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MEAN–VARIANCE HEDGING AND OPTIMAL
INVESTMENT IN HESTON’S MODEL WITH

CORRELATION

ALEŠ ČERNÝ AND JAN KALLSEN

Abstract. This paper solves the mean–variance hedging problem in
Heston’s model with a stochastic opportunity set moving systematically
with the volatility of stock returns. We allow for correlation between
stock returns and their volatility (so-called leverage effect).

Our contribution is threefold: using a new concept of opportunity-
neutral measure we present a simplified strategy for computing a can-
didate solution in the correlated case. We then go on to show that this
candidate generates the true variance-optimal martingale measure; this
step seems to be partially missing in the literature. Finally, we derive
formulas for the hedging strategy and the hedging error.

1. Introduction

We examine a classical problem in mathematical finance: how to opti-
mally hedge a given static position in a derivative asset H with payoff at
time T by dynamic trading in the underlying asset S if the hedger wishes
to minimize the expected squared hedging error. A crucial step on the
way to the optimal hedge is to derive the density process of the so-called
variance-optimal martingale measure (VOMM) or, more or less equivalently,
the optimal strategy of a pure investment problem with quadratic utility.
We focus on a model with stochastic volatility in which the instantaneous
Sharpe ratio of stock returns changes with the volatility level and volatility
itself is correlated with the change in stock price. This model is a modifica-
tion of Heston (1993).

In the case of zero correlation the problem at hand has been solved by
Heath et al. (2001), drawing on the results of Laurent and Pham (1999). In
principle, the VOMM in the correlated case has been explicitly determined
by Hobson (2004). Our contribution is threefold: using a new concept of
opportunity-neutral measure (cf. Černý and Kallsen 2007, hereafter CK07)
we present a simplified strategy for computing a candidate solution in the
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2 ALEŠ ČERNÝ AND JAN KALLSEN

correlated case. We then go on to show that this candidate is the true
VOMM. Finally, we derive formulas for the hedging strategy and the hedging
error, again based on CK07.

The assumption of zero interest rates is standard in the literature and
it entails no loss of generality within the class of models with deterministic
interest rates; we shall therefore adopt it here. The task of the hedger is to
solve

inf
ϑ
E
(

(x+ ϑ • ST −H)2
)
,

where x is the initial endowment and ϑ belongs to the set of admissible
strategies to be described in Section 2.1. Here ϑ • ST stands for

∫ T
0 ϑtdSt.

Consider the following model for the stock price S and its volatility process
Y,

L(S) =
(
µY 2

)
• I + Y • W, (1.1)

Y 2 = Y 2
0 +

(
ζ0 + ζ1Y

2
)
• I + σY •

(
ρW +

√
1− ρ2U

)
, (1.2)

where L denotes stochastic logarithm, W and U are independent Brownian
motions, It = t is the activity process and σ > 0, ζ0 ≥ σ2/2, ζ1 < 0, µ,−1 ≤
ρ ≤ 1 are real constants. Translated into the dW/dt notation the model
reads

dSt
St

= µY 2
t dt+ YtdWt,

dY 2
t =

(
ζ0 + ζ1Y

2
t

)
dt+ σYt

(
ρdWt +

√
1− ρ2dUt

)
.

The model is set up in such a way that the instantaneous Sharpe ratio equals
µYt and because Y is an autonomous diffusion it follows that the opportunity
set (the maximal Sharpe ratio attainable by dynamic trading in the stock
from t to maturity) is a deterministic function of Yt. Conditions on ζ0 and
ζ1 make sure that the volatility process is strictly positive and has a steady
state distribution under P (cf. Cox et al. 1985).

We consider information filtration generated by S, which in the present
model coincides with the filtration generated by W and U . In particular,
the hedger can back out the current level of volatility from the quadratic
variation process of the stock price. In contrast, there is a growing literature
in which the volatility is filtered from the stock price data, cf. Brigo and
Hanzon (1998) and Kim et al. (1998).

1.1. Computation and verification. We make use of the structural re-
sults reported in CK07. There is an opportunity process L and a portfolio
process a (called an adjustment process) that solve the optimal investment
problem in the absence of the contingent claim. The opportunity process
has a natural interpretation in that L−1

t −1 equals the square of the maximal
Sharpe ratio attainable by dynamic trading in asset S from t to maturity (cf.
CK07, Proposition 3.6). L is a deterministic process when the instantaneous
Sharpe ratio is deterministic (cf. CK07, Proposition 3.28).
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In general, process L defines the so-called opportunity-neutral measure (a
non-martingale equivalent measure) P ? which neutralizes the effect of the
stochastic opportunity set in the sense that the dynamically optimal strategy
under P can be computed as the myopically optimal portfolio under P ? (cf.
CK07, Corollary 3.20). In addition, the variance-optimal measure Q? can
be computed as the minimal martingale measure relative to P ? (cf. CK07,
Lemma 3.23). Optimality of the opportunity process L requires that the
expected growth rate of L under measure P equals the squared instantaneous
Sharpe ratio of the risky asset(s) under P ? (cf. CK07, Lemma 3.19).

Since Y 2 is an autonomous affine process and it is the only driver of the
instantaneous Sharpe ratio we guess a candidate opportunity process in the
exponential affine form

L = exp(κ0 + κ1Y
2), (1.3)

where κ0 and κ1 are deterministic functions of time to maturity such that
LT = 1. For this functional form of L we write down the optimality criterion
described above which yields a Riccati equation for κ1 and a first order
linear equation for κ0 that are readily solved. With P ? in hand we evaluate a
candidate adjustment process a as the myopic mean-variance stock portfolio
weight under P ?,

a = bS?/cS = (µ+ κ1σρ) /St,

where bS? represents the drift of the stock price under measure P ? and
√
cS

represents its volatility under P (and hence also under P ?).
The computational procedure described above provides an alternative to

the use of so-called fundamental representation equations proposed in Bi-
agini et al. (2000) and Hobson (2004). The advantage of our method stems
from the fact that it is readily extended to discontinuous price processes, that
it does not require martingale representation assumptions, and that it offers
a natural economic interpretation of all computed quantities. Comparison
of the different approaches can be found in Černý and Kallsen (2008).

