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ABSTRACT

Spatial agent-based models are frequently used to investigate the evolution of solid tumours sub-1

ject to localised cell-cell interactions and microenvironmental heterogeneity. As spatial genomic,2

transcriptomic and proteomic technologies gain traction, spatial computational models are predicted3

to become ever more necessary for making sense of complex clinical and experimental data sets,4

for predicting clinical outcomes, and for optimising treatment strategies. Here we present a non-5

technical step by step guide to developing such a model from first principles. Stressing the im-6

portance of tailoring the model structure to that of the biological system, we describe methods of7

increasing complexity, from the basic Eden growth model up to off-lattice simulations with diffusible8

factors. We examine choices that unavoidably arise in model design, such as implementation, pa-9

rameterisation, visualisation, and reproducibility. Each topic is illustrated with examples drawn10

from recent research studies and state of the art modelling platforms. We emphasise the benefits of11

simpler models that aim to match the complexity of the phenomena of interest, rather than that of12

the entire biological system. Our guide is aimed at both aspiring modellers and other biologists and13

oncologists who wish to understand the assumptions and limitations of the models on which major14

cancer studies now so often depend.15

Introduction16

Cancer initiation, progression, and treatment responses are Darwinian evolutionary processes [1, 2] that can be inves-17

tigated using a wide range of mathematical and computational methods. Examples include evolutionary game theory18

[3, 4], branching processes [5, 6], and Moran processes [7, 8]. Yet while many tools have yielded important insights19

into cancer evolution, the study of spatial aspects – especially important in carcinomas, constituting the majority of20

humans cancers – often necessitates a spatially explicit approach, such as a spatial agent-based model.21

An agent-based (or individual-based) model is a computational model of a system made up of autonomous, interacting22

“agents”. Spatial agent-based models (SABMs) have long been used to study the evolution of spatially structured23

communities because they can reveal how the processes of selection, drift, and gene flow depend on localised in-24

teractions among agents (typically individual organisms) or between agents and their spatially varying environment.25

As new technologies generate better spatial tumour data, SABMs are proving ever more useful in oncology. Typical26

applications include understanding tumour development, inferring the effects of driver mutations, and predicting treat-27

ment outcomes. For example in recent studies, Aif et al. [9] used an SABM to investigate the evolutionary rescue of28

drug-resistant tumour subclones; Saha et al. [10] used an SABM to investigate adaptive cancer therapy; and Bull and29

Byrne [11] used an SABM to simulate interactions between macrophages and tumour cells.30

To support this burgeoning research field, here we present a seven-step guide to designing and implementing spatial31

agent-based models in which the agents are locally-interacting tumour cells or cell subpopulations. Starting from the32
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Figure 1: Some common neighbourhoods that govern the update rules for cellular automata and other agent-based
models in two dimensions (a) and three dimensions (b). A focal agent (cell) is shown in blue and its neighbourhood
sites in grey.

simplest cellular automata, we discuss options for adding greater complexity and biological realism, such as multi-33

level spatial structure and environmental heterogeneity. Based on our extensive experience of developing and using34

SABMs [12, 13, 14, 15], we cover practical issues such as event scheduling, visualisation, and how to use SABMs35

to infer parameter values from experimental or clinical data. Each topic is illustrated with examples from our own36

demon-warlock modelling framework [14, 12], other state of the art modelling platforms, and studies that have used37

SABMs in cancer research. Whereas our focus is on tumour evolution, much of our advice applies equally to similar38

modelling methods used to study bacterial colonies, invasive species, and organismal development. The guide is39

designed to be accessible for biologists and clinicians without specialist mathematical knowledge.40

1 Spatial structure41

Spatial structure determines the evolutionary balance between selection and drift, the nature of gene flow between42

subpopulations, and the strength of ecological interactions. When a model fails to accurately represent the spatial43

structure of a biological system, the model’s predictions and inferences for that system may be highly unreliable44

[12, 16]. It follows that the parameters of spatial structure – such as the size of locally interacting cell communities45

and the manner of cell dispersal – should be accorded the same importance as evolutionary parameters in model46

design. Notwithstanding the trade-off between model simplicity and realism, spatial structure parameters should, as47

far as possible, be derived or inferred from empirical data.48

1.1 Stochastic cellular automata49

Many of the simplest spatial agent-based models are cellular automata. A cellular automaton is a model that plays out50

on a grid of sites in one or more dimensions. Each site is associated with one of a set of at least two possible states.51

2
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Each site also belongs to a subset of sites called a neighbourhood, of which some examples are shown in Figure 1. For52

example, the von Neumann neighbourhood in two dimensions contains the nearest sites in the cardinal directions (up,53

down, left and right). A cellular automaton sequentially updates itself according to a set of rules. The update rules for54

a given site depend on its own current state and the states of the sites in its neighbourhood.55

Whereas the update rules of many cellular automata are deterministic [17], probabilistic rules are more appropriate56

for modelling stochastic processes such as biological evolution. A stochastic cellular automaton is equivalent to a57

collection of locally interacting Markov chains, which means that each event is chosen according to probabilities that58

depend only on the current model state, not any of its previous states.59

In biological terms, each state corresponds to a type of cancer cell or some other entity (such an immune cell or part60

of the extracelluar matrix). Generally we will assume that the focal agents in our models are cancer cells and we61

will use the terms “agent” and “cell” interchangeably where appropriate. A cellular automaton permits a cell’s event62

probabilities (for example, its division, death, and dispersal rates) to depend on the number of neighbouring cells. This63

allows us to account for crowding or Allee effects, such that birth, death or dispersal rates depend on the local or global64

population size. Event rates can also vary according to the types of the neighbouring cells, for example to simulate65

cell competition or immune predation.66

Models of asynchronous processes, such as cell division in a tumour, typically use asynchronous updating, meaning67

that only one or a small number of sites are modified per update [18]. In addition to being more realistic, asynchronous68

updating is often necessary to prevent conflicts. For instance, if two cells are attempting to divide but only one space69

is available for the two potential daughter cells then one must take priority.70

1.2 The Eden growth model71

Among the simplest stochastic cellular automata is the Eden growth model. This model is typically implemented on a72

two- or three-dimensional regular square grid with only two possible states: unoccupied (S0) and occupied (S1). With73

each iteration, the update rule causes a site in the neighbourhood of an S1 site to switch from S0 to S1. In this way new74

