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Abstract
One of the most important challenges in decision theory has been how to reconcile
the normative expectations from Bayesian theory with the apparent fallacies that
are common in probabilistic reasoning. Recently, Bayesian models have been
driven by the insight that apparent fallacies are due to sampling errors or biases
in estimating (Bayesian) probabilities. An alternative way to explain apparent
fallacies is by invoking different probability rules, specifically the probability
rules from quantum theory. Arguably, quantum cognitive models offer a more
unified explanation for a large body of findings, problematic from a baseline
classical perspective. This work addresses two major corresponding theoretical
challenges: first, a framework is needed which incorporates both Bayesian and
quantum influences, recognizing the fact that there is evidence for both in human
behavior. Second, there is empirical evidence which goes beyond any current
Bayesian and quantum model. We develop a model for probabilistic reasoning,
seamlessly integrating both Bayesian and quantum models of reasoning and
augmented by a sequential sampling process, which maps subjective probabilistic
estimates to observable responses. Our model, called the Quantum Sequential
Sampler, is compared to the currently leading Bayesian model, the Bayesian
Sampler (Zhu, Sanborn, & Chater, 2020) using a new experiment, producing
one of the largest datasets in probabilistic reasoning to this day. The Quantum
Sequential Sampler embodies several new components, which we argue offer a
more theoretically accurate approach to probabilistic reasoning. Moreover, our
empirical tests revealed a new, surprising systematic overestimation of probabilities.

Keywords: Probabilistic Reasoning; Sequential Sampling; Quantum Cogni-
tion; Bayesian; Probabilistic Fallacies
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One of the most theoretically important and practically significant problems in cognitive

science is to understand human probabilistic reasoning. A vexing and enduring challenge

has been how to reconcile an expectation of Bayesian rationality with extensive evidence

of apparent paradoxes and fallacies. We will review some of the predominant Bayesian

approaches to understanding fallacies and propose a new probabilistic reasoning model,

based on the alternative probability rules, from quantum theory.

The development of probabilistic reasoning theory to its current state of the art, in-

cluding both Bayesian variants and quantum models, is compelling: the position of Bayesian

rationality is that, in probabilistic reasoning and decision making generally, human behavior

ought to be consistent with the principles of Bayesian probability theory. There are pow-

erful formal arguments as to why this should be the case (Oaksford & Chater, 2007). For

example, the Dutch Book Theorem states that probability systems consistent with a par-

ticular set of requirements inoculate a reasoner from incoherent assignments of probabilities

to events, that is, assignments which allow a sure loss in a betting situation (de Finetti,

Machi, & Smith, 1993). Bayesian probability theory is consistent with the requirements

for the Dutch Book Theorem, as well as other important results, for example, concerning

the convergence of posterior probabilities (Aumann, 1976) and the practicalities of Bayesian

convergence (Aaronson, 2005; Hanson, 2006). There is a large body of evidence in favor of

Bayesian cognitive models, in a wide range of situations, including categorization, learning,

and reasoning (e.g., Griffiths et al., 2010; Sanborn, Griffiths, & Navarro, 2010; Tenenbaum

et al., 2011).
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Additionally, the optimality embodied in Bayesian reasoning has been argued to confer

adaptive, evolutionary advantage, for example, for foraging (Valone & Giraldeau, 1993) or

mating (Luttbeg & Warner, 1999). For many non-human animals, statistical estimation of

environmental information has a very tangible evolutionary value (McNamara, Green, &

Olsson, 2006; Trimmer et al., 2011; Valone, 2006). If there is even a small evolutionary

advantage from Bayesian processes in behavior, across generations, we expect a trend for

increasing conformity with Bayesian constraints. The current evidence seems to support

such views.

The picture of unquestionable benefits from Bayesian reasoning has to be moderated

by the problem that full Bayesian reasoning is, in fact, intractable for any finite agent.

These observations have a long history, notably with the proposal of bounded rationality

(Simon, 1955), work which was recognized with a Nobel prize (for Simon in 1978). Bayesian

researchers have been aware of these limitations and there has been extensive effort to

develop versions of Bayesian reasoning suitable for finite agents (Gershman, Horvitz, &

Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015; Howes, Lewis, & Vera, 2009). For

example, Lieder and Griffiths (2019) offered a framework for bounded Bayesian reasoning

and argued that many instances of apparent deviations from Bayesian prescription can

be explained as Bayesian reasoning with limited resources. As another example, in an

application of Bayesian reasoning with datasets of realistic size, Lake, Salakhutdinov, and

Tenenbaum (2015) employed a combination of Bayesian Networks and other simplifications

to tackle the problem of learning how to recognize handwritten characters. Overall, when we

encounter human behavior apparently at odds with Bayesian reasoning, it is reasonable to

ask whether maybe there is an underlying Bayesian component to behavior, which through

simplification or other approximations, leads to the apparent errors and fallacies.

Bayesian probability is the most established framework for probabilistic reasoning,

whether in cognitive modeling or in science more generally (e.g., Howson & Urbach, 1993).

Nevertheless, it is not the only one (e.g., Narens, 2014). In fact, there is an infinite hierarchy

of probability systems, ordered in terms of the complexity of the basic sum rule (that is,
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Figure 1. The two figures show Bayesian (Figure 1a) and quantum (Figure 1b) representations
of the information in the Linda problem (Tversky & Kahneman, 1983). In the Bayesian case, the
conjunction corresponds to the intersection between the feminist (F ) and bank teller (BT ) sets. In
the quantum case, the conjunction corresponds to the sequential projection to the F and then BT
subspaces, of the mental state vector ψ. In Figure 1b, the darker plane represents BT and the lighter
plane represents F ; the yellow projection represents judging BT alone and the orange projection
represents judging F and then BT (both projections are along the BT subspace).

the complexity of the law of total probability; Sorkin, 1994). Below we will introduce a

probability system related to Bayesian theory, but with a sum rule just a bit more complex

than the Bayesian one, quantum theory. Quantum and Bayesian theories are based on dif-

ferent axioms and offer different predictions for how basic probabilities combine to produce

more complex probabilities. Interestingly, quantum theory satisfies the Dutch Book theorem

too (Pothos et al., 2017). Quantum and Bayesian theory underwrite two different hypothe-

ses for probabilistic reasoning. There have been several proposals of successful quantum

cognitive models, adding credibility to the notion that, sometimes, quantum, rather than

Bayesian, principles offer a better approach to understanding probabilistic reasoning (Bruza,

Wang, & Busemeyer, 2015; Busemeyer & Bruza, 2011; Haven & Khrennikov, 2013; Pothos

& Busemeyer, 2013, 2022).

Another consideration is that, even though the present focus is probabilistic reason-

ing, the corresponding models and ideas might well turn out to be more general. Part of

the appeal of probabilistic models rests in their general applicability, offering promise that
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successful application in one area might translate to novel theory and prediction in other

areas. For example, there have been proposals of Bayesian models in just about all areas

of cognitive psychology, including learning (e.g., Griffiths & Tenenbaum, 2009; Steyvers et

al., 2003), memory (Steyvers, Griffiths, & Dennis, 2006), perception (Chater, 1996), lan-

guage (Griffiths & Kalish, 2007; Xu & Tenenbaum, 2007), and logical reasoning (Oaksford

& Chater, 1994), as well as probabilistic reasoning. Analogously, quantum theory has been

applied in models for conceptual structure (Aerts, 2009; Aerts, Sozzo, & Veloz, 2015; Bruza,

Kitto, Ramm, & Sitbon, 2015), memory (Brainerd et al., 2015; Trueblood & Hemmer,

2017), similarity (Epping et al., 2023; Pothos et al., 2013), and even attentional dynamics

(Atmanspacher & Filk, 2010; Rosner et al., 2022). The scope of applicability of such models

is underwritten by an assumption that large parts of cognition can be understood as the

processing of statistical structure.

For all their promise, probabilistic models, whether classical or quantum, do not ex-

haust approaches in probabilistic reasoning theory. For some researchers, instead of prob-

ability theory (Bayesian or quantum), a better route to understand probabilistic reasoning

is heuristics and biases (Hertwig et al., 2013; Kahneman, Slovic, & Tversky, 1982). For ex-

ample, Lopez-Astorga, Ragni and Johnson-Laird (2021) conclude, in relation to conditional

probabilities, that “the probability calculus supplements human intelligence rather than un-

derlies its deliberations”. Without doubt, heuristics often embody deep intuitions about

human cognition. However, heuristics and biases are sometimes imprecisely expressed or

have a narrow focus. For example, Tversky and Kahneman (1983; Shafir, Smith, & Osher-

son, 1990) proposed to explain the conjunction fallacy with the representativeness heuristic,

according to which a similarity process drives probabilistic judgments in the Linda scenario.

This approach has been criticized as being vague and unsuitable for detailed empirical pre-

dictions (Moro, 2009). Additionally, using heuristics, it is hard to see how one can predict

results consistent with violations of probability identities and the cancellation of noise terms

in Costello and Watts (2014). As another example, the fast-and-frugal approach is quanti-

tatively expressed and so, for example, can provide specific predictions regarding the way
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naive observers answer questions like which city between Bristol and Bath has the higher

population (Gigerenzer & Goldstein, 1996). However, as currently specified, this model

cannot be applied to general probabilistic judgments.

Despite these shortcomings, heuristics provide important insight to probabilistic rea-

soning. Notably, there are aspects of behaviour beyond formal probabilistic approaches and

in these cases heuristic and biases approaches come into their own. Moreover, heuristics

such as representativeness and availability have descriptive value and offer alternative ex-

planatory narratives, which complement those from formal models. That is, in some cases,

probabilistic models attempt to offer an explanation combining and consistent with heuristic

accounts. For example, a heuristic such as representatives tells us that probabilistic reason-

ing might share some elements with similarity processes – this perspective to explanation

is complementary, not mutually exclusive, to that from a formal model, such as quantum

theory (Busemeyer et al., 2011). Another example of this point is Trueblood et al.’s (2017)

model of causal inference, which involved a quantum model, which could capture a range of

heuristic accounts, as well as a Bayesian influence (see Rehder, 2014). Bayesian researchers

have also tried to re-express heuristics within their frameworks (e.g., Lieder & Griffiths,

2019). While we acknowledge the importance of heuristics in explaining probabilistic rea-

soning, in the present work, we do not consider them in detail. Rather, our focus is on

exploring the capacity of formal probabilistic models to describe probabilistic reasoning,

across a large range of judgments.

A final preliminary remark is that, even if we accept the merits of approaching proba-

bilistic reasoning theory with a formal probability framework, it seems unlikely that proba-

bilistic principles as such would suffice for a complete explanation. A reasonable expectation

is that a full model should include some process assumptions of how probabilities and/ or

responses are produced. For example, even if the mind embodies probabilistic principles

which are consistent with Bayesian prescription, the way relevant probabilities are estimated

might be faulty or there might be a noisy response mechanism. Accordingly, apparent fal-

lacies could be explained in a way which still allows a statement of Bayesian rationality for
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humans. All these points produce interesting conundrums, regarding whether fallacies show

fault with probabilistic principles versus whatever additional mechanisms the mind employs

in the production of probabilities or responses. Earlier models for the conjunction fallacy

and probabilistic fallacies in general have been focused on just the probabilistic framework

– this includes our own model (Busemeyer et al., 2011; see also e.g. Tentori et al., 2013).

More recent work has been adopting a more complete approach (Costello & Watts, 2018;

Zhu, Sanborn, & Chater, 2020).