It still has to be verified that the obtained candidates coincide with the
true opportunity and adjustment processes. Specifically, we must show that
the candidate adjustment process a corresponds to an admissible trading
strategy. To this end we first prove that LE (−a • S) and L (E (−a • S))2 are
martingales which means that the candidate variance-optimal martingale
measure Q?,

dQ?

dP
=

E (−a • S)T
L0

, (1.4)

is a martingale measure with square integrable density. This, however, does
not yet imply that Q? is the true VOMM. Merely, we have now constructed
an equivalent martingale measure required by Assumption 2.1 in CK07.

In the final step of the verification (this step is left out in the theo-
retical characterization of Hobson 2004) we show that the wealth process
E (−a • S) is generated by an admissible strategy. This is essentially
equivalent to demonstrating that E (−a • S) is a true martingale under
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all equivalent martingale measures Q such that E
(

(dQ/dP )2
)
< ∞. We

use Novikov’s condition combined with Hölder’s inequality to show that
E
(

e((µ+κ1σρ)Y )2•IT
)
< ∞ is a sufficient condition for a to be admissible.

We then apply the characterization of regular affine processes provided in
Duffie et al. (2003), henceforth DFS03, to compute an upper bound of
E
(

e((µ+κ1σρ)Y )2•IT
)

and hence characterize a subset of time horizons T for
which a and L described above represent the true solution, and for which
Q? computed in (1.4) is the true VOMM.

Once we have the true opportunity and adjustment process, the rest of
our analysis is a straightforward application of results in CK07. The op-
timal hedge of the contingent claim H is given by the Föllmer–Schweizer
decomposition of H under measure P ? (cf. Lemma 4.8 in CK07). First
we compute the mean value process V as a conditional expectation of H
under the variance-optimal measure Q?, cf. CK07 (4.1). V happens to be a
deterministic function of 3 state variables, S, Y 2 and I. The optimal hedge
ϕ = ϕ(x,H) is then given by

ϕ(x,H) = ξ + a(V − x− ϕ(x,H) • S),

ξ := cV S/cS ,

where x is the initial capital, cV S represents the instantaneous covariance
between V and S and cS stands for the instantaneous variance of S. The
minimal squared hedging error equals

E
(

(x+ ϕ(x,H) • ST −H)2
)

= L0(x− V0)2 + ε2
0,

ε2
0 := E

((
L
(
cV −

(
cV S

)2
/cS
))

• IT

)
,

where cV stands for the instantaneous variance of V , cf. CK07 Theorem
4.12.

1.2. Interpretation. By CK07, Lemmas 3.1 and 3.7, we have that

ϕS := ϕ(1, 2) = aE (−a • S) = a(2− (1 + ϕS • S)) (1.5)

is a mean-variance efficient strategy for an agent wishing to maximize the
unconditional Sharpe ratio of her terminal wealth. The maximal squared
Sharpe ratio equals

SR2
S = 1/L0 − 1 = e−κ0(0)−κ1(0)Y 2

0 − 1,

where κ0,κ1 are non-positive functions of time to maturity computed in Sec-
tion 3. Thus, in this model, higher volatility means more lucrative dynamic
stock investment opportunity.

The optimal stock trading strategy ϕS can be interpreted as a solution
to quadratic utility maximization with bliss point at 2 and initial wealth
level at 1. At an intermediate point in time the distance of agent’s wealth
from the bliss point is 2− (1 +ϕS • S) which is exactly equal to E (−a • S).
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In view of (1.5) we observe that the agent becomes more risk averse as her
wealth approaches the bliss point. Vice versa, when the risky investment
performs poorly the gap between agent’s wealth and the bliss point widens
and the agent increases her risky position in direct proportion to the gap
size. (The optimal dynamic investment clearly has an element of a doubling
strategy and this is why it is important to check admissibility of a candidate
solution for a). One can view (1.5) as a dynamic portfolio insurance strategy
(cf. Black and Jones 1987) in reverse, whereby the investor specifies a fixed
ceiling rather than a floor for wealth and uses a state-dependent multiplier
a.

We next examine the impact of the stochastic opportunity set on a. When
there is no correlation between stock returns and the volatility we have

a :=
bS?

cS
=
µ

S
=
bS

cS
,

which interestingly means that the investor acts as if the opportunity set
were deterministic (or at least predictable, in the sense of L being a pre-
dictable process of finite variation) even though this is clearly not the case
and P ? 6= P , cf. CK07 Proposition 3.28. Empirical research on equity data
finds negative correlation (so called leverage effect) implying that the opti-
mal value of a should be revised upwards by the factor κ1σρ/S relative to
the uncorrelated case (cf. equation 3.3).

The mean value process is a sufficiently smooth function of three state
variables

Vt = f(T − t, Y 2
t , St).

It represents a price at which an agent holding dynamically efficient portfolio
of equities would not wish to buy or sell the option. The optimal hedge
ϕ(x,H) consists of two components – the pure hedge ξ and a feedback
element a(V − x − ϕ • S). The quantity (V − x − ϕ • S) represents the
shortfall of the hedging portfolio relative to the mean value of the derivative
asset. Since a is typically positive the optimal strategy tends to overhedge
when it is performing poorly and underhedge once it has accumulated a
hedging surplus.

The pure hedging coefficient satisfies

ξt =
cV St
cSt

=
∂f

∂x3
(T − t, Y 2

t , St) + ρσ
∂f

∂x2
(T − t, Y 2

t , St)/St.

The pure hedge therefore has two components: the standard delta hedge
using the representative agent price Vt, and a leverage component exploiting
the correlation of the representative agent price with the volatility process.

To appreciate the role of the minimal expected squared hedging error ε2
0

suppose now that in addition to the optimal equity investment the agent is
able to sell (issue) an equity option with payoff H at time T at initial price
C0 > V0 (when C0 < V0 it is optimal to buy the option). Suppose that the
initial option position is held to maturity and the agent does not trade in
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any other options, but she is allowed to engage in additional stock trades
for hedging purposes. We show in Lemma 5.3 that in order to maximize
her Sharpe ratio the agent should sell η = C0−V0

ε20

1
1+SR2

S,H
options and hedge

them optimally to maturity using the strategy

ϕH := ϕ(ηC0, ηH) = ηξ + a(ηV − ηC0 − ϕH • S). (1.6)

The unconditional maximal squared Sharpe ratio of the combined strategy
ϕS + ϕH equals

SR2
S,H := SR2

S +
(C0 − V0)2

ε2
0

,

which means that C0−V0
ε0

is an incremental Sharpe ratio generated by trading
in the option. Based on this observation we conclude that when ε0 is very
high one may observe a significant deviation of the market price C0 from the
representative agent price V0 which does not give rise to excessively attrac-
tive investment opportunities, beyond the ones that already existed in the
market before the option was introduced. One can invert the relationship
between the unconditional incremental Sharpe ratio and the selling (buy-
ing) price to compute unconditional good-deal price bounds (cf. Černý and
Hodges 2002).