S1 sites (cells) are added to the surface of a cluster. The Eden growth model on an n-dimensional grid self-organises75

to resemble an n-dimensional ball with a non-trivial surface. The growth curve of the S1 population approaches a76

polynomial of degree n [19].77

The three most popular options for the Eden growth model update rule can be labelled alphabetically:78

• Available site-focussed: Choose at random an S0 site in the neighbourhood of an S1 site, and switch it from79

S0 to S1.80

• Bond-focussed: Choose at random an S1 site with a probability proportional to the number of S0 sites in its81

neighbourhood, and then randomly choose an S0 neighbour and switch it to S1.82

3
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a)

b)

Figure 2: a) An illustration of the CPM. Here, two cells, shaded in green and yellow, each occupy multiple sites on a
grid. In the leftmost panel, we see the model’s initial configuration; in the middle panel, the state of site P is copied
onto site Q, and the green cell grows; in the rightmost panel, the state of site P is copied onto site R, which is initially
occupied by the yellow cell, thus deforming the yellow cell and budging it into site S. b) An illustration of the LGCA.
Grid sites shaded in green represent those which may influence the focal cell node, shaded in red. The leftmost panel
represents the initial configuration; the middle panel shows a cell dividing into free space on its grid site, with the new
cell shaded in orange; the rightmost panel demonstrates how cells might move within a grid site or between grid sites:
the red cell has changed direction, and the orange cell has moved from one site to another.

• Cell-focussed: Choose at random an S1 site with at least one S0 site in its neighbourhood, and then randomly83

choose an S0 neighbour and switch it to S1.84

Although these update rules result in similar large-scale patterns, they generate cluster surfaces with different micro-85

scopic properties. Indentations in the model surface are more likely to be filled, and spikes are less likely to form,86

under option C than under option B, and under option B than under option A. Hence option C generates the smoothest87

surface and option A the roughest [20].88

Variants of the Eden growth model have been used to investigate the evolution of paediatric glioma [21], colon cancer89

[22], hepatocellular carcinoma [23, 24], clear cell renal cell carcinoma [25] and non-small cell lung cancer [26]. Many90

studies use a variant that includes stochastic cell death. By opening up spaces for cell division, cell deaths increase91

clonal mixing within the tumour and facilitate selection [23].92

1.3 Other grid-based stochastic cellular automata93

Other stochastic cellular automata can be more appropriate than the Eden growth model for modelling systems in94

which state changes are not confined to the surface. Spatial branching processes are similar to Eden growth models95

except that if a dividing cell has no space to divide then it can create space by budging other cells. An intermediate96

model can be created by stipulating that only nearby cells can be budged, so as to simulate physical constraints on97

cell division. Chkhaidze et al. [27] recently used such a model to investigate how spatially constrained tumour98

4
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growth alters signatures of clonal selection and genetic drift in cancer genomic data. Good practice is to implement99

budging along an approximately straight line between the dividing cell and the nearest empty site. If budging is100

instead restricted to the cardinal directions or the cardinal and intercardinal directions then the simulated tumour will101

self-organise into an approximate square or octahedron, rather than a more biologically plausible disc or ball.102

Another option is to allow dividing cells to replace, rather than displace, their neighbours. In the voter model, the103

update rule is such that, with a certain probability, a randomly selected site copies the state of a neighbouring site.104

Biasses can be introduced by setting unequal copying probabilities, corresponding to differences in cell fitness. Simple105

(linear) voter models satisfy a convenient property called coalescing duality, which means that their typical behaviour106

can be explained through mathematical analysis [28]. In a pioneering 1972 study, Williams and Bjerknes [29] used a107

biassed voter model to simulate the spread of skin cancer through the basal epithelial layer.108

The cellular Potts model (CPM), also known as the Glazier-Graner-Hogeweg model [30, 31], more explicitly simulates109

physical interactions among cells and between cells and their microenvironment. The model takes place on a lattice and110

each cell is represented by multiple lattice sites (as opposed to only one lattice site, as in previously discussed models),111

corresponding to the cell’s volume (Figure 2a). Cells are deformable and can adhere to one another or to surrounding112

empty sites (which might represent extracellular matrix or growth medium). Hamiltonian mechanics describe the113

overall energy of the system depending on adhesion forces and resistance to changes in cell volume. A random lattice114

site is chosen at each time step and its state is copied to a random neighbouring site. If the new configuration has lower115

energy than the previous configuration then the change is always accepted; otherwise, the probability of accepting116

the change depends on the Boltzmann temperature. The CPM has been used in numerous cancer studies, such as117

for simulating tumour growth, invasion and evolution [32], or for investigating how cell compressibility, motility and118

contact inhibition shape tumour cell clusters [33]. The CompuCell3D modelling environment compucell provides an119

efficient, flexible CPM implementation.120

The biological lattice gas cellular automaton [34] excels instead at modelling cellular movement, and especially col-121

lective migration, in a simple, computationally efficient, and physically correct fashion. The model must play out on122

a square or hexagonal lattice in 2 dimensions, or a cubic, dodecahedral or icosahedral lattice in 3 dimensions. States123

incorporate cell velocities. For instance, consider a 2-dimensional square lattice in which each site contains 5 nodes:124

one for each directional velocity and a resting node at the centre (Figure 2b). A cell occupying any one of these nodes125

can divide into other nodes on the same site. A cell can also reorient itself by moving between nodes on the same site,126

and can move between sites according to its velocity, provided there is space to do so. This model has been used, for127

example, to give insights into breast cancer invasion plasticity [35].128

1.4 Multi-level spatial structures129

An important limitation of all the aforementioned cellular automata is that their uniform spatial structures are in-130

consistent with the biology of many tumour types. Various common cancers have glandular structures and grow via131