Apparent probabilistic fallacies

No finding has had as much influence in probabilistic reasoning theory than Tversky

and Kahneman’s (1983) conjunction fallacy. Participants were told of a hypothetical person,

Linda, who was described very much like a feminist and not at all like a bank teller. They

were then asked to rank order how likely different statements about Linda are. The three

statements of interest concern whether she is a bank teller (BT ), a feminist (F ), and the

conjunction between two (F ∧ BT ). Participant ratings typically indicate that P (F ) >

P (F ∧ BT ), as would be expected, but also that P (F ∧ BT ) > P (BT ). The latter finding

challenges a fundamental principle in Bayesian theory, that a conjunction can never be more

likely than a marginal. At the root cause of the problem is the fact that probabilities in

Bayesian theory need to conform with set-theoretical constraints. So, in the same way that

it is impossible to have more blue and red balls in an urn, than just blue balls (blue and red

balls are a subset of just blue balls), it is likewise impossible to have P (F ∧BT ) > P (BT ),

in classical probability theory.

The conjunction fallacy has proven robust across a large number of disambiguations,

clarifications, and other manipulations (Dulany & Hilton, 1991; Moro, 2009; Tentori, Bonini,

& Osherson, 2004). For example, researchers have considered whether a frequentist presenta-

tion of the relevant information might make participants less prone to a conjunction fallacy,

since, the argument goes, probabilistic reasoning based on frequencies would be more nat-

ural for humans, than based on subjective probabilities (e.g., Gigerenzer, 1994; Sanborn &
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Chater, 2016). Another suggestion has been that making the set-theoretic structure of a

problem more salient can foster compliance with Bayesian theory. For example, Tentori,

Bonini, and Osherson (2004) asked participants whether a Scandinavian person was more

likely to have blond hair versus blond hair and blue eyes; in such a case, the relevant prob-

abilities directly correspond to countable instances, as opposed, for example, to subjective

probabilities for a single case, such as Linda – of course, the two are formally equivalent, but

perhaps not subjectively so. Such manipulations can reduce the conjunction fallacy rate,

but they rarely eliminate it completely (Moro, 2009).

Regarding disambiguations, there is the possibility that, perhaps, participants mis-

understand the question in a way that implies there is no longer a fallacy (cf. Tentori,

2021). Dulany and Hilton (1991; Hilton, 1995; Hilton & Slugoski, 2001; see also Adler,

1984) considered how so-called conversational implicatures (Grice, 1975) might be relevant

in the way participants understand the various statements in the Linda conjunction fallacy

example. The proposal is that participants might be assuming that when the BT predicate

is presented by itself, ¬F is also implied, that is P (BT ) = P (BT ∧ ¬F ). Of course, if the

BT statement is augmented in this way, then there is no longer a fallacy, since the proba-

bility that Linda is a bank teller and a feminist can easily be higher than the probability of

another conjunction. The prediction from this account is that when the question about just

BT is properly disambiguated, the rate of conjunction fallacy should be greatly diminished

(Dulany & Hilton, 1984; Macdonald & Gilhooly, 1990). However, there have been several

studies testing this prediction and in most cases a conjunction fallacy could still be identified

(e.g., Agnoli & Krantz, 1989, and Messer & Griggs, 1993, as well as the original Tversky &

Kahneman, 1983, study; review in Moro, 2009).

One way to disambiguate potentially unclear statements, such as a marginal in iso-

lation, has been to introduce a fuller range of probability judgments: for example, Tentori

et al. (2004) and Wedell and Moro (2008) also included BT ∧ ¬F (or the equivalent of)

in conjunction fallacy experiments, so as to prevent participants from mistakenly inferring

BT to be BT ∧ ¬F . To sum up this point, it is always possible that participants do not
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understand a probability judgment as intended. The current evidence suggests that a more

complete set of probability judgments will make it less likely that participants will employ

unintended interpretations. Indeed, the most recent work on probabilistic fallacies, such as

that from Costello and Watts (2014) and Zhu et al. (2020), has employed an increasingly

more expansive set of probability judgments. Our work is in this vein.

The conjunction fallacy is nonsensical from a baseline Bayesian perspective. How can

people decide that there are more Scandinavian individuals with both blond hair and blue

eyes, than just blue eyes? It seems that the conjunction fallacy is such a simple result that

it is tempting to imagine that it can be explained and presumably immediately corrected by

anyone. However, as Stephen J. Gould famously said (1992, p.469) about the conjunction

fallacy, “I know that the conjunction is least probable, yet a little homunculus in my head

continues to jump up and down, shouting at me - ‘but she can’t be just a bank teller; read

the description’ ”. At the same time, Bayesian theory is intuitive too: Bayesian theory has

been described as “common sense reduced to calculations” (Laplace, 1816, cited in Perfors et

al., 2011). Arguably, one of the drivers of the applicability of Bayesian theory in cognition

is exactly the fact that Bayesian principles are intuitive since, after all, it is human intuition

that we are trying to model. The conjunction fallacy exemplifies this clash between two

different, equally powerful, intuitions, and the persistence (Gilboa, 2000) of this clash has

had a defining influence in the field of probabilistic reasoning and decision making.

The singular influence of the conjunction fallacy in the literature on probabilistic

reasoning should not obscure the fact that there have been several other apparent fallacies,

which challenge any picture of reasoning based on baseline Bayesian theory. Notably, there

are disjunction fallacies, according to which people judge P (A∨B) < P (B), even though a

disjunction will always be at least as likely than either of its individual premises (Carlson

& Yates, 1989). There are disjunction effects, whereby people judge P (A) ̸= P (A ∧ X) +

P (A∧¬X) thus violating the classical law of total probability (Broekaert et al., 2020; Shafir

& Tversky, 1992). There have also been reports of unpacking effects, when the probability

of a ’packed’ disjunction is judged as lower than the sum of mutually exclusive ’unpacked’
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components (Tversky & Koehler, 1994). Moreover, question order effects have been observed,

so that pairs of yes/ no questions are responded to differently, depending on the order in

which they are presented (Moore, 2002). A final example of this non-exhaustive list of

apparent fallacies is errors in the way conditionalizing information impacts on probability

updating (Bergus et al., 1998; McKenzie, Lee, & Chen, 2002; Trueblood & Busemeyer, 2011)

and problems with estimating conditional probabilities generally (Lopez-Astorga, Ragni, &

Johnson-Laird, 2021).

Understanding human probabilistic reasoning is a challenge of proposing a framework

which encompasses as many of the findings generally considered fallacies as possible. There

are some ideas which, though promising for particular results, have not generalized well.

We have already briefly encountered Tversky and Kahneman’s (1983) representativeness

heuristic. Tentori, Crupi, and Russo (2013) suggested that conjunctions are evaluated using

inductive confirmation. For example, in the Linda problem, participants estimate the likeli-

hood for the conjunction as the result of evaluating a confirmation measure that reflects the

increase in probability from the initial judgment for P (F |BT ) to P (F |BT ∧ story) when

introducing the information about the story. This account works well for the conjunction

fallacy, but it is difficult to adapt it to other probabilistic judgments, such as disjunctions or

conditional probabilities (Busemeyer et al., 2015). As a final example, averaging accounts

have been proposed for the conjunction fallacy, which purport that conjunctions are evalu-

ated as the averages of the probabilities of each conjunct individually (Abelson, Leddo, &

Gross, 1987; Fantino et al., 1997; Nilsson et al., 2009). Such accounts encounter difficulty

when it comes to explanations of conditional dependencies between items, as well as the way

conjunction fallacies vary depending on the causal strength between the conjuncts.

There are other examples of judgment theory focused on a single or a few apparent

fallacies, but with limited capacity for generalization. The conjunction fallacy especially has

attracted enormous attention, but, ultimately, this is a one degree of freedom finding (either

P (A∧B) < P (B) or P (A∧B) > P (B)) and so is poorly suited for comprehensively testing

complex theories. Overall, the value of models focused on a single or a handful of effects is
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unquestionable, not least because in such models it is often possible to acquire substantial

insight into the reasons for good or bad performance. At the same time, there is a natural

trend in the field towards more encompassing accounts.

Two recent theories have been evaluated against larger sets of probability judgments.

Costello and Watts (2014) examined their theory against marginals, two-way conjunctions

in different combinations of two conjuncts and their negations, and disjunctions. Even

though no detailed model fits were carried out, Costello and Watts (2014) considered several

probabilistic identities, purported to allow tests of their account. Costello and Watts (2016)

extended the range of probabilities judgments to 10 judgments, for five pairs of weather

events, so that marginals, conjunctions, disjunctions, and conditionals were included. Zhu,

Sanborn, and Chater (2020) provided a more extensive empirical examination of human

probabilistic judgments, by asking participants to estimate the probabilities of 20 unique

questions about weather events, marginals, conjunctions, conditionals etc, involving the pair

{icy, frosty}; there were another 20 questions, involving the pair {normal, typical}. Zhu et

al. (2020) compared the fit of their model to this dataset and the one from Costello and

Watts (2014).

Overall, there has been a trend in examining theories of probabilistic reasoning against

larger datasets, which encompass all of marginals, conjunctions, disjunctions, and condition-

als. From the perspective of any formal model, whether Bayesian or not, more comprehen-

sive evaluations are essential, since the strength of such models lies exactly in how different

probability terms constrain each other. For example, in a baseline Bayesian model, for three

events, the three-way joint probability distribution (eight probabilities constrained to sum

to one) allows the specification of all other probabilities: conjunctions, disjunctions, condi-

tionals etc. The empirical examinations from Costello and Watts (2014, 2016) and Zhu et

al. (2020) go some way towards addressing these issues, because, for a particular pair of

events, several possible probability questions were considered. However, we think that the

descriptive power of formal probabilistic models is better assessed against several pairs of

events, assessed concurrently. In this work, we consider three events, all three event pairs,
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and for each pair all conjunctions, disjunctions, and conditional probabilities - altogether 78

probabilistic judgments per participant. Such a set of probability terms subsumes individ-

ual apparent probabilistic fallacies, including conjunction fallacies, disjunction fallacies, and

violations of the law of total probability. Perhaps more importantly, the inter-dependence

of probabilities amongst each other would offer a more sensitive test of probabilistic models.

While we think that the motivation for a new, more expansive dataset is reasonably clear,

is there a need for corresponding theoretical development too?

