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1  |  INTRODUCTION

Cancer initiation, progression and treatment responses are 
Darwinian evolutionary processes (Casás-Selves & DeGregori, 2011; 
Merlo et al., 2006) that can be investigated using a wide range of 
mathematical and computational methods. Examples include evolu-
tionary game theory (Basanta et al., 2011; Yang et al., 2016), branch-
ing processes (Danesh et al., 2012; Durrett et al., 2010), and Moran 
processes (Durrett et al., 2016; West et al., 2016). Yet while many 
tools have yielded important insights into cancer evolution, the 

study of spatial aspects—especially important in carcinomas, consti-
tuting the majority of humans cancers—often necessitates a spatially 
explicit approach, such as a spatial agent-based model.

An agent-based (or individual-based) model is a computational 
model of a system made up of autonomous, interacting “agents”. 
Spatial agent-based models (SABMs) have long been used to study 
the evolution of spatially structured communities because they can 
reveal how the processes of selection, drift, and gene flow depend 
on localized interactions among agents (typically individual organ-
isms) or between agents and their spatially varying environment. As 
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new technologies generate better spatial tumour data, SABMs are 
proving ever more useful in oncology. Typical applications include 
understanding tumour development, inferring the effects of driver 
mutations, and predicting treatment outcomes. For example in re-
cent studies, Aif et al. (2022) used an SABM to investigate the evolu-
tionary rescue of drug-resistant tumour subclones; Saha et al. (2023) 
used an SABM to investigate adaptive cancer therapy; and Bull and 
Byrne (2023) used an SABM to simulate interactions between mac-
rophages and tumour cells.

To support this burgeoning research field, here we present a 
seven-step guide to designing and implementing spatial agent-based 
models in which the agents are locally interacting tumour cells or 
cell subpopulations. Starting from the simplest cellular automata, we 
discuss options for adding greater complexity and biological realism, 
such as multi-level spatial structure and environmental heteroge-
neity. Based on our extensive experience of developing and using 
SABMs (Bacevic et  al.,  2017; Bak et  al.,  2023; Noble et  al.,  2020, 
2022), we cover practical issues such as event scheduling, visualiza-
tion, and how to use SABMs to infer parameter values from experi-
mental or clinical data. Each topic is illustrated with examples from 
our own demon-warlock modelling framework (Bak et  al.,  2023; 
Noble et al., 2022), other state of the art modelling platforms, and 
studies that have used SABMs in cancer research. Whereas our 
focus is on tumour evolution, much of our advice applies equally to 
similar modelling methods used to study bacterial colonies, invasive 
species and organismal development. The guide is designed to be 
accessible for biologists and clinicians without specialist mathemat-
ical knowledge.

2  |  SPATIAL STRUCTURE

Spatial structure determines the evolutionary balance between 
selection and drift, the nature of gene flow between subpopula-
tions, and the strength of ecological interactions. When a model 
fails to accurately represent the spatial structure of a biological 
system, the model's predictions and inferences for that system 
may be highly unreliable (Noble et al., 2022; Strobl et al., 2022). It 
follows that the parameters of spatial structure—such as the size of 
locally interacting cell communities and the manner of cell disper-
sal—should be accorded the same importance as evolutionary pa-
rameters in model design. Notwithstanding the trade-off between 
model simplicity and realism, spatial structure parameters should, 
as far as possible, be derived or inferred from empirical data.

2.1  |  Stochastic cellular automata

Many of the simplest spatial agent-based models are cellular au-
tomata. A cellular automaton is a model that plays out on a grid of 
sites in one or more dimensions. Each site is associated with one 
of a set of at least two possible states. Each site also belongs to a 

subset of sites called a neighbourhood, of which some examples are 
shown in Figure 1. For example, the von Neumann neighbourhood in 
two dimensions contains the nearest sites in the cardinal directions 
(up, down, left and right). A cellular automaton sequentially updates 
itself according to a set of rules. The update rules for a given site 
depend on its own current state and the states of the sites in its 
neighbourhood.

Whereas the update rules of many cellular automata are de-
terministic (Schiff,  2011), probabilistic rules are more appropriate 
for modelling stochastic processes such as biological evolution. A 
stochastic cellular automaton is equivalent to a collection of locally 
interacting Markov chains, which means that each event is chosen 
according to probabilities that depend only on the current model 
state, not any of its previous states.

In biological terms, each state corresponds to a type of cancer 
cell or some other entity (such an immune cell or part of the extra-
cellular matrix). Generally we will assume that the focal agents in 
our models are cancer cells and we will use the terms “agent” and 
“cell” interchangeably where appropriate. A cellular automaton 
permits a cell's event probabilities (for example, its division, death 
and dispersal rates) to depend on the number of neighbouring 
cells. This allows us to account for crowding or Allee effects, such 
that birth, death or dispersal rates depend on the local or global 
population size. Event rates can also vary according to the types 
of the neighbouring cells, for example to simulate cell competition 
or immune predation.

Models of asynchronous processes, such as cell division in a 
tumour, typically use asynchronous updating, meaning that only 
one or a small number of sites are modified per update (Louis & 
Nardi, 2018). In addition to being more realistic, asynchronous up-
dating is often necessary to prevent conflicts. For instance, if two 
cells are attempting to divide but only one space is available for the 
two potential daughter cells then one must take priority.

F IGURE  1 Some common neighbourhoods that govern the 
update rules for cellular automata and other agent-based models in 
two dimensions (a) and three dimensions (b). A focal agent (cell) is 
shown in blue and its neighbourhood sites in grey.
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2.2  |  The Eden growth model

Among the simplest stochastic cellular automata is the Eden growth 
model. This model is typically implemented on a two- or three-
dimensional regular square grid with only two possible states: unoc-
cupied (S0) and occupied (S1). With each iteration, the update rule 
causes a site in the neighbourhood of an S1 site to switch from S0 to 
S1. In this way new S1 sites (cells) are added to the surface of a clus-
ter. The Eden growth model on an n-dimensional grid self-organizes 
to resemble an n-dimensional ball with a non-trivial surface. The 
growth curve of the S1 population approaches a polynomial of de-
gree n (Eden, 1961).

The three most popular options for the Eden growth model up-
date rule can be labelled alphabetically:

1.	 Available site-focussed: Choose at random an S0 site in the 
neighbourhood of an S1 site, and switch it from S0 to S1.

2.	 Bond-focussed: Choose at random an S1 site with a probability 
proportional to the number of S0 sites in its neighbourhood, and 
then randomly choose an S0 neighbour and switch it to S1.