1.3. Organization. In Section 2 we define the admissible trading strate-
gies. In Section 3 we compute the candidate adjustment and opportunity
processes and characterize a time horizon T̃ such that the candidate pro-
cesses represent the true solution for all T < T̃ . In Section 4 we give an
explicit formula for the mean value process and the pure hedge. Section
5 concludes by giving an explicit formula for the unconditional expected
squared hedging error and the incremental Sharpe ratio of an optimally
hedged position.

2. Preliminaries

2.1. Trading strategies and martingale measures. We work on a fil-
tered probability space (Ω,FT ,F =(Ft)t∈[0,T ], P ) where T is a fixed time
horizon. In this subsection, and in this subsection only, S represents a gen-
eral semimartingale.

Definition 2.1 (Delbaen and Schachermayer 1996). A semimartingale S is
locally in L2(P ) if there is a localizing sequence of stopping times {Un}n∈N
such that

sup{E
(
S2
τ

)
: τ ≤ Un stopping time} <∞

for any n ∈ N.

Remark 2.2. Every continuous semimartingale is locally in L2(P ) since we
may take

Un := inf{τ : S2
τ ≥ n}

as the sequence of localizing times.
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Definition 2.3. Consider a price process S locally in L2(P ) with the corre-
sponding localizing sequence {Un}n∈N. A trading strategy ϑ is called simple
if it is a linear combination of strategies Y 1]]τ1,τ2]] where τ1 ≤ τ2 are stopping
times dominated by Un for some n ∈ N and Y is a bounded Fτ1-measurable
random variable. We denote by Θ(S) the set of all simple trading strategies.

Definition 2.4. For a price process S locally in L2(P ) a trading strategy
ϑ ∈ L(S) is called admissible if there is a sequence {ϑ(n)}n∈N of simple
strategies such that

ϑ(n) • St −→ ϑ • St in probability for any t ∈ [0, T ]; and

ϑ(n) • ST −→ ϑ • ST in L2(P ).

We denote the set of all admissible strategies by Θ(S).

Remark 2.5. The set Θ(S) does not depend on the choice of the localizing
sequence {Un}n∈N in Definition 2.3 (cf. CK07, Remark 2.8).

The following lemma shows admissible strategies are economically indis-
tinguishable from simple strategies.

Lemma 2.6. For S locally in L2(P ) we have

K2 := {ϑ • ST : ϑ ∈ Θ(S)} = {ϑ • ST : ϑ ∈ Θ(S)},

where {.} denotes closure in L2(P ).

Proof. See CK07, Corollary 2.9. �

We now state a result on the duality between admissible strategies and a
suitably chosen class of martingale measures for continuous semimartingales.

Definition 2.7. Consider a semimartingale S and denote by M e
2 (S) the

subset of equivalent martingale measures with square integrable density, i.e.

M e
2 (S) :=

{
Q ∼ P : dQ/dP ∈ L2(P ), S is a Q-local martingale

}
.

Theorem 2.8. Let S be a continuous semimartingale with nonempty M e
2 (S).

Then the following assertions are equivalent:
(1) ϑ ∈ Θ(S)
(2) ϑ ∈ L(S), ϑ • ST ∈ L2(P ) and ϑ • S is a Q-martingale for every

Q ∈M e
2 (S).

Proof. (1)⇒(2): This is shown in CK07, Corollary 2.5.
(2)⇒(1): By Delbaen and Schachermayer (1996), Theorems 1.2 and 2.2,

we have ϑ • ST ∈ K2. Since martingales are determined by their final value,
the claim follows. �

Theorem 2.8 shows that for continuous processes Θ(S) coincides with
the class of trading strategies used in Gourieroux et al. (1998). For a
general result on the duality between the admissible strategies and (signed)
martingale measures we refer the reader to CK07, Lemma 2.4.
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2.2. Semimartingale characteristics. From now on all processes in this
paper are continuous semimartingales. For any Rn-valued process X we
write X = X0 + BX + MX for the canonical decomposition of X into a
predictable process of finite variation and a local martingale under measure
P, and similarly X = X0 + BX? + MX? for the decomposition under some
P ? ∼ P . We set

CXij := [Xi, Xj ],

where X1, . . . , Xn denote the components of X. For continuous processes
one always has

〈Xi, Xj〉 =
〈
MX
i ,M

X
j

〉
= 〈Xi, Xj〉P

?

=
〈
MX?
i ,MX?

j

〉P ?
= CXij , (2.1)

where the angle brackets 〈., .〉 , 〈., .〉P
?

stand for predictable quadratic covari-
ation under P and P ?, respectively. This means that all angle brackets in
CK07 can be replaced with square brackets in this paper and we shall do
so without further discussion. We wish to point out, however, that in the
presence of jumps equation (2.1) generally contains five distinct stochastic
processes and [Xi, Xj ] is no longer predictable.

By Jacod and Shiryaev (2003), II.2.9 there is an increasing predictable
process A, a Rn-valued predictable process bX and Rn×n-valued predictable
process cX whose values are symmetric, nonnegative definite matrices such
that

BX = bX • A, CX = cX • A.

We write interchangeably cXiXj := cXij , c
Xi := cXii .

