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Cancer initiation, progression and treatment responses are 

Darwinian evolutionary processes (Casás-Selves & DeGregori, 2011; 

Merlo et al., 2006) that can be investigated using a wide range of 

mathematical and computational methods. Examples include evolu-

tionary game theory (Basanta et al., 2011; Yang et al., 2016), branch-

ing processes (Danesh et al., 2012; Durrett et al., 2010), and Moran 

processes (Durrett et al., 2016; West et al., 2016). Yet while many 

tools have yielded important insights into cancer evolution, the 

study of spatial aspects—especially important in carcinomas, consti-

tuting the majority of humans cancers—often necessitates a spatially 

explicit approach, such as a spatial agent-based model.

An agent-based (or individual-based) model is a computational 

model of a system made up of autonomous, interacting “agents”. 

Spatial agent-based models (SABMs) have long been used to study 

the evolution of spatially structured communities because they can 

reveal how the processes of selection, drift, and gene flow depend 

on localized interactions among agents (typically individual organ-

isms) or between agents and their spatially varying environment. As 
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Abstract

Spatial agent-based models are frequently used to investigate the evolution of solid 

tumours subject to localized cell–cell interactions and microenvironmental hetero-

geneity. As spatial genomic, transcriptomic and proteomic technologies gain trac-

tion, spatial computational models are predicted to become ever more necessary for 

making sense of complex clinical and experimental data sets, for predicting clinical 

outcomes, and for optimizing treatment strategies. Here we present a non-technical 

step by step guide to developing such a model from first principles. Stressing the im-

portance of tailoring the model structure to that of the biological system, we describe 

methods of increasing complexity, from the basic Eden growth model up to off-lattice 

simulations with diffusible factors. We examine choices that unavoidably arise in 

model design, such as implementation, parameterization, visualization and reproduc-

ibility. Each topic is illustrated with examples drawn from recent research studies and 

state of the art modelling platforms. We emphasize the benefits of simpler models 

that aim to match the complexity of the phenomena of interest, rather than that of 

the entire biological system. Our guide is aimed at both aspiring modellers and other 

biologists and oncologists who wish to understand the assumptions and limitations of 

the models on which major cancer studies now so often depend.

� � � � � + � ) � � � ! � 	 � "
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new technologies generate better spatial tumour data, SABMs are 

proving ever more useful in oncology. Typical applications include 

understanding tumour development, inferring the effects of driver 

mutations, and predicting treatment outcomes. For example in re-

cent studies, Aif et al. (2022) used an SABM to investigate the evolu-

tionary rescue of drug-resistant tumour subclones; Saha et al. (2023) 

used an SABM to investigate adaptive cancer therapy; and Bull and 

Byrne (2023) used an SABM to simulate interactions between mac-

rophages and tumour cells.

To support this burgeoning research field, here we present a 

seven-step guide to designing and implementing spatial agent-based 

models in which the agents are locally interacting tumour cells or 

cell subpopulations. Starting from the simplest cellular automata, we 

discuss options for adding greater complexity and biological realism, 

such as multi-level spatial structure and environmental heteroge-

neity. Based on our extensive experience of developing and using 

SABMs (Bacevic et  al.,  2017; Bak et  al., 2023; Noble et  al., 2020, 

2022), we cover practical issues such as event scheduling, visualiza-

tion, and how to use SABMs to infer parameter values from experi-

mental or clinical data. Each topic is illustrated with examples from 

our own demon-warlock modelling framework (Bak et  al.,  2023; 

Noble et al., 2022), other state of the art modelling platforms, and 

studies that have used SABMs in cancer research. Whereas our 

focus is on tumour evolution, much of our advice applies equally to 

similar modelling methods used to study bacterial colonies, invasive 

species and organismal development. The guide is designed to be 

accessible for biologists and clinicians without specialist mathemat-

ical knowledge.

� ‘ �J | �J � " � �� ��$ � � � � � � � " �$� ! �& � � �$ �&� ! � �

Spatial structure determines the evolutionary balance between 

selection and drift, the nature of gene flow between subpopula-

tions, and the strength of ecological interactions. When a model 

fails to accurately represent the spatial structure of a biological 

system, the model's predictions and inferences for that system 

may be highly unreliable (Noble et al., 2022; Strobl et al., 2022). It 

follows that the parameters of spatial structure—such as the size of 

locally interacting cell communities and the manner of cell disper-

sal—should be accorded the same importance as evolutionary pa-

rameters in model design. Notwithstanding the trade-off between 

model simplicity and realism, spatial structure parameters should, 

as far as possible, be derived or inferred from empirical data.

