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Spatial summation for motion detection 
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Keyword: 
Motion 

A B S T R A C T   

We used the psychophysical summation paradigm to reveal some spatial characteristics of the mechanism 
responsible for detecting a motion-defined visual target in central vision. There has been much previous work on 
spatial summation for motion detection and direction discrimination, but none has assessed it in terms of the 
velocity threshold or used velocity noise to provide a measure of the efficiency of the velocity processing 
mechanism. Motion-defined targets were centered within square fields of randomly selected gray levels. The 
motion was produced within the disk-shaped target region by shifting the pixels rightwards for 0.2 s. The uniform 
target motion was perturbed by Gaussian motion noise in horizontal strips of 16 pixels. Independent variables 
were field size, the diameter of the disk target, and the variance of an independent perturbation added to the 
(signed) velocity of each 16-pixel strip. The dependent variable was the threshold velocity for target detection. 
Velocity thresholds formed swoosh-shaped (descending, then ascending) functions of target diameter. Minimum 
values were obtained when targets subtended approximately 2 degrees of visual angle. The data were fit with a 
continuum of models, extending from the theoretically ideal observer through various inefficient and noisy re-
finements thereof. In particular, we introduce the concept of sparse sampling to account for the relative in-
efficiency of the velocity thresholds. The best fits were obtained from a model observer whose responses were 
determined by comparing the velocity profile of each stimulus with a limited set of sparsely sampled “DoG” 
templates, each of which is the product of a random binary array and the difference between two 2-D Gaussian 
density functions.   

1. Introduction 

Summation is one of three general paradigms (adaptation and 
masking being the other two; Graham, 1989) available to psychophys-
icists for answering questions about the spatial characteristics of 
mechanisms responsible for detecting visual targets. In the summation 
paradigm, spatial characteristics may be inferred from the relationship 
between target size and the amplitude required for detection. While 
several studies have measured direction thresholds as a function of the 
extent of moving targets (Lappin et al., 2009; Tadin et al., 2003; van de 
Grind et al., 1983), none have measured motion detection thresholds, or 
analyzed them in terms of the ideal observer theory for the adaptive 
receptive field structure underlying the motion detection performance 
or its efficiency assessed with masking noise, as we do in the present 
study. 

For spots of light on an otherwise-uniform visual field, the retinal 
illumination required for detection decreases as the area of the spot 
increases to a size now known as “Riccò’s area,” in honor of Riccò 

(1877). In central vision, that area can be anywhere between 0.025 and 
0.4 deg2 (corresponding to radial extents between 0.09 and 0.35 deg; 
Barlow, 1958), depending on background illumination and exposure 
duration. Beyond this limit, thresholds decrease more slowly or 
asymptote to a constant level (see Fig. 1). By convention, summation 
within a receptive field is assumed to be linear. Consequently, the 
measurements of Riccò and others have allowed inferences regarding 
the area (i.e., 0.4 deg2) of the smallest receptive fields responsible for 
detecting spots of light in central vision. 

Just as Riccò (1877) established the limits of spatial summation for 
detecting luminance-defined targets, we set out to discover whether 
there are analogous limits for detecting motion-defined targets (see 
Fig. 2). Whereas detection of a brief, monochromatic target within 
Riccò’s area depends primarily on the number of quanta it contains (i.e., 
target intensity), detection of motion in random-dot stimuli depends 
primarily on target velocity (Nakayama & Tyler, 1981). Thus, whereas 
Riccò and others measured threshold intensity as a function of target 
area, we measured threshold velocity as a function of target area. 
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2. Methods 

These methods were granted formal approval from the Optometry 
Proportionate Review Committee at City, University of London, and 
written informed consent was provided by all observers. 

2.1. Stimuli 

All stimuli were centered on a mean-gray background. The typical 
size of the stimulus field (as in Fig. 2b) was 256 × 256 pixels. However, 
in some cases, we used larger fields (see Table 1). In all cases, the 
stimulus duration was 0.5 s (30 video frames at 60 Hz). Target motion 
was confined to the middle 12 video frames. In fact, there was techni-
cally no motion on the first of these 12 frames (f = 1), because it was 
identical to each of the preceding frames, wherein each pixel was 
independently selected from the full gamut of gray levels. 

Each (horizontal) raster of pixels was notionally divided into 16 or 
17 strips of pixels. In the latter case, the central 15 of these strips had 16 
pixels each, leaving n and 16 − n pixels for the outer two strips. For each 

raster and each stimulus field, the number n was independently selected 
from the integers between 0 and 15. When n = 0, the raster was equally 
divided into 16 notional strips. 

In successive frames (f = 2,3, ...,12), the gray levels within each 16- 
pixel strip shifted rightwards (with respect to the first frame) by the 
number of positions corresponding to the integer closest to 
(f − 1)v

(
r; a, rtarg, σext

)
. The latter factor in this expression is the disk- 

shaped profile of velocities: 

v
(
r; a, rtarg, σext

)
=

{
a + σext Z, r < rtarg

σext Z, r ≥ rtarg
, (1)  

where r represents the distance (measured in degrees of visual angle) 
between the center of the 16-pixel strip and the center of the stimulus, a 
is the target’s amplitude (corresponding to its expected velocity), Z is an 
independent sample (one for each strip) from a standard normal 

Fig. 1. Detection thresholds for a 0.93-s flash of light against an unilluminated 
background. The line has a gradient of − 1. Intensities in 507 mμ quanta/ 
(s•deg2), areas in deg2. Data replotted from Barlow (1958). 