In this paper the activity process A can be chosen such that At = It := t
and we adopt this convention henceforth. Thus in this paper bX refers to
the drift and

√
cX to the volatility when X is a univariate process. For

example, for X = (Y 2, S) in (1.1) and (1.2) we have

(
bY

2

bS

)
=

(
ζ0 + ζ1Y

2

µSY 2

)
, (2.2)(

cY
2

cY
2S

cSY
2

cS

)
=

(
σ2Y 2 ρσSY 2

ρσSY 2 S2Y 2

)
. (2.3)

Let f : Rn → R be in C2 and denote by fi := ∂f
∂xi
, fij := ∂2f

∂xi∂xj
its

derivatives. Consider an Rn-valued semimartingale X. Then f(X) is a
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semimartingale and the Itô formula in our notation reads

bf(X) =
n∑
i=1

fi(X)bXi +
1
2

n∑
i,j=1

fij(X)cXij , (2.4)

cf(X) =
n∑

i,j=1

fi(X)fj(X)cXij , (2.5)

cf(X)Xi =
n∑
j=1

fj(X)cXij . (2.6)

For a univariate process N its stochastic exponential is given by E (N) =
eN−

1
2

[N,N ]. Conversely, for a positive process L its stochastic logarithm
equals L(L) = lnL− lnL0 + 1

2 [lnL, lnL]. In terms of characteristics

bE (N) = E (N)bN , cE (N) = (E (N))2 cN ,

bL(L) = L−1bL, cL(L) = L−2cL.

Suppose E (η • MX) is a martingale and define a new measure,

dP ? := E (η • MX)TdP. (2.7)

Girsanov theorem (cf. Jacod and Shiryaev 2003, III.3.11 and Kallsen 2006,
Proposition 2.6) then yields characteristics bX? and cX? under P ? as follows

bX? = bX + cXηᵀ, (2.8)

cX? = cX . (2.9)

3. The Merton problem

From now on we consider the stock price process S given in equations
(1.1) and (1.2) and filtration F generated by the two uncorrelated Brownian
motions U and W specified therein. Admissible trading strategies belong to
the set Θ(S) described in Theorem 2.8.

In this section we identify the opportunity process L and the adjustment
process a which characterize the dynamically optimal investment in the un-
derlying asset and the bank account, as discussed in Section 1.2. This type
of dynamic asset allocation is generically referred to as the Merton problem.

Definition 3.1. We say that L is a candidate opportunity process if
(1) L is a (0, 1]-valued continuous semimartingale,
(2) LT = 1,
(3) For K := L(L) we have

bK =
(
bS + cKS

)2
/cS . (3.1)

In such case we call a =
(
bS + cKS

)
/cS the candidate adjustment process

corresponding to L.
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The computation of the opportunity process is a key step in the present
approach. Recall from the introduction that Lt is closely related to the
maximal Sharpe ratio from dynamic trading between t and T . The process
Y 2 is Markov. Moreover, for t ≤ u ≤ T the distribution of the stock return
Su/St conditional on Ft is a function of Yt and u− t only. Consequently, it
is natural to assume Lt = f(t, Y 2

t ) with some function f . Why should f be
of exponentially affine form as in (1.3)? Naively, the exponential function
comes to mind because L > 0, LT = 1. The affine exponent is the simplest
conceivable one and hence worth trying.

Less naively, one may apply Itô’s formula to Lt = f(t, Y 2
t ) and equate

both sides of (3.1). This leads to a specific partial differential equation for
f , where an exponential affine form seems appropriate from experience with
affine interest rate models.

Proposition 3.2. Set

A = −µ2, B = ζ1 − 2ρσµ, C =
1
2
σ2
(
1− 2ρ2

)
, F = ζ0,

y0 = w0 = 0,

and for functions w, y and parameter τ? = τ? (A,B,C,w0) of Lemma 6.1
set

κ1(t) := w(T − t),
κ0(t) := y(T − t),
T ? := τ?.

Define

Lt = exp(κ0(t) + Y 2
t κ1(t)), (3.2)

at = (µ+ ρσκ1(t)) /St. (3.3)

Then L is a candidate opportunity process and a is the corresponding can-
didate adjustment process for T < T ?.

Proof. The proof proceeds in two steps, i) computation and ii) verification.
i) Consider L in the form (3.2) for as yet unknown functions of calendar

time κ0 and κ1, and define K := L(L). The Itô formula yields

K := L(L) =
(

κ′0 + Y 2κ′1 +
1
2
σ2Y 2κ2

1

)
• I + κ1 • Y 2

=
(

κ′0 + Y 2κ′1 +
1
2
σ2Y 2κ2

1 +
(
ζ0 + ζ1Y

2
)

κ1

)
• I

+ (κ1σY ) •
(
ρW +

√
1− ρ2U

)
,
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which in terms of characteristics means

bK = L−1bL = κ′0 + Y 2κ′1 +
1
2
σ2Y 2κ2

1 +
(
ζ0 + ζ1Y

2
)

κ1, (3.4)

cK = L−2cL = (σY κ1)2 ,

cKS = ρ
√
cKcS = ρσSY 2κ1, (3.5)

cKY
2

=
√
cKcY 2 = (σY )2 κ1.

Substitute from (2.2), (2.3), (3.4) and (3.5) into the local optimality condi-
tion (3.1). On collecting powers of Y we obtain

−κ′0(t) = ζ0κ1(t),

−κ′1(t) = −µ2 + (ζ1 − 2ρσµ) κ1(t) +
1
2
σ2
(
1− 2ρ2

)
κ2

1(t),

with terminal conditions κ0(T ) = κ1(T ) = 0 implied from LT = 1. The
solution for κ0,κ1 is obtained from Lemma 6.1 in the manner indicated
above.

ii) We have κ0(t) ≤ 0,κ1(t) ≤ 0, for all t ∈ [0, T ], T < T ? hence L ∈
(0, 1]. Since κ0 and κ1 are continuous and of finite variation L in (3.2) is a
continuous semimartingale. By construction of κ0,κ1 equation (3.1) holds.
Therefore L is a candidate opportunity process and

a =
bS + cKS

cS
= (µ+ ρσκ1) /S (3.6)

is the corresponding candidate adjustment process. �

Since 0 < L ≤ 1 and (3.1) holds the process

Z :=
L

L0
exp

(
−bK • I

)
= E

(
MK

)
= E

(
(κ1σY ) •

(
ρW +

√
1− ρ2U

))
is a bounded positive martingale and by virtue of Girsanov’s theorem

W ? := − (κ1σρY ) • I +W, (3.7)

U? := −
(
κ1σ

√
1− ρ2Y

)
• I + U, (3.8)

are Brownian motions under P ? with dP ?/dP = ZT . In view of (1.1), (1.2),
(3.7) and (3.8) the P ?-dynamics of S and Y read

L(S) = (µ+ κ1σρ)Y 2 • I + Y • W ?, (3.9)

Y 2 = Y 2
0 +

(
ζ0 + ζ?1Y

2
)
• I + σY •

(
ρW ? +

√
1− ρ2U?