Theoretical progress

We can summarize a large portion of recent theoretical progress in probabilistic rea-

soning in terms of three main ideas. The first main idea is that reasoning has a kernel

of Bayesian influence, but in a way that is noisy or biased, so that deviations from strict

Bayesian prescription can arise. Noise (or bias) can be motivated in several ways. For ex-

ample, in Lieder and Griffiths (2019) there is a tradeoff between Bayesian consistency and

resource limitations and in Dasgupta et al. (2020) probability updating can be noisy. A

proposal particularly relevant to us is the one from Costello and Watts (2014), since their

work offers a more complete calculus for probabilistic reasoning. In Costello and Watts’

(2014) probability plus noise model, probability judgments are based on sample frequencies

computed from a fixed number of samples generated from memory. For example, if a person

wants to decide whether they are likely to enjoy a camping trip, they will invoke from mem-

ory previous instances of camping trips and assess the probability of enjoyment against the

relevant frequencies, in a way akin to the availability heuristic from Tversky and Kahneman

(1983). When there are no prior relevant instances, such as when we are called to evaluate

probabilities about Linda, whom we have never encountered before (unless we are cogni-

tive psychologists), a mental simulation process can generate such instances and employ

them to compute probabilities. It can be questioned whether a mental simulation process

is a plausible mechanism for generating probabilities, still, this is a common assumption in

corresponding models (e.g., see Costello & Watts, 2016, p.120, or Zhu et al., 2020, p. 2).
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In the work by Costello and Watts (2014), these sampling mechanisms are subject to

faulty evaluations, and it is these errors which can give rise to apparent fallacies. Specifically,

they define d as the probability of an evaluation error (e.g., evaluate a memory as true

when in fact it was false), from which they derive the prediction P (judged A) = (1 −

2d) · P (truly A) + d, but then they add the assumption that the error rate is higher for

conjunctions so that P (judged A∧B) = (1− 2 · [d+∆d]) ·P ((truly A∧B) + [d+∆d], and

analogously for disjunctions, with ∆d > 0. The key point is that more complex probability

evaluations, such as conjunctions and disjunctions, suffer from higher noise, relative to

simpler probabilities (marginals). For both simple and complex probabilities, this model

implements a regression to the mean, so that true probabilities below 0.5 increase towards 0.5

and true probabilities above 0.5 decrease towards 0.5. This model can explain the occurrence

of conjunction fallacies. For example, in the Linda problem, assume that participants ‘truly’

judge P (BT ) to be only slightly greater than P (F ∧ BT ), such that in both cases the

probabilities are less than 0.5. Regression to the mean for the conjunction is faster (because

there is higher noise) than for the individual question, so that the apparent P (F ∧ BT )

increases more so than P (BT ), leading to a conjunction fallacy. A similar explanation can

be used to explain apparent disjunction fallacies. Moreover, Costello and Watts (2014, 2018)

examined several probabilistic identities, expected to hold under their model, and reported

evidence that this is indeed so.

There are some difficulties with this proposal. For example, it cannot accommodate

conjunction fallacies when the true probabilities of the marginals and conjunction are over

0.5, however, there is evidence for conjunction fallacies in that range (Yearsley & Trueblood,

2018). Also, the probability plus noise model predicts a regression towards the mean for

all probabilities, even for events manifestly impossible (‘there is a flying cat made of cheese

outside my house’) or manifestly possible (‘there is water on earth’). A more theoretical

concern with this model is the assumption that the sampling process for generating P (A)

is different from the one to generate P (A ∧ B). In other words, the person makes a judg-

ment about A using one sample and then disregards this sample, to generate a separate
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sample forA ∧ B. This seems wasteful and indeed other Bayesian researchers have argued

that “...many real-world tasks require making many decisions based on the same informa-

tion. In these scenarios, it makes sense for an agent to cache and reuse samples for several

decisions” (Vul et al., 2014, p.29). If the probability plus noise model employs a single

sample for marginals and conjunctions, then no conjunction fallacy can emerge. A possible

shortcoming of Costello and Watts’ (2014) model, shared with the quantum probability one

(Busemeyer et at., 2011; we will consider this just below), is that it cannot account for dou-

ble conjunction fallacies 1. So far, there has been limited evidence for double conjunction

fallacies (Crupi et al., 2018; Yates & Carlson, 1996; Wojciechowski & Pothos, 2018); we

hope to make progress with this important empirical question in the present work. Finally,

the probability plus noise model assumes that judgments come from sampling frequencies

and thus follow the binomial distribution. In the case of small sample sizes, this means

that many possible judgments would be predicted to have a zero likelihood of occurring. To

circumvent this limitation, Costello et al. (2014) proposed that people round numbers in a

specific way to produce the final probability judgments. Rounding mechanisms have been

well supported in the literature and are a reasonable addition to a model for probabilis-

tic reasoning. Nevertheless, it is interesting to consider whether a model with no external

rounding mechanism can perform equally well.

The Bayesian Sampler (Zhu, Sanborn, & Chater, 2020) is a related model, based

on an analogous sampling process. Like Costello and Watts (2014), the Bayesian sampler

assumes that there is a separation between internally generated frequencies and observed

participant responses. The Bayesian Sampler model assumes that the sampling process

is veridical, subject to sampling limitations, but there is a second step of integrating the

sample estimates with a prior belief to produce a final biased mean estimate. In this work

we focus on the Bayesian Sampler, because predictions between the two models mostly

converge and, where they diverge, the evidence seems to favor the Bayesian Sampler (Zhu

et al., 2020). Additionally, a minimal modification of the Bayesian Sampler model, which

1In a single conjunction fallacy, the conjunction is rated as more probable than one marginal; with a
double conjunction fallacy, the conjunction is rated as more probable than both marginals.
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will be discussed in detail later, can solve the likelihood-zero problem of the probability plus

noise model mentioned above.

The second main idea in the present work is that the relevant probabilistic calculus

may include a non-Bayesian influence. The relevance of quantum theory in cognition can

be motivated in a way which is, perhaps surprisingly, very similar to that for the Bayesian

Sampler. Zhu et al. (2020; see also Lieder & Griffiths, 2019) note that “We start from the

perspective that people, quite possibly implicitly, have an internal Bayesian model of the

tasks they engage in. ... A serious challenge to Bayesian models is that Bayesian calculations

(e.g., inferring and averaging over the posterior distribution) appear computationally daunt-

ing.” Note, it may not be immediately obvious why baseline Bayesian theory is intractably

complex. One way to see this is in terms of the exponential growth in the complexity of

joint probability distributions, as the number of predicates grows. A counterargument might

be that if we assume independence then this exponential growth does not occur. However,

complete independence is unrealistic and partial independence, e.g., in the form of Bayesian

networks, is still problematic (Pothos et al., 2021). In any case, in terms of motivating

quantum theory a similar point applies. That is, and as noted, the use of quantum theory in

cognition can be motivated as a framework for probabilistic reasoning, which mitigates the

computational intractability of baseline Bayesian theory. But how does this come about?

Bayesian and quantum theories are based on different axioms and offer strikingly

different approaches to the representation of information and computation of probabilities.

Bayesian theory has a set-theoretic structure, so that probabilities are computed against

subsets of an overall sample space, while quantum theory is a geometric model of probability,

whereby probabilities correspond to projections of a state vector onto different subspaces.

For example, in Figure 1a, probabilities for different possibilities about Linda are subsets,

whereas in Figure 1b the state vector ψ is projected to different subspaces. As seen in

Figures 1a, 1b, the set-theoretic structure of Bayesian theory illustrates the requirement of

closure: we are always able to make a judgment about, e.g., overlap (and so probability)

for any combination of subsets. By contrast, in quantum theory, incompatible questions are
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impossible to resolve concurrently; these are questions for which the corresponding subspaces

are at ‘angles’ to each other, which are not multiples of π/2. Compatible questions in

quantum theory on the other hand are such for which the situation is entirely Bayesian. It

is in this way that we have argued that quantum theory may be a plausible bounded rational

approach, for agents striving to be Bayesian, but overwhelmed by the multitude of questions

they are faced with (Pothos & Busemeyer, 2022): rather than trying to be fully Bayesian for

all available questions, an agent aims to do so only for the subsets of compatible questions.

In the context of probability judgments, a quantum probability model can offer an

axiomatic way of modeling various probability fallacies such as conjunction and disjunction

fallacies, order effects, and violations of law of total probability, in a unified account. Addi-

tionally, we are led to a fairly natural way to understand influential distinctions in cognitive

theory, such as between slow versus fast, reflective versus reflexive, or analytic versus heuris-

tic thinking (Elqayam & Evans, 2013; Kahneman, 2001). We propose that such distinctions

can be understood as ones of Bayesian versus quantum computations. Indeed, there is some

evidence that task demands, familiarity, and individual differences can affect the relative

weight of Bayesian versus quantum reasoning, as one would expect if the former versus the

latter correspond to, broadly speaking, slow versus fast cognition (Trueblood, Yearsley, &

Pothos, 2017). In our work, we continue to explore the boundary between quantum and

Bayesian cognition, by presenting a model which allows a seamless (parametric) transition

between quantum versus Bayesian reasoning.

Busemeyer et al.’s (2011) quantum probability model is incomplete in modeling human

probability judgments. In fact, since Busemeyer et al.’s (2011) model is (mostly) just quan-

tum probability theory, it offers little parametric flexibility to accommodate some important

findings. For example, Busemeyer et al. cannot explain the violations of some probability

identities (Costello & Watts 2014, Costello & Watts 2016). Additionally, Busemeyer et al.’s

(2011) model, as well as the Bayesian Sampler model, cannot explain violations of the iden-

tity equation, that is P (A)+P (¬A) ̸= 1, namely binary complementarity. Note, A here can

be either marginals or a more general event (e.g., a conjunction, disjunction, conditional).
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Binary complementarity deserves a few further remarks, because of its importance in

modeling, as putative violations are beyond the scope of all current theories of probabilistic

judgments. Binary complementarity may appear too obvious to be violated and indeed

consistency with this constraint is well documented in the literature (Tversky & Koehler

1994; Budescu et al. 1997; Wallsten et al. 1993). Theoretically, binary complementarity is

essential in support theory (Tversky & Koehler, 1994). However, prior work already offers

some hints that binary complementarity may not always be behaviorally valid. Violations

of binary complementarity have been observed in choice behavior (Shafir, 1993; see also

Macchi et al. 1999) and in similarity judgements (Tversky & Gati, 1978). Violations of

this constraint are related to the subadditivity effect in unpacking, whereby the probability

of a packed disjunction event or category is lower than the sum of the probabilities of

its unpacked mutually exclusive components (Tversky & Koehler, 1994), especially when

the components are typical instances of the packed category (Sloman et al. 2004). More

pertinently, Epping and Busemeyer (2023) showed that when one presents A ∧ ¬A as the

two only possible alternatives (e.g. Gift Card A vs Gift Card B; there is no other choice),

rather than Gift Card A and not Gift Card A, the constraint can be violated. Given the

above, whether violations of binary complementarity are present in the present data is an

important question we will address.

The third main idea in our work is that there might be a separation between rele-

vant probabilistic principles and the response mechanism. The work of Costello and Watts

(2014) and Zhu, Sanborn, and Chater (2020) are recent examples for how to accomplish

this. Costello and Watts (2014) assume noisy sampling and Zhu et al. (2020) that the

sampling process is veridical (subject to sampling limitations), but there is a second step

of introducing bias in responding, when the internal estimates are adjusted against prior

beliefs. An important assumption in both these models is that the samples for probabilistic

calculations need to be specified in advance. That is, the cognitive agent needs to make a

commitment regarding the extent of her sampling, at the initial state of their probabilistic

judgment. However, a sampling process for probabilistic reasoning need not be specified in
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such a way: notably, sequential sampling models assume that agents collect samples sequen-

tially, with the duration of the sampling process flexibly limited or extended depending on

the accumulated evidence, time pressure, engagement with a task, amongst possible factors

(e.g., Brown & Heathcote, 2008; Ratliff & Smith, 2015; Trueblood, Brown, & Heathcote,

2014; Usher & McClelland, 2001). In our proposal for probabilistic reasoning, we thus as-

sume that there is a separation between subjective probabilities and response production

and employ a sequential sampling process for the latter.

