

√
�̂�

�̂� − 𝜏

1 3

Journal of Network and Systems Management (2024) 32:44 Page 21 of 38 44

have also chosen 3 smaller budgets (0.5%, 1% and 2%) where the evaluation criteria
is precision. Finally, we also considered a high budget case of 10%, where the evalu-
ation criteria is recall. We compared the results with two other samplers: uniform
random sampler, implemented following the Head-based sampler in [5], and the
PERCH-based method [3].

Since sampling methods such as [3, 5] focus on representative sampling, we also
compare their fairness using the Jain index [15]. The index can be calculated using
(11) where Xi =

Ti

Oi

 . Here, for each cluster i, Ti is the number of traces sampled by a
method and Oi is the optimal number of traces that should be sampled. This metric
indicates what percentage of the groups are treated fairly. In our case, the groups are
the clusters that we obtained offline from DBSCAN. We calculate the optimal num-
ber of traces that should be sampled offline using the max-min fair allocation
approach [28].

7.2 Results

SampleHST Clustering Operation. We begin by illustrating in Fig. 8 the operation
of the SampleHST method. Since this is an online clustering method, we divide the
total time frame into 20 periods and show the clustering status for those periods. We
immediately see that in the first window, the data points are less segregated. This is
because of the online min-max scaling. In the initial period, the min-max values are
not steady, which affects the data points as well. As we progress toward the end, we
can see that the clusters are increasingly segregated. We also see that the number of
clusters continues to change throughout these periods. The clusters around the top
right corner remain stable, but the ones around the bottom left corner change their
positions frequently as the top right clusters capture frequent traces whereas the bot-
tom left ones capture infrequent traces. The infrequent trace clusters decay quickly
by not receiving traces in some work cycles.

Comparative Experiments. We now compare the performance of SampleHST
against the uniform random and PERCH-based methods. In Table 4 we see that
SampleHST with a bandwidth of h = 0.1 is the best method across all budgets, with
the uniform random sampler performing the worst. We also see that the PERCH-
based method does not perform significantly better with respect the precision, recall,
and F1-Score. From the fairness perspective, the PERCH-based method scores
much higher than the random sampler, but still it cannot outperform SampleHST.
The results show that even though the PERCH-based method can achieve a better

(11)J(X1,X2,… ,Xn) =

�
n∑
i=1

Xi

�2

n
n∑
i=1

X2
i

Xi ≥ 0

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 22 of 38

Jain score in low budgets, it is not precise in sampling the anomalous traces as made
evident by the precision score.

As we mentioned earlier, identifying anomalous traces is difficult for clustering
methods due to the high number of dimensions of the input data, as in the present
case with 105 dimensions. SampleHST, on the other hand, eliminates this problem
by using the mass scores, which are low dimensional.

We now focus on the case with a high budget (10%). Firstly, we see that
SampleHST easily outperforms the PERCH-based method considering the pri-
mary evaluation criteria recall. Secondly, when we consider representative sam-
pling, we see that the Jain score produced by SampleHST is 1.6× better than
the PERCH-based method. The reason for SampleHST performing better is as
follows. The primary objective of SampleHST is to sample as many anomalous

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

Fig. 8 Output of the SampleHST clustering algorithm. The X-axis and Y-axis represent mean and 5th
percentile of mass respectively. The colored symbols represent different DBSCAN labels. The + signs
are the cluster centers estimated by the SampleHST clustering algorithm. The output is presented in 20
windows. As we move from left to right, we move toward the next window

1 3

Journal of Network and Systems Management (2024) 32:44 Page 23 of 38 44

traces as possible. In high-budget cases, it only shifts focus towards normal
traces when the primary objective is fulfilled. Anomalous traces can create many
groups, each with a small size, whereas normal traces create a small number of
large groups. This is indeed the case with the production data. As a result, when
SampleHST samples most of the traces from anomalous groups, it satisfies the
demands of the majority of the groups, making it fairer which is reflected in the
Jain score.

SampleHST with Hyper-Rectangles. The mass scores work as anomaly sig-
nals to the SampleHST, which are not always likely to be equally strong in all
clustering dimensions. In such cases, the traces may not be segregated ideally
in that dimension. This is not a problem as long as we can separate anomalous
traces from normal ones. However, if the bandwidth in that dimension is small,
we can have multiple clusters in a particular region in the clustering hyper-plane,
which represents traces of similar types. Thus rather than using a small clustering
bandwidth in that dimension, as illustrated in Fig. 9, we can choose a large one to

Table 4 Performance of
different samplers with different
budget

The numbers corresponding to the evaluation criteria for different
budgets are highlighted in bold

0.5% 1% 2% 5% 10%

Uniform J 0.10 0.10 0.11 0.13 0.18
P 0.05 0.04 0.06 0.05 0.05
R 0.01 0.01 0.03 0.05 0.10
F1 0.01 0.01 0.04 0.05 0.06

PERCH- based J 0.32 0.24 0.32 0.47 0.56
P 0.41 0.18 0.13 0.11 0.09
R 0.03 0.03 0.04 0.09 0.15
F1 0.05 0.04 0.07 0.10 0.11

SampleHST J 0.40 0.59 0.72 0.75 0.88
P 0.84 0.83 0.86 0.92 0.80
R 0.10 0.18 0.37 0.91 0.94
F1 0.17 0.30 0.52 0.92 0.87

0 0.2 0.4 0.6 0.8 1
Mean mass

0

0.2

0.4

0.6

0.8

1

5th
 p

er
ce

nt
ile

 o
f m

as
s

(a) h1 = h2

0 0.2 0.4 0.6 0.8 1
Mean mass

0

0.2

0.4

0.6

0.8

1

5th
 p

er
ce

nt
ile

 o
f m

as
s

(b) h1 = h2

Fig. 9 Comparing clusters with equal and unequal clustering bandwidth

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 24 of 38

remove clusters containing similar traces, allowing a more precise clustering. In
other words, we can opt for hyper-rectangles instead of hyper-cubes.