3.	 Cell-focussed: Choose at random an S1 site with at least one S0 site 
in its neighbourhood, and then randomly choose an S0 neighbour 
and switch it to S1.

Although these update rules result in similar large-scale patterns, 
they generate cluster surfaces with different microscopic proper-
ties. Indentations in the model surface are more likely to be filled, 
and spikes are less likely to form, under option C than under option 
B, and under option B than under option A. Hence option C gen-
erates the smoothest surface and option A the roughest (Jullien & 
Botet, 1985).

Variants of the Eden growth model have been used to investigate 
the evolution of paediatric glioma (Tari et  al.,  2022), colon cancer 
(Hamis, Yates, et  al.,  2021), hepatocellular carcinoma (Lewinsohn 
et al., 2023; Waclaw et al., 2015), clear cell renal cell carcinoma (Xiao 
et  al.,  2022) and non-small cell lung cancer (Jagiella et  al.,  2016). 
Many studies use a variant that includes stochastic cell death. By 
opening up spaces for cell division, cell deaths increase clonal mixing 
within the tumour and facilitate selection (Waclaw et al., 2015).

2.3  | Other grid-based stochastic cellular automata

Other stochastic cellular automata can be more appropriate than the 
Eden growth model for modelling systems in which state changes 
are not confined to the surface. Spatial branching processes are simi-
lar to Eden growth models except that if a dividing cell has no space 
to divide then it can create space by budging other cells. An inter-
mediate model can be created by stipulating that only nearby cells 
can be budged, so as to simulate physical constraints on cell division. 
Chkhaidze et  al.  (2019) recently used such a model to investigate 
how spatially constrained tumour growth alters signatures of clonal 
selection and genetic drift in cancer genomic data. Good practice is 

to implement budging along an approximately straight line between 
the dividing cell and the nearest empty site. If budging is instead 
restricted to the cardinal directions or the cardinal and intercardi-
nal directions then the simulated tumour will self-organize into an 
approximate square or octahedron, rather than a more biologically 
plausible disc or ball.

Another option is to allow dividing cells to replace, rather than 
displace, their neighbours. In the voter model, the update rule is such 
that, with a certain probability, a randomly selected site copies the 
state of a neighbouring site. Biasses can be introduced by setting 
unequal copying probabilities, corresponding to differences in cell 
fitness. Simple (linear) voter models satisfy a convenient property 
called coalescing duality, which means that their typical behaviour 
can be explained through mathematical analysis (Durrett, 2007). In 
a pioneering 1972 study, Williams and Bjerknes (1972) used a biased 
voter model to simulate the spread of skin cancer through the basal 
epithelial layer.

The cellular Potts model (CPM), also known as the Glazier-Graner-
Hogeweg model (Graner & Glazier, 1992; Savill & Hogeweg, 1997), 
more explicitly simulates physical interactions among cells and be-
tween cells and their microenvironment. The model takes place on 
a lattice and each cell is represented by multiple lattice sites (as op-
posed to only one lattice site, as in previously discussed models), 
corresponding to the cell's volume (Figure  2a). Cells are deform-
able and can adhere to one another or to surrounding empty sites 
(which might represent extracellular matrix or growth medium). 
Hamiltonian mechanics describe the overall energy of the system 
depending on adhesion forces and resistance to changes in cell vol-
ume. A random lattice site is chosen at each time step and its state 
is copied to a random neighbouring site. If the new configuration 
has lower energy than the previous configuration then the change is 
always accepted; otherwise, the probability of accepting the change 
depends on the Boltzmann temperature. The CPM has been used 
in numerous cancer studies, such as for simulating tumour growth, 
invasion and evolution (Szabó & Merks, 2013), or for investigating 
how cell compressibility, motility and contact inhibition shape tu-
mour cell clusters (Li & Lowengrub, 2014). The CompuCell3D mod-
elling environment compucell provides an efficient, flexible CPM 
implementation.

The biological lattice gas cellular automaton (Deutsch & 
Dormann, 2005) excels instead at modelling cellular movement, and 
especially collective migration, in a simple, computationally efficient 
and physically correct fashion. The model must play out on a square 
or hexagonal lattice in 2 dimensions, or a cubic, dodecahedral or ico-
sahedral lattice in 3 dimensions. States incorporate cell velocities. 
For instance, consider a 2-dimensional square lattice in which each 
site contains 5 nodes: one for each directional velocity and a resting 
node at the centre (Figure  2b). A cell occupying any one of these 
nodes can divide into other nodes on the same site. A cell can also 
reorient itself by moving between nodes on the same site and can 
move between sites according to its velocity, provided there is space 
to do so. This model has been used, for example, to give insights into 
breast cancer invasion plasticity (Deutsch et al., 2021).

 17524571, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13687 by C

ity U
niversity O

f L
ondon L

ibrary, W
iley O

nline L
ibrary on [29/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 16  |     COLYER et al.

2.4  | Multi-level spatial structures

An important limitation of all the aforementioned cellular automata 
is that their uniform spatial structures are inconsistent with the bi-
ology of many tumour types. Various common cancers have glan-
dular structures and grow via individual cells or small cell clusters 
invading neighbouring tissue (Lugli et al., 2021; Pandya et al., 2017). 
Colorectal adenomas are also glandular but grow through gland fis-
sion (Preston et al., 2003).

Inspired by classical population genetics models (Moran, 1958), a 
simple, conventional way to account for multi-level spatial structure 
in tumours is to assign cells to local subpopulations, called demes, 
located on a regular grid. Thus each grid site is allowed to contain not 
only one but dozens, hundreds, or thousands of cells. The subpopula-
tion size per deme is prevented from exceeding a certain threshold—
known as the deme's carrying capacity—by decreasing cell division 
rates or increasing death rates as the subpopulation size grows.

Deme-based models allow for more complicated modes of cell 
dispersal. As in the voter model, cells can be assigned some proba-
bility of invading neighbouring demes, either individually or in clus-
ters. The dispersal probability can also be made to depend on the 
population of the deme being invaded, so that cells disperse more 
easily in less densely populated regions near the tumour periphery. 

Alternatively, each occupied deme can be assigned a probability of 
undergoing fission, resulting in some of its cells being moved to an 
unoccupied neighbouring deme. Depending on the degree of budg-
ing allowed, the deme-level dynamics of the fission model can re-
semble an Eden growth model (no budging of demes) or a spatial 
branching process (unlimited budging). Deme-based models addi-
tionally allow for the explicit simulation of tissue invasion, such that 
a tumour can grow only via its cells invading demes that are initially 
filled with normal cells (Noble et al., 2022).