�‘�:�•�J|�J �"�|�o�1�_�-�v�|�b�1 �1�;�t�t�†�t�-�u �-�†�|�o�l�-�|�-

Many of the simplest spatial agent-based models are cellular au-

tomata. A cellular automaton is a model that plays out on a grid of 

sites in one or more dimensions. Each site is associated with one 

of a set of at least two possible states. Each site also belongs to a 

subset of sites called a neighbourhood, of which some examples are 

shown in Figure 1. For example, the von Neumann neighbourhood in 

two dimensions contains the nearest sites in the cardinal directions 

(up, down, left and right). A cellular automaton sequentially updates 

itself according to a set of rules. The update rules for a given site 

depend on its own current state and the states of the sites in its 

neighbourhood.

Whereas the update rules of many cellular automata are de-

terministic (Schiff,  2011), probabilistic rules are more appropriate 

for modelling stochastic processes such as biological evolution. A 

stochastic cellular automaton is equivalent to a collection of locally 

interacting Markov chains, which means that each event is chosen 

according to probabilities that depend only on the current model 

state, not any of its previous states.

In biological terms, each state corresponds to a type of cancer 

cell or some other entity (such an immune cell or part of the extra-

cellular matrix). Generally we will assume that the focal agents in 

our models are cancer cells and we will use the terms “agent” and 

“cell” interchangeably where appropriate. A cellular automaton 

permits a cell's event probabilities (for example, its division, death 

and dispersal rates) to depend on the number of neighbouring 

cells. This allows us to account for crowding or Allee effects, such 

that birth, death or dispersal rates depend on the local or global 

population size. Event rates can also vary according to the types 

of the neighbouring cells, for example to simulate cell competition 

or immune predation.

Models of asynchronous processes, such as cell division in a 

tumour, typically use asynchronous updating, meaning that only 

one or a small number of sites are modified per update (Louis & 

Nardi, 2018). In addition to being more realistic, asynchronous up-

dating is often necessary to prevent conflicts. For instance, if two 

cells are attempting to divide but only one space is available for the 

two potential daughter cells then one must take priority.

� 
 � � � � � & � ! � �   � • �J�"�o�l�; �1�o�l�l�o�m �m�;�b�]�_�0�o�†�u�_�o�o�7�v �|�_�-�| �]�o�ˆ�;�u�m �|�_�; 
update rules for cellular automata and other agent-based models in 
two dimensions (a) and three dimensions (b). A focal agent (cell) is 
shown in blue and its neighbourhood sites in grey.
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Among the simplest stochastic cellular automata is the Eden growth 

model. This model is typically implemented on a two- or three-

dimensional regular square grid with only two possible states: unoc-

cupied (� � ) and occupied (� � ). With each iteration, the update rule 

causes a site in the neighbourhood of an � �  site to switch from � �  to 

� � . In this way new � �  sites (cells) are added to the surface of a clus-

ter. The Eden growth model on an � -dimensional grid self-organizes 

to resemble an � -dimensional ball with a non-trivial surface. The 

growth curve of the � �  population approaches a polynomial of de-

gree �  (Eden, �•�–�u�•).

The three most popular options for the Eden growth model up-

date rule can be labelled alphabetically:

1.	 Available site-focussed: Choose at random an � �  site in the 

neighbourhood of an � �  site, and switch it from � �  to � � .

2.	 Bond-focussed: Choose at random an � �  site with a probability 

proportional to the number of � �  sites in its neighbourhood, and 

then randomly choose an � �  neighbour and switch it to � � .

3.	 �� ell-focussed: Choose at random an � �  site with at least one � �  site 

in its neighbourhood, and then randomly choose an � �  neighbour 

and switch it to � � .

Although these update rules result in similar large-scale patterns, 

they generate cluster surfaces with different microscopic proper-

ties. Indentations in the model surface are more likely to be filled, 

and spikes are less likely to form, under option C than under option 

B, and under option B than under option A. Hence option C gen-

erates the smoothest surface and option A the roughest (Jullien & 

Botet, �•�–�v�”).

Variants of the Eden growth model have been used to investigate 

the evolution of paediatric glioma (Tari et  al.,  2022), colon cancer 

(Hamis, Yates, et al.,  2021), hepatocellular carcinoma (Lewinsohn 

et al., 2023; Waclaw et al., 2015), clear cell renal cell carcinoma (Xiao 

et  al.,  2022) and non-small cell lung cancer (Jagiella et  al.,  2016). 

Many studies use a variant that includes stochastic cell death. By 

opening up spaces for cell division, cell deaths increase clonal mixing 

within the tumour and facilitate selection (Waclaw et al., 2015 ).

�‘�:�’�J |�J ���|�_�;�u �]�u�b�7�J�0�-�v�;�7 �v�|�o�1�_�-�v�|�b�1 �1�;�t�t�†�t�-�u �-�†�|�o�l�-�|�-

Other stochastic cellular automata can be more appropriate than the 

Eden growth model for modelling systems in which state changes 

are not confined to the surface. Spatial branching processes are simi-

lar to Eden growth models except that if a dividing cell has no space 

to divide then it can create space by budging other cells. An inter-

mediate model can be created by stipulating that only nearby cells 

can be budged, so as to simulate physical constraints on cell division. 