5
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individual cells or small cell clusters invading neighbouring tissue [36, 37]. Colorectal adenomas are also glandular132

but grow through gland fission [38].133

Inspired by classical population genetics models [39], a simple, conventional way to account for multi-level spatial134

structure in tumours is to assign cells to local subpopulations, called demes, located on a regular grid. Thus each grid135

site is allowed to contain not only one but dozens, hundreds, or thousands of cells. The subpopulation size per deme136

is prevented from exceeding a certain threshold – known as the deme’s carrying capacity – by decreasing cell division137

rates or increasing death rates as the subpopulation size grows.138

Deme-based models allow for more complicated modes of cell dispersal. As in the voter model, cells can be assigned139

some probability of invading neighbouring demes, either individually or in clusters. The dispersal probability can also140

be made to depend on the population of the deme being invaded, so that cells disperse more easily in less densely141

populated regions near the tumour periphery. Alternatively, each occupied deme can be assigned a probability of142

undergoing fission, resulting in some of its cells being moved to an unoccupied neighbouring deme. Depending on143

the degree of budging allowed, the deme-level dynamics of the fission model can resemble an Eden growth model (no144

budging of demes) or a spatial branching process (unlimited budging). Deme-based models additionally allow for the145

explicit simulation of tissue invasion, such that a tumour can grow only via its cells invading demes that are initially146

filled with normal cells [12].147

1.5 Aggregating agents148

If the within-deme subpopulations can be assumed to be well-mixed then cells that belong to the same deme and149

have the same phenotype and genotype can be modelled collectively, rather than as individual agents. This model150

design not only improves computational efficiency but can also facilitate mathematical analysis. For example, when151

cells disperse by invading neighbouring demes, the model can be designed so that the dynamics are approximately152

equivalent to the well understood spatial Moran process [12]. Cells can be randomly selected within a deme by153

sampling from a hypergeometric distribution.154

Even greater efficiency can be realised by not modelling inter-deme dynamics at all, and simply making the demes155

themselves the model agents [40, 41]. Although such coarse-graining enables the simulation of much larger tumours,156

it comes at the cost of reduced precision. Care should be taken in translating between mutation rates per cell and157

effective mutation rates per deme.158

1.6 Off-lattice models159

Instead of confining agents to a regular grid, we might instead locate them in continuous space. This structure is poten-160

tially more realistic but also entails more parameters, more decisions to be made, and typically higher computational161

costs [42]. To prevent multiple cells occupying the same space and to maintain tumour integrity, we now must model162

6
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the movement of cells in response to physical forces such as cellular adhesion and repulsion [43]. We may also choose163

to model directed movement under the influence of diffusible factors (hapotaxis).164

There are several practical ways to prevent cells overlapping in an off-lattice model, depending on how the agents165

are implemented. Suppose we have spherical cells, each with fixed radius r. We can then specify that when, as a166

result of cell division or movement, the distance between two cells’ centres is less than 2r, both cells will simply be167

pushed in opposite directions. Alternatively, to account for cell deformation, we might implement repulsion only when168

the distance between cell centres falls below some threshold value smaller than 2r [44]. Some modelling platforms169

achieve greater realism and tractability by implementing adhesion and repulsion forces using functions rooted in170

physics, which are beyond the scope of this guide (see documentation cited in the appendix).171

2 Mutation172

Having chosen an appropriate spatial structure, we next will decide which cell phenotypes and genotypes to include173

in our state space, and how to model mutations between these states. As ever, the goal is to balance model simplicity,174

realism, and computational demands.175

2.1 Defining phenotypes176

A good part of the difficulty in designing a useful model stems from the fact that much of the experimental data177

gathered by cancer biologists focusses on genetic mutations while the rules that govern the behaviour of the agents in an178

SABM assume an understanding of the key cancer phenotypes. The most basic actions a tumour cell might perform at179

any given time step are apoptosis/death, proliferation, and motility. These are often considered as simple probabilistic180

events and often modelled in a exclusionary manner, so that if a cell is moving then it is neither proliferating nor dying.181

The required probabilities can either be taken directly from experimental data (which is often hard to measure in vivo182

and unrealistic in vitro) or calibrated with in vivo pre-clinical models.183

Using hard-coded rules to model the phenotype of a tumor cell, while relatively simple, does not capture the flexibility184

shown by biological cells in the mapping between genotype and phenotype. Gerlee and colleagues have instead185

proposed capturing some of the complexity of this mapping by embedding neural networks inside each agent, so that186

the phenotype emerges in a non-linear way as a result of the agent’s state and the different microenvironmental inputs187

to which the agent is receptive [45].188

2.2 Trait evolution versus population (epi)genetic models189

Once phenotypes have been defined, the next step is to determine how these phenotypes will change as a result of190

mutations. One option is to model mutations as phenotypic switches. Many studies consider models with only two191

possible tumour cell states – mutated and unmutated – which differ in fitness [40], degree of drug resistance [46], or192

some other trait. Grow-or-go models assume that cells can reversibly switch between predominantly migratory and193
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Figure 3: The result of running an Eden growth model with nearly neutral mutations (top) and beneficial mutations
(bottom). Model produced in HAL using some in-built examples as a skeleton for the code. [51].

predominantly proliferative phenotypes [47]. Other models examine the evolution of continuous traits, such as levels194

of glycolysis and acid production [48].195

If we are more interested in clonal dynamics then we can explicitly track changes to the (epi)genome. These mutations196

are conventionally assigned to three groups according to how they affect cell fitness: driver mutations (which increase197

cell fitness), passenger mutations (no effect), and deleterious mutations (negative effect). For simplicity, most studies198

assume an infinite sites model [49], such that no two mutations can occur at the same site. Finite sites models must be199

parameterised based on observed mutation frequencies [50].200

2.3 Example: The Eden growth model with mutation201

We can convert an Eden model into an evolutionary model by implementing mutation. The grid and neighbourhood202

are defined as before but now we have multiple cell states S1, S2, S3, . . . and mutation rates between each pair of203

distinct cell states. A simple option, assuming infinite sites, is to set all mutation rates to be zero except in the case204

of Si to Si + 1 for all i � 0, so that every Si cell has exactly i mutations. Let us assume that all these mutations are205

drivers and their effects combine multiplicatively, such that each mutation increases the division rate by a factor of206