When we observe the clustering status, as presented in Fig. 9, indeed with hyper-
rectangles there are fewer clusters in the top right corner, that represent normal
traces. Having less number of traces reduces the probability of sampling from nor-
mal groups, which is essential in the low and moderate budget cases. This is also
reflected in the sampling performance. In Table 5 we present the results, for the 5%
budget case and for different sizes of hyper-rectangles. From these results, we can
appreciate that the F1-Score for bandwidth [0.1, 0.3] reaches 0.95, which is higher
than the one we achieved for hyper-cubes presented in Table 4. Moreover, and con-
sidering the hyper-rectangle [0.1, 0.3] as our baseline we can see in Table 6 that the
hyper-rectangles approach yields significantly better results in the metrics consid-
ered. In particular for low-budget scenarios we achieve on average an improvement
of 1.12× with respect to hyper-cubes.

8 SampleHST‑X: Integrating Approximate HST

As seen in Sect. 7, utilising HSTs clearly endows our sampling methodology with
significant predictive performance. However, a possible drawback occurs when
the HSTs grow very large stressing the memory capacity, so that there might be a
need to save memory usage, even in the scale of tens of megabytes. In particular, if

Table 5 Performance of
SampleHST considering hyper-
rectangles

Bandwidths are highlighted in bold

Bandwidth Jain Precision Recall F1-Score

0.05, 0.1 0.76 0.90 0.91 0.91
0.05, 0.2 0.75 0.91 0.91 0.91
0.05, 0.3 0.74 0.93 0.91 0.92
0.1, 0.2 0.74 0.94 0.91 0.92
0.1, 0.3 0.73 0.97 0.92 0.95

Table 6 Sampling results
with hyper-cubes and hyper-
rectangles

The budgets and numbers corresponding to the evaluation criteria
for different budgets are highlighted in bold

h = 0.1 [h
1
, h

2
] = [0.1, 0.3]

J P R F1 J P R F1

0.5% 0.40 0.84 0.10 0.17 0.41 0.94 0.10 0.18
1% 0.59 0.83 0.18 0.30 0.50 0.95 0.21 0.34
2% 0.72 0.86 0.37 0.52 0.47 0.96 0.41 0.58
5% 0.75 0.92 0.91 0.92 0.73 0.97 0.92 0.95
10% 0.88 0.80 0.94 0.87 0.88 0.79 0.94 0.86

1 3

Journal of Network and Systems Management (2024) 32:44 Page 25 of 38 44

SampleHST-X is deployed to edge devices, which have memory constraints, reduc-
ing memory consumption in the scale of megabytes is also significant. Researchers
have been working on better memory management of such devices either by propos-
ing novel management method [29] or adopting the machine learning method [30].
We focus on the latter strategy and aim to reduce the memory footprint of HST. To
address this issue, we consider approximate counting methods which are commonly
used in high-speed network packet counting, see e.g. [31, 32].

The idea behind this novel approach, we propose, is to make the HS*Ts lighter
by replacing the mass values stored in the HS*Ts nodes, with approximate counters
that take less space since they require fewer bits to represent them. Theoretically, the
key idea of approximate counting is to probabilistically increase the counter while
ensuring that, in the long term, the bias is under control. This is usually achieved
by introducing a probability indicating whether the counter should increase. In this
direction, the traditional approach is the Morris’ algorithm [13], where the prob-
ability to increase from l to l + 1 is 1/D(l), with D(l) = A(l + 1) − A(l) and A(l) = 2l .
The function A(l) is called the estimation function, which represents the value of the
counter associated to the register value l. If the register ranges in 0,… , L − 1 , the
maximum number that can be represented will be A(L − 1) = 2L−1 . While Morris’
algorithm allows for significant memory savings, it is fairly coarse-grained in the
count values. Fig. 10a shows an example run of the Morris algorithm. By definition,
the method takes as little as 4 bits to approximately represent numbers from 0 to 215 .
However, the approximation is increasingly worse the larger the numbers grow.

In recent years, new expressions for the A(l) function have been proposed that
trade accuracy for storage. In particular, the following estimation function is optimal
[33]

where � is a parameter of the algorithm that needs to ensure that A�(L − 1) exceeds
the desired maximum counter value M. In this case, the trade-off is characterised in
terms of � , so that for small values of � , the approximation becomes better, whereas
the storage saving will decrease. Examples for � = 0.10 and � = 0.01 are shown in
Fig. 10b and 10c, where it can be appreciated the effect just described with � = 0.01
giving the best approximation with a storage saving of just 1 bit.

(12)A�(l) =
(1 + 2�2)l − 1

2�2
(1 + �2),

0 0.5 1 1.5 2 2.5 3 3.5
registry value l 104

0

0.5

1

1.5

2

2.5

3

3.5

co
un

t
104

exact
approximate

(a) Morris’ Algo., 4-bit

0 0.5 1 1.5 2 2.5 3 3.5
registry value l 104

0

0.5

1

1.5

2

2.5

3

co
un

t

104

exact
approximate

(b) ε = 0.10, 9-bit

0 0.5 1 1.5 2 2.5 3 3.5
registry value l 104

0

0.5

1

1.5

2

2.5

3

3.5

co
un

t

104

exact
approximate

(c) ε = 0.01, 14-bit

Fig. 10 Approximate counting methods: counting from 0 to 215

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 26 of 38

To test the approximate counting approach, we used the production data as before.
The main objective of these experiments was to find the effect on the performance
of the HST with and without approximate counting. This is particularly important,
because this approach will make the mass values less precise and hence, having a
negative impact on the F1 score of the anomaly detection method. The results of
the experiments are shown in Table 7, where we can appreciate that for this data set
the terminal node in a tree requires 17 bits to represent the mass value. Then, and as
expected, with approximate counting, we appreciate that for larger values of � , the
F1-Score decreases. However, it is quite remarkable to see that we can still achieve
an F1 score of 0.90 while saving 13 bits.