The idea of a separation between internal probabilities and response mechanisms al-

lows us to address an interesting question regarding models of probabilistic reasoning: do

probability judgments require or assume rule following by people? As with Costello and

Watts (2014) and Zhu et al. (2020), we assume that people’s probability judgments are con-

sistent with the rules of formal probability theory, whether Bayesian or quantum. Yet, what

people articulate as ”probabilities" are typically not pure subjective probabilities but rather

’noisy’ judgments influenced by these underlying probabilities. Marr’s analysis (Marr, 1982)

provides a framework for understanding this distinction: formal probability rules offer a

computational-level or top-down (Griffiths et al., 2010) explanation of probabilistic reason-

ing, whereas a process such as noisy sampling mechanism aligns with Marr’s algorithmic-level

description, detailing how such inferences are formulated. At the same time, some aspects

of probabilistic reasoning may be guided by heuristic rules, rather than formal probabilis-

tic ones, such as the representativeness one from Tversky and Kahneman (1983). Note,

as discussed, representativeness is limited in scope; but one can imagine similar principles

capturing aspects of probability estimation, outside accounts based on formal probability

theory. In any case, if rules are involved in probabilistic reasoning – especially rules from

formal probability theory –the relevant computations and cognitive processes are likely to

be outside direct conscious control and awareness: lay people, without any mathematical

training, are perfectly capable of forming probabilistic intuitions – it is these intuitions we

are trying to explain. This is analogous to how young children can perform intuitive physics,

without learning classical physics. The consideration of explanation levels as above under-



QUANTUM SEQUENTIAL SAMPLER 19

scores the importance of algorithmic-level models, such as a sampling algorithm that can

account for the intuitive generation of responses based on rules.

Overall, the above ideas certainly have much merit. However, it also seems fairly clear

that the predominant formalisms for probabilistic reasoning suffer from notable limitations,

even in the absence of evaluation against larger datasets, which, we think, are likely to offer

additional challenges to existing models. We next describe a novel experiment, to collect an

extensive dataset on probabilistic reasoning, and follow with the specific novel theoretical

proposals.

Experimental Investigation

Both Costello and Watts (2014) and Zhu et al. (2020) asked participants to judge the

probabilities of pairs of weather events. A priori, there are reasonable grounds for expecting

that such judgments might be more likely to conform to Bayesian constraints, because we

are generally familiar with judgments for weather events, a weather event is less likely to

create unique contexts or perspectives for other weather events, and resolving a weather

question is unlikely to create an impression of ‘disturbance’ for subsequent related questions

(Pothos & Busemeyer, 2022). Overall, there is little doubt that human judgments are

sometimes consistent with Bayesian constraints. Therefore, it is more interesting to examine

behavior with judgments more likely to challenge Bayesian prescription. We carried out

two pilot experiments to pre-select materials more likely to result in apparent probabilistic

fallacies, which are described in Supplementary Material 1. The results of the pilot studies

were analyzed primarily in terms of the emergence of conjunction fallacies, without detailed

analyses or model fits.

For both the two pilots and the main experiment, we requested judgments concerning

the presidential election in the USA in 2020. This presidential election attracted, for various

reasons, widespread interest and was extensively covered internationally. Therefore, we

anticipated that judgments concerning the probability of the two candidates winning or

losing different states would offer an engaging and interesting task to participants, who were
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all recruited in the USA.

All experiments were approved by City University London Research Ethics Com-

mittee with the ethics approval code ETH2223-0571 and title of study “Decision mak-

ing for election results”. We report how we determined our sample size, all data ex-

clusions, all manipulations, and all measures in the study. This study was not pre-

registered; all data and data analysis codes will be avaliable in our github repository:

https://github.com/adamhuang11111/quantum_sequential_sampler_public.

Main experiment

Participants. We recruited 1451 (908 male) participants, restricting geographical lo-

cation to the USA, from Amazon Mechanical Turk. Sample size was determined a priori

primarily on the basis of practical considerations: recruitment took place just before the

presidential election in the USA in 2020 and we recruited the maximum number of par-

ticipants we believed we could test within a reasonable period prior to the election. No

restrictions apart from location were placed on participation. Each participant was paid

$2.25 and the experiment lasted approximately 25 minutes. A simple attention check ques-

tion was included: halfway the survey, a question similar in style to the other ones was

presented, asking participants to simply move the slider to a specific number (e.g., 47). As

a result of failing to answer the attention check question correctly, being identified as a

spam bot, or having provided incomplete data, 289 participants were excluded from further

analysis. Thus, the final sample size was reduced to 1162 participants (730 male). 1118 out

of these participants were at least 25 years of age and therefore eligible to vote in the USA.

Method. Participants were asked to provide 78 probability judgments (below, we

invariably refer to these as probability questions, events, or judgments) concerning the like-

lihood of one or both presidential candidates (Trump and Biden) winning the popular vote

in the states corresponding to the triplets chosen from the pilot experiments:

• T1: Ohio, Missouri, Michigan

• T2: Georgia, Montana, Nevada

https://github.com/adamhuang11111/quantum_sequential_sampler_public
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1 A marginal 15 ¬A ∨B disjunction order 1
2 B marginal 16 ¬A ∨ ¬B disjunction order 1
3 ¬A marginal 17 B ∨A disjunction order 2
4 ¬B marginal 18 ¬B ∨A disjunction order 2
5 A ∧B conjunction order 1 19 B ∨ ¬A disjunction order 2
6 A ∧ ¬B conjunction order 1 20 ¬B ∨A disjunction order 2
7 ¬A ∧B conjunction order 1 21 A|B conditional
8 ¬A ∧ ¬B conjunction order 1 22 A|¬B conditional
9 B ∧A conjunction order 2 23 ¬A|B conditional
10 ¬B ∧A conjunction order 2 24 ¬A|¬B conditional
11 B ∧ ¬A conjunction order 2 25 B|A conditional
12 ¬B ∧ ¬A conjunction order 2 26 B|¬A conditional
13 A ∨B disjunction order 1 27 ¬B|A conditional
14 ¬A ∨B disjunction order 1 28 ¬B|¬A conditional

Table 1: The 28 probability judgments required for the pair of events {A, B}.

If we label the states in a triplet as A,B,C, Table 1 shows the 28 probability judgments for

pair A,B. For pair A,C, there are an additional 26 judgments because the marginals for

A are already covered in the first set of 28 judgments; and for pair B,C, an additional 24

judgments, for a total of 78. Note, we can arbitrarily consider P (Biden to win A) as P (A)

and P (Trump to win A) as P (¬A), thereby avoiding the need to ask participants to rate

event negations. Even though there were other candidates, Biden and Trump were the dom-

inant ones and, as an approximation, we can ignore the possibility of other candidates; no

other candidates were mentioned in the experiment. The judgments were comprised of six

marginals, 12 conjunctions, 12 disjunctions and 12 conditionals, with all composite events

presented in both possible orders. All participants were asked to rate the marginal prob-

abilities first, before being presented questions about composite events in different blocks

(described just below). The reason why the marginals were shown first was so that partici-

pants would be exposed to the range of atomic events, prior to any other questions. Within

blocks, question order was randomized.

The rating scale consisted of an adjustable slider, with anchor points 0% and 100%

and movement in 1% increments. The slider consisted of a circle, which participants could

move around with a mouse. Just above this circle, participants could see the rating the
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slider corresponded to, at any given position. Additionally, above the slider, we indicated

the locations of 10% increments. The slider was always initialized at 50 in all trials. Note,

this might be a source of bias, for example, in that more effort would be required to produce

more extreme responses. There are two mitigating considerations. First, simple inspection

of the probability judgments distributions (Figure 7) shows that the mode of many of these

distributions is away from 50. This indicates that, even if there is a bias, it is not strong

enough to dominate the mode of the distributions. Second, as will be explained later, there

is an overestimation bias present in the probability judgments. Should a motor bias be

influencing these judgments, due to the initial placement of the slider at its midpoint, we

would expect to see a more balanced distribution of judgments across the slider’s range.

Supplementary Material 1 offers more details about the procedure for rating elicitation and

some example screenshots of the slider we employed.

The design involved two between participants conditions. The first condition was

the triplet, triplet 1 (T1) versus triplet 2 (T2). We tested different participants on each

triplet, as a way to limit the total number of probability judgments for each participant.

The second condition was a counterbalancing one, corresponding to whether participants

completed all judgments for a particular pair first before proceeding to the judgments for

another pair (blocked order, BO) versus completing all judgments for all pairs together,

in a randomized order (fully randomized order, FO). The number of participants in each

combination of conditions was, for the T1 BO, T1 FO, T2 BO, T2 FO conditions, 284,

301, 269, 308, respectively. As participants in the BO condition did not provide responses

noticeably different from those in the FO one, this counterbalancing condition will not be

further considered.

In both the BO and the FO conditions, probability judgments were blocked by type

of judgment, so that when participants completed the judgments for one block there was

a small break, before proceeding to the next one. In the FO case, participants first re-

sponded to all possible conditionals in one direction (e.g., A|B), then conjunctions, then

disjunctions. Subsequently, participants saw the same judgments in the reverse direction



QUANTUM SEQUENTIAL SAMPLER 23

Figure 2. Survey flow highlighting the differences between the Blocked order (BO) and the Fully
randomized order (FO) conditions.

(e.g., B|A). The BO case was analogous, but the judgments corresponding to each pair of

states were also blocked. Within each block, judgment order was randomized for the first

presentation, but kept the same for the second presentation. Once participants completed

all probability judgments, they were asked to answer three questions corresponding to the

Cognitive Reflection Test (CRT, Frederick, 2005). They were then debriefed, thanked, and

paid for their participation. Figure 2 provides a sketch of the main parts of the survey flow

in the experiment.

Behavioral analyses

Response biases. We first considered participants’ use of the ratings scale, notably

whether participants made full use of the ratings scale and whether particular ratings might
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have been preferentially employed, e.g., as a result of rounding behavior (Budescu, Weinberg,

and Wallsten, 1988; Wallsten, Budescu, and Zwick, 1993). Given there were 78 probability

estimates in the experiment, each participant can give a maximum of 78 different ratings.

The number of points on the ratings scale which were used by participants varied between

2 and 56 (mean = 31.45, std = 11.65). Only 29 participants out of 1162 used fewer than 10

different points on the rating scale, demonstrating that most participants made reasonable

use of the rating instrument provided. In Supplementary Material 2, Figure S.2.1 shows

how often each rating was observed in participant responses, with the bars corresponding to

multiples of 5 highlighted. It appears that such ratings were indeed preferentially employed,

but to a lesser extent, compared to that in Zhu et al. (2020), where probability judgments

were numbers which were entered into a computer.

Figure 3. An illustration of the relationship between CRT and conjunction (3a) and disjunction
(3b) fallacies.

Conjunction fallacy. Single versus double conjunction fallacies can be identified by

considering whether the conjunction is higher than one or both marginals, respectively.