2.5  | Aggregating agents

If the within-deme subpopulations can be assumed to be well-mixed 
then cells that belong to the same deme and have the same pheno-
type and genotype can be modelled collectively, rather than as in-
dividual agents. This model design not only improves computational 
efficiency but can also facilitate mathematical analysis. For example, 
when cells disperse by invading neighbouring demes, the model can 
be designed so that the dynamics are approximately equivalent to 
the well understood spatial Moran process (Noble et al., 2022). Cells 
can be randomly selected within a deme by sampling from a hyper-
geometric distribution.

F IGURE  2 (a) An illustration of the CPM. Here, two cells, shaded in green and yellow, each occupy multiple sites on a grid. In the leftmost 
panel, we see the model's initial configuration; in the middle panel, the state of site P is copied onto site Q , and the green cell grows; in the 
rightmost panel, the state of site P is copied onto site R, which is initially occupied by the yellow cell, thus deforming the yellow cell and 
budging it into site S. (b) An illustration of the LGCA. Grid sites shaded in green represent those which may influence the focal cell node, 
shaded in red. The leftmost panel represents the initial configuration; the middle panel shows a cell dividing into free space on its grid site, 
with the new cell shaded in orange; the rightmost panel demonstrates how cells might move within a grid site or between grid sites: the red 
cell has changed direction, and the orange cell has moved from one site to another.
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Even greater efficiency can be realized by not modelling inter-
deme dynamics at all, and simply making the demes themselves 
the model agents (Siegmund et  al.,  2009; Sottoriva et  al.,  2015). 
Although such coarse-graining enables the simulation of much larger 
tumours, it comes at the cost of reduced precision. Care should be 
taken in translating between mutation rates per cell and effective 
mutation rates per deme.

2.6  | Off-lattice models

Instead of confining agents to a regular grid, we might instead locate 
them in continuous space. This structure is potentially more real-
istic but also entails more parameters, more decisions to be made, 
and typically higher computational costs (Beerenwinkel et al., 2015). 
To prevent multiple cells occupying the same space and to maintain 
tumour integrity, we now must model the movement of cells in re-
sponse to physical forces such as cellular adhesion and repulsion 
(Franz et al., 2014). We may also choose to model directed move-
ment under the influence of diffusible factors (hapotaxis).

There are several practical ways to prevent cells overlapping in 
an off-lattice model, depending on how the agents are implemented. 
Suppose we have spherical cells, each with fixed radius r . We can 
then specify that when, as a result of cell division or movement, the 
distance between two cells' centres is less than 2r, both cells will 
simply be pushed in opposite directions. Alternatively, to account for 
cell deformation, we might implement repulsion only when the dis-
tance between cell centres falls below some threshold value smaller 
than 2r (Macklin et  al.,  2012). Some modelling platforms achieve 
greater realism and tractability by implementing adhesion and repul-
sion forces using functions rooted in physics, which are beyond the 
scope of this guide (see documentation cited in the Appendix S1).

3  | MUTATION

Having chosen an appropriate spatial structure, we next will decide 
which cell phenotypes and genotypes to include in our state space, 
and how to model mutations between these states. As ever, the goal 
is to balance model simplicity, realism and computational demands.

3.1  | Defining phenotypes

A good part of the difficulty in designing a useful model stems from 
the fact that much of the experimental data gathered by cancer bi-
ologists focusses on genetic mutations while the rules that govern 
the behaviour of the agents in an SABM assume an understanding 
of the key cancer phenotypes. The most basic actions a tumour cell 
might perform at any given time step are apoptosis/death, prolifera-
tion and motility. These are often considered as simple probabilis-
tic events and often modelled in a exclusionary manner, so that if a 
cell is moving then it is neither proliferating nor dying. The required 

probabilities can either be taken directly from experimental data 
(which is often hard to measure in vivo and unrealistic in vitro) or 
calibrated with in vivo pre-clinical models.

Using hard-coded rules to model the phenotype of a tumour cell, 
while relatively simple, does not capture the flexibility shown by 
biological cells in the mapping between genotype and phenotype. 
Gerlee and Anderson (2009) have instead proposed capturing some 
of the complexity of this mapping by embedding neural networks in-
side each agent, so that the phenotype emerges in a non-linear way 
as a result of the agent's state and the different microenvironmental 
inputs to which the agent is receptive.

3.2  |  Trait evolution versus population (epi)
genetic models

Once phenotypes have been defined, the next step is to determine 
how these phenotypes will change as a result of mutations. One op-
tion is to model mutations as phenotypic switches. Many studies 
consider models with only two possible tumour cell states—mutated 
and unmutated—which differ in fitness (Sottoriva et al., 2015), de-
gree of drug resistance (Gallaher et al., 2018), or some other trait. 
Grow-or-go models assume that cells can reversibly switch between 
predominantly migratory and predominantly proliferative pheno-
types (Hoek et  al.,  2008). Other models examine the evolution of 
continuous traits, such as levels of glycolysis and acid production 
(Robertson-Tessi et al., 2015).

If we are more interested in clonal dynamics then we can ex-
plicitly track changes to the (epi)genome. These mutations are 
conventionally assigned to three groups according to how they af-
fect cell fitness: driver mutations (which increase cell fitness), pas-
senger mutations (no effect), and deleterious mutations (negative 
effect). For simplicity, most studies assume an infinite sites model 
(Kimura, 1969), such that no two mutations can occur at the same 
site. Finite sites models must be parameterized based on observed 
mutation frequencies (Schenck et al., 2022).

3.3  |  Example: The Eden growth model 
with mutation

We can convert an Eden model into an evolutionary model by im-
plementing mutation. The grid and neighbourhood are defined as 
before but now we have multiple cell states S1, S2, S3, … and muta-
tion rates between each pair of distinct cell states. A simple op-
tion, assuming infinite sites, is to set all mutation rates to be zero 
except in the case of Si to Si + 1 for all i ≥ 0, so that every Si cell 
has exactly i  mutations. Let us assume that all these mutations are 
drivers and their effects combine multiplicatively, such that each 
mutation increases the division rate by a factor of 1 + s, with s ≥ 0

. Assume also that mutations occur only at the time of cell division, 
and the number of new mutations per daughter cell is Poisson dis-
tributed. We then arrive at a reasonable toy model of spatial tumour 
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evolution that can be implemented in not much more than 100 lines 
of code, as we illustrate with an R script (Noble,  2018). Figure  3 
shows results of implementing a similar model in the HAL platform 
(West, 2018).