Of course, it is important to remark that this behaviour should not be expected in
all the cases. For this particular data, we are able to see that the mass values are not
uniform and can be easily segmented into a small number of groups. So that, high
F1-Scores can be achieved if the high mass groups can be separated from the low
mass groups. Overall, these results indicate that there is strong potential of com-
pressing the space taken by HST with approximate counting, while not having such
a dramatic negative effect on the F1-Score.

When we change the mass update mechanism to approximate from exact in Sam-
pleHST-X, we see no significant difference in performance, as shown in Table 8.
This is because the scores produced by HST are qualitatively similar in both cases.
Although approximate counting introduces errors in mass values, the normal and
anomalous traces can still be separated. This is because of the definition of mass

Table 7 Anomaly detection
results with approximate
counting. All experiments use a
HS*T with T = 500 trees, depth
D = 15 . We considered each day
as a window and used the first
day to built the trees

The different values of ε are highlighted in bold. Exact means
approximate counting is not used

� bits Precision Recall F1-score

Exact 17 0.9522 0.9853 0.9669
0.01 14 0.9522 0.9853 0.9669
0.10 9 0.9525 0.9848 0.9667
0.25 7 0.9458 0.985 0.9632
0.5 5 0.9164 0.9895 0.9482
0.75 4 0.8336 0.9952 0.9003

Table 8 Sampling results with
exact and approximate mass
(h = 0.1)

The budgets considered are highlighted in bold

Exact mass Approximate mass

J P R F1 J P R F1

0.5% 0.404 0.840 0.093 0.167 0.424 0.829 0.091 0.164
1% 0.590 0.832 0.182 0.298 0.594 0.827 0.180 0.296
2% 0.723 0.860 0.372 0.520 0.726 0.860 0.372 0.520
5% 0.750 0.924 0.907 0.915 0.750 0.924 0.905 0.914
10% 0.88 0.807 0.943 0.869 0.879 0.808 0.941 0.869

1 3

Journal of Network and Systems Management (2024) 32:44 Page 27 of 38 44

score m[l]2l , where m[l] is the mass of the corresponding node, which is in level l.
Due to approximate counting, the error propagates through the term m[l] but the 2l
part balances out the error, particularly in the case where the value of l is high.

Finally, to illustrate the impact of approximate counting, in reducing memory
usage, we conduct another experiment. Here, we use a C++ programming language
based implementation of SampleHST-X since it has a minimal abstraction from the
underlying OS architecture and thus, has less memory overhead. We have profiled
the memory usage (in terms of resident set size), for two versions of SampleHST-
X, running on 30000 traces with 5000 trees. The first version with approximate
counting used unsigned short integer, whose size is 16 bits, to store mass values.
Here, we set the value of � to 0.01. The second version with exact counting used
unsigned integer, whose size is 32 bits, to store the mass values. The difference in
memory usage is evident from Table 9. Based on this data, we see a 16% improve-
ment in memory usage with approximate counting. It should be noted that the runt-
ime for approximate counting is higher than exact counting, in-part due to the addi-
tional calculation involved with approximate counting. Considering the number of
traces, the increase in runtime, in this case, is negligible. Nevertheless, this trade-off
between memory saving and runtime should be considered when using approximate
counting.

9 SampleHST‑X: Extension for Collective Anomalies

In the previous sections, we focused on traces with point anomalies. However, a
trace might not look anomalous from a point anomaly perspective as in such a per-
spective the collection of events are not considered [9]. To address this issue, we
must consider that traces can contain collective anomalies. In particular, we focus on
the sequence of events in a trace and how to consider the collection of those events
during the anomaly detection process. We now present how we can incorporate this
collective anomalies scenario using SampleHST-X. We demonstrate that, with only
changing the trace representation, SampleHST-X produces a robust sampling per-
formance for such scenarios.

9.1 Graph Model for Collective Anomalies

A single trace commonly spans across multiple microservices. The trace data can
preserve this information about the call chain among the microservices. As a result,
we can extract a workflow from the trace. How these call chains are preserved

Table 9 Memory usage of SampleHST-X using approximate and exact counting

Method Size of mass value Size of HST node Memory usage Runtime

Approximate 16 bits 24 bytes 79.3 MB 97 sec.
Exact 32 bits 30 bytes 94.4 MB 46 sec.

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 28 of 38

depends on the trace format. For example, the Death Star Bench (DSB) traces follow
the X-Trace format [34]. An X-Trace is composed of multiple events from different
services, which makes is more fine-grained than the spans. Using the source prop-
erty in each trace we can construct a directed acyclic graph (DAG) that represents
the workflow among the services.

The Sifter method in [5] considers this DAG. It predicts the anomalies by
inspecting all the k-length paths from the DAG. However, it ignores the overall
graph, which in many cases is ideal for anomaly detection. For example, consider
the traces related to the errors within a particular software component. These will
mostly be structurally different from the typical traces. Thus, using an overall
graph representation will possibly lead to better anomaly detection. Considering
this, we need to use an unsupervised way to learn the features that represent the
overall graph structure.

We have used the FGSD method [14] for this graph-based representation pur-
pose. The main reasons, besides providing befitting graph features, for using
FGSD is that it works in an unsupervised way and does not require to store pre-
vious traces to provide the current trace representation. FGSD is based on the
spectral analysis of graphs. In such an analysis, the focus is to study the graph
properties related to the set of graph eigenvalues. For FGSD the Laplacian matrix
(the difference between the degree and adjacency matrix) is used to calculate the
pairwise distances between the graph vertices. The final distance matrix is subse-
quently converted to a histogram, which is considered as the set of features. Since
FGSD works on a simple connected graph, we first need to convert the DAG to its
undirected form.