Chkhaidze et  al.  (�‘�•�•�–) recently used such a model to investigate 

how spatially constrained tumour growth alters signatures of clonal 

selection and genetic drift in cancer genomic data. Good practice is 

to implement budging along an approximately straight line between 

the dividing cell and the nearest empty site. If budging is instead 

restricted to the cardinal directions or the cardinal and intercardi-

nal directions then the simulated tumour will self- organize into an 

approximate square or octahedron, rather than a more biologically 

plausible disc or ball.

Another option is to allow dividing cells to replace, rather than 

displace, their neighbours. In the voter model, the update rule is such 

that, with a certain probability, a randomly selected site copies the 

state of a neighbouring site. Biasses can be introduced by setting 

unequal copying probabilities, corresponding to differences in cell 

fitness. Simple (linear) voter models satisfy a convenient property 

called coalescing duality, which means that their typical behaviour 

can be explained through mathematical analysis (Durrett, 2007). In 

�- �r�b�o�m�;�;�u�b�m�] �•�–�•�‘ �v�|�†�7�‹�7 �)�b�t�t�b�-�l�v �-�m�7 ���f�;�u�h�m�;�v �P�•�–�•�‘) used a biased 

voter model to simulate the spread of skin cancer through the basal 

epithelial layer.

The cellular Potts model (CPM), also known as the Glazier-Graner-

Hogeweg model (Graner & Glazier, �•�–�–�‘; Savill & Hogeweg, �•�–�–�•), 

more explicitly simulates physical interactions among cells and be-

tween cells and their microenvironment. The model takes place on 

a lattice and each cell is represented by multiple lattice sites (as op-

posed to only one lattice site, as in previously discussed models), 

corresponding to the cell's volume (Figure  2a). Cells are deform-

able and can adhere to one another or to surrounding empty sites 

(which might represent extracellular matrix or growth medium). 

Hamiltonian mechanics describe the overall energy of the system 

depending on adhesion forces and resistance to changes in cell vol-

ume. A random lattice site is chosen at each time step and its state 

is copied to a random neighbouring site. If the new configuration 

has lower energy than the previous configuration then the change is 

always accepted; otherwise, the probability of accepting the change 

depends on the Boltzmann temperature. The CPM has been used 

in numerous cancer studies, such as for simulating tumour growth, 

invasion and evolution (Szabó & Merks, 2013), or for investigating 

how cell compressibility, motility and contact inhibition shape tu -

mour cell clusters (Li & Lowengrub, 2014). The CompuCell3D mod-

elling environment compucell provides an efficient, flexible CPM 

implementation.

The biological lattice gas cellular automaton (Deutsch & 

Dormann, 2005) excels instead at modelling cellular movement, and 

especially collective migration, in a simple, computationally efficient 

and physically correct fashion. The model must play out on a square 

or hexagonal lattice in 2 dimensions, or a cubic, dodecahedral or ico-

sahedral lattice in 3 dimensions. States incorporate cell velocities. 

For instance, consider a 2-dimensional square lattice in which each 

site contains 5 nodes: one for each directional velocity and a resting 

node at the centre (Figure 2b). A cell occupying any one of these 

nodes can divide into other nodes on the same site. A cell can also 

reorient itself by moving between nodes on the same site and can 

move between sites according to its velocity, provided there is space 

to do so. This model has been used, for example, to give insights into 

breast cancer invasion plasticity (Deutsch et al., 2021).
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An important limitation of all the aforementioned cellular automata 

is that their uniform spatial structures are inconsistent with the bi -

ology of many tumour types. Various common cancers have glan-

dular structures and grow via individual cells or small cell clusters 

invading neighbouring tissue (Lugli et al., 2021; Pandya et al., 2017). 

Colorectal adenomas are also glandular but grow through gland fis-

sion (Preston et al., 2003).

Inspired by classical population genetics models (Moran, �•�–�”�v), a 

simple, conventional way to account for multi- level spatial structure 

in tumours is to assign cells to local subpopulations, called demes, 

located on a regular grid. Thus each grid site is allowed to contain not 

only one but dozens, hundreds, or thousands of cells. The subpopula-

tion size per deme is prevented from exceeding a certain threshold—

known as the deme's carrying capacity—by decreasing cell division 

rates or increasing death rates as the subpopulation size grows.

Deme-based models allow for more complicated modes of cell 

dispersal. As in the voter model, cells can be assigned some proba-

bility of invading neighbouring demes, either individually or in clus-

ters. The dispersal probability can also be made to depend on the 

population of the deme being invaded, so that cells disperse more 

easily in less densely populated regions near the tumour periphery. 