Fig. 2. Static representation of motion-defined targets (panels b, c, e, and f) and analogous targets in the luminance domain (panels a, d). Panel a contains a disk that 
is brighter than its small (256 × 256) inscribing square. Thin, red arrows in panel b are meant to represent a disk of rightward motion. Panel c contains a space–time 
representation of the central raster in panel b, with one raster per frame of a 30-frame stimulus. Note that the target’s motion is confined to the middle 12 frames. 
Panels d, e, and f show “noisy,” medium-sized (512 × 512) stimulus fields containing the same targets. In these stimuli, each row of pixels was divided into 16-pixel 
strips. These 16 pixels moved with uniform velocity. Correspondingly, each row of pixels in the luminance-domain analogue (panel d) has been divided into 16-pixel 
strips of uniform luminance. For a movie of representative targets, with and without motion noise, see http://www.staff.city.ac.uk/~solomon/MotionSumm 
ation.zip. 

Table 1 
Methodological details. Total number of trials: 34,800.  

Apparatus Observer Size (pixels) σext Target sizes Trials/Target 

USA CWT 256 × 256 0 7 200 
USA CWT 256 × 256 0.2 7 200 
USA CWT 256 × 256 0.4 7 200 
USA CWT 512 × 512 0 8 600 
USA CWT 512 × 512 0.4 8 200 
UK JAS 256 × 256 0 7 200–300 
UK JAS 256 × 256 0.2 7 200 
UK JAS 256 × 256 0.4 7 200–300 
UK JAS 512 × 512 0 5 200 
UK JAS 512 × 512 0.2 5 200 
UK JAS 512 × 512 0.4 5 200–300 
UK JAS 736 × 736 0 5 200–300 
UK JAS 736 × 736 0.2 3 100 
UK JAS 736 × 736 0.4 5 300 
UK KZC 256 × 256 0 7 200 
UK KZC 256 × 256 0.2 7 200 
UK KZC 256 × 256 0.4 7 200 
UK KZC 512 × 512 0 3 200 
UK KZC 736 × 736 0 5 200 
UK KZC 736 × 736 0.4 5 200 
UK FSN 256 × 256 0 5 200 
UK FSN 256 × 256 0.2 5 200 
UK FSN 256 × 256 0.4 7 200 
UK FSN 736 × 736 0 5 200 
UK FSN 736 × 736 0.2 5 200 
UK FSN 736 × 736 0.4 5 300  
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distribution, and target size rtarg and noise level σext are independent 
variables. Target diameters were constrained to contain pixels that 
approximated integer powers of 

̅̅̅
2

√
: 32, 45, 64, …, 724. Gray levels 

moving beyond one edge of a 16-pixel strip were replaced by indepen-
dently selected gray levels at the opposite edge. 

2.2. Apparatus 

Travel restrictions resulting from the COVID-19 pandemic required 
parallel data collection in geographically separated laboratories. In the 
UK (see Table 1) stimuli were presented on a gamma-linearized Dell CRT 
with a spatial resolution of 1600 × 1200 pixels. Video signals were 
generated by a mid-2012 MacBook Pro, running OS X 10.12.6, MATLAB 
R2016b, and version 3.0.12 of the Psychtoolbox (Brainard, 1997). 
Maximum and minimum luminances were 69.09 and 0.027 cd/m2, 
respectively. Viewing distance was fixed at 1.67 m, producing pixels 
having a retinal subtense of 0.45 arcmin and velocities that were 0.45 
deg/s times the velocity profile described in Eqn. (1). This value 
(0.45 deg/s = 1pixel/frame) corresponds to the maximum (expected) 
target velocity. When velocity noise is present, some parts of the stim-
ulus will have greater velocity, others will have less. 

In the USA stimuli were presented on a gamma-linearized Asus 
monitor with a spatial resolution of 2560 × 1440 pixels. Video signals 
were generated by a 2020 quad core Pentium i7, running MATLAB 
2019b and version 3.0.15 of the Psychtoolbox. Maximum and minimum 
luminances were 250 and 1 cd/m2, respectively. Viewing distance was 
fixed at 1.45 m, producing pixels having a retinal subtense of 0.67 
arcmin and velocities that were 0.67 deg/s times the velocity profile 
described in Eqn. (1). 

2.3. Procedure 

On each trial of this two-alternative, forced-choice (2AFC) task, two 
stimulus fields were shown. One contained no target (a = 0); the other 
contained a target whose amplitude (a > 0) was adjusted using a 
QUEST adaptive staircase (Watson & Pelli, 1983), configured to 
converge on the “threshold” amplitude required for the observer to 
indicate which of the two fields contained the target with an accuracy of 
81% correct.1 Immediate auditory feedback followed each incorrect 
response. The inter-stimulus interval was fixed at 0.5 s, during which the 
screen was uniformly illuminated at the background level. 

In the UK setup, when the field size was 256 × 256 pixels, the inter- 
trial interval (between the previous trial’s feedback and exposure of the 
first stimulus) was 1.0 s. When the field size was 512 × 512 pixels, 
stimulus-computation time caused the inter-trial interval to increase to 
2.7 s. When the field size was 736 × 736 pixels, it increased to 4.7 s. In 
the USA setup, it was <1 s for all field sizes. 

2.4. Observers and conditions 

Authors JAS, FSN, and CWT served as the primary observers. Addi-
tional observations were carried out by KZC. Target size (rtarg) and mo-
tion noise level (σext) were fixed within each block of 100 trials. Further 
details are given in Table 1 and Fig. 3. Viewing was binocular, through 
natural pupils. Fixation at the center of the display was encouraged. 