To implement FGSD in a real-time scenario we need to consider two issues,
with the first one being scalability. Our main concern is the graph size and the
time it requires to transform it to a feature vector. As mentioned already, the
feature vector is a histogram of pairwise spectral distances. The number of his-
togram bins and range have no significant impact over the transformation time.
However, it depends significantly on the number of vertices in the input graph.
In the context of DSB dataset, it is the number of events. As reported in [14],
the time complexity of FGSD is O(N2

) where N is the number of vertices in the
graph, as such the method will not be applicable to all traces.

Fig. 11 Time complexity of
FGSD algorithm with respect to
graph sizes

100 200 300 400

Graph Size (No. of Vertices)

10

20

30

40

50

A
vg

. E
nc

od
e

T
im

e
(m

s)

1 3

Journal of Network and Systems Management (2024) 32:44 Page 29 of 38 44

Although complexity of O(N2
) seems too onerous, we wanted to measure the

maximum graph sizes that may still be processed in practical scenarios. We have
tested this time complexity of FGSD using the DSB dataset. Here, we consider
the traces whose corresponding graph size falls within 5th to 95th percentile. In
other words, we ignored the graphs that are either too large or too small. We have
tested each of those selected graphs 1000 times and considered the average time.
We plotted the average time against the graph sizes in Fig. 11. We see that the
initial growth in conversion time is roughly linear. The highest encoding time is
around 50ms and till size 100, it is less than 10ms. Thus, adding this pre-process-
ing layer in an anomaly detection process does not seem impractical if the graph
sizes are such.

The second issue that we need to consider is graph isomorphism. The goal of
FGSD is to determine whether two graphs have a similar structure. As a result, if
two graphs are isomorphic, FGSD will provide a similar feature vector for them.
Two graphs G and H are isomorphic when for every pair of vertices (u, v) that are
adjacent in G, we can find a pair (f(u),f(v)) in H that are also adjacent where f is
a bijection (one-to-one correspondence) between the vertices of G and H. In other
words, if we can relabel the nodes so that two graphs are identical, they are iso-
morphic. This means that, despite having different parent-child relationship among
the spans or traces in two separate traces, those two traces will have similar FGSD
feature vector when the corresponding graphs are isomorphic. However, the method
will be helpful if the traces differ in length and forking pattern.

For illustration purpose, let us consider three traces of length three (contain-
ing three spans). We present the corresponding directed graphs in Fig. 12a–c. The

Fig. 12 Examples of directed graphs of traces and the adjacency matrix of their undirected version.
The last two graphs correspond to traces of length four, the rest are of length three. Only the first three
directed graphs are isomorphic, whereas the undirected versions of all the graphs are isomorphic

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 30 of 38

figures also present the adjacency matrix of the corresponding undirected graphs,
which is considered by FGSD. As seen in the figure, though the index of the root
span is different, the structure of the graphs are similar and both the directed and
undirected version of the graphs are isomorphic. Thus, FGSD will provide a sim-
ilar feature vector for all these traces. In Fig. 12d we present a different orienta-
tion of the same spans. We can see that this directed graph is non-isomorphic to
the directed graphs in Fig. 12a–c. However, the undirected version of the graph in
Fig. 12d (as shown by the adjacency matrix), is isomorphic to the undirected version
of the graphs in Fig. 12a–c. As a result, FGSD will yield the same feature vector for
this trace as well.

Now we consider two more variants of the above mentioned traces where we add
one extra span (shown in Fig. 12e-12f). As before, we also present the adjacency
matrix of the corresponding undirected graphs in the figure. Here, it is clear that
both the directed and undirected graphs of these traces are non-isomorphic. As a
result their feature vector will be dissimilar and thus they can be differentiated by a
anomaly detection algorithm. Note that, unlike FGSD, the count-based feature vec-
tor will yield the same feature vector for both traces.

9.2 Anomaly Detection

We now test how this FGSD-based trace representation aids the half space trees in
anomaly detection. In this experiment we have used the DSB trace data. We particu-
larly considered two APIs: User Timeline and Compose Post. For the User Timeline
API, the median graph node size is 56. The Compose Post API, on the other hand,
contains more complex traces with a median node size of 392. These two APIs give
us a good mix of small, medium and large traces. They are also used for evaluation
of the Sifter method [5], which we used for performance comparison. Here, similar
to [5], we have mixed the normal and broken traces, and marked the broken traces
as anomalies. Both datasets contain 1000 traces with 5% anomalies. Since there are
more than 1000 traces available for both those APIs, we have randomly generated 30
combinations of them and report the average performance.

To understand the impact of FGSD on HST for anomaly detection, we consider
the HST version for Sect. 3 i.e., we do not apply the HST modifications (presented
in Sect. 3) for this experiment only. As we want to compare the performance of HST
with a method intended for collective anomalies, we use a variant of Sifter as an
anomaly detection method. The concept behind this variant is as follows. Sifter pro-
vides a sampling probability for each trace, which is obtained from the loss while
training a neural network. Thus, we can apply a threshold over this probability and
when we observe a trace above this threshold, we mark it as an anomaly. We have
selected this threshold on a trial and error basis to optimize the anomaly detection
performance. Note that, the original Sifter method is not intended for anomaly detec-
tion but for sampling and it does not use a threshold. We discuss this in detail in the
next subsection. We have implemented Sifter based on the loss function provided in

1 3

Journal of Network and Systems Management (2024) 32:44 Page 31 of 38 44

the word2vec python library4. In addition to Sifter, we have incorporated a recent
anomaly detection method DBN+OCSVM [21] with FGSD and also compared its
result with others. The particular reason for choosing this method is that it provides
the opportunity to compare the performance of another classifier other than HST,
when combined with FGSD.

We present the comparison of these methods in Table 10. We see that for the
Compose Post API, Sifter produces a slightly better F1-Score than FGSD + DBN +
OCSVM. However, FGSD + DBN + OCSVM significantly outperforms Sifter for
the User Timeline API. This shows that FGSD can provide a proper representation
of a trace that can be used for anomaly detection. When we integrate FGSD with
HST, we even achieve a higher F1-Score. FGSD + HST improves between 6% and
27% the F1-score of Sifter. HSTs are also 5% to 17% more accurate in F1-score than
DBN + OCSVM.