Alternatively, each occupied deme can be assigned a probability of 

undergoing fission, resulting in some of its cells being moved to an 

unoccupied neighbouring deme. Depending on the degree of budg-

ing allowed, the deme-level dynamics of the fission model can re-

semble an Eden growth model (no budging of demes) or a spatial 

branching process (unlimited budging). Deme-based models addi-

tionally allow for the explicit simulation of tissue invasion, such that 

a tumour can grow only via its cells invading demes that are initially 

filled with normal cells (Noble et al., 2022).

�‘�:�”�J|�J ���]�]�u�;�]�-�|�b�m�] �-�]�;�m�|�v

If the within- deme subpopulations can be assumed to be well-mixed 

then cells that belong to the same deme and have the same pheno-

type and genotype can be modelled collectively, rather than as in-

dividual agents. This model design not only improves computational 

efficiency but can also facilitate mathematical analysis. For example, 

when cells disperse by invading neighbouring demes, the model can 

be designed so that the dynamics are approximately equivalent to 

the well understood spatial Moran process (Noble et al., 2022). Cells 

can be randomly selected within a deme by sampling from a hyper-

geometric distribution.

� 
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panel, we see the model's initial configuration; in the middle panel, the state of site �  is copied onto site � �T�7 �-�m�7 �|�_�; �]�u�;�;�m �1�;�t�t �]�u�o�‰�v�8 �b�m �|�_�; 
rightmost panel, the state of site �  is copied onto site � , which is initially occupied by the yellow cell, thus deforming the yellow cell and 
budging it into site � . (b) An illustration of the LGCA. Grid sites shaded in green represent those which may influence the focal cell node, 
shaded in red. The leftmost panel represents the initial configuration; the middle panel shows a cell dividing into free space on its grid site, 
with the new cell shaded in orange; the rightmost panel demonstrates how cells might move within a grid site or between grid sites: the red 
cell has changed direction, and the orange cell has moved from one site to another.
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Even greater efficiency can be realized by not modelling inter-

deme dynamics at all, and simply making the demes themselves 

the model agents (Siegmund et  al., �‘�•�•�–; Sottoriva et  al., 2015). 

Although such coarse-graining enables the simulation of much larger 

tumours, it comes at the cost of reduced precision. Care should be 

taken in translating between mutation rates per cell and effective 

mutation rates per deme.

�‘�:�u�J|�J ���=�=�J�t�-�|�|�b�1�; �l�o�7�;�t�v

Instead of confining agents to a regular grid, we might instead locate 

them in continuous space. This structure is potentially more real-

istic but also entails more parameters, more decisions to be made, 

and typically higher computational costs (Beerenwinkel et al., 2015). 

To prevent multiple cells occupying the same space and to maintain 

tumour integrity, we now must model the movement of cells in re -

sponse to physical forces such as cellular adhesion and repulsion 

(Franz et al., 2014). We may also choose to model directed move-

ment under the influence of diffusible factors (hapotaxis).

There are several practical ways to prevent cells overlapping in 

an off- lattice model, depending on how the agents are implemented. 

Suppose we have spherical cells, each with fixed radius � . We can 

then specify that when, as a result of cell division or movement, the 

distance between two cells' centres is less than �� , both cells will 

simply be pushed in opposite directions. Alternatively, to account for 

cell deformation, we might implement repulsion only when the dis-

tance between cell centres falls below some threshold value smaller 

than ��  (Macklin et  al.,  2012). Some modelling platforms achieve 

greater realism and tractability by implementing adhesion and repul-

sion forces using functions rooted in physics, which are beyond the 

scope of this guide (see documentation cited in the Appendix S1).

� ’ �J | �J �� �&�$���$�� �� ��

Having chosen an appropriate spatial structure, we next will decide 

which cell phenotypes and genotypes to include in our state space, 

and how to model mutations between these states. As ever, the goal 

is to balance model simplicity, realism and computational demands.

�’�:�•�J|�J �	�;�=�b�m�b�m�] �r�_�;�m�o�|�‹�r�;�v

A good part of the difficulty in designing a useful model stems from 

the fact that much of the experimental data gathered by cancer bi-

ologists focusses on genetic mutations while the rules that govern 

the behaviour of the agents in an SABM assume an understanding 

of the key cancer phenotypes. The most basic actions a tumour cell 

might perform at any given time step are apoptosis/death, prolifera-

tion and motility. These are often considered as simple probabilis-

tic events and often modelled in a exclusionary manner, so that if a 

cell is moving then it is neither proliferating nor dying. The required 

probabilities can either be taken directly from experimental data 

(which is often hard to measure in vivo and unrealistic in vitro) or 

calibrated with in  vivo pre-clinical models.

Using hard-coded rules to model the phenotype of a tumour cell, 

while relatively simple, does not capture the flexibility shown by 

biological cells in the mapping between genotype and phenotype. 

Gerlee and Anderson (�‘�•�•�–) have instead proposed capturing some 

of the complexity of this mapping by embedding neural networks in-

side each agent, so that the phenotype emerges in a non-linear way 

as a result of the agent's state and the different microenvironmental 

inputs to which the agent is receptive.