1+s, with s � 0. Assume also that mutations occur only at the time of cell division, and the number of new mutations207

per daughter cell is Poisson distributed. We then arrive at a reasonable toy model of spatial tumour evolution that can208

be implemented in not much more than 100 lines of code, as we illustrate with an R script [52]. Figure 3 shows results209

of implementing a similar model in the HAL platform [51].210

2.4 Distributions of fitness effects211

Modelling the evolution of a quantitative trait, such as cell division or death rate, leads to further design decisions. As212

in our toy model, it can be wiser to draw mutation fitness effects from a probability distribution instead of setting them213

all equal. To see why, consider a model of an expanding tumour that, in the absence of mutation, has radius growth214

rate c0, and in which the spread of mutants is not confined to the periphery (for example, a biassed voter model).215
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When a new mutant arises within the wildtype population, its long-term fate, in the absence of further mutation, will216

be sensitive to its radius growth rate, c1. If c1 < c0 then the mutant will remain forever rare; if c1 > c0 then the mutant217

is bound to take over the entire tumour; if c1 = c0 then the mutant will become relatively more abundant over time218

without ever fully replacing the wildtype. Randomising the fitness effect randomises c1 and so randomises mutant219

fates. Our demon-warlock framework draws each selection coefficient (relative increase in cell division rate) from an220

exponential distribution.221

Strictly multiplicative fitness is best avoided in all but the smallest-scale models as it can lead to unrealistically high222

fitness values. This is especially problematic if mutation is implemented at the point of cell division, which creates a223

feedback loop in which lineage fitness grows at an ever increasing rate. A simple solution implemented in our demon-224

warlock framework is diminishing returns epistasis. When the selection coefficient of a driver mutation is s, instead225

of multiplying the division rate by 1 + s, we instead multiply by 1 + s(1� b/bmax), where b is the previous division226

rate and bmax is an upper bound.227

3 Event scheduling228

The next step is to consider how to implement cell events algorithmically. Event scheduling can be the most important229

factor in determining computational efficiency, especially in simpler grid-based models. The optimal choice strikes a230

balance between efficiency, simplicity, and biological realism.231

3.1 Gillespie’s algorithm232

The Gillespie Stochastic Simulation Algorithm [53] is an especially simple and popular solution to event scheduling.233

Event rates are assumed to depend only on the current state of the model and the time between events is exponentially234

distributed (as in a Poisson process), such that two events cannot occur simultaneously. The steps of the algorithm are235

as follows:236

1. Initialise the system.237

2. Set event rates (birth rates, death rates, dispersal rates, etc.).238

3. Randomly determine the next event such that P(event = E) = rate(E)
�
⌃(rates)239

4. Implement the chosen event.240

5. Advance the timer by �t ⇠ Exp(1
�
⌃(rates))241

6. Repeat from step 2 until a stop condition is reached.242

This algorithm is more efficient than the event timer approach (see below) and is very easy to implement. In statistical243

terms, the simulated sequence of events corresponds to a trajectory of a set of stochastic differential equations, called244

the master equations. This means we have a good mathematical understanding of how the algorithm behaves.245
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Our toy Eden growth model [52] provides an example implementation of Gillespie’s algorithm. This model further246

improves computational efficiency by keeping track of the cells that have space to divide, so that the next dividing cell247

can be chosen from among this subset (which in n dimensions scales with the radius to the power of n� 1) rather than248

from the entire cell population (which scales with the radius to the power of n). The drawback is that cells without249

space to divide never undergo mutation, which may be an unjustifiable assumption in a serious research model.250

Modifications of Gillespie’s algorithm, such as tau leaping [54], are even faster but less accurate. Tau leaping allows251

multiple events to occur simultaneously, which may be problematic in a spatial model if the events affect multiple sites252

in close proximity (for example, if two cells are chosen to divide into the same empty site). Moreover, tau leaping253

improves performance only when the system is dominated by a small number of large, homogeneous subpopulations,254

which is typically not the case in SABMs.255

3.2 Gillespie’s algorithm with phase-type distributions256

A shortcoming of the Gillespie algorithm is that some events, such as cell division, are not true Poisson processes with257

exponentially distributed waiting times. In effect, the Gillespie algorithm permits arbitrarily short cell cycles. Some258

cells may divide several times while, in the same period, others with identical division rates fail to divide at all.259

One way to achieve more realistic cell cycle periods without sacrificing very much computational efficiency is to use260

a phase-type probability distribution. Whereas an exponential distribution models the time until the next event in a261

Poisson process, a phase-type distribution models the time taken for an entire sequence of events, which may occur at262

different rates.263

In practical terms, this entails executing the Gillespie algorithm as above, except that when a cell is selected for264

division, it doesn’t necessarily divide immediately, but instead changes its position in the cell cycle. Given a target265

probability distribution for cell cycle periods, we can use an algorithm to choose transition rates such that the resulting266

phase-type distribution has the same mean, variance, and skew as the target [55]. For example, suppose that all cells267

begin in division state 0. When a cell is selected (according to a state-dependent probability), its state is updated from268

0 to 1, 1 to 2, or 2 to 3. When a state 3 cell is selected it divides and both progeny are reset to state 0 [56]. The269

method’s greater realism comes at the cost of additional memory demands and longer execution time, compared to the270

basic Gillespie algorithm.271

3.3 Random sampling with binary trees272

When we have more than a handful of events to choose from it will be much more efficient to implement event273

selection using a binary tree. Suppose, for example, that we have four possible events with rates p1, p2, p3 and p4,274

where p1  p2  p3  p4. If we store the rate sums p1 + p2, p3 + p4, and p1 + p2 + p3 + p4 then we can choose an275

event as follows. First we generate a random number r from a uniform distribution between 0 and p1 + p2 + p3 + p4,276

and we examine whether r < p1 + p2. Supposing r is greater than p1 + p2, we then test whether it is less than p3. If277
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Figure 4: An example of using a binary tree to select an event (Event 3) from four options. Selected nodes are shown
in blue.

so then we choose event 3; otherwise event 4. Effectively, we have traversed a binary tree, beginning at the root node278

associated with the sum of all event rates, and ending at a terminal node associated with a single event (Figure 4).279

The binary tree method is efficient because both the number of steps needed to choose an event, and the number of280

nodes that need updating following a change in an event rate, grow only with the logarithm of the number of possible281

events. For example, we need only twenty steps to choose between one million possible events. As long as the cell282

population keeps growing, there is little benefit to pruning nodes and it is easy to ensure that the tree remains balanced.283

The rate sums together take up only as much computer memory as the individual rates. The main costs are in terms of284

code development time and code complexity. Binary trees require careful implementation and error checking to ensure285

that existing nodes are updated and, when required, new nodes are added after each model event. Our demon model286

implements binary trees and periodically recalculates event rate sums to prevent excessive accumulation of rounding287

errors.288

3.4 Cell cycle timers289

A less efficient alternative to using phase-type distributions is to draw inter-division times directly from a chosen290

probability distribution. This approach enables more precise tracking and adjustment of individual cell cycles. An291

algorithm used in recent studies [48, 46] is as follows:292

1. Initially assign every cell i a countdown timer set to time ti drawn from some probability distribution (de-293

pendent on the cell’s phenotype).294

2. Subtract �t from every countdown timer, where �t ⌧ ti for all i.295

3. For all cells i, in random order:296

A. Implement cell death and dispersal events for i;297

B. If i is alive, has space to divide, and ti  0, then i divides;298

C. Assign each new cell a countdown timer, set to some random time dependent on the new cell’s phenotype.299
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4. Repeat from step two until a stop condition is reached.300