Based on these results, it is clear that the FGSD-based trace representation
and the HST classifier can detect the collective anomalies from trace streams. In
the next section, we test whether this combination can produce accurate sampling
performance.

9.3 Sampling Performance

We now apply the SampleHST-X method, with FGSD-based trace representation,
on two datasets generated from the Compose Post and User Timeline part of the
DSB traces. To assess the long-term sampling performance, each of those datasets

Table 10 Comparing the results of three methods on the DSB dataset

User timeline Compose post

P R F1 P R F1

Sifter 0.667 0.922 0.773 0.907 0.881 0.893
FGSD+DBN +OCSVM 0.919 0.943 0.931 0.845 0.889 0.857
FGSD+HST 0.961 0.999 0.980 0.949 0.944 0.946

Table 11 Sampling results for
different budgets on the DSB
dataset (compose post)

The budgets considered are highlighted in bold

HST Approximate HST

P R F1 P R F1

0.5% 0.925 0.093 0.17 0.932 0.094 0.171
1% 0.948 0.191 0.317 0.949 0.191 0.318
2% 0.959 0.387 0.552 0.959 0.387 0.552
5% 0.965 0.914 0.939 0.965 0.913 0.938
10% 0.633 0.916 0.748 0.622 0.914 0.74

4 Word2vec embeddings - https:// radim rehur ek. com/ gensim/ models/ word2 vec. html

https://radimrehurek.com/gensim/models/word2vec.html

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 32 of 38

contains the same number of traces as the production data. We have injected 5%
broken traces, which are marked as anomalies. At first, we present the results con-
sidering both HST and approximate HST. The results are presented in Table 11 and
12. Note that, we do not calculate the Jain score here as there are only two groups:
normal and anomalies, which reduces the significance of fairness. From the results,
we see that, in all the cases, SampleHST-X produces high values of corresponding
evaluation criteria i.e., the evaluation criteria mentioned in Sect. 2.2 in relation to
budget. The values produced by approximate HST is roughly similar. Like the case
for point anomalies, this similarity is due to the reason that the mass scores remain
the same for both the exact and approximate HST.

We present the results comparing Sifter and SampleHST-X in Table 13 and 14.
We see that for all the budgets, SampleHST-X outperforms the Sifter method. It may

Table 12 Sampling results for
different budgets on the DSB
dataset (user timeline)

The budgets considered are highlighted in bold

HST Approximate HST

P R F1 P R F1

0.5% 0.892 0.092 0.166 0.891 0.091 0.166
1% 0.923 0.188 0.313 0.923 0.188 0.313
2% 0.949 0.386 0.549 0.949 0.386 0.549
5% 0.976 0.976 0.976 0.976 0.977 0.976
10% 0.976 0.999 0.987 0.976 0.999 0.987

Table 13 Comparing the
performance of different
methods on the DSB dataset
(Compose Post). The
corresponding evaluation
criteria is marked in bold

Uniform Sifter SampleHST-X

P R F1 P R F1 P R F1

0.5% 0.04 0 0.01 0.27 0.04 0.07 0.92 0.09 0.17
1% 0.05 0.01 0.02 0.29 0.09 0.13 0.95 0.19 0.32
2% 0.04 0.02 0.02 0.29 0.17 0.21 0.96 0.39 0.55
5% 0.05 0.05 0.05 0.29 0.42 0.35 0.97 0.91 0.94
10% 0.04 0.09 0.06 0.27 0.76 0.40 0.63 0.92 0.75

Table 14 Comparing the
performance of different
methods on the DSB dataset
(User Timeline). The
corresponding evaluation
criteria is marked in bold

Uniform Sifter SampleHST-X

P R F1 P R F1 P R F1

0.5% 0.05 0 0.01 0.06 0.01 0.02 0.89 0.1 0.17
1% 0.04 0.01 0.01 0.06 0.02 0.03 0.92 0.19 0.31
2% 0.05 0.02 0.03 0.05 0.03 0.04 0.95 0.39 0.55
5% 0.05 0.05 0.05 0.05 0.08 0.06 0.98 0.98 0.98
10% 0.05 0.1 0.07 0.05 0.15 0.08 0.98 1.0 0.99

1 3

Journal of Network and Systems Management (2024) 32:44 Page 33 of 38 44

seem counter-intuitive to see that the sampling precision, recall, and F1-score for
Sifter are much smaller than its anomaly detection values shown in Table 10, but it
is not. The sampling values are smaller here because, as suggested for Sifter [5], we
do not apply any threshold here and sample a trace using its sampling probability.
However, since the sampling probabilities generated by Sifter are low, many of the
anomalous traces are not sampled. This can be understood by analyzing the sam-
pling probabilities generated by Sifter. For example, let us consider the experiments
based on the User Timeline traces. We observe that the mean sampling probability
generated by Sifter is 0.03. The 95th percentile of the generated probability is 0.12,
which is 4× higher than the mean. Sifter generally associated the anomalous traces
with probability values above the 95th percentile. Although the anomalous traces
mostly had a sampling probability at least 4× higher than the normal ones, this still
has not resulted in the anomalous traces being frequently sampled. A sampling prob-
ability of 0.12 means around 1 out of 8 anomalous traces will be sampled. Thus, for
a small sampling budget, the sampling performance will be practically similar for
Sifter and a uniform random sampler. This is evident from the results in Table 14.