�’�:�‘�J |�J �$�u�-�b�| �;�ˆ�o�t�†�|�b�o�m �ˆ�;�u�v�†�v �r�o�r�†�t�-�|�b�o�m �P�;�r�b�Q
genetic models

Once phenotypes have been defined, the next step is to determine 

how these phenotypes will change as a result of mutations. One op-

tion is to model mutations as phenotypic switches. Many studies 

consider models with only two possible tumour cell states—mutated 

and unmutated—which differ in fitness (Sottoriva et al., 2015), de-

gree of drug resistance (Gallaher et al., 2018), or some other trait. 

Grow-or-go models assume that cells can reversibly switch between 

predominantly migratory and predominantly proliferative pheno -

types (Hoek et al.,  2008). Other models examine the evolution of 

continuous traits, such as levels of glycolysis and acid production 

(Robertson-Tessi et al., 2015).

If we are more interested in clonal dynamics then we can ex-

plicitly track changes to the (epi)genome. These mutations are 

conventionally assigned to three groups according to how they af-

fect cell fitness: driver mutations (which increase cell fitness), pas-

senger mutations (no effect), and deleterious mutations (negative 

effect). For simplicity, most studies assume an infinite sites model 

(Kimura, �•�–�u�–), such that no two mutations can occur at the same 

site. Finite sites models must be parameterized based on observed 

mutation frequencies (Schenck et al., 2022).
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We can convert an Eden model into an evolutionary model by im-

plementing mutation. The grid and neighbourhood are defined as 

before but now we have multiple cell states � � � � � � � � � �  and muta-

tion rates between each pair of distinct cell states. A simple op-

tion, assuming infinite sites, is to set all mutation rates to be zero 

except in the case of � � to � � � �  for all � � � , so that every � � cell 

has exactly �  mutations. Let us assume that all these mutations are 

drivers and their effects combine multiplicatively, such that each 

mutation increases the division rate by a factor of � � � , with � � �

. Assume also that mutations occur only at the time of cell division, 

and the number of new mutations per daughter cell is Poisson dis-

tributed. We then arrive at a reasonable toy model of spatial tumour 
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evolution that can be implemented in not much more than 100 lines 

of code, as we illustrate with an R script (Noble,  2018). Figure 3 

shows results of implementing a similar model in the HAL platform 

(West, 2018).
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Modelling the evolution of a quantitative trait, such as cell divi -

sion or death rate, leads to further design decisions. As in our toy 

model, it can be wiser to draw mutation fitness effects from a prob -

ability distribution instead of setting them all equal. To see why, 

consider a model of an expanding tumour that, in the absence of 

mutation, has radius growth rate � � , and in which the spread of mu-

tants is not confined to the periphery (for example, a biased voter 

model). When a new mutant arises within the wildtype population, 

its long-term fate, in the absence of further mutation, will be sen-

sitive to its radius growth rate, � � . If � � � � �  then the mutant will 

remain forever rare; if � � � � �  then the mutant is bound to take over 

the entire tumour; if � � � � �  then the mutant will become relatively 

more abundant over time without ever fully replacing the wildtype. 

Randomising the fitness effect randomizes � �  and so randomizes 

mutant fates. Our demon-warlock framework draws each selection 

coefficient (relative increase in cell division rate) from an exponen-

tial distribution.

Strictly multiplicative fitness is best avoided in all but the 

smallest-scale models as it can lead to unrealistically high fitness 

values. This is especially problematic if mutation is implemented at 

the point of cell division, which creates a feedback loop in which 

lineage fitness grows at an ever increasing rate. A simple solution im-

plemented in our demon-warlock framework is diminishing returns 

epistasis. When the selection coefficient of a driver mutation is � , 

instead of multiplying the division rate by � � � , we instead multiply 

by � � �
�
� � � � � ���

�
, where �  is the previous division rate and � ���  

is an upper bound.
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The next step is to consider how to implement cell events algorith-

mically. Event scheduling can be the most important factor in de-

termining computational efficiency, especially in simpler grid-based 

models. The optimal choice strikes a balance between efficiency, 

simplicity and biological realism.
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The Gillespie Stochastic Simulation Algorithm (Gillespie, �•�–�•�u) is an 

especially simple and popular solution to event scheduling. Event 

rates are assumed to depend only on the current state of the model 

and the time between events is exponentially distributed (as in a 

Poisson process), such that two events cannot occur simultaneously. 

The steps of the algorithm are as follows:

1.	 Initialize the system.

2.	 Set event rates (birth rates, death rates, dispersal rates, etc.).

3.	 Randomly determine the next event such that � � ����� � � � �  

���� � � � � � � ����� �.