3. Results 

Raw data are available at https://www.staff.city.ac.uk/~solomon/ 
MotionSummation.zip, where all the modelling code is included. In 
general, faster-moving stimuli were easier to detect. Maximum- 
likelihood estimates of (81 % correct) thresholds are shown in Fig. 3.2 

For all targets, displacement = velocity × 0.2 s. Thresholds fell as the 
area of the disk increased to a value of approximately 3 deg2, before 
rising again in the form of a “swoosh.” This area corresponds to a radius 
of about 1 deg. Motion noise was effective in elevating detection 
thresholds for all sizes of target, though to different extents across the 
observers. 

3.1. Models3 

In 2AFC detection tasks, Signal-Detection Theory (Green & Swets, 
1966) ascribes all incorrect responses to visual signals in the target’s 
absence exceeding those in the target’s presence. Probability correct is 
given by 

Ψ = δ+ψ − 2δψ , (2)  

where δ represents the lapse rate (i.e., the incorrect proportion of re-
sponses to massively suprathreshold targets, which was assumed to be 
0.01 in our implementation of QUEST) and 

ψ =

∫ ∞

− ∞
FN(x)F′

S(x)dx. (3)  

In Eq. (3), FN(x) is the cumulative distribution function (CDF) for the 
visual signal N elicited in the absence of a target and F′

S(x) is the de-
rivative of the CDF (i.e., it is the density) for the signal S elicited in the 
presence of the target. 

3.1.1. The ideal observer 
Behavior of the ideal observer is based on signals described by the 

dot product between each stimulus field and the expected target: 

X = v
(
r; aX , rtarg, σext

)
•
[
1 − H

(
r − rtarg

) ]
, (4)  

where H is the Heaviside step function. Consequently, the CDFs for the 
target (where X = S and aS > 0) and nontarget (where X = N and aN =

0) can be written as 

FX(x) =
1
2

erfc

⎡

⎢
⎣
− x + aXπr2

targ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

extr2
targ

√

⎤

⎥
⎦, (5) 

1 Even with the most sophisticated adaptive psychometric methods, the 
number of trials required for precise, simultaneous estimates of threshold and 
psychometric slope was prohibitive. Consequently, we fixed the latter param-
eter (β in Watson & Pelli’s Eqn. (13) at the value of 1.3, which was both the 
median value obtained in pilot experiments (not reported here) and all linear 
models limited by Gaussian noise (May & Solomon, 2013). 

2 These estimates were obtained with β = 1.3 (see Footnote 1). When 
simultaneously fitting all the data described in this paper, the single maximum- 
likelihood value for this parameter was 1.0. We must stress that, although our 
estimates of psychometric slope should not be considered precise, when fitting 
just the conditions without motion noise (i.e., σext = 0), psychometric functions 
were – if anything – even shallower: β = 0.7. This result seems incompatible 
with intrinsic uncertainty models, as described below. Psychometric functions 
for 2AFC detection of contrast-defined targets are almost never this shallow (see 
Mayer & Tyler, 1986, and May & Solomon, 2013 for a review). Finally, 
although a full investigation of these psychometric slopes is beyond this scope 
of this study, there are various potential explanations for why they may be 
shallower than those predicted by linear models with constant, Gaussian noise: 
i) the limiting noise is platykurtic (e.g., Neri, 2013), ii) the variance of limiting 
noise increases with signal strength (e.g., Solomon, 2007), iii) stimulus velocity 
undergoes compressive, nonlinear transduction (e.g., according to a power law 
with exponent < 1), and iv) pooling data across sessions in which sensitivity 
changes, due to the effects of practice and/or fatigue.  

3 This section (Models) and the next section (Model Fits) may be skipped 
without loss of continuity. 
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where erfc is the complementary error function. Note that there are no 
free parameters in the ideal observer model. The expected signal E(S)

grows in proportion to the square-root of target area, 
̅̅̅̅̅̅̅̅̅̅
πr2

targ

√
. Conse-

quently, the ideal observer’s thresholds fall in proportion to this quan-
tity. On log–log axes such as the panels of Fig. 2, this proportionality 
manifests as a line with gradient − 1/2. 

Our human observers’ thresholds were always higher than the ideal 
observer’s. Indeed, in the absence of external motion noise (i.e., when 
σext = 0), the ideal observer will never make an incorrect response; its 
threshold is effectively 0.4 However, it is noteworthy that the initial 
response gradients for the smaller targets appear to follow the same 
trend as the ideal observer, but at an elevated level. 

3.1.2. The noisy observers 
To elevate the (otherwise) ideal observer’s thresholds, we assume 

that its visual signals are noisy, even in the absence of any motion noise 
in the stimulus. By definition, “late” Gaussian noise is injected after the 
velocity profile has been matched with the template (i.e., the expected 
target). In this case we have 

FX(x) =
1
2

erfc

⎡

⎢
⎢
⎣

− x + aXπr2
targ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2π
(

σ2
extr

2
targ + σ2

L

)√

⎤

⎥
⎥
⎦. (6) 

Late noise can be considered implicit whenever human performances 
correspond to threshold differences in a model mechanism’s 

deterministic response (e.g., Betts et al., 2012; Solomon, 2022; Schallmo 
et al., 2018; Tadin & Lappin, 2005). In such cases, threshold is deter-
mined by the standard deviation of the implicit noise. Consequently, in 
the absence of external noise, the expected visual signal grows in pro-
portion to the target area, not its square-root; and on log–log axes such 
as the panels of Fig. 2, this proportionality would manifest as a line with 
gradient − 1, which is not well-supported by any of the datasets. 