How much this approach reduces computational efficiency will depend on other aspects of the model. It is likely301

to be much slower than a well implemented Gillespie algorithm when applied to a simple grid-based model, due to302

the additional burdens of updating every cell (Step 2) and shuffling all the cells (Step 3) at each small time step. In303

an off-lattice model, where cells move much more frequently than they divide, and where a shuffling algorithm may304

already be required to randomise the order in which cell positions are updated, the cost of updating cell division state305

at the same time as position may be negligible.306

4 Microenvironment307

Whereas many SABM studies focus on the effects of spatial structure and cell-cell interactions, real tumours evolve308

in a complex microenvironment that varies over space and time. This tumour microenvironment, comprising both309

molecular elements, such as cytokines, and other (non-cancer) cells, constitutes the cancer ecosystem [57] – a key310

element of the selection process driving somatic evolution. Given a good rationale and sufficient parameterisation311

data, we may choose to extend our model by explicitly simulating microenvironmental factors in the form of agents312

(in the case of immune cells or stromal cells) or diffusible factors (such as oxygen and drugs). Permitting cancer cells313

to modify their selective environment creates potential for emergent complexity and niche construction [58, 59].314

4.1 Hybrid cellular automata315

Hybrid cellular automata (or HCA) have been used to model interactions between tumour cells and diffusible factors316

for more than twenty years. As described in a pioneering 2001 paper by Patel and colleagues [60], these models con-317

sist of two interdependent components: stochastic cell events, and deterministic reaction-diffusion partial differential318

equations. The latter component dictates how chemicals or other factors work their way through the system as they319

are consumed and processed by cells. Local concentrations of diffusible factors contribute to the cell update rules.320

Typically we assume that diffusible factor concentrations rapidly re-equilibriate following changes in the configuration321

of cells. We can then numerically solve the equations to find the equilibrium concentrations either after every cell event322

or, trading some accuracy for greater efficiency, after a relatively small number of cell events have occurred. Suitable323

procedures for solving partial differential equations as initial value problems can readily be found in textbooks and324

software libraries. These range from simple but inefficient algorithms based on the classical Gauss-Seidel method,325

which require only a few dozen lines of code [61, 60, 15], to the highly sophisticated BioFVM solver [62], which is326

specifically optimised for hybrid SABMs. Several SABM platforms include their own methods for solving reaction-327

diffusion equations in two or three dimensions (see appendix).328
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4.2 Types of diffusible factor329

To add biological realism, we might make cell division and death rates in our model depend on the local oxygen330

and glucose concentrations as these factors diffuse through the tumour from the surrounding medium (in very small331

tumours and tumour spheroids) or from point sources representing blood vessels (in larger, vascularised tumours). We332

might also modify dispersal rates so that cells follow oxygen or glucose gradients. Potential adverse factors include333

acid produced through tumour cell metabolism, and drugs that diffuse from blood vessels. Hybrid cellular automata334

are especially suitable when the supply of an influential factor is highly variable over space or time, such as in the case335

of intermittent drug treatment [63].336

5 Parameterisation and inference337

Although theoretical models can be valuable for generating hypotheses and providing proof of concept, if we want to338

apply an SABM to studying a particular biological system then we must ensure that its influential parameter values are339

set appropriately. Parameterisation should ideally be based on clinical or experimental data specific to the biological340

system of interest; otherwise values can be estimated from studies of similar systems or theoretical considerations (for341

instance, diffusion coefficients approximately correlate with molecular weight). Influential parameters might pertain342

to the effects of mutations, drugs, oxygen and glucose; rates of chemical supply, diffusion, consumption and decay;343

cell dispersal modes and rates; baseline cell death rates, crowding effects and the size of interacting cell communities.344

Since calibrating SABMs is often computationally demanding, high-performance computation may be required to345

generate the necessary resources to calibrate them properly.346

5.1 Example: Hybrid cellular automaton for simulating a tumour spheroid347

Bacevic and Noble et al [15] parameterised a HCA to mimic tumour spheroid evolution under drug treatment. In348

spheroids the limiting factor for cell survival and proliferation is oxygen. Other diffusible factors such as glucose349

were therefore omitted to simplify the model without compromising its usefulness. The oxygen concentration in350

the medium and oxygen diffusion rates were drawn from previous studies [64, 65, 66], as were the mathematical351

relationships between oxygen consumption rate, cell proliferation rate and local oxygen concentration [67, 68]. The352

different maximum proliferation rates of drug-sensitive and resistant cells, reflecting a fitness cost of resistance, were353

determined from new monolayer growth assays. Cells with insufficient oxygen supply were assumed to die.354

Since oxygen effects alone fail to account for the extent of quiescence observed in tumour spheroids, Bacevic and355

Noble et al implemented crowding effects by permitting cell budging only within a specified radius. New monolayer356

growth assays revealed that the relationships between cell proliferation rate, death rate and drug dose could be well357

approximated with piecewise linear functions. The drug’s impact on proliferation was further assumed to multiply the358

oxygen effect, consistent with prior observations [67]. Drug consumption was also modelled using Michaelis-Menten359
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kinetics, with a diffusion rate chosen according to the drug’s molecular weight and an appropriately low consumption360

rate. Thus parameterized, the SABM accurately predicted the outcomes of new tumour spheroid experiments [15].361

5.2 Example: Hybrid cellular automaton of the bone ecosystem in cancer362

Araujo and colleagues [69] developed a hybrid cellular automaton for which the goal was to capture the ecosystem363

of the bone. A crude approximation of this ecosystem includes the bone itself, the myeloid-derived cells such as364

osteoclasts that resorb bone, and the cells derived from messenchymal stem cells, such as osteoblasts, that deposit365

new bone. Each of these cell types can be modelled as discrete agents regulated by diffusible factors – such as366

TGF-�, RANK ligand, and other factors embedded in the bone matrix – described by partial differential equations.367

Parameterisation of the model is facilitated by the fact that non-cancerous cells have more predictable phenotypes, and368

the model’s overall behaviour can be calibrated to ensure it recapitulates bone homeostasis. Araujo and colleagues thus369

studied how bone metastatic prostate cancer cells could infiltrate the bone ecosystem, take advantage of it, and grow370