4.	 Implement the chosen event.

5.	 Advance the timer by � � � ��� � � � � � ����� �� .

6.	 Repeat from step 2 until a stop condition is reached.

This algorithm is more efficient than the event timer approach 

(see below) and is very easy to implement. In statistical terms, the 

simulated sequence of events corresponds to a trajectory of a set of 

stochastic differential equations, called the master equations. This 

means we have a good mathematical understanding of how the al-

gorithm behaves.

Our toy Eden growth model (Noble,  2018) provides an exam-

ple implementation of Gillespie's algorithm. This model further im-

proves computational efficiency by keeping track of the cells that 

have space to divide, so that the next dividing cell can be chosen 

from among this subset (which in �  dimensions scales with the radius 

to the power of � � � ) rather than from the entire cell population 

(which scales with the radius to the power of � ). The drawback is that 

cells without space to divide never undergo mutation, which may be 

an unjustifiable assumption in a serious research model.

Modifications of Gillespie's algorithm, such as tau leaping 

(Gillespie, 2001), are even faster but less accurate. Tau leaping allows 

multiple events to occur simultaneously, which may be problematic 

in a spatial model if the events affect multiple sites in close proximity 

(for example, if two cells are chosen to divide into the same empty 

site). Moreover, tau leaping improves performance only when the 
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Eden growth model with nearly neutral 
mutations (top) and beneficial mutations 
(bottom). Model produced in HAL using 
some in-built examples as a skeleton for 
the code (West, 2018).
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system is dominated by a small number of large, homogeneous sub-

populations, which is typically not the case in SABMs.
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A shortcoming of the Gillespie algorithm is that some events, such as 

cell division, are not true Poisson processes with exponentially distrib-

uted waiting times. In effect, the Gillespie algorithm permits arbitrarily 

short cell cycles. Some cells may divide several times while, in the same 

period, others with identical division rates fail to divide at all.

One way to achieve more realistic cell cycle periods without sac-

rificing very much computational efficiency is to use a phase-type 

probability distribution. Whereas an exponential distribution mod -

els the time until the next event in a Poisson process, a phase-type 

distribution models the time taken for an entire sequence of events, 

which may occur at different rates.

In practical terms, this entails executing the Gillespie algorithm as 

above, except that when a cell is selected for division, it doesn't nec-

essarily divide immediately, but instead changes its position in the cell 

cycle. Given a target probability distribution for cell cycle periods, we 

can use an algorithm to choose transition rates such that the resulting 

phase-type distribution has the same mean, variance and skew as the 

target (Osogami & Harchol-Balter, 2006). For example, suppose that 

all cells begin in division state 0. When a cell is selected (according to a 

state-dependent probability), its state is updated from 0 to 1, 1 to 2, or 

2 to 3. When a state 3 cell is selected it divides and both progeny are 

reset to state 0 (Belluccini et al., 2022). The method's greater realism 

comes at the cost of additional memory demands and longer execution 

time, compared to the basic Gillespie algorithm.
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When we have more than a handful of events to choose from it will 

be much more efficient to implement event selection using a binary 

tree. Suppose, for example, that we have four possible events with 

rates � � � � � � � �  and � � , where � � � � � � � � � � � . If we store the rate 

sums � � � � � , � � � � � , and � � � � � � � � � � �  then we can choose an 

event as follows. First we generate a random number �  from a uni-

form distribution between �  and � � � � � � � � � � � , and we examine 

whether � � � � � � � . Supposing �  is greater than � � � � � , we then test 

whether it is less than � � . If so then we choose event 3; otherwise 

event 4. Effectively, we have traversed a binary tree, beginning at 

the root node associated with the sum of all event rates, and ending 

at a terminal node associated with a single event (Figure 4).

The binary tree method is efficient because both the number 

of steps needed to choose an event, and the number of nodes that 

need updating following a change in an event rate, grow only with 

the logarithm of the number of possible events. For example, we 

need only 20 steps to choose between one million possible events. 

As long as the cell population keeps growing, there is little benefit 

to pruning nodes and it is easy to ensure that the tree remains bal-

anced. The rate sums together take up only as much computer 

memory as the individual rates. The main costs are in terms of code 

development time and code complexity. Binary trees require careful 

implementation and error checking to ensure that existing nodes are 

updated and, when required, new nodes are added after each model 

event. Our demon model implements binary trees and periodically 

recalculates event rate sums to prevent excessive accumulation of 

rounding errors.
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A less efficient alternative to using phase-type distributions is to 

draw inter-division times directly from a chosen probability distribu -

tion. This approach enables more precise tracking and adjustment of 

individual cell cycles. An algorithm used in recent studies (Gallaher 

et al., 2018; Robertson-Tessi et al., 2015) is as follows:

1.	 Initially assign every cell �  a countdown timer set to time � � 

drawn from some probability distribution (dependent on the 

cell's phenotype).