As an alternative to late noise, “early” Gaussian noise can corrupt 
visual signals before their velocity profiles are matched with the tem-
plate. In this case we have 

FX(x) =
1
2

erfc

⎡

⎢
⎣

− x + aXπr2
targ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π

(
σ2

ext + σ2
E
)
r2

targ

√

⎤

⎥
⎦. (7)  

The variance of this early noise (σ2
E) is functionally equivalent to an 

increase in the variance of motion noise in the stimulus. (It can be 
considered “equivalent input noise,” e.g., Pelli, 1990.) Consequently, 
thresholds for an otherwise-ideal observer with early noise would fall 
with a gradient of − 1/2, just like those for an ideal observer with mo-
tion noise in the stimulus. 

Now consider what happens when external motion noise (i.e., 
random velocity fluctuations) is added to the stimulus field (i.e., 
σext > 0). When motion noise is large compared to the internal noise 
(early or late), the variance of visual signals will increase, and thresholds 
should rise. Sure enough, thresholds did rise when motion-defined tar-
gets were presented with random velocity fluctuations (see Fig. 3). 
However, so much internal noise (early or late) would be required to 
make the thresholds for this noisy-but-otherwise-ideal observer 
commensurate with those of our human observers that external noise 
would always remain negligible. Consequently, we infer that internal 
noise cannot be the only reason that human thresholds are so high. 

Fig. 3. Velocity/displacement thresholds and best-fitting (swoosh-like) curves from the “DoGS” model for four observers. Dashed horizontal lines indicate maximum 
and minimum non-zero target velocities available to each observer. Green, amber, and blue symbols illustrate 81%-correct thresholds in the presence of noise having 
RMS amplitudes of 40 %, 20 %, or 0 % of the maximum target velocity, respectively. Symbol opacity is proportional to the number of trials (see Table 1). Circles, 
triangles, and diamonds correspond to field sizes of 256 × 256, 512 × 512, and 736 × 736 pixels, respectively. Solid curves illustrate best-fits of the DoGS model 
(curves corresponding to large-field fits extend to the right of the largest targets contained within smaller fields), while dashed amber and green lines indicate the 
ideal observer’s performance with noise amplitudes of 20% and 40%, respectively. Field size, target radius, and noise amplitude were held constant within each block 
of 100 trials. Note that CWT’s horizontal axis differs from those of the other three observers because the viewing distance on his apparatus (see Methods) was smaller. 

4 In the absence of velocity noise, the ideal observer’s performance is limited 
only by quantal fluctuations. Compared to all the other noise sources discussed 
in this study, these fluctuations are literally negligible, which is synonymous 
with “effectively 0.”. 
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3.1.3. The noisy, inefficient observer 
Aside from internal noise, another potential explanation for the high 

thresholds of our human observers is that their detection processes have 
a less-than-ideal sampling efficiency because their templates never 
match the shape of the external signal (Burgess et al., 1981). 

Here we consider a further modification to the noisy (but otherwise 
ideal) observer model with early noise, in which imperfectly matched 
templates nonetheless grow in proportion to the target, thereby 
achieving a constant sampling efficiency. Constant sampling efficiency 
could happen if each template were the product of a disc identical to the 
target and sparse array of local receptive fields (see Fig. 4). The coverage 
of that array (η) would be equal to the sampling efficiency (constrained 
to the interval [0,1]), and the distribution of visual signals would be 

FX(x) =
1
2

erfc

⎡

⎢
⎣

− x + aXπηr2
targ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πη
(
σ2

ext + σ2
E
)
r2

targ

√

⎤

⎥
⎦. (8) 

This noisy, inefficient, but-otherwise-ideal observer can produce 
both realistically high thresholds and realistically large effects of motion 
noise in the stimulus. Where this model fails is in its prediction of a 
constant log–log gradient of − 1/2. Although thresholds for our human 
observers did fall at this rate when target area was less than approxi-
mately 3 deg2, they reversed direction when target area exceeded this 
value. 

3.1.4. The noisy, inefficient, size-limited observers 
We consider two further modifications of the ideal observer model, 

in which its templates have a minimum and/or maximum size. These 
modifications can be achieved by adding free parameters rmin and rmax 

(in addition to σE and η) to the signal distributions: 

FX(x) =
1
2

erfc

⎡

⎢
⎢
⎣

− x + aXπηmin
(

r2
max, r2

targ

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πη
(
σ2

ext + σ2
E
)

min
[
r2

max,max
(

r2
min, r2

targ

) ]√

⎤

⎥
⎥
⎦. (9) 

When rmin = 0, rmax < ∞, this noisy, inefficient, size-limited 
observer can produce bi-linear threshold-vs-size functions. The left 
side of each function displays the ideal observer’s summation gradient of 
− 1/2, but the right side is flat. Below, we consider the possibility that 
maximum size (rmax) varies with field size (i.e., the number of pixels in 
the image) and/or external noise (σ2

ext). When 0 < rmin < rmax < ∞, 
this noisy, inefficient, size-limited observer can produce tri-linear 
threshold-vs-size functions, where the gradient doubles (to –1) on the 
far-left side (as in Chen et al., 2019, for contrast summation). 