3.4  | Distributions of fitness effects

Modelling the evolution of a quantitative trait, such as cell divi-
sion or death rate, leads to further design decisions. As in our toy 
model, it can be wiser to draw mutation fitness effects from a prob-
ability distribution instead of setting them all equal. To see why, 
consider a model of an expanding tumour that, in the absence of 
mutation, has radius growth rate c0, and in which the spread of mu-
tants is not confined to the periphery (for example, a biased voter 
model). When a new mutant arises within the wildtype population, 
its long-term fate, in the absence of further mutation, will be sen-
sitive to its radius growth rate, c1. If c1 < c0 then the mutant will 
remain forever rare; if c1 > c0 then the mutant is bound to take over 
the entire tumour; if c1 = c0 then the mutant will become relatively 
more abundant over time without ever fully replacing the wildtype. 
Randomising the fitness effect randomizes c1 and so randomizes 
mutant fates. Our demon-warlock framework draws each selection 
coefficient (relative increase in cell division rate) from an exponen-
tial distribution.

Strictly multiplicative fitness is best avoided in all but the 
smallest-scale models as it can lead to unrealistically high fitness 
values. This is especially problematic if mutation is implemented at 
the point of cell division, which creates a feedback loop in which 
lineage fitness grows at an ever increasing rate. A simple solution im-
plemented in our demon-warlock framework is diminishing returns 
epistasis. When the selection coefficient of a driver mutation is s, 
instead of multiplying the division rate by 1 + s, we instead multiply 
by 1 + s

(

1 − b∕bmax

)

, where b is the previous division rate and bmax 
is an upper bound.

4  |  EVENT SCHEDULING

The next step is to consider how to implement cell events algorith-
mically. Event scheduling can be the most important factor in de-
termining computational efficiency, especially in simpler grid-based 

models. The optimal choice strikes a balance between efficiency, 
simplicity and biological realism.

4.1  | Gillespie's algorithm

The Gillespie Stochastic Simulation Algorithm (Gillespie, 1976) is an 
especially simple and popular solution to event scheduling. Event 
rates are assumed to depend only on the current state of the model 
and the time between events is exponentially distributed (as in a 
Poisson process), such that two events cannot occur simultaneously. 
The steps of the algorithm are as follows:

1.	 Initialize the system.
2.	 Set event rates (birth rates, death rates, dispersal rates, etc.).
3.	 Randomly determine the next event such that ℙ(event = E) = 

rate(E)∕Σ(rates).
4.	 Implement the chosen event.
5.	 Advance the timer by �t ∼ Exp(1∕Σ(rates)).
6.	 Repeat from step 2 until a stop condition is reached.

This algorithm is more efficient than the event timer approach 
(see below) and is very easy to implement. In statistical terms, the 
simulated sequence of events corresponds to a trajectory of a set of 
stochastic differential equations, called the master equations. This 
means we have a good mathematical understanding of how the al-
gorithm behaves.

Our toy Eden growth model (Noble,  2018) provides an exam-
ple implementation of Gillespie's algorithm. This model further im-
proves computational efficiency by keeping track of the cells that 
have space to divide, so that the next dividing cell can be chosen 
from among this subset (which in n dimensions scales with the radius 
to the power of n − 1) rather than from the entire cell population 
(which scales with the radius to the power of n). The drawback is that 
cells without space to divide never undergo mutation, which may be 
an unjustifiable assumption in a serious research model.

Modifications of Gillespie's algorithm, such as tau leaping 
(Gillespie, 2001), are even faster but less accurate. Tau leaping allows 
multiple events to occur simultaneously, which may be problematic 
in a spatial model if the events affect multiple sites in close proximity 
(for example, if two cells are chosen to divide into the same empty 
site). Moreover, tau leaping improves performance only when the 

F IGURE  3 The result of running an 
Eden growth model with nearly neutral 
mutations (top) and beneficial mutations 
(bottom). Model produced in HAL using 
some in-built examples as a skeleton for 
the code (West, 2018).

 17524571, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13687 by C

ity U
niversity O

f L
ondon L

ibrary, W
iley O

nline L
ibrary on [29/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 7 of 16COLYER et al.

system is dominated by a small number of large, homogeneous sub-
populations, which is typically not the case in SABMs.

4.2  | Gillespie's algorithm with phase-type 
distributions

A shortcoming of the Gillespie algorithm is that some events, such as 
cell division, are not true Poisson processes with exponentially distrib-
uted waiting times. In effect, the Gillespie algorithm permits arbitrarily 
short cell cycles. Some cells may divide several times while, in the same 
period, others with identical division rates fail to divide at all.

One way to achieve more realistic cell cycle periods without sac-
rificing very much computational efficiency is to use a phase-type 
probability distribution. Whereas an exponential distribution mod-
els the time until the next event in a Poisson process, a phase-type 
distribution models the time taken for an entire sequence of events, 
which may occur at different rates.

In practical terms, this entails executing the Gillespie algorithm as 
above, except that when a cell is selected for division, it doesn't nec-
essarily divide immediately, but instead changes its position in the cell 
cycle. Given a target probability distribution for cell cycle periods, we 
can use an algorithm to choose transition rates such that the resulting 
phase-type distribution has the same mean, variance and skew as the 
target (Osogami & Harchol-Balter, 2006). For example, suppose that 
all cells begin in division state 0. When a cell is selected (according to a 
state-dependent probability), its state is updated from 0 to 1, 1 to 2, or 
2 to 3. When a state 3 cell is selected it divides and both progeny are 
reset to state 0 (Belluccini et al., 2022). The method's greater realism 
comes at the cost of additional memory demands and longer execution 
time, compared to the basic Gillespie algorithm.

4.3  |  Random sampling with binary trees

When we have more than a handful of events to choose from it will 
be much more efficient to implement event selection using a binary 
tree. Suppose, for example, that we have four possible events with 
rates p1, p2, p3 and p4, where p1 ≤ p2 ≤ p3 ≤ p4. If we store the rate 
sums p1 + p2, p3 + p4, and p1 + p2 + p3 + p4 then we can choose an 
event as follows. First we generate a random number r from a uni-
form distribution between 0 and p1 + p2 + p3 + p4, and we examine 
whether r < p1 + p2. Supposing r is greater than p1 + p2, we then test 
whether it is less than p3. If so then we choose event 3; otherwise 
event 4. Effectively, we have traversed a binary tree, beginning at 
the root node associated with the sum of all event rates, and ending 
at a terminal node associated with a single event (Figure 4).