2.	 Subtract � �  from every countdown timer, where � � � � � for all � .

3.	 For all cells � , in random order:

A	 Implement cell death and dispersal events for � ;

B	 If �  is alive, has space to divide, and � � � � , then �  divides;

C	 Assign each new cell a countdown timer, set to some random 

time dependent on the new cell's phenotype.

4.	 Repeat from step two until a stop condition is reached.

How much this approach reduces computational efficiency will 

depend on other aspects of the model. It is likely to be much slower 

than a well implemented Gillespie algorithm when applied to a simple 

grid-based model, due to the additional burdens of updating every 

cell (Step 2) and shuffling all the cells (Step 3) at each small time step. 

In an off- lattice model, where cells move much more frequently than 

they divide, and where a shuffling algorithm may already be required 

to randomize the order in which cell positions are updated, the cost 

of updating cell division state at the same time as position may be 

negligible.
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Whereas many SABM studies focus on the effects of spatial structure 

and cell–cell interactions, real tumours evolve in a complex micro-

environment that varies over space and time. This tumour microen-

vironment, comprising both molecular elements, such as cytokines, 

and other (non-cancer) cells, constitutes the cancer ecosystem 

(Anderson & Simon, 2020)—a key element of the selection process 

driving somatic evolution. Given a good rationale and sufficient pa-

rameterization data, we may choose to extend our model by explic-

itly simulating microenvironmental factors in the form of agents (in 
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the case of immune cells or stromal cells) or diffusible factors (such as 

oxygen and drugs). Permitting cancer cells to modify their selective 

environment creates potential for emergent complexity and niche 

construction (Chaplain & Anderson, �•�–�–�u; Qi et al., �•�–�–�’).
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Hybrid cellular automata (or HCA) have been used to model in-

teractions between tumour cells and diffusible factors for more 
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et al.  (2001), these models consist of two interdependent compo-

nents: stochastic cell events, and deterministic reaction–diffusion 

partial differential equations. The latter component dictates how 

chemicals or other factors work their way through the system as 

they are consumed and processed by cells. Local concentrations of 

diffusible factors contribute to the cell update rules.

Typically we assume that diffusible factor concentrations rap-

idly re-equilibrate following changes in the configuration of cells. 

We can then numerically solve the equations to find the equilib-

rium concentrations either after every cell event or, trading some 

accuracy for greater efficiency, after a relatively small number of 

cell events have occurred. Suitable procedures for solving partial 

differential equations as initial value problems can readily be found 

in textbooks and software libraries. These range from simple but 

inefficient algorithms based on the classical Gauss–Seidel method, 

which require only a few dozen lines of code (Bacevic et al., 2017; 

Patel et al., 2001; Press, 2007), to the highly sophisticated BioFVM 

solver (Ghaffarizadeh et al., 2016), which is specifically optimized for 

hybrid SABMs. Several SABM platforms include their own methods 

for solving reaction–diffusion equations in two or three dimensions 

(see Appendix S1).
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To add biological realism, we might make cell division and death rates 

in our model depend on the local oxygen and glucose concentrations 

as these factors diffuse through the tumour from the surrounding 

medium (in very small tumours and tumour spheroids) or from point 

sources representing blood vessels (in larger, vascularized tumours). 

We might also modify dispersal rates so that cells follow oxygen or 

glucose gradients. Potential adverse factors include acid produced 

through tumour cell metabolism, and drugs that diffuse from blood 

vessels. Hybrid cellular automata are especially suitable when the 

supply of an influential factor is highly variable over space or time, 

such as in the case of intermittent drug treatment (Bravo et al., 2020).
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Although theoretical models can be valuable for generating hy-

potheses and providing proof of concept, if we want to apply an 

SABM to studying a particular biological system then we must 

ensure that its influential parameter values are set appropriately. 

Parameterization should ideally be based on clinical or experimen-

tal data specific to the biological system of interest; otherwise val-

ues can be estimated from studies of similar systems or theoretical 

considerations (for instance, diffusion coefficients approximately 

correlate with molecular weight). Influential parameters might 

pertain to the effects of mutations, drugs, oxygen and glucose; 

rates of chemical supply, diffusion, consumption and decay; cell 

dispersal modes and rates; baseline cell death rates, crowding ef-

fects and the size of interacting cell communities. Since calibrating 

SABMs is often computationally demanding, high-performance 

computation may be required to generate the necessary resources 

to calibrate them properly.
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Bacevic and Noble et al (Bacevic et al., 2017) parameterized a HCA 

to mimic tumour spheroid evolution under drug treatment. In sphe -

roids the limiting factor for cell survival and proliferation is oxygen. 