3.1.5. Intrinsic uncertainty 
Intrinsic-uncertainty (IU) models of detection (Pelli, 1985) specify 

CDFs for the target (where X = S) and nontarget (where X = N) as the 
product of M CDFs, such that 

FX(x) = [FIU(x; 0) ]M− K
[FIU(x; aX) ]

K
. (10)  

In Eq. (10), M − K represents the number of “irrelevant” visual signals, 
which are nonetheless considered in the decision process. K represents 
the number of “relevant” signals, so-called because their expected values 
increase with the target’s amplitude aS. Summation is modelled using 
the additional assumption that K is proportional to target area. To 
complete the specification of IU models, we adopt the conventional 
assumption that all K relevant visual signals can be represented by in-
dependent Gaussian-based random variables with equal mean and 
variance, i.e., 

FIU(x; a) =
1
2

erfc
(

a − x
̅̅̅
2

√
σ

)

. (11) 

Note that this model has three free parameters that could poten-
tially vary with field size and/or external noise: the ratio between the 

number of relevant, independent signals K and target area, the total 
number of independent signals M, and the variance of each signal σ2. If 
the number of signals were independent of external noise, then we 
could expect the variance of those signals to increase (linearly) with 
the variance of external noise. However, signals will fail to remain 
independent when they arise from neurons (or pools of neurons) whose 
receptive fields overlap the same strip of 16 pixels to which a single 
sample of external noise has been added. Consequently, the effective 
values of K and M cannot plausibly increase with external noise, but 
they could decrease. 

This implication is important because a decrease in the effective 
values of K and M would manifest as more precipitous decreases in 
threshold when plotted on log–log axes, such as those in Fig. 3.5 No such 
increase in steepness can be seen in our thresholds. Indeed, the range of 
target areas over which the IU model can produce (81%-correct) 
threshold curves with a log–log gradient of –1/2 is only about one log 
unit (K < M and M ≈ 10). 

For comparison with ideal observer models, we fit a simple, 4-param-
eter version of the IU model to each observer’s data (see below). We 
have not evaluated the IU model further, since it cannot capture the 
elevation in threshold for targets having radial extents greater than 1◦. 

3.1.6. The DoG observers 
To produce swoosh-like summation curves, a model must have some 

inhibitory component. The simplest such model we could imagine has a 
template formed by a difference of Gaussians (DoG). Watson and Eckert 
(1994) previously proposed DoG-shaped templates for motion detection, 
but they did not examine their implications for spatial summation. Each 
of our DoG templates is centered on the target. On average, visual signals 
could be expected to increase with the size of the moving target until its 
edge reached the zero-crossing of the DoG, after which the expected 
signal would fall. Formally, the behavior of this observer is based on 
signals described by the dot product between each stimulus and a DoG: 

X = v
(
r; aX , rtarg, σext

)
•
(
exp

[
− r2/

(
2r2

a

) ]
− b exp

[
− r2/

(
2r2

b

) ] )
, (12)  

where rb and ra respectively denote the space constants of the DoG’s 
inhibitory and excitatory component blobs and b denotes the ratio be-
tween their (unsigned) amplitudes. Unfortunately, there is no closed- 
form expression for this model’s distribution of visual signals: 

FX(x) =
1
2
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⎡

⎢
⎣
− x + aXη

̅̅̅̅̅
2π
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2
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ext + σ2
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b
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⎤

⎥
⎦, (13)  

where 

g(u) = raexp
[
− u2/

(
2r2

a

) ]
erf
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√

/
(
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2
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− brbexp
[
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√

/
(
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̅̅̅
2

√ ) ]

and erf is the error function. Numerical methods were required to 
evaluate the integral. 

Initially, we considered only “balanced” DoGs centered on each 
target (such that their dot product with large, uniform stimuli would be 
zero), in which b = r− 2

a . This option produced uniformly poor fits (see 
Table 2). Better fits were obtained when b and the model’s other 4 pa-
rameters (σE, η, ra, and rb) were free to vary, but these fits remained 
inferior to those of the noisy, inefficient observer. Finally, we examined 
size-limited variants of the DoG observer, whose templates have a 
minimum and/or maximum size, the latter of which was allowed to vary 
with the size of the stimulus field (i.e., the number of pixels in the image) 
and/or external noise. For all templates, the ratio between inhibitory 

5 Concomitantly, they would manifest as shallower psychometric functions 
(see Pelli, 1985 Eqns. 5.4 and 6.1). 
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Fig. 4. Inefficient DoG-observer model with early noise. Model decisions are based on a comparison between two signals internal to the observer. Each of these 
signals has an expected value that is equal to the dot product between the external signal and something called a template. When the stimulus contains a motion- 
defined disk, the external signal has a disk shape. The amplitude of the external signal is proportional to the target’s velocity. The template has a two-dimensional 
shape, just like the external signal. The presence of early noise causes the variance of internal signals to increase with template size, even when no velocity fluc-
tuations are present in the stimulus. 

Table 2 
Pairwise comparison of maximum-likelihood fits to the data. Differences in AIC are shown for the four observers across each pair of models. For the model at the head of 
each column, values in that column represent substantial support (red), essentially no support (blue) or intermediate values (black). Conversely, blue values support 
the model at the head of their corresponding row, and red values represent essentially no support for it.  
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and excitatory space constants remained fixed at ρba = rb/ra. A diagram 
of the DoG observer is provided in Fig. 4. 