[70]. They also investigated what prostate cancer cells in the primary tumour should be of concern to physicians, and371

why conventional treatments that fail to disrupt tumour-ecosystem interactions also fail to provide long-term cancer372

cures in bone metastatic prostate cancer [71].373

5.3 Parameter inference374

Unknown parameter values can be inferred by combining an SABM with a statistical method. This is, in fact, often375

the main objective of an SABM study. Approximate Bayesian computation is a popular approach that, in its simplest376

form, infers the value of a parameter ✓ as follows377

1. From our data, calculate some summary statistic µdata;378

2. Set i = 1;379

3. Run the model using a candidate parameter value ✓i drawn from some prior distribution;380

4. Calculate the summary statistic µi for the model output;381

5. If the difference between µi and µdata is less than a predefined tolerance then add ✓i to the posterior distri-382

bution;383

6. Increment i;384

7. If i is less than some threshold then repeat from step 3.385

Although simple in principle, approximate Bayesian computation requires careful implementation. The accuracy and386

precision of inferences depend on the choices of prior distributions, summary statistics, and tolerances, as well as the387

number of iterations. Typically multiple parameter values cannot be precisely derived from prior data or models, in388

which case each should be assigned a vague (high variance) prior distribution. Tolerance values should be tuned such389

that neither too many nor too few candidate parameter values are accepted to the posterior distribution. Summary390
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statistics should capture features of the system that provide useful information about the parameters of interest. A391

useful template is a 2010 study [72] in which Sottoriva and Tavaré inferred aspects of stem cell dynamics in the392

colonic crypt by combining a cellular Potts model with approximate Bayesian computation, using a summary statistic393

based on methylation patterns.394

An alternative to this approach was recently outlined in [73], in which the authors describe a novel method utilising395

neural networks to reduce both tumour images and SABM simulations to low-dimensional points. The distance be-396

tween these points acts as a quantitative measure of how the two differ. This enables direct comparison, and by using397

parameter fitting algorithms to minimise the distance between the two sets of points, parameters can be estimated398

directly from the images and the simulations.399

5.4 Sensitivity analysis400

Whatever the objective, an essential step in any modelling study is to examine, as far as is practical, how the results and401

conclusions depend on uncertain aspects of the model. A common approach is to run a large number of model variants402

with different combinations of plausible parameter values. Varying one parameter at a time can provide useful insight403

into which parameters have the greatest impact on model output, with the shortcoming that non-linear interactions404

between parameters are often neglected. A more sophisticated approach is to infer a multivariable “metamodel”405

function – a model of the model – that approximately describes how the model’s parameters determine its outputs.406

Since varying many parameters systematically on a continuous scale is infeasible, sampling methods such as Sobol se-407

quencing [74] or Latin hypercube sampling [75] can be used to generate a set of near-randomly sampled combinations408

of parameter values. Both methods were used in a recent SABM study of cancer cell response to ATR-inhibitors [22].409

A recent introductory review explains specifically how to apply these methods to cancer ABMs [76]. It is important to410

note that thorough sensitivity analysis involves varying not only parameter values but also mathematical relationships,411

aspects of spatial structure, and any other influential model components.412

6 Visualisation413

Having built and parameterised a model, we next require useful ways to visualise its output. Typical methods repre-414

sent spatial information, multidimensional phenotypic information, or evolutionary dynamics. Representing all these415

aspects in a single image is generally impossible.416

6.1 Spatial plots417

A spatial plot represents the state of an SABM at a moment in time. Producing a two-dimensional grid plot of a418

two-dimensional on-lattice model is straightforward – we simply output the state of each site as a matrix of numbers419

and input this matrix into a bitmap (or raster) plotting function in R, Python, MATLAB, or similar software, using420

different colours to represent the different states (Figure 3). Our toy Eden growth model [52] provides an example421
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Figure 5: a) Plots of a 3D off-lattice ABM, produced in PhysiCell [77], showing a cross-section of model states of a
hanging-drop spheroid growth simulation at different time points, using either a deterministic or a stochastic SABM.
Cells are coloured according to cell cycle position. Cells in the K1 cell cycle state are green, post-mitotic K2 cells are
magenta, quiescent cells are pale blue, apoptotic cells are red, and necrotic cells are brown. Cell nuclei are shown in
dark blue. b) Muller plot showing phylogenies and phenotype frequencies over time. c) Fish plot showing phylogenies
and phenotype population sizes over time. d) 2D grid plot corresponding to same simulation as the Muller and fish
plots in previous panels, with the same colour scheme, at the final time point. Plots b and c were produced using the R
package ggmuller [78]. Image a is reproduced from [77] under the terms of a Creative Commons Attribution License
and with the approval of Paul Macklin. Plots b-d are reproduced from [13] under the terms of a Creative Commons
Attribution License.

implementation. Diffusible factor concentrations can be shown outside the tumour using a colour gradient and inside422

the tumour by adjusting brightness [15]. We can apply the same method to off-lattice models by specifying a grid and423

assigning each grid square a value that summarises the states of all points within the square. Given multi-level spatial424

structure, we can represent the most abundant state in each deme [12].425

Illustrating three-dimensional information is more technically demanding as we need to project the object onto a two-426

dimensional plane, determine the visible surface, and add shading (as in Figure 5a). Suitable computational methods427

include rasterisation and ray tracing, which can be performed in R and Python or using dedicated software, such as428

POV-Ray. Further details can be found in the PhysiCell documentation (see appendix). A much simpler solution is to429

plot only two-dimensional slices.430

6.2 Visualising evolutionary dynamics431

Muller plots represent subpopulation dynamics and phylogeny, while disregarding spatial information. The horizontal432

axis represents time and the vertical axis corresponds to subpopulation frequency. Each subpopulation is depicted as a433

shaded area emerging from its immediate ancestor (Figure 5b). Fish plots are similar but show population size rather434

than frequency (Figure 5c). Software packages for producing these plots include ggmuller [78] and EvoFreq [79].435
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6.3 Phenotype space plots436

In a phenotype space plot, the axes correspond to continuous traits such as cell fitness, metabolic type, and degree of437

drug resistance, and each point represents a cell. We can visualize phenotypic evolution by animating phenotype space438

plots from a series of time points. Robertson-Tessi and colleagues pioneered the use of these plots in cancer research439

in their 2015 study of the effects of metabolic heterogeneity on tumour growth [48].440