We now present the sampling performance considering different clustering band-
widths with the Compose Post API. The results we have presented so far, in this sec-
tion, is considered hyper-rectangles as this yielded the best results for point anoma-
lies. For the Compose Post API, the used bandwidth is [0.1, 0.3] which yielded the
best sampling performance for the production data in Sect. 7. In Table 15, we pro-
vide results considering both hyper-cubes and hyper-rectangles. Here, the average
F1-Score is 0.91. This indicates that SampleHST-X is also robust to change in band-
width when we consider the FGSD-based trace representation. We have one interest-
ing observation here. The F1-Score for the smallest bandwidth [0.05, 0.05] is 14%
lower than the average. The reason for this is with such small bandwidth, we can end
up with many clusters. This can be a problem as we also have a probabilistic path in
taking the sampling decision and some clusters may be ignored only because having
a large number of clusters in the selection pool reduces their selection probability.

From these experiments, it is evident that, like point anomalies, using Sampl-
eHST-X, we can produce a robust sampling performance for collective anomalies.
This is certainly encouraging as for SampleHST-X, the transition from point to col-
lective anomalies can be done with minimal effort - we only need to change the
trace model. Since both the trace models are based on count data, the rest of the
SampleHST-X pipeline can remain the same.

Table 15 Sampling performance
on the DSB traces (compose
Post): sensitivity to cluster
bandwidth

Precision Recall F1-score

0.05,0.05 0.95 0.66 0.78
0.05,0.1 0.96 0.88 0.92
0.05,0.2 0.97 0.92 0.94
0.05,0.3 0.97 0.91 0.94
0.1,0.1 0.96 0.88 0.92
0.1,0.2 0.97 0.92 0.94

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 34 of 38

10 Related Work

An important step for a sampler is to differentiate normal and anomalous traces i.e.,
anomaly detection (AD). There are many recent works on AD for microservices
using trace data. For example, the authors in [35–37] primarily learn from the pat-
terns of call trees and request execution respectively to detect anomalies. Some stud-
ies [38–40] also consider deep learning based methods focusing on different aspects,
e.g., response times and causal relationships. However, these works do not consider
transforming the anomaly detection result to a sampling decision.

To the best of our knowledge, there are only a few studies focusing on sampling
anomalous traces generated by microservices. In [3], the authors proposed a sampler
based on a hierarchical clustering method PERCH [17]. Although the method can
potentially achieve representative sampling [3], it inherently incurs the curse of the
data dimensionality during clustering [41] and requires batch processing, which is
not preferred under low latency requirements.

Sifter [5] avoids batch processing by taking sampling decisions trace-by-trace. It
relies on a sampling probability, generated by utilizing the loss of training a neural
network for a particular trace. For such a loss-based method, anomalous traces may
still have small probabilities overall, closer to 0 than to 1, allowing several anoma-
lous traces to get not sampled. This problem is studied in a recently proposed sam-
pler, Sieve [6], which uses a threshold to first separate the anomalous traces and then
amplify the sampling probability. This still leaves an open challenge regarding the
optimal and automated choice of threshold.

In our recent paper [7], we proposed the SampleHST approach that addresses the
issues with probabilistic approaches and does not require batch processing. How-
ever, SampleHST itself can require large memory spaces, in the context of edge
devices, to save the HST forest. In addition it does not consider collective anomalies
[9]. We address these issues in this paper with the SampleHST-X method.

11 Threats to Validity

To the best of our knowledge, there is no dataset in trace sampling domain that
includes both point and collective anomalies. Thus, we evaluated SampleHST-X
with either point or collective anomalies in the traces. We did not generate a syn-
thetic dataset for this purpose as developing such dataset, which represents a practi-
cal scenario, involves separate research challenges and it could be a possible future
research direction. Once such data is available, the SampleHST-X pipeline requires
no additional components to run the sampling process.

For the collective anomalies scenario, we compared the performance of Sam-
pleHST-X with Sifter. Recently another approach is proposed namely Sieve that
unlike Sifter, depending on cases, can amplify the sampling probability. We do not
implement Sieve to compare the results as, regardless of the amplification, the sam-
pling process is still probabilistic making its approach similar to Sifter. In addition,
the amplification requires determining a threshold which can significantly effect the

1 3

Journal of Network and Systems Management (2024) 32:44 Page 35 of 38 44

sampling performance. Thus, we only considered Sifter for the collective anomaly
scenario.

12 Conclusion and Future Work

We have proposed SampleHST-X, a novel sampling method for distributed tracing
with storage budget constraints. The goal of SampleHST-X is to incorporate the
proportion of sampling budget and the fraction of expected anomalous traces while
taking sampling decisions. For the case where the budget is lower, sampling the
anomalous traces receives priority. On the other hand, when the budget is higher, the
normal traces are sampled alongside the anomalous ones.

SampleHST-X relies on an online clustering mechanism using mass scores of the
traces, which are generated using a forest of HST. Subsequently, if the budget allows,
the sampling decisions are taken based on the association of a trace with a clus-
ter, where the clusters more likely to contain anomalous traces are prioritized. Our
experiments, which consider production data from a cloud service operator, show
that our approach by far outperforms the recent approach targeting point anoma-
lies. The incorporation of approximate HST yields similar results while reducing the
space requirement of HST. A graph model, FGSD, based extension demonstrates
SampleHST-X can produce high sampling accuracy considering collective anoma-
lies as well.

A possible future work could be incorporating continuous trace properties, e.g.,
the response time, to identify also the latency anomalies in an integrated approach.

Acknowledgements This research has received funding by Huawei Technologies (Ireland) Co., Ltd.