3.2. Model fits6 

Details, including parameter values, of maximum-likelihood fits to 
the data from each observer are available at http://www.staff.city.ac. 
uk/~solomon/MotionSummation.zip. Pairwise comparisons between 
these fits to the data appear in Table 2. The four numbers in each cell 
represent differences in Akaike Information Criteria (AIC)7; one differ-
ence for each observer (JAS, CWT, KZC, and FSN, respectively). Values 
less than 2 represent “substantial support” for the model of lower rank (i. 
e., the model named at the head of that column) over the model in the 
specified row (Burnham & Anderson, 2003, p. 70). These values appear 
in red. Values greater than 10 represent “essentially no support” for the 
model of lower rank. These values appear in blue. All intermediate 
values appear in black. The rankings, which are essentially nominal, 
appear in the leftmost column. 

Models 1–9 are all based on the ideal observer, with disk-shaped 
summation regions matching each target profile. The acronyms for 
these 9 cases should thus be understood to include the implicit modifier 
that they are “otherwise ideal” in addition to the specified characteris-
tics. The ideal observer’s maximisation of signal-to-noise ratio requires 
those summation regions to change for each motion-defined target. 
Analogous changes in the templates of our models for human observers 
can be ascribed to an attentional strategy (Chen et al., 2019).  

1. LNO, the (late) noisy observer. An otherwise-ideal observer with late 
noise (a.k.a. “decision noise”). One free parameter.  

2. NO, the (early) noisy observer. An otherwise-ideal observer with 
early noise (a.k.a. “equivalent input noise”). One free parameter.  

3. NIO, the noisy, inefficient observer. A noisy observer whose 
otherwise-ideal template covers a fixed proportion of the target’s 16- 
pixel strips. Two free parameters. 

4. NISLO, the noisy, inefficient, size-limited observer. A noisy, ineffi-
cient observer whose templates are limited to an arbitrary maximum 
size regardless of the size of the stimulus field. Three free parameters. 

5. NISLOM, the noisy, inefficient, size-limited observer with a mini-
mum template size. A noisy, inefficient observer, whose templates 
have both a maximum and a minimum size. Four free parameters.  

6. NISLOS, the noisy, inefficient observer with size-specific template 
maxima. A noisy, inefficient observer whose largest templates are 
free to increase with size of the stimulus field (i.e., the number of 
pixels in the image). Two free parameters, plus one for each field 
size.  

7. NISLON, the noisy, inefficient observer with noise-specific template 
maxima. A noisy, inefficient observer whose largest templates are 
free to increase with stimulus noise level. Two free parameters, plus 
one for each level of stimulus noise.  

8. NISLOSN, the noisy, inefficient observer with size- and noise-specific 
template maxima. A noisy, inefficient observer whose largest tem-
plates are free to increase with field size and/or stimulus noise. Two 
free parameters, plus one for each combination of field size and 
stimulus noise.  

9. NISLOSNM, the noisy, inefficient observer with noise- and size- 
specific template maxima and a minimum template size. A noisy, 
inefficient observer whose largest templates are free to increase with 
field size and/or stimulus noise, and whose smallest template is also 
limited to an arbitrary size (but is invariant with field size or stimulus 

noise). Three free parameters, plus one for each combination of field 
size and stimulus noise. 

Intrinsic Uncertainty Model  

10. IU, a simple form of the intrinsic-uncertainty model. Four free 
parameters remain invariant with field size and external noise: 
the ratio between the number of relevant independent signals and 
target area, the total number of independent signals, and two 
parameters describing the linear relationship between signal 
variance and external noise. 

Models 11–16 employ Difference of Gaussian (DoG)-shaped sum-
mation regions that increase in size with a range of target sizes.  

11. BDoGO, the balanced DoG one-max-fits-all model. Identical to 
the noisy, inefficient observer, except it uses DoG-shaped tem-
plates that are perfectly balanced. Five free parameters (early 
noise σE, coverage η, ratio of inhibitory:excitatory space- 
constants ρba, ratio between excitatory space-constant and 
target radius ρat, and maximum excitatory space-constant rall).  

12. DoGO, the DoG one-max-fits-all model. Identical to the balanced 
DoG one-max-fits-all model except that its DoGs need not be 
balanced. Six free parameters. (In addition to BDoGO’s five, there 
is another free parameter, b, for the ratio between inhibitory gain 
and excitatory gain.)  

13. BDoGS, the balanced DoG model with size-specific template 
maxima. Identical to the balanced DoG one-max-fits-all model, 
except there is a maximum space-constant that is allowed to in-
crease with field size. Four free parameters, plus one for each 
field size. 

14. DoGS, the DoG model with size-specific template maxima. Iden-
tical to the DoG one-max-fits-all model, except there is a 
maximum space-constant that is allowed to increase with field 
size. Five free parameters, plus one for each field size (r256, r512, 
and/or r736).  

15. DoGN, the DoG model with noise-specific template maxima. 
Identical to the DoG one-max-fits-all model, except there is a 
maximum space-constant that is allowed to increase with the 
level of stimulus noise. Five free parameters, plus one for each 
level of stimulus noise.  

16. DoGSN, the DoG model with size- and noise-specific template 
maxima. Identical to the DoG one-max-fits-all model, except 
there is a maximum space-constant that is allowed to increase 
with field size and/or stimulus noise. Five free parameters, plus 
one for each combination of field size and stimulus noise. 

Note that every number in the first three columns of Table 2 is blue. 
Thus, our data provide essentially no support for LNO, NO, or NIO over 
any of the other models we consider. Those first three models are too 
restrictive. Similarly restrictive are all models with a minimum template 
size, and all balanced DoG models. Also take note of the comparison 
between DoGSN and DoGO. Here again, almost every number is blue (at 
9.3, the comparison for KZC can be considered almost blue), indicating 
that DoGO is too restrictive. However, whereas it is primarily the re-
striction against noise-specific template maxima that hampers DoGO’s 
fit to JAS’s data, it is primarily the restriction against size-specific 
maxima that hampers its fit to data from CWT, KZC, and FSN. 