7 Reproducibility441

Reproducibility is a cornerstone of the scientific method. A reproducible modelling study not only allows others to442

easily regenerate its results but also permits further data processing, downstream analysis of generated data, generation443

of summary statistics, ease of production for visual representations or plots, and even adaptation of the existing model444

for novel purposes.445

7.1 Principles of reproducible research446

Gundersen [80] describes three categories of reproducibility:447

• Outcome reproducibility: The reproduction experiment’s result matches the original. If the same analysis of448

the result is performed, the same conclusions can be drawn, and the original hypothesis is supported by both449

experiments.450

• Analysis reproducibility: The reproduction experiment’s result differs from the original, but if the same451

analysis method is used, the interpretation of the results still matches the original.452

• Interpretation reproducibility: The reproduction experiment’s outcomes and the analysis of said outcomes453

both differ, but the interpretation matches the original interpretation.454

Computational modelling studies should typically aim for the highest standard of outcome reproducibility. If care is455

taken to construct a well-packaged computational study in a controlled digital environment, then in principle, given456

a suitable machine, the study should be easily reproduced exactly. This entails not only comprehensively explaining457

methods, results, analyses, and interpretation, but also sharing the model code and scripts used at every step of pre-458

processing and analysis, providing a detailed description of how to execute the code, and sharing any associated data459

and parameterisation and configuration files.460

In their outline of best practices to observe throughout a computational research project, Sandve and colleagues [81]461

advocate tracking how every result is produced and reporting intermediate results as well as final outcomes. To make462

code easier to reproduce, one should catalogue the versions of software used at every point, record the seeds used in463

any random number generation, and implement version control [82]. Manual data manipulation should be avoided in464

favour of using automated methods to reformat and process raw data files. The raw data used to produce summary465

data plots should be easily accessible to facilitate easy plot reproduction and to allow readers to check individual data466
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points. Textual descriptions of methods and results should link to the associated raw data and code so that a reader can467

easily follow all the steps leading to interpretations. Lastly, modellers are highly encouraged to share each full study,468

ideally with a dedicated public server. One such research-oriented database is zenodo [83], where scientists may freely469

upload their research output permanently as a citeable piece of software.470

7.2 Workflow managers, package managers and containers471

A complex computational model will often require multiple steps to be carried out in sequence. If a high-performance472

computing (HPC) cluster is required to run the model efficiently – as is typical for complex models – it is essential to473

utilise a workflow manager to properly orchestrate the steps [84]. Open-source workflow managers allow researchers474

to package a model into a reproducible, cross-platform workflow. Nextflow [85] and Snakemake [86] are among the475

most popular workflow managers with several published pipelines [87, 88, 89, 90], strong community support, and476

extensive documentation, giving users flexibility when designing their own custom pipelines. Snakemake is based477

on Python, a popular language among computational biologists and bioinformaticians. Nextflow uses the Java-based478

language Groovy, which has a Python-style structure and is relatively easy to for Python users to learn. Both also479

enable automatic parallelisation for HPC clusters, which can be essential for complex SABMs or for running multiple480

instances of smaller models simultaneously.481

Another option is to utilise container technologies, considered by many to be the gold standard in computational re-482

search. These are less computationally demanding than running an application on a computer directly or using a virtual483

machine and so permit faster deployment, patching, and scaling. Containers also allow users to deploy the application484

on multiple operating systems or machines without reformatting, and will run the application the same way no matter485

where they are deployed [91]. Docker [92] is a popular container design platform which permits packaging applica-486

tions into distribution-independent containers. Another option, Bioconda [93], enables easy dependency management,487

and can be deployed inside a container.488

7.3 Extendable modelling platforms489

For many research projects, the easiest option can be to build on an existing open-source agent-based modelling490

platform (see appendix for a brief guide). Some of these platforms – such as Chaste [94], CompuCell3D [95], HAL491

[51] and PhysiCell [77] – excel in simulating off-lattice cell populations in complex microenvironments. Others, such492

as demon [96] (which has an automated computational workflow, Warlock [14]), J-SPACE [97] and SMITH [98],493

focus on efficient modelling of evolutionary dynamics. Several are modular platforms, which facilitate reproducibility494

by making it easy to create and share extensions of the generic software. Nevertheless, even the most flexible platform495

is necessarily based on certain fundamental assumptions, structures, and algorithms. If we want to create an especially496

innovative model, requiring several novel components that pre-existing modelling platforms lack, then we might find497

it best to start from scratch. In principle, specialist rather than generalist models permit greater optimisation in terms498

of memory demands and execution time.499
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7.4 FAIR principles in data management500

As the volume of publicly available research data has been growing exponentially in recent decades [99], proper501

digital data management and annotation is recognized as an essential step in computational research – crucial for502

research reproducibility. Most notably, the FAIR principles have become a cornerstone in modern data management,503

particularly in the realms of scientific and research data [100]. FAIR is an acronym that encapsulates a set of guiding504

principles: Findable, Accessible, Interoperable, and Reusable. To be FAIR, data must first be Findable, meaning that it505

is easy for both humans and machines to discover, thanks to comprehensive metadata and proper indexing. Data should506

be Accessible, ensuring that access rights and permissions are clear and well-defined, thus minimizing barriers to entry.507

Interoperable data is structured in a way that allows integration with other datasets by adhering to common standards,508

formats, and vocabularies. Lastly, data should be Reusable, with thorough documentation, contextual information, and509

availability in a format that facilitates easy replication and reuse. Altogether, the FAIR principles serve as a framework510

for enhancing data sharing, management, and collaboration, ultimately driving scientific progress and fostering open511

science initiatives. Major organisations that have embraced FAIR guidelines include the European Open Science512

Cloud [101], the European Life-Science Infrastructure for Biological Information [102], the US National Institutes of513