Author Contributions The author names and their contributions are listed below: A.G. Writing—Original
Draft, Validation, Software, and Investigation; Y.G. Writing—Review and Editing, Validation, Software,
and Investigation; M.S. Writing—Review and Editing, Validation, Software, and Investigation; J.P: Writ-
ing—Review and Editing, Validation, Software, and Investigation; O.O.: Conceptualization and Funding
Acquisition; G.C.: Supervision, Writing—Review and Editing, Validation, Software, and Investigation.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 36 of 38

References

 1. Richardson, C.: Microservices Patterns: With Examples in Java. Simon and Schuster, London
(2018)

 2. Guo, X., Peng, X., Wang, H., Li, W., Jiang, H., Ding, D., Xie, T., Su, L.: Graph-based trace analysis
for microservice architecture understanding and problem diagnosis. In: Proceedings of ESEC/FSE,
pp. 1387–1397 (2020). ACM

 3. Las-Casas, P., Mace, J., Guedes, D., Fonseca, R.: Weighted sampling of execution traces: capturing
more needles and less hay. In: Proceedings of SoCC, pp. 326–332. ACM (2018)

 4. Parker, A., Spoonhower, D., Mace, J., Sigelman, B., Isaacs, R.: Distributed Tracing in Practice:
Instrumenting, Analyzing, and Debugging Microservices. O’Reilly Media, Sebastopol (2020)

 5. Las-Casas, P., Papakerashvili, G., Anand, V., Mace, J.: Sifter: scalable sampling for distributed
traces, without feature engineering. In: Proceedings of SoCC, pp. 312–324. ACM (2019)

 6. Huang, Z., Chen, P., Yu, G., Chen, H., Zheng, Z.: Sieve: Attention-based sampling of end-to-end
trace data in distributed microservice systems. In: Proceedings of ICWS, pp. 436–446. IEEE (2021)

 7. Gias, A.U., Gao, Y., Sheldon, M., Perusquía, J.A., O’Brien, O., Casale, G.: Samplehst: efficient on-
the-fly selection of distributed traces. In: NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–9. IEEE (2023)

 8. Zhang, Y., Jin, R., Zhou, Z.-H.: Understanding bag-of-words model: a statistical framework. Int. J.
Mach. Learn. Cybern. 1(1-4), 43–52 (2010)

 9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3),
15–11558 (2009)

 10. Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data. In: Proceedings of
IJCAI, pp. 1511–1516 (2011)

 11. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications
in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

 12. Baruah, R.D., Angelov, P.: Evolving local means method for clustering of streaming data. In: Pro-
ceedings of FUZZ-IEEE, pp. 1–8. IEEE (2012)

 13. Morris, R.: Counting large numbers of events in small registers. Commun. ACM 21(10), 840–842
(1978)

 14. Verma, S., Zhang, Z.-L.: Hunt for the unique, stable, sparse and fast feature learning on graphs. In:
Proceedings of NIPS, pp. 88–98 (2017)

 15. Jain, R.K., Chiu, D.-M.W., Hawe, W.R.: A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer System. Eastern Research Laboratory, Digital Equipment
Corporation, Hudson, MA (1984)

 16. Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A., Hu, J., Ritchken, B.,
Jackson, B., et al.: An open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In: Proceedings of ASPLOS, pp. 3–18 (2019)

 17. Kobren, A., Monath, N., Krishnamurthy, A., McCallum, A.: A hierarchical algorithm for extreme
clustering. In: Proceedings of SIGKDD, pp. 255–264 (2017)

 18. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of
ICML, pp. 1188–1196. PMLR (2014)

 19. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Elsevier, Amsterdam (2013)
 20. Pevnỳ, T.: Loda: lightweight on-line detector of anomalies. Mach. Learn. 102(2), 275–304 (2016)
 21. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anom-

aly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)
 22. Fisher-Ogden, P., Burrell, G., Sanden, C., Rioux, C.: Tracking down the Villains: outlier detection

at Netflix. https:// netfl ixtec hblog. com/ track ing- down- the- villa ins- outli er- detec tion- at- netfl ix- 40360
b31732. Accessed 25 Jan 2023 (2015)

 23. Ting, K.M., Zhou, G.-T., Liu, F.T., Tan, S.C.: Mass estimation. Mach. Learn. 90(1), 127–160 (2013)
 24. Hyde, R., Angelov, P., MacKenzie, A.R.: Fully online clustering of evolving data streams into arbi-

trarily shaped clusters. Inf. Sci. 382, 96–114 (2017)
 25. Langrené, N., Warin, X.: Fast and stable multivariate kernel density estimation by fast sum updat-

ing. J. Comput. Graph. Stat. 28(3), 596–608 (2019)
 26. Wand, M.P., Jones, M.C.: Kernel Smoothing. CRC Press, Boca Raton, Florida (1994)
 27. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. John Wiley & Sons,

Toronto (2008)

https://netflixtechblog.com/tracking-down-the-villains-outlier-detection-at-netflix-40360b31732
https://netflixtechblog.com/tracking-down-the-villains-outlier-detection-at-netflix-40360b31732

1 3

Journal of Network and Systems Management (2024) 32:44 Page 37 of 38 44

 28. Jaffe, J.: Bottleneck flow control. IEEE Trans. Commun. 29(7), 954–962 (1981)
 29. Al-Maitah, M., AlZubi, A.A., Alarifi, A.: An optimal storage utilization technique for IoT devices

using sequential machine learning. Comput. Netw. 152, 98–105 (2019)
 30. Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., Han, S.: On-device training under 256kb

memory. Adv. Neural Inf. Process. Syst. 35, 22941–22954 (2022)
 31. Ikada, S., Hamaguchi, Y.: Approximate frequency counts algorithm for network monitoring and

analysis: Improvement of "lossy counting". In: 2009 First International Conference on Emerging
Network Intelligence, pp. 9–14 (2009)

 32. Cvetkovski, A.: An algorithm for approximate counting using limited memory resources. SIGMET-
RICS Perform. Eval. Rev. 35(1), 181–190 (2007)

 33. Einziger, G., Fellman, B., Kassner, Y.: Independent counter estimation buckets. In: Proceedings of
INFOCOM, pp. 2560–2568. IEEE (2015)

 34. Fonseca, R., Porter, G., Katz, R.H., Shenker, S.: X-trace: A pervasive network tracing framework.
In: Proceedings of NSDI, pp. 271–284 (2007)

 35. Wang, T., Zhang, W., Xu, J., Gu, Z.: Workflow-aware automatic fault diagnosis for microservice-
based applications with statistics. IEEE Trans. Netw. Serv. Manag. 17(4), 2350–2363 (2020)