Although the shape of summation curves can vary between models, 
when any given model’s parameter values are fixed, all the curves 
predicted by that model are constrained to have the same shape. This 
shape can be thought of as a compromise between the different noise 
levels and field sizes. Fig. 3 shows that the maximum-likelihood fits of 
DoGS to JAS’s and KZC’s data produce “compromises” with relatively 
shallow swooshes. Best-fitting parameter values [σE, η, ρba, b, ρat, r256,

r512, r736] were [0.28,0.018,1.6, 0.10,1.1, 53, 60,60] for JAS; [0.20,0.20,

6 This section may be skipped without loss of continuity.  
7 That is, 2(k1− k2) + 2 ln(l2/l1), where k1 and l1 are the number of free 

parameters and maximum likelihood of the lower-ranked model (respectively) 
and k2 and l2 are the number of free parameters and maximum likelihood of the 
higher-ranked model. 
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1.2, 0.66,0.75,51,80, *] for CWT; [0.32,0.0096,2.2, 0.077,1.5, 83,110,
120] for KZC; and [0.069,0.022,2.0, 0.18,1.7, 75, *,120] for FSN, where 
asterisks replace maximum space constants for unused field sizes. 

4. Discussion 

The primary result of this study is the finding that the maximum 
summation region for motion detection is about 3 deg2 in the center of 
the visual field. This value is between 1 and 2 orders of magnitude larger 
than Riccò’s area for luminance summation (possibly better understood 
as unsigned contrast summation, see Thibos et al., 2019). It corresponds 
to a retinal subtense of 2 deg, which is a good match for one-half the 
wavelength of the sinusoidally modulated flow field that was most easily 
detected by CWT (Nakayama & Tyler, 1981). It is also a fairly good 
match to the average receptive field size of foveal neurons in the middle 
temporal area of macaque, where even a single action potential can 
convey a substantial amount of directional information about slowly 
moving stimuli (Bair & Movshon, 2004). (Albright & Desimone’s, 1987 
regression of receptive field sizes against eccentricity indicates that this 
size should be approximately 1.2 degrees of visual angle.) 

Much larger receptive fields have been inferred from psychophysical 
experiments with large-scale optic flow. Burr et al. (1998) recorded a 
roughly constant (~10%) sampling efficiency with which the direction 
of a target flow-field’s motion could be identified, regardless of its 
retinal subtense. This result may seem inconsistent with the swoosh-like 
summation curves reported here and elsewhere (e.g., Tadin et al., 2003), 
but note that Burr et al. manipulated target subtense by changing the 
observer’s viewing distance. Consequently, motion speed varied from 
approximately 12 deg/s for their large targets to 190 deg/s for their 
small ones. It seems likely that direction-discrimination of this relatively 
high-velocity optic flow engages different visual mechanisms than the 
detection of our low-velocity, motion-defined targets. 

When our motion-defined targets were smaller than 3 deg2, thresh-
olds fell with with an increase in the square root of target area. This 
relationship implies a constant sampling efficiency and stands in sharp 
contrast to the thresholds for luminance-defined targets, which fall with 
target area (not its square-root) when that area is smaller than Riccò’s 
area (Barlow, 1958). Constant sampling efficiency implies a capability 
of accessing templates whose sizes match the target sizes, even if those 
matches aren’t perfect. Efficiency can be defined as the square of the 
ratio between ideal and human thresholds in high noise (Pelli, 1990). 
Perfect (“ideal”) matches produce efficiencies of 100%. The largest we 
found (2.5%) was achieved by CWT with the smallest target in 40% 
noise. KZC never achieved better than 0.3% efficiency. (These numbers 
are well-matched by the best-fitting values for the coverage parameter in 
DoGS.) This coverage, which we attribute to a sparse array of small 
receptive fields, may correspond to the relatively sparse sampling area 
of a neuron’s dendritic tree, compared to the size of visual field over 
which it extends. 

4.1. Comparison with previous investigations of spatial summation with 
moving stimuli 

Whereas our measurements of velocity threshold can be considered 
directly analogous to Riccò’s measurements of luminance threshold, 
others have characterized spatial summation for motion detection using 
alternative independent variables. Perhaps most notable is a study by 
Tadin, Lappin, Gilroy, and Blake (2003), who reported swoosh-like 
summation curves of threshold duration for targets defined by random 
dots and drifting gratings. In the absence of external noise, our empirical 
results mirror theirs. However, in some cases, the detection of their 
drifting gratings was facilitated by the addition of external noise (ran-
domized pixel contrasts). Unlike Tadin et al., we did not find any evi-
dence for facilitation from external noise. 

Several other laboratories have investigated spatial summation with 
moving targets. van de Grind et al. (1986) measured the widths of just- 

detectable, vertical strips of translating texture having various velocities 
against a static background. They also measured threshold signal-to- 
noise ratios for motion detection (1983). Like Tadin et al. (2003), Lap-
pin et al. (2009) measured duration thresholds for direction discrimi-
nation with targets having various sizes. Both of these groups used target 
velocity as an independent variable. Our work can be considered com-
plementary, as we report threshold velocities for targets of various size 
and signal-to-noise ratio. 