There was a high rate of conjunction fallacies in the dataset, with 59.4% of all conjunctions

associated with a conjunction fallacy. Of these cases, 38% corresponded to single conjunc-

tion fallacies and 62% to double conjunction fallacies; assessed against the total number of

conjunctions these percentages were 22.7% and 36.7% respectively. Therefore, our work pro-
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Identity name Identity calculation
Z1 P (A) + P (B)− P (A ∩B)− P (A ∪B)
Z2 P (A) + P (B ∩ ¬A)− P (B)− P (A ∩ ¬B)
Z3 P (A) + P (B ∩ ¬A)− P (A ∪B)
Z4 P (B) + P (A ∩ ¬B)− P (A ∪B)
Z5 P (A ∩ ¬B) + P (B ∩A)− P (A)
Z6 P (B ∩ ¬A) + P (A ∩B)− P (B)
Z7 P (A ∩ ¬B) + P (B ∩ ¬A) + P (A ∩B)− P (A ∪B)
Z8 P (A ∩ ¬B) + P (B ∩ ¬A) + 2P (A ∩B)− P (A)− P (B)
Z9 P (A|B)P (B)− P (B|A)P (A)
Z10 P (A|B)P (B) + P (A|¬B)P (¬B)− P (A)
Z11 P (B|A)P (A) + P (B|¬A)P (¬A)− P (B)
Z12 P (B|A)P (A) + P (A|¬B)P (¬B)− P (A)
Z13 P (A|B)P (B) + P (B|¬A)P (¬A)− P (B)
Z14 P (A|¬B)P (¬B) + P (B)− P (B|¬A)P (¬A)− P (A)
Z15 P (A ∩B)− P (A|B)P (B)
Z16 P (A ∩B)− P (B|A)P (A)
Z17 P (A ∩B)− P (A) + P (A|¬B)P (¬B)
Z18 P (A ∩B)− P (B) + P (B|¬A)P (¬A)

Table 2: Probabilistic identities from (baseline) Bayesian theory, according to Zhu, Chater and
Sanborn (2020). In all cases, the predicted value is 0. Note: Identities are abbreviated using P (¬A)
and P (¬B) for 1− P (A) and 1− P (B).

vides new evidence that double conjunction fallacies can arise in human judgments (Crupi

et al., 2018; Yates & Carlson, 1986 ; Wojciechowski & Pothos, 2018).

We examined whether the emergence of probabilistic fallacies, such as the conjunction

fallacy, can be tied to individual differences concerning the CRT, which has been employed

in similar ways in the past (Yearsley & Trueblood, 2018). We approximated with CFrate

(Supplementary Material 1) the number of instances in which a conjunction fallacy, regard-

less of size, was detected per participant. Note, results here were analyzed for both triplets

together; for this analysis, separating out results from each triplet is irrelevant. A one-way

between participants ANOVA was conducted, with the proportion of conjunction fallacies

as the dependent variable and the CRT score as an independent variable with four levels,

which were the four possible scores in the CRT. A significant effect of CRT scores on the

proportion of conjunction fallacies was found, F (3, 1158) = 78.76, p < .001(BF10 > 150).

Repeated contrasts revealed that for each point gained in the CRT score, the frequency
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Figure 4. The observed values for the Z-identities (Table 2) in the present data set, computed
from average probabilities, separately for each of the two triplets and orders of conjunctions and
disjunctions. In all cases, the predicted value is 0.

of conjunction fallacies was reduced (p = .001 − .017, BF10 ranging from 1.27 to > 150).

A summary of the contrast analyses can be found in Table S2.1 and an illustration of the

relationship between conjunction fallacies and CRT is in Figure 3.
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Disjunction fallacy. Analogous to conjunction fallacies, a disjunction fallacy occurs

when the probability of a disjunction is judged lower than that of either constituent. In the

present dataset, there was an apparent disjunction fallacy for 53% of all disjunctions. Most

disjunction fallacies corresponded to a single disjunction fallacy (63.9%), but there was a

sizeable proportion of double ones as well (26.1%).

The proportion of disjunction fallacies DFrate (Supplementary Material 1), that is

the number of instances in which a disjunction fallacy (again regardless of size) was de-

tected, differed across participants with different CRT scores, as assessed with a one-way

between participants ANOVA, with CRT as a four-level independent variable, F (3, 1158) =

31.709, p < .001(BF10 > 1000). As seen in Figure 3, the rate of disjunction fallacies is re-

duced with increasing CRT, a pattern that was mostly confirmed statistically, with repeated

contrasts: the disjunction fallacy rate of participants with a CRT score of 3 was lower than

that of all other participants, p < .001(BF10 > 106); analogously for participants with a

CRT of 2 relative to ones with a CRT score of 0 (p = .029(BF10 = 3.11), but no other

comparisons were significant (Table S2.2). 2

Order effects. Any deviation between the conjunction in one order and the same

conjunction in the opposite order, regardless of how small it is, implies the presence of

an order effect, that is, a conjunction order effect is evidenced when P (A and then B) ̸=

P (B and then A) and a disjunction order effect when P (A or then B) ̸= P (B or then A). It

is notable that such order effects are beyond both Bayesian theory and the current quantum

models for the conjunction fallacy. In the latter case, in quantum theory, it is possible to

have P (A and then B) ̸= P (B and then A). However, in the original quantum model, it

was assumed that conjunctions are evaluated so that the more likely predicate is considered

first, regardless of the order in which the predicates appear in the conjunction (analogously

for disjunctions; Busemeyer et al., 2011). Instead, order effects have been postulated to

be relevant when participants answer one question after another (Wang et al., 2014). So,

2In Table 2 and throughout the paper, we use ∩ and ∪ to denote classical probabilities, and ∧ and ∨
to denote probabilities with "and" and "or" that do not need to obey clasical probability theory like those
found in the probability judgments and quantum probabilities.
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if this approach is behaviorally accurate, then we do not expect systematic order effects

in conjunctions and disjunctions. The results, shown in Tables S2.3 and S2.4, indicate no

evidence for order effects, based on Bayesian one sample t-tests against 0, in nearly all cases.

Concerning a putative association between order effects and CRT, the absolute mag-

nitude between the same conjunction or disjunction, in different orders, can be taken as a

measure of deviation from both classical prediction and the prediction from Busemeyer et

al.’s (2011) quantum model. A between-subjects ANOVA with the average order effect size

as the dependent variable and the CRT score as the independent variable (with four levels)

revealed an effect of CRT score on order effect size, F (3, 1158) = 3.045, p = .028. However,

post-hoc t-tests failed to show systematic changes in effect size depending on the CRT score.

Reciprocity. The constraint of reciprocity is that P (X|Y ) = P (Y |X). Clearly, reci-

procity does not apply to Bayesian theory and it does not apply to quantum theory, when

subspaces of varying dimensionalities are employed (Busemeyer et al., 2011). However,

quantum models with one-dimensional subspaces are constrained by reciprocity (Busemeyer

& Bruza, 2011) and such models are sometimes employed (e.g., White, Pothos, & Jarrett,

2020; Yearsley & Pothos, 2016). There is some evidence that humans are sometimes con-

strained by reciprocity (Trueblood et al., 2017). In the present data, overall, there was

limited evidence for reciprocity. Out of the 78 probability judgments, there were 24 condi-

tional probability ones (12 pairs for each triplet, so 24 pairs in total). Only in 6/24 pairs of

matched conditional probability judgments (e.g., P (A|B) versus P (B|A)) was there evidence

for reciprocity, using Bayesian paired-samples t-tests (Table S2.5).

Z-identities. Costello and Watts (2016) derived several probabilistic identities that

must hold in a baseline Bayesian probability framework. The list of these identities was

also tested by Zhu, Sanborn and Chater (2020; Table 2). If participant judgments can be

described by basic Bayesian probabilities, that is without noise or other additional assump-

tions, one would expect all identities Z1 to Z18 to be equal to zero. Violations of these

identities were found in the experiments of Costello and Watts (2016) and Zhu, Sanborn

and Chater (2020), indicating, unsurprisingly, that peoples’ judgments are not consistent
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with baseline Bayesian theory.

For the present data, the Z-identities were tested using average probabilities from

participant ratings within each triplet. Each test was based on a Bayesian one-sample t-

test, against zero. Systematic deviations from zero could be observed for all identities,

apart from Z1, Z2, Z9 and Z14. The observed Bayes factors indicate that the alternative

hypothesis, Z ̸= 0, is vastly more likely than the null (Table S2.6; Figure 4). For the four

identities for which evidence was consistent with the Bayesian expectation, Z1,2,9,14 = 0,

evidence ranged from anecdotal to strong (BF01 from 1.2 to 9.1). This pattern of results

differs in an interesting way compared to the one in Zhu et al. (2020). Notably, we observed

higher values for many of these identities, compared to Zhu et al. (2020), which raises the

question of whether the Bayesian Sampler model will cope with the present results. We

compared the identity values from the present dataset vs the ones from Zhu et al.’s (2020)

dataset (Supplementary Material 7). There was strong evidence for differences in all cases,

except from Z1, Z9, Z15, Z16.

Binary complementarity and the law of total probability. A key requirement for both

Bayesian and quantum theories concerns binary complementary and the law of total prob-

ability. Note, for quantum theory, interference effects can allow violations of this constraint

only when conjunction orders are mixed. Specifically, we expect consistency with binary

complementarity, such as P (A) + P (¬A) = 1 and the four-way law of total probability

P (A ∩ B) + P (A ∩ ¬B) + P (¬A ∩ ¬B) + P (¬A ∩ ¬B) = 1. The conjunction fallacy and

related findings perhaps encourage an expectation for violations regarding expressions in-

cluding conjunctions or disjunctions. However, in any specific dataset, it cannot be taken

for granted than such violations will emerge and, moreover, it is unclear what to expect for

the seemingly obvious version of binary complementarity with marginals.

We tested binary complementarity for marginals and the four-way law of total prob-

ability in the present dataset using one-sample Bayesian t-tests (against 1). These tests

yielded strong evidence for deviations from 1 for both equations, that is none of the iden-

tities hold for the present data: BF10 > 1050 for all identities, regardless of the particular
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triplet (triplet 1 or triplet 2) or the order of conjunctions (cf. Erev, Wallsten, & Budescu,

1994). The results of the Bayesian t-tests are shown in Table S2.7 and the distributional

information for the various versions of the identities, depending on which event or pair of

events is considered, in Figure S.2.2.

The observed violation of binary complementarity, P (A) + P (¬A) > 1, might be re-

lated to the unpacking effect (Tversky &Koehler, 1994). In the present case, even though

Trump and Biden were the two only plausible alternatives for presidential candidates, pre-

senting these typical, unpacked events of the packed category “presidential candidate” may

be inducing a subadditivity unpacking effect, leading to overestimation. In any case, vi-

olations of binary complementarity are a surprising, important finding. Note, the effect

is unidirectional: in our dataset 72.1% of all binary complementarity expressions produce

more than 1, i.e., there is a reliable overestimation effect. As far as we know, because this

is a relatively newly discovered effect in probabilistic reasoning, no model can directly ac-

count for this overestimation effect for binary complementarity, other than the Quantum

Sequential Sampler. Behaviorally, the most surprising violation of binary complementarity

concerns marginals, but there are several versions all trending in the same direction (e.g.

P (A ∩ B) + P (¬A ∪ ¬B) > 1). Figure 9 provides more details about violations of binary

complementarity for all possible complementary pairs.

Given how surprising violations of binary complementarity are, especially for

marginals, we can ask whether this effect might be due to some aspect of the data col-

lection procedure. We followed all the standard procedures and incorporated several checks

to ensure data quality. Note, the procedure we adopted closely follows Zhu et al. (2020).

There are three further considerations mitigating any concerns about the validity of the

observed violations of binary complementarity. First, all the marginals were presented to-

gether, prior to the more complex probabilities. As noted, we chose this method to make

participants aware of all the basic events early on. Moreover, this meant that participants

would see events and their negations in close proximity, suggesting that any violation of

binary complementarity do not arise from, for example, memory failures. Second, regarding
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binary complementarity for marginals, events and their negations were not presented ex-

plicitly as such, e.g., as P (A) versus P (¬A). Instead, participants would see e.g., P(Biden

to win in state X) versus P(Trump to win in state X). Plausibly, this encouraged violations

of binary complementarity (as in Epping & Busemeyer, 2023). Third, the empirical proba-

bility judgments were collected using a slider that defaults to a neutral midpoint of 50 (see

Supplementary Material 1). Considering this neutral starting point, it seems implausible to

attribute the overestimation effect to the data collection instrument itself.