The binary tree method is efficient because both the number 
of steps needed to choose an event, and the number of nodes that 
need updating following a change in an event rate, grow only with 
the logarithm of the number of possible events. For example, we 
need only 20 steps to choose between one million possible events. 
As long as the cell population keeps growing, there is little benefit 

to pruning nodes and it is easy to ensure that the tree remains bal-
anced. The rate sums together take up only as much computer 
memory as the individual rates. The main costs are in terms of code 
development time and code complexity. Binary trees require careful 
implementation and error checking to ensure that existing nodes are 
updated and, when required, new nodes are added after each model 
event. Our demon model implements binary trees and periodically 
recalculates event rate sums to prevent excessive accumulation of 
rounding errors.

4.4  |  Cell cycle timers

A less efficient alternative to using phase-type distributions is to 
draw inter-division times directly from a chosen probability distribu-
tion. This approach enables more precise tracking and adjustment of 
individual cell cycles. An algorithm used in recent studies (Gallaher 
et al., 2018; Robertson-Tessi et al., 2015) is as follows:

1.	 Initially assign every cell i  a countdown timer set to time ti 
drawn from some probability distribution (dependent on the 
cell's phenotype).

2.	 Subtract �t from every countdown timer, where 𝛿t ≪ ti for all i .
3.	 For all cells i , in random order:

A	 Implement cell death and dispersal events for i ;
B	 If i  is alive, has space to divide, and ti ≤ 0, then i  divides;
C	 Assign each new cell a countdown timer, set to some random 

time dependent on the new cell's phenotype.
4.	 Repeat from step two until a stop condition is reached.

How much this approach reduces computational efficiency will 
depend on other aspects of the model. It is likely to be much slower 
than a well implemented Gillespie algorithm when applied to a simple 
grid-based model, due to the additional burdens of updating every 
cell (Step 2) and shuffling all the cells (Step 3) at each small time step. 
In an off-lattice model, where cells move much more frequently than 
they divide, and where a shuffling algorithm may already be required 
to randomize the order in which cell positions are updated, the cost 
of updating cell division state at the same time as position may be 
negligible.

5  | MICROENVIRONMENT

Whereas many SABM studies focus on the effects of spatial structure 
and cell–cell interactions, real tumours evolve in a complex micro-
environment that varies over space and time. This tumour microen-
vironment, comprising both molecular elements, such as cytokines, 
and other (non-cancer) cells, constitutes the cancer ecosystem 
(Anderson & Simon, 2020)—a key element of the selection process 
driving somatic evolution. Given a good rationale and sufficient pa-
rameterization data, we may choose to extend our model by explic-
itly simulating microenvironmental factors in the form of agents (in 
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8 of 16  |     COLYER et al.

the case of immune cells or stromal cells) or diffusible factors (such as 
oxygen and drugs). Permitting cancer cells to modify their selective 
environment creates potential for emergent complexity and niche 
construction (Chaplain & Anderson, 1996; Qi et al., 1993).

5.1  | Hybrid cellular automata

Hybrid cellular automata (or HCA) have been used to model in-
teractions between tumour cells and diffusible factors for more 
than 20 years. As described in a pioneering 2001 paper by Patel 
et al.  (2001), these models consist of two interdependent compo-
nents: stochastic cell events, and deterministic reaction–diffusion 
partial differential equations. The latter component dictates how 
chemicals or other factors work their way through the system as 
they are consumed and processed by cells. Local concentrations of 
diffusible factors contribute to the cell update rules.

Typically we assume that diffusible factor concentrations rap-
idly re-equilibrate following changes in the configuration of cells. 
We can then numerically solve the equations to find the equilib-
rium concentrations either after every cell event or, trading some 
accuracy for greater efficiency, after a relatively small number of 
cell events have occurred. Suitable procedures for solving partial 
differential equations as initial value problems can readily be found 
in textbooks and software libraries. These range from simple but 
inefficient algorithms based on the classical Gauss–Seidel method, 
which require only a few dozen lines of code (Bacevic et al., 2017; 
Patel et al., 2001; Press, 2007), to the highly sophisticated BioFVM 
solver (Ghaffarizadeh et al., 2016), which is specifically optimized for 
hybrid SABMs. Several SABM platforms include their own methods 
for solving reaction–diffusion equations in two or three dimensions 
(see Appendix S1).

5.2  |  Types of diffusible factor

To add biological realism, we might make cell division and death rates 
in our model depend on the local oxygen and glucose concentrations 

as these factors diffuse through the tumour from the surrounding 
medium (in very small tumours and tumour spheroids) or from point 
sources representing blood vessels (in larger, vascularized tumours). 
We might also modify dispersal rates so that cells follow oxygen or 
glucose gradients. Potential adverse factors include acid produced 
through tumour cell metabolism, and drugs that diffuse from blood 
vessels. Hybrid cellular automata are especially suitable when the 
supply of an influential factor is highly variable over space or time, 
such as in the case of intermittent drug treatment (Bravo et al., 2020).

6  |  PARAMETERIZATION AND INFERENCE

Although theoretical models can be valuable for generating hy-
potheses and providing proof of concept, if we want to apply an 
SABM to studying a particular biological system then we must 
ensure that its influential parameter values are set appropriately. 
Parameterization should ideally be based on clinical or experimen-
tal data specific to the biological system of interest; otherwise val-
ues can be estimated from studies of similar systems or theoretical 
considerations (for instance, diffusion coefficients approximately 
correlate with molecular weight). Influential parameters might 
pertain to the effects of mutations, drugs, oxygen and glucose; 
rates of chemical supply, diffusion, consumption and decay; cell 
dispersal modes and rates; baseline cell death rates, crowding ef-
fects and the size of interacting cell communities. Since calibrating 
SABMs is often computationally demanding, high-performance 
computation may be required to generate the necessary resources 
to calibrate them properly.

6.1  |  Example: Hybrid cellular automaton for 
simulating a tumour spheroid

Bacevic and Noble et al (Bacevic et al., 2017) parameterized a HCA 
to mimic tumour spheroid evolution under drug treatment. In sphe-
roids the limiting factor for cell survival and proliferation is oxygen. 
Other diffusible factors such as glucose were therefore omitted to 

F IGURE  4 An example of using a 
binary tree to select an event (Event 3) 
from four options. Selected nodes are 
shown in blue.
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    | 9 of 16COLYER et al.

simplify the model without compromising its usefulness. The oxy-
gen concentration in the medium and oxygen diffusion rates were 
drawn from previous studies (Casciari et  al., 1992a; Grimes, Kelly, 
et  al.,  2014; Kim et  al.,  2007), as were the mathematical relation-
ships between oxygen consumption rate, cell proliferation rate and 
local oxygen concentration (Casciari et al., 1992b; Grimes, Fletcher, 
et  al.,  2014). The different maximum proliferation rates of drug-
sensitive and resistant cells, reflecting a fitness cost of resistance, 
were determined from new monolayer growth assays. Cells with in-
sufficient oxygen supply were assumed to die.