)
, (3.10)

ζ?1 := ζ1 + σ2κ1 (3.11)

and we have
a = bS?/cS = (µ+ κ1σρ) /S.

To be fully in the setup of CK07 we have to verify that the price process
S admits an equivalent martingale measure with square integrable density.
The following lemma shows that the candidate variance-optimal measure
(see equation 1.4) has the desired property.
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Lemma 3.3. For a, L and T < T ? in Proposition 3.2 define

Ẑ := LE (−a • S) /L0.

Then
(1) the local martingale Ẑ is a martingale,
(2) the measure Q?, dQ? = ẐTdP, is an equivalent martingale measure,
(3) the local martingale L (E (−a • S))2 /L0 is a martingale and there-

fore Q? ∈M e
2 (S).

Proof. One can write

Ẑ = E (K − a • S − a • [K,S])

= E (MK − a • MS + (bK − a(bS + cKS)) • I) = E (MK − a • MS),

the last equality a consequence of the local optimality criterion (3.1). Thus
Ẑ is a local martingale and by Section 5 in Hobson (2004) also a true mar-
tingale. Let bSQ? denote the drift of S under measure Q?, then by Girsanov’s
theorem (2.7, 2.8),

bSQ? = bS + cKS − acS = 0,
where the final equality follows from the definition of a, equation (3.6).
Consequently, Q? is an equivalent martingale measure and E (−a • S) is a
local Q?-martingale. It follows (cf. Jacod and Shiryaev 2003, III.3.8) that
ẐE (−a • S) = L (E (−a • S))2 /L0 is a local martingale and by Section 5 in
Hobson (2004) it is a true martingale. �

Remark 3.4. Under conditions (1)-(3) in Lemma 3.3 Hobson (2004) con-
jectures that Q? is the true VOMM. The validity of such a statement is not
obvious in general (cf. Černý and Kallsen 2008). While Q? may be the
true VOMM in the present model for any T < T ? we are not aware of any
proof to that effect. In general, to conclude that the candidate measure Q?

is the true VOMM one has to show that E (−a • S) is a Q-martingale for all
Q ∈M e

2 (S). In the sequel we are able to prove that Q? is the true VOMM
for sufficiently small T .

Proposition 3.5. Take T < T ? in the notation of Proposition 3.2. If

E
(
e[a•S,a•S]T

)
<∞

then L and a in Proposition 3.2 are the true opportunity process and adjust-
ment process, respectively, in the sense of CK07, Definitions 3.3 and 3.8.
Consequently, Q? defined in Lemma 3.3 (2) is the VOMM.

Proof. Step 1: We show that E
((
−a1]]τ,T ]]

)
• S
)
L is of class (D) for any

stopping time τ . Fix a stopping time τ and set

N := K − a • S − [K, a • S].

Lemma 3.3 shows that Ẑ = E (−a • S)L/L0 = E (N) is a positive martin-
gale. Then

Ẑ/Ẑτ = E (N)/E (N τ ) = E (N −N τ )
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is a positive local martingale and therefore a supermartingale. Since

E((Ẑ/Ẑτ )T ) = E(E(ẐT /Ẑτ |Fτ )) = E(E(ẐT |Fτ )/Ẑτ )

= E(Ẑτ/Ẑτ ) = 1 = (Ẑ/Ẑτ )0

Ẑ/Ẑτ is actually a true martingale and hence of class (D). Since L is bounded

E
((
−a1]]τ,T ]]

)
• S
)
L = Lτ Ẑ/Ẑτ

is of class (D) as well.
Step 2: We show that λ := a1]]τ,T ]]E

((
−a1]]τ,T ]]

)
• S
)

is an admissible
trading strategy for any stopping time τ . Consider a measure Q ∈M e

2 (S).
By Hölder’s inequality and hypothesis we have

EQ
(

e
1
2

[(a1
]]τ,T ]]

)•S,(a1
]]τ,T ]]

)•S]T
)
≤
√
E
(

(dQ/dP )2
)
E
(
e[a•S,a•S]T

)
<∞,

whereby Novikov’s condition implies that E
(
−
(
a1]]τ,T ]]

)
• S
)

is aQ-martingale
for any Q ∈M e

2 (S). Noting that 1−λ • S = E
((
−a1]]τ,T ]]

)
• S
)

we conclude
that EQ (λ • ST ) = 0 for all Q ∈M e

2 (S). By virtue of Lemma 3.3 (1,3) we
have

E((λ • ST )2) = E

(
E

((
1− E

((
−a1]]τ,T ]]

)
• S
)
T

)2
∣∣∣∣Fτ

))
= E

(
E

((
1−

E (−a • S)T
E (−a • S)τ

)2
∣∣∣∣∣Fτ

))
= E(1− Lτ ) < 1,

implying λ • ST ∈ L2(P ). Theorem 2.8 yields λ ∈ Θ(S).
Step 3: We have shown in Proposition 3.2 that conditions 1, 2 and 3

of CK07, Theorem 3.25 are satisfied. Steps 1 and 2 of this proof show
that condition 4 (CK07, equations 3.33, 3.34) is satisfied, too. Hence a
and L represent the true adjustment and opportunity process, respectively.
Proposition 3.13 in CK07 implies that Ẑ is the density of the variance-
optimal martingale measure. �

Remark 3.6. It is likely that the condition E
(
e[a•S,a•S]T

)
<∞ is far from

necessary since the proof is based on Hölder’s inequality and subsequent ap-
plication of Novikov’s condition. It is an open question whether one can
prove weaker sufficient conditions for admissibility of a and in particular
whether a is admissible for all T < T ?.

Proposition 3.7. Consider the function κ1 and the parameter T ? defined
in Proposition 3.2. For T < T ? define

ν(T ) := max
t∈[0,T ]

(µ+ σρκ1(t))2 . (3.12)

For x ∈ R+ set
T̃ (x) := τ?