Generally, there is a long history of surprising and counterintuitive findings in prob-

abilistic reasoning. The observed violation of binary complementarity in the present study

is indeed puzzling, given the intuitiveness of this constraint and the broad spectrum of lit-

erature supporting it (Tversky & Koehler 1994, Budescu et al. 1997, Wallsten et al. 1993).

However, the intuitiveness of a probability constraint should not get in the way of reject-

ing it, when there is compelling and statistically significant empirical evidence. Indeed, we

could easily imagine a reviewer of Tversky and Kahneman (1983) asking ‘how can we take

seriously data where participants judge a conjunction as more probable than a marginal,

when the two judgments are so close to each other?’. Invariably, the key drivers of decision

research have exactly been surprising and unexpected findings like these.

Computational Models

Bayesian Sampler

Zhu et al. (2020) proposed that probability judgments are generated from Bayesian

reasoning, based on subjective probabilities estimated from an internal sampling process

and a biased prior distribution. Specifically, the Bayesian Sampler model assumes that

participants initially have a symmetric beta prior distribution of probability judgments,

which is updated, using Bayes rule, via mental sampling. A response to a probability

judgment would then correspond to the binomially distributed expected values of the beta

posterior distribution after mental sampling. The sample size of the mental sampling process

is considered a free parameter of the model. Since responses depend on both the frequencies
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for mental sampling and the prior distribution, the Bayesian Sampler has the flexibility to

generate various probability fallacies. Note, concerning conjunction and disjunction fallacies,

Zhu et al. (2020) required two further assumptions, which are analogous to the ones made by

Costello and Watts (2014): first, that such judgments are computationally more expensive

to simulate and thus employ smaller mental sample size; second, that different samples are

employed for e.g. conjunctions and corresponding marginals.

Zhu et al.’s (2020) model shares some similarities with Costello and Watts’ (2014)

model and there is overlap in predictions too, for example, the Bayesian Sampler model

also adjusts probabilities away from extreme values. Zhu et al. (2020) reported an equation

linking the noise parameter in Costello and Watts’ (2014) model with the sample size param-

eter in the Bayesian Sampler. Formal comparison between the probability plus noise model

and the Bayesian Sampler is complicated by the fact that the two models make equivalent

average predictions for probabilities of single events, conjunctions, and disjunctions. How-

ever, the two models diverge for conditional probabilities and the distribution of probability

estimates and, on that basis, Zhu et al. (2020) concluded in favor of the Bayesian Sampler

model. So, in the present work we focus on the Bayesian Sampler. In the following, we

summarize the mathematical details of the Bayesian Sampler model and discuss how we

fitted the model to the present data.

The model assumes that previous experience establishes a generic prior on probability

judgments, with a symmetric beta distribution, Beta(β, β). As noted, this prior is updated

in light of information from an internal sampling process, according to Bayes rule. Let N be

the sample size in this internal process. Then, S(A) ∼ Bin(N,P (A)) and F (A) = N−S(A)

denote the instances consistent and not consistent with some generic event A occurring in

the sampling process, assuming that P (A) is the subjective probability of A (A can be

a marginal, a conditional, a conjunction etc.). The posterior distribution for A, given a

particular sample in which there are S(A) instances consistent with A, has the form:

PBS(A|S(A)) ∼ Beta(β + S(A), β + F (A)). (1)

This approach can be readily adapted to identify the posterior probability correspond-
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ing to conditional event A|B, so that PBS((A|B)|S(A|B)) ∼ Beta(β+S(A|B), β+F (A|B)),

where now S(A|B) ∼ Bin(N,P (A|B)) denotes the number of times event A occurs, in a

sample of size N where B is true; as before, F (A|B) = N − S(A|B). To account for the

conjunction and disjunction fallacies, the Bayesian Sampler assumes that N ′ ≤ N , where N’

denotes the number of samples to evaluate a conjunction or disjunction and N the samples

for any other judgment.

The posterior distributions for the conjunctions and the disjunctions follow from

Equation (1) above, with the various quantities defined analogously, e.g., S(A ∧ B) is

the number of instances in the sampling process whereby both A and B occur and

S(A ∧B) ∼ Bin(N ′, P (A ∩B)).

PBS(A ∧B|S(A ∧B)) ∼ Beta(β + S(A ∧B), β + F (A ∧B)), (2)

PBS(A ∨B|S(A ∨B)) ∼ Beta(β + S(A ∨B), β + F (A ∨B)). (3)

Zhu et al. (2020) assume that the reported estimate for the probability of individual

event A is the mean of the corresponding posterior distribution (Equation 1). The mean

of the posterior distribution of probability judgments (Equation 1), for a specific value of

S(A), is given by

E[PBS(A|S(A))] =
S(A) + β

N + 2β
. (4)

Note that PBS(A) is binomially distributed as S(A) follows the binomial distribution.

The assumed reported probabilities for conditional events, conjunctions, and disjunctions

follow from Equation (4) and are given by (note, N ′ ≤ N , for conjunctions and disjunctions):

E[PBS((A|B)|S(A))] = S(A|B) + β

N + 2β
,

E[PBS(A ∩B|S(A ∩B))] =
S(A ∩B) + β

N ′ + 2β
,

E[PBS(A ∪B|S(A ∪B))] =
S(A ∪B) + β

N ′ + 2β
. (5)

For a particular probability judgment, if the sample size is N , the Bayesian Sampler

makes N discrete predictions, distributed binomially, as the means of the beta posterior
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distribution (recall, the mean of the beta posterior is itself a random variable). If for a

probability judgment N is small, say 5, the Bayesian Sampler predicts only five possible

responses, e.g., 0.11, 0.20, 0.30, 0.40, 0.50. Then, if a participant’s responses for this judg-

ment is e.g. 0.12 (only 0.01 away from one of the predicted responses), the likelihood of this

response from the model is 0. This is a counterintuitive and unrealistic constraint.

Zhu et al. (2020) circumvent this zero-likelihood issue with two methods. First, they

fitted only the means of the repeated measurements from the same participant and com-

pared it with the expected value of posterior means, using a sum of squares error. However,

this approach under-represents data distributional information. Second, they proposed an

external rounding mechanism. In their experiment, participants were asked to type answers

into the computer corresponding to probability estimates. It is plausible that such reports

were influenced by people’s tendency to round to the nearest multiple of 0.05, when prob-

abilities are measured in a 0 to 1 scale (Budescu, Weinberg, & Wallsten, 1988; Wallsten,

Budescu, & Zwick, 1993). It may be reasonable or not for the Bayesian Sampler to include

this additional mechanism, but either way it is interesting to consider whether good fits are

possible without it. Note, in our study, we asked participants to report probability values

using a continuous rating slide, so that a rounding mechanism to the nearest multiple of

0.05 would not have been evoked to the same extent as in Zhu et al. (2020).

In order to fit the Bayesian Sampler model by maximum likelihood to the continuous

data we obtained, we circumvented this zero-likelihood problem for the Bayesian Sampler

by a different method: we minimally extended the Bayesian Sampler model, by taking a

step back and directly using the posterior beta distribution corresponding to the predictions

for a probability judgment. We can then assume that people report a sampled value from

this posterior distribution, instead of reporting the posterior mean. Since the beta posterior

is a continuous distribution, the Bayesian Sampler can predict a non-zero likelihood for any

empirical judgment. Formally, let B((β,S(E),N))(x) denote the probability density function

of the posterior distribution Beta(β + S(E), β + F (E)), where E is any possibility for an

individual event (a conditional, a conjunction, or a disjunction), and S(E), F (E) are defined
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as the samples consistent and inconsistent with E. We also have S(E) ∼ Bin(N,P (E)) and

denote Bin((N,P (E)))(x) as the probability of obtaining S(E) true instances when sampling E

events, from a binomial distribution with sample size N . The likelihood of observing a prob-

ability judgment of value x from the Bayesian Sampler model (with parameters N,P (E)),

is given by:

LBS(x|N,P (E)) =
N∑

S(E)=0

P (S(E)) · P (x|S(E))

=
N∑

S(E)=0

Bin(N,P (E))(S(E)) ·B(β,S(E),N)(x). (6)

This likelihood function works for continuous probability judgments, but in our em-

pirical investigation, probability judgments were measured as integers from 0 to 100. We

therefore need to discretize the symmetric beta distribution. Specifically, we define a func-

tion u that maps integers from 0 to 100 to the beta probability density as:

u(β,S(E),N)(i) = B(β,S(E),N)(
i

100
), 1 ≤ i ≤ 99,

u(β,S(E),N)(0) = B(β,S(E),N)(0.005),

u(β,S(E),N)(100) = B(β,S(E),N)(0.995). (7)

In Equation (7), the probability density function of the symmetric beta distribution

is undefined at exactly 0 and exactly 1, so we approximate the corresponding densities with

0.005 and 0.995. The likelihood function of the Bayesian Sampler model that will be fitted

to our data for each event E can then be written as:

LBS(x|N,P (E)) =

N∑
S(E)=0

P (S(E)) · P (x|S(E))

=
N∑

S(E)=0

Bin(N,P (E))(S(E)) ·
u(β,S(E),N)(x)∑100
i=0 u(β,S(E),N)(i)

. (8)

Note, when we shortly present our own Quantum Sequential Sampler model, we will

also employ a similar assumption of a symmetric beta distribution for the initial state and

the same discretization techniques as in Equation (7). Regarding the Bayesian Sampler,
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equation (8) allows us to fit the model by maximizing the product of likelihoods for all of

the probability judgments, for each participant.3 The likelihood value can then be converted

to Bayesian Information Criterion (BIC) values.

There are some additional, fairly minor, considerations, before the Bayesian Sampler

model can be applied to the present dataset. Recall, the present dataset involves all possible

probability judgments, arising from the three pairs formed by the three events we employed.

For example, for the three events Biden wins New Hampshire, Trump wins Florida, and

Biden wins Penn, we would consider all probabilities from the three pairs Biden wins Penn,

Biden wins New Hampshire; Biden wins Penn, Trump wins Florida; and Biden wins New

Hampshire, Trump wins Florida. Instead, Zhu et al. (2020) considered probability queries

from a single pair of weather events, e.g., normal weather, typical weather. With a single

pair of events, there are at most two sample size parameters, corresponding to the sample

size employed for estimating marginals and conditionals versus conjunctions and disjunc-

tions. With three pairs of events, we decided to test two variants of the Bayesian Sampler

model. With the first variant, we assumed that marginals/ conditionals are sampled using

one sample size, N1, and three further samples sizes were required for the three pairs of

conjunctions/ disjunctions, N2, N3, N4 < N1. With the second variant, there was a sample

size for marginals/ conditionals, N1 and a single sample size for conjunctions/ disjunctions,

N2. The two versions of the model are nested and so can be compared through a G2 test

over all participants. The result showed that only 6 out of 1162 participants are fitted sig-

nificantly better (p value < .05) by the more elaborate version of the model, representing

0.5% < 5% of all participants. Therefore, we fail to reject the simpler model version over

all participants and, in further analyses, it is the simpler version of the Bayesian Sampler

model which we will consider.