As an index of the relationship between grating velocity and the ef-
fect of target size on the duration threshold for direction discrimination, 
Lappin et al. (2009) used log ratio between the thresholds for large (110 
deg2) and small (4.91 deg2) targets. Consistent with the swoosh-like 
summation curves reported by Tadin et al. (2003), this index was pos-
itive for high speeds (≥ 0.7 deg/s). However, it was close to zero for 
speeds in the range of the threshold velocities reported here. Prima facie, 
this behavior may suggest that our studies probe distinct visual mech-
anisms. However, there is no genuine inconsistency because our sum-
mation curves are defined by different dependent variables. To evaluate 
the suggestion of distinct mechanisms, we would need a model for how 
duration and velocity affect both the mean and the variance of the visual 
signals used for direction discrimination and motion detection. 

Qualitatively similar to the monotonically decreasing duration 
thresholds for direction-discrimination with low-contrast gratings 
(Tadin & Lappin, 2005; Tadin et al., 2003), Anderson and Burr (1987, 
1991), reported that contrast thresholds decrease monotonically, 
regardless of whether the task is detection or direction discrimination 
with a drifting Gabor target. Tadin and colleagues attributed the very 
different, swoosh-like shape of summation curves (mapping target size 
to duration threshold for direction discrimination) for high-contrast 
targets to their greater detectability. 

Assuming that some form of surround suppression is responsible for 
the non-monotonicity of our summation curves (and, indeed, we offer no 
alternative explanation), our results indicate that highly visible targets 
are not required for its activation. Similar non-monotonicity can be seen 
in all our detection thresholds, including those obtained at relatively low 
signal-to-noise ratios. However, it must be noted that the “signal” and 
“noise” in our stimuli were not proportional to contrast or grey level; 
they were proportional to velocity. Therefore, there really is no conflict 
between our results and earlier literature. 

Although Bell and Lappin (1973) argued that direction discrimina-
tion was a better test of motion processing than displacement detection, 
Nakayama and Tyler (1981) demonstrated that detection of oscillatory 
displacements in random-dot stimuli was a constant function of velocity 
for various temporal frequencies. In other words, motion-defined form 
could not be detected until the random dots that comprised it were 
moving with sufficient velocity. Identifiable displacements in random- 
dot stimuli were dubbed ‘short-range apparent motion’ by Baker and 
Braddick (1985). They suggested that the minimum-displacement 
thresholds were, “likely determined by receptive field properties in 
area 17.” 

4.2. Comparison with previous modeling efforts 

Tadin and Lappin (2005) considered several models for the swoosh- 
like summation functions in the absence of external noise. All their 
models employ a sigmoidal transducer, without input from neighboring 
mechanisms. The relationship between parameter values and their 
model’s behavior is somewhat opaque (as noted by Betts et al., 2012) 
because sigmoidal transduction (with its inherent divisive inhibition) is 
only the first stage and does not produce swoosh-like summation curves. 
To obtain swooshes, their models rely on a second stage with subtractive 
inhibition, a feature analogous to the inhibitory component of our DoG 
models. However, unlike our DoG models, it is not clear how to modify 
the formulas of Tadin and Lappin (or those of Betts et al.) for compati-
bility with external noise. Of course, it would be possible to calculate the 
distribution of signals in their excitatory channel as well as the 
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distribution of signals in their inhibitory channel, but unless both 
channels were linear (and Tadin and Lappin’s formulas collapsed to a 
simple DoG model), those signals would be correlated with a coefficient 
whose calculation would be intractable. 

Our DoGN model contains most of the spirit of Tadin and Lappin 
(2005) models. Specifically, it has an inhibitory surround and a template 
size that increases with decreased visibility (increased external noise). 
However, it only showed an advantage over the DoGS model for one of 
our four observers, so it was not well-supported in our implementation. 
We therefore regard the DoGS model with the fixed maximum template 
size, as plotted in Fig. 2, as the preferred model for human motion 
summation. 

We concentrated on a class of linear models wherein the expected 
visual signal is given by the dot product between the spatial layout of 
stimulus velocities and an internal template mediating motion detec-
tion. This template might correspond to a single physiological receptive 
field or the superposition of several, but within the context of our psy-
chophysical model it is merely a function mapping spatial position to a 
unitless quantity that can be considered the detector’s gain. A summary 
of our modeling can be described as follows. If template size were a 
constant function of target size (as in the models described by Tadin & 
Lappin, 2005), then the model’s thresholds would either fall too rapidly 
(over small sizes) or not at all (over large sizes), as the target size 
increased. Thus, we reasoned that template sizes must adaptively in-
crease with (small-to-medium) target sizes, such that the perceptual 
system selected the best-matching available template for these target 
sizes. Also, if the variance of internal signals did not similarly increase 
with template (and target) size, then the model’s thresholds would fall 
too rapidly to match the data. Thus, we inferred that internal noise 
affected signal variance in just the same way as external noise; it could 
be considered “early.” 

If target size never exceeded the template’s central, excitatory re-
gion, then the model’s thresholds would not rise to form the ascending 
parts of the swoosh-like curves seen in Fig. 3, implying that large targets 
must encroach upon the largest template’s inhibitory surrounds. How-
ever, any simple difference-of-Gaussians template would produce either 
implausibly low thresholds or no effect of external noise. Therefore, to 
account for the inefficiency of the performance, we conjectured that 
each DoG-shaped template must linearly combine inputs from similarly 
sparse arrays of small receptive fields. Best fits (smaller AIC values) were 
obtained when larger DoG-shaped templates were allowed with larger 
field sizes. 
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Riccò, A. (1877). Relazione fra il minimo angolo visuale e l’intensità luminosa. Annali di 
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