(
x, ζ1, σ

2/2, 0
)

where the parameter τ? = τ?
(
x, ζ1, σ

2/2, 0
)
∈ R+∪{∞} is defined in Lemma

6.1.
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(1) If T̃ (ν(T )) > T then a, L in Proposition 3.2 represent the true ad-
justment and opportunity process, respectively.

(2) The condition
T̃ (ν(T )) > T

is always satisfied for small enough T > 0.

Proof. 1) i) We have

E(e[a•S,a•S]T ) = E
(

e((µ+σρκ1)Y )2•IT
)
≤ E

(
eν(T )(Y 2•IT )

)
,

with ν(T ) defined in (3.12).
ii) On defining R := Y 2 • I DFS03 yields (see Theorem 3.2 in Kallsen

2006 for details) that (Y 2, R, lnS) is conservative regular affine and therefore
for Rez ≤ 0 we have

E
(
ezRt

)
= eu0(t)+u1(t)Y 2

0 +u2(t)R0+u3(t) lnS0 ,

where the complex functions u0, u1, u2, u3 satisfy the following system of
Riccati equations,

u′0 = ζ0u1, u
′
2 = u′3 = 0,

u′1 = ζ1u1 + u2 + (µ− 1/2)u3 +
1
2
(
σ2u2

1 + 2ρσu1u3 + u2
3

)
,

u0(0) = u1(0) = u3(0) = 0, u2(0) = z.

This implies

u3 = 0,
u2 = z,

u′1 = z + ζ1u1 +
1
2
σ2u2

1.

iii) Fix x > 0 and t < T̃ (x). By continuity and monotonicity of T̃ (cf.
Lemma 6.2) we have t < T̃ (x + ε) for all ε > 0 sufficiently small. We
now show that for all sufficiently small ε > 0 functions u0(t) and u1(t)
(considered as functions of z) possess analytic extension on the strip z ∈
(−1, x+ε)× i(−ε, ε). For A = z,B = ζ1, and C = σ2/2 function g in Lemma
6.1 does not attain the value 0 on [−1, x+ε]. Hence for all sufficiently small
ε > 0 function g in Lemma 6.1 is bounded away from 0 on [−1, x+ε]×i[−ε, ε].
It follows that both u0(t) and u1(t) are analytic on (−1, x+ ε)× i (−ε, ε) .

iv) By iii) and Lemma A.4 in DFS03 E
(
exp

(
xY 2 • IT

))
< ∞ for T <

T̃ (x).
2) Since κ1 is a continuous function and κ1(T ) = 0 there is ε > 0 such

that for all T < ε we have 0 < ν(T ) < µ2 + 1. Furthermore inf{T̃ (x) : 0 ≤
x ≤ µ2 + 1} =: δ > 0 because T̃ is a positive function and continuous when
not equal to +∞. Consequently for T < min(ε, δ) we have

T̃ (ν(T )) > T.

�
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4. Optimal hedging

From now on fix a time horizon T > 0 such that T̃ (ν(T )) > T. Existence
of such a time horizon is guaranteed by Proposition 3.7. Furthermore, we
need to make sure that the contingent claim H has a finite second moment
under P . For technical reasons (cf. Proposition 4.1) we restrict our at-
tention to bounded contingent claims such as European put options. This
automatically guarantees H ∈ L2(P ).

The optimal hedge is given by the Föllmer–Schweizer decomposition of H
under measure P ? as follows. By Lemma 3.23 in CK07 the variance-optimal
measure Q? coincides with the minimal measure relative to P ? (see also
equation 3.9)

dQ?

dP ?
= E

(
−a • MS?

)
T

= E (−(aS) • (Y • W ?))T

= E (− ((µ+ κ1σρ)Y ) • W ?)T .

By virtue of Girsanov’s theorem

Ŵ ? := ((µ+ κ1σρ)Y ) • I +W ?,

Û? := U?

are uncorrelated Brownian motions under Q? and therefore the Q?-dynamics
of S and Y read

L(S) = Y • Ŵ ?,

Y 2 = Y 2
0 +

(
ζ0 + ζ̂?1Y

2
)

• I + σY •
(
ρŴ ? +

√
1− ρ2Û?

)
,

ζ̂?1 := ζ?1 − ρσ (µ+ κ1σρ) = ζ1 − ρσµ+ κ1σ
2
(
1− ρ2

)
.

Define the mean value process V

Vt := EQ
?

(H|Ft) .

Proposition 4.1. If the contingent claim H is given by g(Y 2
T , ST ) where g

is a bounded continuous function then Vt = f(T − t, Y 2
t , St) for f ∈ C 1,2,2

and f is the unique classical solution of the PDE

0 = −f1 +
(
ζ0 + ζ̂?1y

)
f2 +

1
2
y
(
σ2f22 + 2ρσsf23 + s2f33

)
,

f(0, y, s) = g(y, s),

with fi := ∂f/∂xi, fij := ∂2f/ (∂xi∂xj) .

Proof. The proof is given in Heath and Schweizer (2000), Section 2.1 for
ρ = 0. The reasoning for ρ 6= 0 is identical, since in either case Q? is
equivalent to P and ζ̂?1 is continuously differentiable in time regardless of
the value of ρ. �
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Proposition 4.1 together with Proposition 4.7 in CK07 and Itô’s formula
yield an explicit expression for the pure hedge ξ

ξt := cSVt /cSt =
f2(T − t, Y 2

t , St)c
Y 2S
t + f3(T − t, Y 2

t , St)c
S
t

cSt

= f3(T − t, Y 2
t , St) + ρσf2(T − t, Y 2

t , St)/St, (4.1)

where fi(x1, x2, . . . , xn) := ∂f/∂xi.

Remark 4.2. It is possible to provide more explicit expressions for V and ξ
subject to technical conditions whose verification we defer to future research.
(Y 2, lnS) form a time-inhomogeneous conservative regular affine process un-
der Q?, and one can use the characterization of Filipović (2005) to evaluate
their joint characteristic function. For Rez = 0 we have

EQ
?
(
ez lnST |Ft

)
= ev0(t,z)+v1(t,z)Y 2

t +z lnSt ,

where both vi are functions of t and z solving

− ∂

∂t
v0(t, z) = ζ0v1(t, z)

− ∂

∂t
v1(t, z) =

1
2
(
z2 − z

)
+ v1(t, z)

(
ζ1 − σρ (µ− z) + σ2

(
1− ρ2

)
κ1(t)

)
+

1
2
σ2v2

1(t, z),

v0(T, z) = v1(T, z) = 0.