Since oxygen effects alone fail to account for the extent of qui-
escence observed in tumour spheroids, Bacevic and Noble et al im-
plemented crowding effects by permitting cell budging only within 
a specified radius. New monolayer growth assays revealed that the 
relationships between cell proliferation rate, death rate and drug 
dose could be well approximated with piecewise linear functions. 
The drug's impact on proliferation was further assumed to multi-
ply the oxygen effect, consistent with prior observations (Casciari 
et al., 1992b). Drug consumption was also modelled using Michaelis–
Menten kinetics, with a diffusion rate chosen according to the 
drug's molecular weight and an appropriately low consumption rate. 
Thus parameterized, the SABM accurately predicted the outcomes 
of new tumour spheroid experiments (Bacevic et al., 2017).

6.2  |  Example: Hybrid cellular automaton of the 
bone ecosystem in cancer

Araujo and Basanta  (2016) developed a hybrid cellular automaton 
for which the goal was to capture the ecosystem of the bone. A 
crude approximation of this ecosystem includes the bone itself, the 
myeloid-derived cells such as osteoclasts that resorb bone, and the 
cells derived from mesenchymal stem cells, such as osteoblasts, that 
deposit new bone. Each of these cell types can be modelled as dis-
crete agents regulated by diffusible factors—such as TGF-�, RANK 
ligand, and other factors embedded in the bone matrix—described 
by partial differential equations. Parameterization of the model is fa-
cilitated by the fact that non-cancerous cells have more predictable 
phenotypes, and the model's overall behaviour can be calibrated to 
ensure it recapitulates bone homeostasis. Araujo et al.  (2018) thus 
studied how bone metastatic prostate cancer cells could infiltrate 
the bone ecosystem, take advantage of it, and grow. They also in-
vestigated what prostate cancer cells in the primary tumour should 
be of concern to physicians, and why conventional treatments that 
fail to disrupt tumour-ecosystem interactions also fail to provide 
long-term cancer cures in bone metastatic prostate cancer (Araujo 
et al., 2014).

6.3  |  Parameter inference

Unknown parameter values can be inferred by combining an SABM 
with a statistical method. This is, in fact, often the main objective 

of an SABM study. Approximate Bayesian computation is a popular 
approach that, in its simplest form, infers the value of a parameter 
� as follows

1.	 From our data, calculate some summary statistic �data;
2.	 Set i = 1;
3.	 Run the model using a candidate parameter value �i drawn from 

some prior distribution;
4.	 Calculate the summary statistic �i for the model output;
5.	 If the difference between �i and �data is less than a predefined 

tolerance then add �i to the posterior distribution;
6.	 Increment i ;
7.	 If i  is less than some threshold then repeat from step 3.

Although simple in principle, approximate Bayesian computa-
tion requires careful implementation. The accuracy and precision 
of inferences depend on the choices of prior distributions, sum-
mary statistics and tolerances, as well as the number of iterations. 
Typically multiple parameter values cannot be precisely derived 
from prior data or models, in which case each should be assigned 
a vague (high variance) prior distribution. Tolerance values should 
be tuned such that neither too many nor too few candidate param-
eter values are accepted to the posterior distribution. Summary 
statistics should capture features of the system that provide useful 
information about the parameters of interest. A useful template 
is a 2010 study (Sottoriva & Tavaré, 2010) in which Sottoriva and 
Tavaré inferred aspects of stem cell dynamics in the colonic crypt 
by combining a cellular Potts model with approximate Bayesian 
computation, using a summary statistic based on methylation 
patterns.

An alternative to this approach was recently outlined in (Cess & 
Finley, 2023), in which the authors describe a novel method utilizing 
neural networks to reduce both tumour images and SABM simula-
tions to low-dimensional points. The distance between these points 
acts as a quantitative measure of how the two differ. This enables 
direct comparison, and by using parameter fitting algorithms to mini-
mize the distance between the two sets of points, parameters can be 
estimated directly from the images and the simulations.

6.4  |  Sensitivity analysis

Whatever the objective, an essential step in any modelling study is 
to examine, as far as is practical, how the results and conclusions 
depend on uncertain aspects of the model. A common approach is to 
run a large number of model variants with different combinations of 
plausible parameter values. Varying one parameter at a time can pro-
vide useful insight into which parameters have the greatest impact 
on model output, with the shortcoming that non-linear interactions 
between parameters are often neglected. A more sophisticated ap-
proach is to infer a multivariable “metamodel” function—a model of 
the model—that approximately describes how the model's param-
eters determine its outputs.
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10 of 16  |     COLYER et al.

Since varying many parameters systematically on a continuous 
scale is infeasible, sampling methods such as Sobol sequencing 
(Sobol, 1967) or Latin hypercube sampling (McKay et al., 2000) can 
be used to generate a set of near-randomly sampled combinations of 
parameter values. Both methods were used in a recent SABM study 
of cancer cell response to ATR-inhibitors (Hamis, Yates, et al., 2021). 
A recent introductory review explains specifically how to apply 
these methods to cancer ABMs (Hamis, Stratiev, & Powathil, 2021). 
It is important to note that thorough sensitivity analysis involves 
varying not only parameter values but also mathematical relation-
ships, aspects of spatial structure, and any other influential model 
components.

7  | VISUALIZATION

Having built and parameterized a model, we next require useful 
ways to visualize its output. Typical methods represent spatial infor-
mation, multidimensional phenotypic information, or evolutionary 
dynamics. Representing all these aspects in a single image is gener-
ally impossible.

7.1  |  Spatial plots

A spatial plot represents the state of an SABM at a moment in time. 
Producing a two-dimensional grid plot of a two-dimensional on-
lattice model is straightforward—we simply output the state of 
each site as a matrix of numbers and input this matrix into a bitmap 

(or raster) plotting function in R, Python, MATLAB, or similar soft-
ware, using different colours to represent the different states 
(Figure  3). Our toy Eden growth model (Noble,  2018) provides 
an example implementation. Diffusible factor concentrations can 
be shown outside the tumour using a colour gradient and inside 
the tumour by adjusting brightness (Bacevic et al., 2017). We can 
apply the same method to off-lattice models by specifying a grid 
and assigning each grid square a value that summarizes the states 
of all points within the square. Given multi-level spatial structure, 
we can represent the most abundant state in each deme (Noble 
et al., 2022).