To summarize, the simpler version of the Bayesian Sampler model that we employed

has a total of nine parameters, which are {N1, N2, P (A), P (B), P (C), P (B|A), P (C|A),

3The fitting result following a maximum likelihood approach might be different from that based on
minimizing the sum of square error, as performed in Zhu et al. (2020), because the maximum likelihood
technique minimizes a weighted sum of square error, that equals the sum of square error (from corresponding
means) only when the distribution is normal.
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P (C|B), β}, where the six subjective probabilities are employed to compute all other prob-

abilities, β is the beta distribution parameter, and the two sample sizes correspond to the

marginals/ conditionals and conjunctions/ disjunctions respectively.

Zhu et al. (2023) recently extended the Bayesian Sampler model, by relaxing the

assumption that the samples involved in the generation of probabilities are independent;

instead, they assumed autocorrelated samples, in their Autocorrelated Bayesian Sampler.

Their model was argued to be consistent with a range of findings in probabilistic reasoning,

including response times and confidence intervals. However, Zhu et al. (2023, p.12) do

note that the Autocorrelated Bayesian Sampler produces average probability judgments

approximately equivalent to that of the Bayesian Sampler, except for effects explained by

autocorrelated sampling, such as an implicit unpacking effect, which is not assessed in our

dataset. Therefore, in this work, it should suffice to compare the Bayesian Sampler with

the Quantum Sequential Sampler. Additionally, because the Quantum Sequential Sampler

includes a sequential sampling component, it should be possible to extend its application to

response times, confidence intervals etc. and so compare with the Autocorrelated Bayesian

Sampler – but this is an objective for future work, not least because the Autocorrelated

Bayesian Sampler is not yet at a form that can be directly fitted to data.

Quantum Sequential Sampler

As for the Bayesian Sampler model, our proposal of the Quantum Sequential Sampler

assumes that probability responses are the result of an internal sampling process. However,

the corresponding subjective probabilities are quantum and the sampling process a sequen-

tial sampling one. Specifically, the Quantum Sequential Sampler combines Busemeyer et

al.’s (2011) axiomatized explanation of probability fallacies with a psychologically plausible

response process. The response process is inspired by sampling models but takes a step

forward: instead of assuming sampling with fixed sample sizes, we consider a dynamical

sequential sampling process. In short, our model assumes that discrepancy from Bayesian

reasoning can arise in two ways. First, in a way analogous to that of Costello and Watts

(2014) or Zhu et al. (2020), it can arise from the response process. Second, the subjective
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probabilities themselves can be more Bayesian or less Bayesian, to varying degrees. That

is, we assume that there is a duality of human reasoning, between something which ap-

proximates Bayesian reasoning and another influence - our argument is that this alternative

influence can be captured by quantum theory. Each individual is not necessarily Bayesian or

quantum in a black and white manner, rather there is a continuum covering all intermediate

points, from strongly Bayesian to strongly quantum.

There are several theoretical motivations for the present approach. First, Busemeyer

et al.’s (2011) quantum model, based nearly exclusively on just the probabilistic calculus

from quantum theory, is overly restrictive. Second, Zhu et al.’s (2020) assumptions that

sampling complexity varies between conjunctions/ disjunctions versus other probabilities

and that samples are drawn independently for each probability judgment are not ideal.

Third, it would be desirable to avoid reliance on a rounding mechanism (as in the Bayesian

Sampler) and also develop a new model with a dynamical component, with potential for

additional predictions such as concerning response times. Finally, the Bayesian sampler

and other sampling models have the zero-likelihood problem as mentioned previously. The

Quantum Sequential Sampling model, by combining quantum probability with a sequential

sampling response process, circumvents these problems.

In what follows, we introduce the Quantum Sequential Sampler model in detail. Our

explanation of the model is divided into two parts. In the first part, we explain the quantum

internal probabilistic calculus for computing subjective probabilities. In the second part, we

introduce the Markov sequential sampling model employed to map subjective probabilities

into responses.

Quantum Sequential Sampler first part – subjective probability . Before presenting

formal details, it may be helpful to offer a brief example of how quantum probability works,

with reference to Tversky and Kahneman’s (1983) conjunction fallacy example. In fact, it

is helpful to first consider how Bayesian probability theory works. In Figure 1a, we present

a classical sample space, which shows a sample of hypothetical Lindas that we can imagine

or have experienced (i.e., women like Linda). The red dots are Lindas consistent with the
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feminist property, which are numerous, since Linda was described to look like a feminist.

Analogously, the blue dots represent instances for which the bank teller property is true.

The instances for which both the feminist and the bank teller properties are true are then the

intersection of the feminist and bank teller one, shown as dots which are both blue and red,

in the smudged area. Clearly, the instances in the intersection can never be more numerous

than the instances in either the bank teller or feminist sets and so, in Bayesian theory, it

is impossible to have P (F ∧ BT ) > P (BT ). This example alludes to the set-theoretic or

Kolmogorov instantiation of classical probability theory, but there are alternative approaches

to formulate classical probability theory (e.g., Cox, 1961, Jaynes, 2003). All the different

approaches share deep equivalences, at least insofar that they are all constrained in similar

ways.

Figure 1b shows a quantum theory caricature of the Linda situation. The state vector

ψ represents the mental state after reading the Linda story. Different subspaces correspond

to different questions, such that subspace dimensionality reflects the complexity (or facets)

of the corresponding question (Pothos, Busemeyer, & Trueblood, 2013). In Figure 1b, we

show the subspaces corresponding to the answers to the Linda questions as one-dimensional.

The state vector is placed close to the feminism subspace and further away from the bank

teller one. This is because probability depends on the overlap between the state vector and

the corresponding subspace. When a question is resolved, with a probability depending on

overlap, the state vector is ‘projected’ in one of possible subspaces (using a projector). The

feminist and bank teller questions are called incompatible, because in most cases we cannot

concurrently resolve them. Incompatibility is unique to quantum theory. For incompatible

questions, certainty about one question in general implies uncertainty about the other.

Quantum theory also allows compatible questions for which the situation is Bayesian. For

incompatible questions, conjunctions have to be computed in a sequential way – there is

no other possible way to compute such conjunctions (Busemeyer et al., 2011, 2015; Pothos

et al., 2017). Because feminism is the more likely possibility, Busemeyer et al. (2011)

assumed that participants evaluate the conjunction as P (F and then BT ), instead of in the
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other order, which involves projecting the state vector, first onto the feminism subspace

and then (without normalizing) onto the bank teller one. In Figure 1b, it can be seen that

P (F and then BT ) > P (BT ).

More formally, the Linda story generates an initial state |ψL⟩ in an N dimensional

Hilbert space, the projector PF is used to map the state onto the subspace for feminist,

and the projector PB is used to map the state onto the subspace for bank teller. Then the

probability of the conjunction is computed by the quantum expression P (F and then BT ) =

∥PB · PF · |ψL⟩∥2 and the marginal probability of bank teller equals P (B) = ∥PB · |ψ⟩L∥
2.

An order effect occurs when the two projectors do not commute, PF ·PB ̸= PB ·PF , in which

case the measurements are called incompatible.

The geometric character of quantum probabilities may tempt an inference that this is

the main difference relative to Bayesian probabilities – and so perhaps it might suffice to la-

bel the general approach as just "projection geometry" (M. D. Lee personal communication,

September 2023). However, quantum cognitive models also employ various key results from

quantum theory about the way projections to subspaces correspond to probabilities and

the interpretation of linear mixtures, called superpositions. We briefly mention four such

results. First, quantum cognitive models follow Born’s rule that probabilities are computed

from squared magnitude of quantum states, after projections. Second, the models obey the

remarkable Gleason’s theorem showing that the quantum rule for associating probabilities

to subspaces is the only possible way for doing so. Third, the models obey Kochen-Specker

theorem which states that systems in superposition do not have definitive values until mea-

sured. Finally, the models follow Luder’s law which determines how a state should update

post-measurement. Note, Luder’s law is the quantum equivalent of Bayes rule. It is the

use of these key results which make more suitable the label ‘quantum’, or more precisely

quantum-like, for these kind of models. Other work in psychology has employed projections

(e.g., Sloman, 1993), but they did not use these additional theorems from quantum theory.

In previous work, we emphasized presentation in terms of vectors and projectors, as

we wanted to explain the geometrical nature of quantum probabilities. In the current work,
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the emphasis is on the probability relations derived from the geometrical properties of the

quantum models, expressed in terms of the quantum interference term (Busemeyer et al.,

2011). Accordingly, we will present the Quantum Sequential Sampler model using classical

probabilities along with a quantum interference parameter, which can be turned on and

off, to allow deviation and consistency with classical probabilities respectively. This will

also help illustrate the Quantum Sequential Sampler as a hybrid model, encompassing both

Bayesian and quantum probabilities.

Despite the difference in presentation, quantum probabilities in the Quantum Sequen-

tial Sampler can be seen as almost equivalent to that in the Busemeyer et al.’s (2011)

model, except for one important difference when the quantum probabilities in the Quan-

tum Sequential Sampler are right at the bounds. Busemeyer et al.’s (2011) model assumes

projectors and as a result the Quantum Question (QQ) equality must be satisfied. How-

ever, when computing probabilities at the bounds, the Quantum Sequential Sampler model

allows for violations of the QQ equality and positive-operator valued measures (POVMs)

are employed, instead of projectors. The difference between a POVM and a projector is

that for the former there is a small probability for a mismatch between measurement and

projection. For example, in Figure 1b, an observer may decide that Linda is a feminist,

but the mental state might accidentally project to the ¬F subspace. Therefore, POVMs

offer a mechanism for noise in probability calculations. A theoretical reason for employing

POVMs is they are the appropriate approximations to projectors (Nielsen & Chuang, 2010),

when describing processes in a subspace of a given Hilbert space, denoted as H. That is,

if we assume that our knowledge is represented by a space of huge dimensionality H and a

particular thought process requires focus/ restriction to a certain subspace, then projectors

in H are approximated as POVMs in the subspace; this is Naimark’s dilation theorem, e.g.,

Paulsen (2002). POVMs have been employed in some quantum cognitive models (White et

al., 2020; Yearsley and Pothos, 2016, Lebedev & Khrennikov, 2024). We will return to this

difference when we introduce the bounds formally.