These Riccati equations are time-dependent and can only be solved numer-
ically. If the Q?-characteristic function possesses analytic extension for
Rez > 0 and subject to further technicalities one obtains

Vt = EQ
?

(∫ β+i∞

β−i∞
π(z)ez lnST dz

∣∣∣∣Ft

)
=
∫ β+i∞

β−i∞
π(z)ev0(t,z)+v1(t,z)Y 2

t +z lnStdz,

(4.2)
where β ∈ R is a suitably chosen constant and π(z) are the Fourier coeffi-
cients of the contingent claim (cf. Černý 2007, Hubalek et al. 2006),

H =
∫ β+i∞

β−i∞
π(z)ez lnST dz.

For example, a European put option with strike ek yields π(z) = ek(1−z)

2πiz(z−1) , β

< 0.
Subject to additional conditions one can differentiate under the integral

sign in (4.2) and from (4.1) obtain

ξt = S−1
t

∫ β+i∞

β−i∞
(z + ρσv1(t, z))π(z)ev0(t,z)+v1(t,z)Y 2

t +z lnStdz. (4.3)
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5. Hedging error

Proposition 4.1, the Itô formula (2.4-2.6) and equation (2.3) yield

γt := cVt −
(
cSVt

)2
cSt

=
(
f2(T − t, Y 2

t , St)
)2
σ2Y 2

t

(
1− ρ2

)
.

By Theorem 4.12 in CK07 the minimal squared hedging error with initial
capital V0 satisfies

ε2
0 := E

(
(V0 + ϕ(V0, H) • ST −H)2

)
= E ((Lγ) • IT )

= σ2
(
1− ρ2

)
E

(∫ T

0
eκ0(t)+κ1(t)Y 2

t Y 2
t

(
f2(T − t, Y 2

t , St)
)2
dt

)
.

Remark 5.1. Subject to technical conditions one can use the Fourier expres-
sion for the mean value process (4.2) together with the “extended” Fourier
transform of Duffie et al. (2000) to write

ε2
0 = E ((Lγ) • IT ) = E

(∫ T

0
γtLtdt

)
=

(
1− ρ2

)
σ2

∫ T

0
dteκ0(t)

∫
G2

2∏
i=1

(
dziv1(t, zi)π(zi)eu0(t,zi)

)
×φ (t,κ1(t) + v1(t, z1) + v1(t, z2), z1 + z2) (5.1)

where φ is computed in Appendix B. We leave the detailed analysis of the
technical conditions required to make (5.1) rigorous to future research.

We conclude this section by linking the hedging error ε2
0 to option prices

and performance measures. Recall from Section 1.2 that C0 is the price at
which the contingent claim with payoff H can be sold at time zero.

Definition 5.2. We call

SRS,H := sup

{
E(ϑ • ST + η (C0 −H))√
Var(ϑ • ST + η (C0 −H))

: ϑ ∈ Θ(S), η ∈ R

}
(5.2)

the maximal unconditional Sharpe ratio, where we set 0
0 := 0.

Lemma 5.3. The maximal unconditional Sharpe ratio is given by

SR2
S,H =

1
L0
− 1 +

(C0 − V0)2

ε2
0

, (5.3)

with convention 0/0 = 0.

Proof. Define X := ϑ • ST + η (C0 −H). Easily,

SR2(X) :=
(E(X))2

Var(X)
=

1
infα∈R{E ((1− αX)2)}

−1 = sup
α∈R

{
1

E ((1− αX)2)
− 1
}
.
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Then

SR2
S,H = sup

ϑ∈Θ(S),η∈R
{SR2(X)} = sup

α∈R,ϑ∈Θ(S),η∈R

{
1

E ((1− αX)2)
− 1
}

=
1

infϑ∈Θ(S),η∈R{E ((1−X)2)}
− 1

=
1

infη∈R

{
infϑ∈Θ(S){E ((1−X)2)}

} − 1

=
1

infη∈R
{
L0(1− η(C0 − V0))2 + η2ε2

0

} − 1,

where the last equality follows from CK07 Theorem 4.12 with contingent
claim 1 − η(H − C0). By CK07 Theorem 4.10 with contingent claim 1 −
η(H−C0) the optimal investment cum hedging strategy is given by ϕS+ϕH
(see equations 1.5 and 1.6). Straightforward calculations yield the optimal
number of shares and the maximal Sharpe ratio,

η =
C0 − V0

ε2
0

1
1 + SR2

S,H

,

SR2
S,H = 1/L0 − 1 + (C0 − V0)2/ε2

0.

�

6. Appendix A

Lemma 6.1. Consider the following system of ordinary differential equa-
tions for τ ≥ 0, A,B,C, F,w0, y0 ∈ C

w′(τ) = A+Bw(τ) + Cw2(τ), (6.1)
w(0) = w0, (6.2)
y′(τ) = Fw(τ), (6.3)
y(0) = y0. (6.4)

Define

ŵ0 := B/2 + Cw0,

D :=
√
B2 − 4AC,

by taking the principal value of the square root with branch cut along the
negative real line. Let

τ? := τ?(A,B,C,w0) := inf{τ ≥ 0 : w(τ) unbounded on [0, τ)}.

Then w, y given below represent a solution of (6.1)-(6.4) on [0, τ?). Where
w, y might be multivalued we take the unique version continuous in τ on
[0, τ?) and satisfying the initial conditions.
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(1) For C = 0, D 6= 0

w = w0 +
(
A

B
+ w0

)(
eBτ − 1

)
,

y = y0 + F

(
w0τ +

(
A

B
+ w0

)(
eBτ − 1
B

− τ
))

,

τ? = +∞.

(2) For C = 0, D = 0

w = w0 +Aτ,

y = y0 + F

(
w0τ +

A

2
τ2

)
,

τ? = +∞.

(3) For C 6= 0, D = 0

w = C−1

(
ŵ0

1− ŵ0τ
− B

2

)
,

y = y0 − F
(

1
C

ln (1− ŵ0τ) +
Bτ

2C

)
,

τ? = +∞ for Im (ŵ0) 6= 0, or ŵ0 ≤ 0,
τ? = 1/ŵ0 for ŵ0 > 0.