Health, and the Global Alliance for Genomics and Health [103].514

Discussion515

Having surveyed the numerous choices that arise in any SABM project, we are faced with a problem: how can we516

choose the most appropriate model? In tumour evolution research, unlike in much of physics and engineering, there517

is no standard approach. Rather we must tailor a model to each research question by considering which components,518

events and interactions must be included, how far each aspect can be parameterised with available data, and the limits519

of our computational resources. It is essential to build on a sound understanding of the biological system and of the520

questions that matter to biologists and clinicians. Ideally this knowledge should come through close collaboration with521

empirical researchers throughout the model development process.522

A general principle is that model complexity should match the complexity only of the phenomena of interest. We need523

not employ an off-lattice hybrid SABM if a simple cellular automaton with only a few basic update rules can demon-524

strate the same principle. Attempting to represent every component of a biological system is not only computationally525

impractical but also risks overfitting and hinders explainability. Simpler models have many merits. They are easier to526

falsify and have fewer sources of potential error. They reduce researcher degrees of freedom and curb the tweaking527

of parameters to support a pet hypothesis. They are more mathematically tractable and easier to analyse. Perhaps528

most importantly, a simple model has wider applicability and can be more readily generalised, adapted or extended to529

answer new questions. More complicated models should be preferred only if the biological system is especially well530

understood or if simpler models have been tested and shown to be inadequate.531
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The greater difficulty – all too easily overlooked – is in choosing among a multitude of plausible simple models.532

An Eden growth model, for example, is arguably no more parsimonious than a spatial branching process or a spatial533

Moran process, which generate very different evolutionary dynamics. It is debatable whether the greater popularity of534

Eden growth models can be justified on biological grounds and is not simply due to them being easier to program.535

Model design remains a challenge for even the most experienced researchers. One of the nine overarching themes in536

a recent review of key questions concerning the ecology and evolution of cancer [104] was that we do not yet know537

which mathematical and computational models are the most useful. In another recent survey of cancer adaptive therapy538

modelling [105], four of the eleven key open questions were related to identifying appropriate mathematical models.539

When it comes to SABMs, the main limitations are twofold. First, we typically lack sufficient data to design and540

parameterise SABMs of large tumours. Second, routinely simulating much more than a few million individual cells541

(corresponding to no more than half a cubic centimetre of tumour) is computationally impractical. To some extent,542

these problems have technological solutions. Multi-region sequencing, spatial multi-omics, digital pathology, and543

other modern methods are producing ever more detailed spatial tumour data. Accessible computing power continues544

to grow. But progress will also depend on developing smarter models.545

Instead of drawing conclusions from a single SABM, we might do better to consider ensembles of models with diverse546

structures, algorithms, and underlying assumptions. Much as in hurricane forecasting [106], we can be more confident547

when many models converge on the same prediction. Another important direction is to develop coarse-grained models548

that can simulate tumour evolution as accurately as cell-level SABMs but with much greater computational efficiency.549

Rather than cell division, death, mutation and dispersal rates, coarse-grained models depend on macroscopic param-550

eters such as the arrival rate of consequential clones, clonal expansion speeds, and large-scale microenvironmental551

heterogeneity. A potential way forward is to combine mathematical analysis of the relevant stochastic processes to552

determine appropriate approximations [107], and machine learning methods to infer the parameter values. SABMs553

capable of accurately simulating the evolution of entire tumours could have wide-ranging applications, not least in554

patient-specific clinical forecasting.555
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Renan Valieris, Johannes Köster, and Bioconda Team. Bioconda: sustainable and comprehensive software782

distribution for the life sciences. Nature methods, 15(7):475–476, 2018.783

[94] Gary R Mirams, Christopher J Arthurs, Miguel O Bernabeu, Rafel Bordas, Jonathan Cooper, Alberto Corrias,784

Yohan Davit, Sara-Jane Dunn, Alexander G Fletcher, Daniel G Harvey, et al. Chaste: an open source c++785

library for computational physiology and biology. PLoS computational biology, 9(3):e1002970, 2013.786

[95] Maciej H Swat, Gilberto L Thomas, Julio M Belmonte, Abbas Shirinifard, Dimitrij Hmeljak, and James A787

Glazier. Multi-scale modeling of tissues using compucell3d. In Methods in cell biology, volume 110, pages788

325–366. Elsevier, 2012.789

[96] Robert Noble. demon. https://github.com/robjohnnoble/demon_model, 2019.790

27

Page 27 of 34 Evolutionary Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/robjohnnoble/demon_model


For Peer Review

A seven-step guide to spatial, agent-based modelling of tumour evolution

[97] Fabrizio Angaroni, Alessandro Guidi, Gianluca Ascolani, Alberto d’Onofrio, Marco Antoniotti, and Alex Grau-791

denzi. J-space: a julia package for the simulation of spatial models of cancer evolution and of sequencing792

experiments. BMC bioinformatics, 23(1):269, 2022.793

[98] Adam Streck, Tom L Kaufmann, and Roland F Schwarz. Smith: spatially constrained stochastic model for794

simulation of intra-tumour heterogeneity. Bioinformatics, 39(3):btad102, 2023.795

[99] Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with fore-796

casts from 2021 to 2025. https://www.statista.com/statistics/871513/worldwide-data-created/, August 2023.797

[100] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak,798

Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al. The fair guiding799

principles for scientific data management and stewardship. Scientific data, 3(1):1–9, 2016.800

[101] The european open science cloud (eosc). https://eosc-portal.eu/about/eosc.801

[102] European life-science infrastructure for biological information. https://elixir-europe.org.802

[103] Global alliance for genomics and health. https://www.ga4gh.org.803

[104] Antoine M Dujon, Athena Aktipis, Catherine Alix-Panabières, Sarah R Amend, Amy M Boddy, Joel S Brown,804

Jean-Pascal Capp, James DeGregori, Paul Ewald, Robert Gatenby, et al. Identifying key questions in the ecology805

and evolution of cancer. Evolutionary Applications, 14(4):877–892, 2021.806

[105] Jeffrey West, Fred Adler, Jill Gallaher, Maximilian Strobl, Renee Brady-Nicholls, Joel Brown, Mark Roberson-807

Tessi, Eunjung Kim, Robert Noble, Yannick Viossat, et al. A survey of open questions in adaptive therapy:808

Bridging mathematics and clinical translation. Elife, 12:e84263, 2023.809

[106] Thomas M Hamill, Michael J Brennan, Barbara Brown, Mark DeMaria, Edward N Rappaport, and Zoltan Toth.810

Noaa’s future ensemble-based hurricane forecast products. Bulletin of the American Meteorological Society,811

93(2):209–220, 2012.812

[107] Alexander Stein, Ramanarayanan Kizhuttil, Maciej Bak, and Robert Noble. The ubiquity of clonal interference813

in cancer and other range expansions. bioRxiv, 2024.814

Data archiving statement815

Data sharing is not applicable to this article as no new data were created or analyzed in this study.816

28

Page 28 of 34Evolutionary Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