 36. Zuo, Y., Wu, Y., Min, G., Huang, C., Pei, K.: An intelligent anomaly detection scheme for micro-
services architectures with temporal and spatial data analysis. IEEE Trans. Cogn. Commun. Netw.
6(2), 548–561 (2020)

 37. Meng, L., Ji, F., Sun, Y., Wang, T.: Detecting anomalies in microservices with execution trace com-
parison. Future Gener. Comput. Syst. 116, 291–301 (2021)

 38. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using distributed tracing
and deep learning. In: Proceedings of CCGRID, pp. 241–250. IEEE (2019)

 39. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data using multimodal
deep learning. In: Proceedings of CLOUD, pp. 179–186. IEEE (2019)

 40. Bogatinovski, J., Nedelkoski, S., Cardoso, J., Kao, O.: Self-supervised anomaly detection from dis-
tributed traces. In: Proceedings of UCC, pp. 342–347. IEEE (2020)

 41. Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimen-
sional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Alim Ul Gias is a lecturer at the Department of Computer Science in City, University of London. His cur-
rent research focuses on QoS and resource management of cloud native applications, e.g., microservices,
with queueing models and machine learning. He started working on this domain when he started his PhD
in Imperial College London and continued his work while he was a post-doctoral research associate at the
Centre for Parallel Computing, University of Westminster. Alim also has a background in software engi-
neering, which helps him in designing solutions to problems with a complex system architecture.

Yicheng Gao received the B.Sc. degree in communication engineering from the University of Science
and Technology Beijing, 2017, and the M.Sc. degree in information and communication engineering
from Beijing University of Posts and Telecommunications, 2020. She is currently pursuing the PhD
degree in computing with Imperial College London. Her research interests mainly include edge comput-
ing, caching, queueing modeling, and resource management.

Matthew Sheldon received the BS degree in Industrial and Systems Engineering from Georgia Tech in
2019 and the MSc degree in Computing at Imperial College London in 2021. He is now a PhD student
in Computing at the same institution. His research interests include queueing models, mobility systems,
pricing, and reinforcement learning.

José A. Perusquía is a postdoctoral researcher at the Department of Probability and Statistics, Institute
for Research in Applied Mathematics and Systems, UNAM, Mexico City. He received his PhD degree in
Statistics from the University of Kent in 2022. Before that he obtained his BS in Actuarial Science and
MSc degree in Mathematical Sciences at UNAM. His research interest includes Bayesian statistics and

 Journal of Network and Systems Management (2024) 32:44

1 3

 44 Page 38 of 38

applied probability with emphasis on anomaly detection models in cyber security and computer systems.

Owen O’Brien is the chief cloud architect at Huawei Technologies, Dublin, Ireland. He currently leads the
team for R&D for Autonomous Cloud Native Platforms to support Autonomous Driven Networks. He led
several breakthrough projects that includes intelligent solutions such as fault detection/prediction, intel-
ligent tracing, root-cause analysis, self-healing, etc. Prior to joining Huawei, Owen was a senior software
development manager for the Microsoft’s Azure platform. His team focused on developing features that
drives reliability and availability for the Azure Traffic Manager.

Giuliano Casale Giuliano Casale joined the Department of Computing at Imperial College London in
2010, where he is currently a Reader. He does research in performance engineering and cloud computing,
topics on which he has published more than 150 refereed papers. He has served on the technical program
committee of several conferences in the area of performance and dependability. His research work has
received multiple recognitions, including best paper awards at ACM SIGMETRICS, IEEE/IFIP DSN,
and IEEE INFOCOM. During 2019-2023 he was the chair of ACM SIGMETRICS. He serves on the edi-
torial boards of ACM TOMPECS and as Editor-in-Chief of Elsevier Performance Evaluation.

Authors and Affiliations

Alim Ul Gias1 · Yicheng Gao2 · Matthew Sheldon2 · José A. Perusquía3 ·
Owen O’Brien4 · Giuliano Casale2

 * Alim Ul Gias
 alim.gias@city.ac.uk

 Yicheng Gao
 y.gao20@imperial.ac.uk

 Matthew Sheldon
 matthew.sheldon20@imperial.ac.uk

 José A. Perusquía
 jose.perusquia@sigma.iimas.unam.mx

 Owen O’Brien
 owen.obrien@huawei.com

 Giuliano Casale
 g.casale@imperial.ac.uk

1 City, University of London, London, UK
2 Imperial College London, London, UK
3 Universidad Nacional Autónoma de México, Mexico City, Mexico
4 Huawei Technologies (Ireland) Co. Ltd., Dublin, Ireland

	SampleHST-X: A Point and Collective Anomaly-Aware Trace Sampling Pipeline with Approximate Half Space Trees
	Abstract
	1 Introduction
	2 Motivation
	2.1 Trace Anomaly Definition
	2.2 Evaluation Criteria
	2.3 Demonstration

	3 Anomaly Detection from Trace Stream
	3.1 Bag of Words Model for Point Anomalies
	3.2 Comparing State-of-the-Art AD Methods
	3.3 Half Space Trees for Anomaly Detection

	4 Mass-Based Clustering for Sampling
	5 SampleHST Clustering
	5.1 Trace Association
	5.2 Cluster Management

	6 SampleHST Controller
	6.1 Overview
	6.2 Online Score Scaling
	6.3 Sampling Decision
	6.3.1 Distance-Based Cluster Ranking
	6.3.2 Selection Pool
	6.3.3 Decision Process

	7 Sampling Performance
	7.1 Experimental Setup
	7.2 Results

	8 SampleHST-X: Integrating Approximate HST
	9 SampleHST-X: Extension for Collective Anomalies
	9.1 Graph Model for Collective Anomalies
	9.2 Anomaly Detection
	9.3 Sampling Performance

	10 Related Work
	11 Threats to Validity
	12 Conclusion and Future Work
	Acknowledgements
	References