Illustrating three-dimensional information is more technically 
demanding as we need to project the object onto a two-dimensional 
plane, determine the visible surface, and add shading (as in 
Figure  5a). Suitable computational methods include rasterization 
and ray tracing, which can be performed in R and Python or using 
dedicated software, such as POV-Ray. Further details can be found 
in the PhysiCell documentation (see Appendix S1). A much simpler 
solution is to plot only two-dimensional slices.

7.2  | Visualizing evolutionary dynamics

Muller plots represent subpopulation dynamics and phylogeny, while 
disregarding spatial information. The horizontal axis represents time 
and the vertical axis corresponds to subpopulation frequency. Each 
subpopulation is depicted as a shaded area emerging from its im-
mediate ancestor (Figure 5b). Fish plots are similar but show popula-
tion size rather than frequency (Figure 5c). Software packages for 

F IGURE  5 (a) Plots of a 3D off-lattice ABM, produced in PhysiCell (Ghaffarizadeh et al., 2018), showing a cross-section of model states 
of a hanging-drop spheroid growth simulation at different time points, using either a deterministic or a stochastic SABM. Cells are coloured 
according to cell cycle position. Cells in the K1 cell cycle state are green, post-mitotic K2 cells are magenta, quiescent cells are pale blue, 
apoptotic cells are red, and necrotic cells are brown. Cell nuclei are shown in dark blue. (b) Muller plot showing phylogenies and phenotype 
frequencies over time. (c) Fish plot showing phylogenies and phenotype population sizes over time. (d) 2D grid plot corresponding to same 
simulation as the Muller and fish plots in previous panels, with the same colour scheme, at the final time point. Plots b and c were produced 
using the R package ggmuller (Robert Noble, 2019). Image a is reproduced from (Ghaffarizadeh et al., 2018) under the terms of a Creative 
Commons Attribution License and with the approval of Paul Macklin. Plots (b–d) are reproduced from (Noble et al., 2020) under the terms of 
a Creative Commons Attribution License.

(a) (b) (d)

(c)

Deterministic model Stochastic model
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    | 11 of 16COLYER et al.

producing these plots include ggmuller (Robert Noble,  2019) and 
EvoFreq (Gatenbee et al., 2019).

7.3  |  Phenotype space plots

In a phenotype space plot, the axes correspond to continuous traits 
such as cell fitness, metabolic type and degree of drug resistance, 
and each point represents a cell. We can visualize phenotypic evo-
lution by animating phenotype space plots from a series of time 
points. Robertson-Tessi et al. (2015) pioneered the use of these plots 
in cancer research in their 2015 study of the effects of metabolic 
heterogeneity on tumour growth.

8  |  REPRODUCIBILITY

Reproducibility is a cornerstone of the scientific method. A repro-
ducible modelling study not only allows others to easily regenerate 
its results but also permits further data processing, downstream 
analysis of generated data, generation of summary statistics, ease of 
production for visual representations or plots, and even adaptation 
of the existing model for novel purposes.

8.1  |  Principles of reproducible research

Gundersen (2021) describes three categories of reproducibility:

1.	 Outcome reproducibility: The reproduction experiment's result 
matches the original. If the same analysis of the result is per-
formed, the same conclusions can be drawn, and the original 
hypothesis is supported by both experiments.

2.	 Analysis reproducibility: The reproduction experiment's result 
differs from the original, but if the same analysis method is used, 
the interpretation of the results still matches the original.

3.	 Interpretation reproducibility: The reproduction experiment's 
outcomes and the analysis of said outcomes both differ, but the 
interpretation matches the original interpretation.

Computational modelling studies should typically aim for the 
highest standard of outcome reproducibility. If care is taken to con-
struct a well-packaged computational study in a controlled digital 
environment, then in principle, given a suitable machine, the study 
should be easily reproduced exactly. This entails not only compre-
hensively explaining methods, results, analyses and interpretation, 
but also sharing the model code and scripts used at every step of 
pre-processing and analysis, providing a detailed description of how 
to execute the code, and sharing any associated data and parameter-
ization and configuration files.

In their outline of best practices to observe throughout a compu-
tational research project, Sandve et al. (2013) advocate tracking how 

every result is produced and reporting intermediate results as well as 
final outcomes. To make code easier to reproduce, one should cata-
logue the versions of software used at every point, record the seeds 
used in any random number generation, and implement version con-
trol (Heroux & Willenbring, 2009). Manual data manipulation should 
be avoided in favour of using automated methods to reformat and 
process raw data files. The raw data used to produce summary data 
plots should be easily accessible to facilitate easy plot reproduction 
and to allow readers to check individual data points. Textual descrip-
tions of methods and results should link to the associated raw data 
and code so that a reader can easily follow all the steps leading to in-
terpretations. Lastly, modellers are highly encouraged to share each 
full study, ideally with a dedicated public server. One such research-
oriented database is zenodo (Zenodo, 2023), where scientists may 
freely upload their research output permanently as a citeable piece 
of software.

8.2  | Workflow managers, package 
managers and containers

A complex computational model will often require multiple steps 
to be carried out in sequence. If a high-performance computing 
(HPC) cluster is required to run the model efficiently—as is typical 
for complex models—it is essential to utilize a workflow manager 
to properly orchestrate the steps (Wratten et  al.,  2021). Open-
source workflow managers allow researchers to package a model 
into a reproducible, cross-platform workflow. Nextflow (Mölder 
et al., 2021) and Snakemake (Di Tommaso et al., 2017) are among 
the most popular workflow managers with several published pipe-
lines (Cornwell et al., 2018; Hölzer & Marz, 2021; Kieser et al., 2020; 
Zhao et al., 2018), strong community support, and extensive docu-
mentation, giving users flexibility when designing their own custom 
pipelines. Snakemake is based on Python, a popular language among 
computational biologists and bioinformaticians. Nextflow uses the 
Java-based language Groovy, which has a Python-style structure 
and is relatively easy to for Python users to learn. Both also enable 
automatic parallelization for HPC clusters, which can be essential for 
complex SABMs or for running multiple instances of smaller models 
simultaneously.