Other diffusible factors such as glucose were therefore omitted to 
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binary tree to select an event (Event 3) 
from four options. Selected nodes are 
shown in blue.
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simplify the model without compromising its usefulness. The oxy-

gen concentration in the medium and oxygen diffusion rates were 

drawn from previous studies (Casciari et al.,  �•�–�–�‘�-; Grimes, Kelly, 

et  al.,  2014; Kim et  al.,  2007), as were the mathematical relation-

ships between oxygen consumption rate, cell proliferation rate and 

local oxygen concentration (Casciari et al., �•�–�–�‘�0; Grimes, Fletcher, 

et  al.,  2014). The different maximum proliferation rates of drug-

sensitive and resistant cells, reflecting a fitness cost of resistance, 

were determined from new monolayer growth assays. Cells with in-

sufficient oxygen supply were assumed to die.

Since oxygen effects alone fail to account for the extent of qui-

escence observed in tumour spheroids, Bacevic and Noble et al im-

plemented crowding effects by permitting cell budging only within 

a specified radius. New monolayer growth assays revealed that the 

relationships between cell proliferation rate, death rate and drug 

dose could be well approximated with piecewise linear functions. 

The drug's impact on proliferation was further assumed to multi-

ply the oxygen effect, consistent with prior observations (Casciari 

et al., �•�–�–�‘�0). Drug consumption was also modelled using Michaelis–

Menten kinetics, with a diffusion rate chosen according to the 

drug's molecular weight and an appropriately low consumption rate. 

Thus parameterized, the SABM accurately predicted the outcomes 

of new tumour spheroid experiments (Bacevic et al., 2017).
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Araujo and Basanta  (2016) developed a hybrid cellular automaton 

for which the goal was to capture the ecosystem of the bone. A 

crude approximation of this ecosystem includes the bone itself, the 

myeloid-derived cells such as osteoclasts that resorb bone, and the 

cells derived from mesenchymal stem cells, such as osteoblasts, that 

deposit new bone. Each of these cell types can be modelled as dis-

crete agents regulated by diffusible factors—such as TGF-� , RANK 

ligand, and other factors embedded in the bone matrix—described 

by partial differential equations. Parameterization of the model is fa-

cilitated by the fact that non- cancerous cells have more predictable 

phenotypes, and the model's overall behaviour can be calibrated to 

ensure it recapitulates bone homeostasis. Araujo et al. (2018) thus 

studied how bone metastatic prostate cancer cells could infiltrate 

the bone ecosystem, take advantage of it, and grow. They also in-

vestigated what prostate cancer cells in the primary tumour should 

be of concern to physicians, and why conventional treatments that 

fail to disrupt tumour- ecosystem interactions also fail to provide 

long-term cancer cures in bone metastatic prostate cancer (Araujo 

et al., 2014).
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Unknown parameter values can be inferred by combining an SABM 

with a statistical method. This is, in fact, often the main objective 

of an SABM study. Approximate Bayesian computation is a popular 

approach that, in its simplest form, infers the value of a parameter 

�  as follows

1.	 From our data, calculate some summary statistic � ���� ;

2.	 Set � � � ;

3.	 Run the model using a candidate parameter value � � drawn from 

some prior distribution;

4.	 Calculate the summary statistic � � for the model output;

5.	 If the difference between � � and � ����  is less than a predefined 

tolerance then add � � to the posterior distribution;

6.	 Increment � ;

7.	 If �  is less than some threshold then repeat from step 3.

Although simple in principle, approximate Bayesian computa-

tion requires careful implementation. The accuracy and precision 

of inferences depend on the choices of prior distributions, sum-

mary statistics and tolerances, as well as the number of iterations. 

Typically multiple parameter values cannot be precisely derived 

from prior data or models, in which case each should be assigned 

a vague (high variance) prior distribution. Tolerance values should 

be tuned such that neither too many nor too few candidate param-

eter values are accepted to the posterior distribution. Summary 

statistics should capture features of the system that provide useful 

information about the parameters of interest. A useful template 

is a 2010 study (Sottoriva & Tavaré, 2010) in which Sottoriva and 

Tavaré inferred aspects of stem cell dynamics in the colonic crypt 

by combining a cellular Potts model with approximate Bayesian 

computation, using a summary statistic based on methylation 

patterns.

An alternative to this approach was recently outlined in (Cess & 

Finley, 2023), in which the authors describe a novel method utilizing 

neural networks to reduce both tumour images and SABM simula-

tions to low- dimensional points. The distance between these points 

acts as a quantitative measure of how the two differ. This enables 

direct comparison, and by using parameter fitting algorithms to mini-

mize the distance between the two sets of points, parameters can be 

estimated directly from the images and the simulations.
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Whatever the objective, an essential step in any modelling study is 

to examine, as far as is practical, how the results and conclusions 

depend on uncertain aspects of the model. A common approach is to 

run a large number of model variants with different combinations of 

plausible parameter values. Varying one parameter at a time can pro-

vide useful insight into which parameters have the greatest impact 

on model output, with the shortcoming that non- linear interactions 

between parameters are often neglected. A more sophisticated ap-

proach is to infer a multivariable “metamodel” function—a model of 

the model—that approximately describes how the model's param-

eters determine its outputs.
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