(4) For C 6= 0, D 6= 0

w = − B

2C
+

D

2C
(ŵ0 +D/2) e−Dτ/2 + (ŵ0 −D/2) eDτ/2

(ŵ0 +D/2) e−Dτ/2 − (ŵ0 −D/2) eDτ/2
,

y = y0 + F

(
− B

2C
τ − 1

C
ln

(
(ŵ0 +D/2) e−Dτ/2 − (ŵ0 −D/2) eDτ/2

D

))
,

τ? = inf{τ ≥ 0 : (ŵ0 +D/2) e−Dτ/2 − (ŵ0 −D/2) eDτ/2 = 0}.

Furthermore, for B,C,w0 and τ fixed the functions

f(A) := D
(ŵ0 +D/2) e−Dτ/2 + (ŵ0 −D/2) eDτ/2

(ŵ0 +D/2) e−Dτ/2 − (ŵ0 −D/2) eDτ/2
,

g(A) :=
(ŵ0 +D/2) e−Dτ/2 − (ŵ0 −D/2) eDτ/2

D
,

are complex differentiable on the set {A ∈ C : τ < τ?}.

Proof. Straightforward calculations show that (1)-(4) solve the Riccati equa-
tions (6.1)-(6.4). The complex function f(A) is differentiable everywhere
apart possibly from the branch cut on the set

D2 = B2 − 4AC ∈ R−.
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However, since

h(D) := D
(ŵ0 +D/2) e−Dτ/2 + (ŵ0 −D/2) eDτ/2

(ŵ0 +D/2) e−Dτ/2 − (ŵ0 −D/2) eDτ/2
= h(−D)

it follows that f(A) is continuous and differentiable also at D2 ∈ R−, and
in particular at D = 0 where it has a removable singularity. The same
argument applies to g(A). �

Lemma 6.2. For B,C ∈ R fixed define the function T̃ : R→ R+ ∪ {∞} by
setting T̃ (x) := τ? (x,B,C, 0) with τ? given in Lemma 6.1. Then

(1) For C = 0 we have T̃ (x) = +∞;
(2) For C 6= 0 T̃ is continuous on R, that is there is A? ∈ R such that

T̃ (x) < ∞ for Cx > A?C,

lim
Cx↘A?C

T̃ (x) = ∞,

T̃ (x) = ∞ for Cx ≤ A?C.

Specifically,
(a) For B ≤ 0 we have A?C = B2/4 and

T̃ (x) =

{
+∞ for Cx ≤ B2/4
2 arctan(

√
4Cx−B2/B)√

4Cx−B2
for Cx > B2/4

;

(b) For B > 0 we have A? = 0 and

T̃ (x) =


+∞ for Cx ≤ 0

1√
B2−4Cx

ln
(
B+
√
B2−4Cx

B−
√
B2−4Cx

)
for B2/4 > Cx > 0

2/B for B2/4 = Cx
2 arctan(

√
4Cx−B2/B)√

4Cx−B2
for Cx > B2/4

.

(3) T̃ is differentiable on R in all points where it is finite valued and

CT̃ ′(x) < 0 for T̃ (x) <∞.

Proof. Items (1) and (2) follow from Lemma 6.1 by direct calculation. An-
other calculation shows that the real function T̃ is continuous at x = B2

4C and
differentiable there when finite-valued. We now examine the monotonicity
of T̃ . For B > 0 and y :=

√
B2 − 4Cx/B ∈ (0, 1] we have

CT̃ ′(x) = − 2C2

B2
√
B2 − 4Cx

(
y−2 ln

1− y
1 + y

+
2

y(1− y2)

)
= − 2C2

B2
√
B2 − 4Cx

y−2

∫ y

0

(
2z

1− z2

)2

dz < 0,

since for g(z) := ln 1−z
1+z + 2z

1−z2 we have g(0) = 0 and g′(z) =
(

2z
1−z2

)2
.
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For B2 − 4Cx < 0, B 6= 0 we obtain for y := 1
B

√
4Cx−B2

CT̃ ′(x) =
2C2

B2
√

4Cx−B2

(
−2 arctan y

y2
+

2
y (1 + y2)

)
= − 2C2

(4Cx−B2)3/2

∫ y

0

(
2z

1 + z2

)2

dz < 0,

since for g(z) := −2 arctan z + 2z
1+z2

we have g(0) = 0 and g′(z) =
(

2z
1+z2

)2
.

�

7. Appendix B

Define z = (z1, z2), then DFS03 (see Theorem 3.2 in Kallsen 2006 for
details) yields that (Y 2, lnS) is conservative regular affine and therefore for
Rez1 ≤ 0,Rez2 = 0 we have

ψ(z, t) = E
(
ez1Y

2
t +z2 lnSt

)
= ev0(t,z)+v1(t,z)Y 2

0 +v2(t,z) lnS0 ,

where v0, v1, v2 solve the following system of Riccati equations,

∂v2(t, z)
∂t

= 0, (7.1)

∂v0(t, z)
∂t

= ζ0v1(t, z), (7.2)

∂v1(t, z)
∂t

=
1
2
z2

2 + z2

(
µ− 1

2

)
+ (ρσz2 + ζ1) v1(t, z) +

σ2

2
v2

1(t, z),(7.3)

v0(0, z) = 0, v1(0, z) = z1, v2(0, z) = z2. (7.4)

Set A = 1
2z

2
2 + z2

(
µ− 1

2

)
, B = ρσz2 + ζ1, C = 1

2σ
2, F = ζ0 and take w, y as

in Lemma 6.1 with w0 = z1, y0 = 0. Then the system (7.1-7.4) is solved by
v0 = y, v1 = w, v2 = z2.

Under technical conditions (cf. Duffie et al. 2000) one has

φ(t, z) := E
(
Y 2
t e

z1Y 2
t +z2 lnSt

)
= E

(
∂

∂z1
ez1Y

2
t +z2 lnSt

)
=

∂

∂z1
E
(
ez1Y

2
t +z2 lnSt

)
=
∂ψ(t, z)
∂z1

= ev0(t,z)+v1(t,z)Y 2
0 +z2 lnS0

(
∂

∂z1
v0(t, z) + Y 2

0

∂

∂z1
v1(t, z)

)
.
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