Another option is to utilize container technologies, considered 
by many to be the gold standard in computational research. These 
are less computationally demanding than running an application on 
a computer directly or using a virtual machine and so permit faster 
deployment, patching and scaling. Containers also allow users to 
deploy the application on multiple operating systems or machines 
without reformatting and will run the application the same way 
no matter where they are deployed (Moreau et al., 2023). Docker 
(Merkel, 2014) is a popular container design platform which permits 
packaging applications into distribution-independent containers. 
Another option, Bioconda (Grüning et  al.,  2018), enables easy de-
pendency management, and can be deployed inside a container.
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8.3  |  Extendable modelling platforms

For many research projects, the easiest option can be to build 
on an existing open-source agent-based modelling platform (see 
Appendix  S1 for a brief guide). Some of these platforms—such as 
Chaste (Mirams et al., 2013), CompuCell3D (Swat et al., 2012), HAL 
(West,  2018) and PhysiCell (Ghaffarizadeh et  al.,  2018)—excel in 
simulating off-lattice cell populations in complex microenviron-
ments. Others, such as demon (Noble, 2019) (which has an auto-
mated computational workflow, Warlock (Bak et al., 2023)), J-SPACE 
(Angaroni et  al.,  2022) and SMITH (Streck et  al.,  2023), focus on 
efficient modelling of evolutionary dynamics. Several are modular 
platforms, which facilitate reproducibility by making it easy to create 
and share extensions of the generic software. Nevertheless, even 
the most flexible platform is necessarily based on certain fundamen-
tal assumptions, structures and algorithms. If we want to create an 
especially innovative model, requiring several novel components 
that pre-existing modelling platforms lack, then we might find it best 
to start from scratch. In principle, specialist rather than generalist 
models permit greater optimization in terms of memory demands 
and execution time.

8.4  |  FAIR principles in data management

As the volume of publicly available research data has been grow-
ing exponentially in recent decades (Statista,  2023), proper digi-
tal data management and annotation is recognized as an essential 
step in computational research—crucial for research reproduc-
ibility. Most notably, the FAIR principles have become a corner-
stone in modern data management, particularly in the realms of 
scientific and research data (Wilkinson et  al.,  2016). FAIR is an 
acronym that encapsulates a set of guiding principles: Findable, 
Accessible, Interoperable, and Reusable. To be FAIR, data must 
first be Findable, meaning that it is easy for both humans and ma-
chines to discover, thanks to comprehensive metadata and proper 
indexing. Data should be Accessible, ensuring that access rights 
and permissions are clear and well-defined, thus minimizing barri-
ers to entry. Interoperable data is structured in a way that allows 
integration with other datasets by adhering to common standards, 
formats and vocabularies. Lastly, data should be Reusable, with 
thorough documentation, contextual information and availability 
in a format that facilitates easy replication and reuse. Altogether, 
the FAIR principles serve as a framework for enhancing data shar-
ing, management and collaboration, ultimately driving scientific 
progress and fostering open science initiatives. Major organiza-
tions that have embraced FAIR guidelines include the European 
Open Science Cloud (EOSC,  2018), the European Life-Science 
Infrastructure for Biological Information (ELIXIR,  2020), the US 
National Institutes of Health, and the Global Alliance for Genomics 
and Health (GA4GH, 2019).

9  | DISCUSSION

Having surveyed the numerous choices that arise in any SABM pro-
ject, we are faced with a problem: how can we choose the most ap-
propriate model? In tumour evolution research, unlike in much of 
physics and engineering, there is no standard approach. Rather we 
must tailor a model to each research question by considering which 
components, events and interactions must be included, how far each 
aspect can be parameterized with available data, and the limits of 
our computational resources. It is essential to build on a sound un-
derstanding of the biological system and of the questions that mat-
ter to biologists and clinicians. Ideally this knowledge should come 
through close collaboration with empirical researchers throughout 
the model development process.

A general principle is that model complexity should match the 
complexity only of the phenomena of interest. We need not em-
ploy an off-lattice hybrid SABM if a simple cellular automaton with 
only a few basic update rules can demonstrate the same principle. 
Attempting to represent every component of a biological system is 
not only computationally impractical but also risks overfitting and 
hinders explainability. Simpler models have many merits. They are 
easier to falsify and have fewer sources of potential error. They re-
duce researcher degrees of freedom and curb the tweaking of pa-
rameters to support a pet hypothesis. They are more mathematically 
tractable and easier to analyse. Perhaps most importantly, a simple 
model has wider applicability and can be more readily generalized, 
adapted or extended to answer new questions. More complicated 
models should be preferred only if the biological system is especially 
well understood or if simpler models have been tested and shown to 
be inadequate.

The greater difficulty—all too easily overlooked—is in choosing 
among a multitude of plausible simple models. An Eden growth 
model, for example, is arguably no more parsimonious than a spa-
tial branching process or a spatial Moran process, which generate 
very different evolutionary dynamics. It is debatable whether the 
greater popularity of Eden growth models can be justified on biolog-
ical grounds and is not simply due to them being easier to program.

Model design remains a challenge for even the most experienced 
researchers. One of the nine overarching themes in a recent review 
of key questions concerning the ecology and evolution of cancer 
(Dujon et al., 2021) was that we do not yet know which mathemati-
cal and computational models are the most useful. In another recent 
survey of cancer adaptive therapy modelling (West et al., 2023), four 
of the 11 key open questions were related to identifying appropriate 
mathematical models. When it comes to SABMs, the main limitations 
are twofold. First, we typically lack sufficient data to design and pa-
rameterize SABMs of large tumours. Second, routinely simulating 
much more than a few million individual cells (corresponding to no 
more than half a cubic centimetre of tumour) is computationally im-
practical. To some extent, these problems have technological solu-
tions. Multi-region sequencing, spatial multi-omics, digital pathology 
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and other modern methods are producing ever more detailed spatial 
tumour data. Accessible computing power continues to grow. But 
progress will also depend on developing smarter models.

Instead of drawing conclusions from a single SABM, we might 
do better to consider ensembles of models with diverse structures, 
algorithms and underlying assumptions. Much as in hurricane fore-
casting (Hamill et al., 2012), we can be more confident when many 
models converge on the same prediction. Another important direc-
tion is to develop coarse-grained models that can simulate tumour 
evolution as accurately as cell-level SABMs but with much greater 
computational efficiency. Rather than cell division, death, mutation 
and dispersal rates, coarse-grained models depend on macroscopic 
parameters such as the arrival rate of consequential clones, clonal 
expansion speeds, and large-scale microenvironmental heterogene-
ity. A potential way forward is to combine mathematical analysis of 
the relevant stochastic processes to determine appropriate approx-
imations (Stein et al., 2024), and machine learning methods to infer 
the parameter values. SABMs capable of accurately simulating the 
evolution of entire tumours could have wide-ranging applications, 
not least in patient-specific clinical forecasting.
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