The first steps in the quantum calculus for computing subjective probabilities are
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essentially Bayesian, requiring us to specify three probabilities P (A), P (B), P (B|A) for each

pair of arbitrary events A and B. Like in the Bayesian Sampler, these are treated as free

parameters in the model. Given these free parameters, we can then compute

P (¬A) = 1− P (A), P (¬B) = 1− P (B),

P (¬B|A) = 1− P (B|A). (9)

Equation (9) can be straightforwardly employed to compute two conjunctions and,

using quantum interference/ order effect parameters o1, o2, we can compute the same con-

junctions, but in the opposite order:

P (A and then B) = P (A)P (B|A),

P (A and then ¬B) = P (A)P (¬B|A),

P (B and then A) = P (A and then B)− o1,

P (¬B and then A) = P (A and then ¬B)− o2. (10)

With the aid of a third order effect parameter, o3, we finally compute:

P (B and then ¬A) = P (B)− P (B and then A),

P (¬B and then ¬A) = P (¬B)− P (¬B and then A),

P (¬A and then ¬B) = P (¬B and then ¬A)− o3,

P (¬A and then B) = P (¬A)− P (¬A and then ¬B). (11)

In general, the three interference effect parameters are bounded in the following way:

P (A and then B)− P (B) ≤ o1 ≤ P (A and then B),

P (A and then ¬B)− P (¬B) ≤ o2 ≤ P (A and then ¬B),

P (¬B and then ¬A)− P (¬A) ≤ o3 ≤ P (¬B and then ¬A). (12)

The order effects are at the heart of a quantum probability model and quantify the ex-

tent to which P (A and then B) ̸= P (B and then A) (analogously for disjunctions). Thus,

an ambiguity arises, concerning the way an observer would interpret the conjunction be-

tween A and B. Busemeyer et al. (2011, 2015) suggested that, unless primed in a specific

way, observers process a conjunction in the order of the most likely predicate first. This is

a necessary assumption for the emergence of conjunction fallacies: assume P (A) > P (B).
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Quantum theory is constrained so that P (A and then B) = P (A)P (B|A) ≤ P (A). There-

fore, we can only have conjunction fallacies of the form P (B) ≤ P (A and then B), that is,

for the less likely predicate. Busemeyer et al. (2011, 2015) further justified the ‘more

likely first’ assumption by invoking the ideas in Gigerenzer and Goldstein (1996), con-

cerning the prioritization of information. Concerning disjunctions, in quantum theory

P (X or then Y ) = 1 − P (¬X and then ¬Y ), as is the case in Bayesian theory, but ex-

pressed in an order-specific way. Using the more likely first rule for P (¬X and then ¬Y ),

the required order would be as shown, if P (¬X) > P (¬Y ). Therefore, following from the

above example where P (A) > P (B), the disjunction order would be P (B or then A). Noting

that in quantum theory P (B or then A) ≥ P (B) the only allowed disjunction fallacy would

be of the form P (B or then A) < P (A), that is, in relation to the more likely predicate, as

expected.

When computing the conditionals, the order of the conjunctions still matters, and

they are computed as P (X|Y ) = P (Y and then X)
P (Y ) , for arbitrary events X and Y . Given

the assumption that the more likely event is always processed first, one might question

the need for the interference term at all. However, this is needed for the computations

involving the marginal probability of the less likely event and the conditional probability of

the more likely event, given the less likely event. For example, P (B) = P (B and then A) +

P (B and then ¬A), and P (A|B) = P (B and then A)
P (A) .

Accordingly, the quantum model requires, at most, six parameters for each pair of

questions, {P (A), P (B), P (B|A), o1, o2, o3}; note, all classical probabilities can be computed

using just three parameters. For the three pairs of questions we explored empirically, the

potential number of parameters grows to 15. Note also that o1, o2, o3 may have different

bounds for different pairs according to Equation 12. Initially, assume that all of o1, o2, o3

are in the bounds of each other. To reduce modeling complexity, we adopted the following

assumptions.

First, following Busemeyer et al. (2011), we assume initially that the measurements

are performed by projectors. This implies that the QQ equality is satisfied (Busemeyer



QUANTUM SEQUENTIAL SAMPLER 44

et al, 2011), which is equivalent to assuming that o1 = o3. As noted, quantum theory

includes more general measurement operators, POVMs, which do not necessarily satisfy the

QQ equality, in which case o1 is not required to equal o3 (Yearsley and Busemeyer, 2016).

However, to start with, we restrict the model to satisfy the QQ equality when the bounds

are not violated.

Second, we assume that the interference effects, o1, o2, o3, are the same across the

three pairs of questions. This is reasonable because each pair of questions is about a pair of

state election results for the same candidates. This is analogous to the assumption in the

Bayesian sampler that the sample size is constant across pairs.

Third, we equated interference effects o1 and o2 as follows: Suppose P (A) ≥ P (B),

we assume that o2 = −o1; suppose P (A) < P (B), we assume o2 = o1. These assumptions

imply that a conjunction error can only occur with the less likely event when o2 ̸= 0. More

formally,

P (B) = P (B and then A) + P (B and then ¬A)
= P (A and then B)− o1 + P (¬A and then B) + o2

= P (A and then B) + P (¬A and then B)− (o2 − o1). (13)

A similar derivation shows that

P (A) = P (B and then A) + P (¬B and then A)− (o2 + o1). (14)

The interference −(o2 + o1) is zero when o2 = −o1 and non-zero when o2 = o1,

and vice versa for the term −(o2 − o1). Thus, by equating o2 and o1 this way, the model

produces interference only for the less likely event. Note that we need −(o2 − o1) to be

negative to produce P (B) < P (A and then B) when P (A) > P (B), and vice versa when

P (B) > P (A). Therefore, having interference on the less likely event biases the model to

identify conjunction fallacies, remembering that in the quantum model conjunction fallacies

arise only against the less likely predicate.

However, as mentioned, o1, o2, o3 are bounded differently for each pair. Therefore,

when one of the interference effect parameters is greater than the upper bound or smaller
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than the lower bound of the other interference effect parameter, it is not possible to set o1 =

o2 = o3 or o1 = −o2 = o3. To circumvent this problem, we adopted an additional assumption

that the interference effect parameters whose bounds are violated by other interference

effect parameters would be set to the values of their bounds being violated (the bound

assumption). To illustrate, consider the case when P (¬B and then ¬A)− P (¬A) < o3 <

P (A and then B) − P (B), and both o1 and o3 are within the bounds of o2. In this case,

since o3 is less than the lower bound of o1, it is not possible to set o1 = o3. Under the bound

assumption, we would instead reset o′1 = P (A and then B)− P (B) so that it is as close to

o3 as possible, without violating the axioms of quantum probabilities. Similarly, when o2 is

initially set to −o1, but −o1 > P (A and then ¬B), we would reset o′2 = P (A and then ¬B).

Following the bound assumption, there are two consequences when the bounds of

the interference effect parameters are violated by the other interference effect parame-

ters. First, since the interference effect parameters are reset to their bounds when vi-

olated, the QQ equality may no longer hold for certain parameter values. This is evi-

dent in the previous example, where o1 is reset to o′1 = P (A and then B) − P (B) and

o3 < P (A and then B) − P (B). However, as mentioned, a violation of QQ equality is

possible in quantum probability when POVMs are employed. Second, it is now possi-

ble that there could be a non-zero interference effect for the more likely predicate, even

though there would still be no conjunction error for the more likely predicate. Consider

the example where P (A) > P (B). According to Equation 14, the interference term of the

more likely predicate is −(o2 + o1). When no bound is violated, this interference term is

set to zero. On the other hand, when the lower bound of o2 is violated by −o1, we set

o2 = P (A and then ¬B) − P (¬B) < −o1, and thus −(o2 + o1) ̸= 0. However, there must

still be a non-zero interference effect for the less likely event with the bound assumption. To

see why, suppose −o1 violates the upper-bound of o2 and o2 is initially set to −o1. Then,

since −o1 > P (A and then ¬B) ≥ 0, it must be the case that o1 < o2 = P (A and then ¬B)

and thus o2 − o1 ̸= 0. Conversely, for −o1 violating the lower bound of o2. The same logic

applies to when o2 is initialized as o1. Therefore, the bound assumption does not alter the
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quantum model’s ability to produce conjunction fallacy for the less likely predicate.

To summarize, we computed the quantum probability part of the model through the

following procedure: we first assume that o1 = o3 and set o2 = −o1when P (A) ≥ P (B),

and assume that o2 = o1 when P (A) < P (B). Next, we checked the bounds of the three

interference effect parameters, using the initialized values of these order effect parameters.

We then constrained the interference effect parameters to equal the violated bounds, if any

bound were violated. Finally, we used the constrained interference effect values, the Bayesian

probabilities, and the more likely first assumption to compute all quantum probabilities.

The key feature of this formulation of the quantum probability part is that it al-

lows seamless transition between strongly quantum probabilities and strongly Bayesian

ones, simply by virtue of the size and necessity of the interference effect parameter. At

a preliminary level, we can ask whether the model where o1, o2, o3 ̸= 0 is needed at

all versus when all of the order effects parameters are 0. Note the Bayesian (classical)

variant also requires that P (B) > P (A and then B), P (¬B) > P (A and then ¬B), and

P (¬A) > P (¬B and then ¬A) are satisfied. The Bayesian and the quantum interference

variants of the model are nested. Comparing these two model versions with a G2 test over all

participants revealed that 576 out of 1162 participants were better fitted by the version with

non-zero quantum interference parameters. Given that the percentage of participants better

fitted by the quantum interference version is 50%, much higher than expected by chance

using a 5% significance level, we will use the quantum interference variant of the model in

further analysis. Recall that this is much higher than 0.6% of significant improvement of the

more complex version of the Bayesian Sampler from the simpler version. The two variants

of the models were also compared using a generalization test, where the quantum variant

outperformed the classical variant for both tests. The details of the generalization test will

be discussed in the Model Comparisons Section.

Quantum Sequential Sampler second part – sequential sampling process . We assume

that subjective probabilities cannot be used for responding directly, but rather correspond to

drift rates in a sequential sampling process, which eventually results in probability responses.
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There is considerable evidence that probability judgments are not just a simple linear trans-

formations of subjective probabilities (see Wallsten & Budescu, 1983, for a review). Even

if subjective probabilities are mentally represented, they are likely to be unconscious, un-

certain (e.g., because of concerns with the precision or fidelity of information), and lack

clarity. Therefore, a sampling estimation process is still required to convert what could be

vague information concerning probabilities to actual probability estimates, that is, proba-

bility ratings. Additionally, there might be other reasons a probability response might be a

distorted version of a subjective probability. For example, a cognitive agent may feel they

are unable to accurately estimate subjective probabilities (e.g., because of time pressure)

or is intentionally seeking to distort subjective probabilities (e.g., because probability esti-

mates biased in a certain direction serve a particular purpose). Such considerations justify

the assumption that subjective probabilities are best approached as drivers of a response

process, rather than directly corresponding to responses themselves.

Costello and Watts (2014) and Zhu et al. (2020) pioneered the idea that sampling can

be employed as the response process. However, as mentioned, these sampling models require

a commitment to sample size prior to any evidence about the relevant probabilities and

independently of any dynamic task demands, such as a prompt to hurry up with a judgment,

after the start of the judgment process. An alternative proposal is that the response process

is a sequential sampling one, where evidence is gradually accumulated towards the available

responses, until a stopping criterion is reached (Ratliff & Smith, 2015). There is extensive

experimental evidence for sequential sampling processes (e.g., Brown & Heathcote, 2008;

Diederich, 2003; Johnson & Busemeyer, 2005; Trueblood et al., 2014; Usher & McClelland,

2001), as well as neuroscience evidence of such processes in the brain. Including a sequential

sampling component to our model extends the predictive scope to encompass reaction times,

confidence ratings, and uncertainty in choice behavior (e.g., Busemeyer & Diederich, 2009;

Ratcliff, 1978; Ratliff & Smith, 2015; Ratcliff et al., 2016; Usher & McClelland. 2004),

which could be exploited in future extensions of paradigms for probabilistic reasoning. As a

technical point, a sequential sampling process offers prediction across the range of possible
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ratings.

Despite being inspired by traditional sequential sampling models for evidence accu-

mulation processes, the sequential sampling part of Quantum Sequential Sampler has one

key difference when compared to them. Typically, states in evidence accumulation models

represent evidence that cannot be directly measured in experiments, with evidence accumu-

lating towards a specific boundary for choice responses. In contrast, the states in Quantum

Sequential Sampler model are directly measurable responses. The model operates within a

vector space where states denote probability judgments, making even intermediate states

measurable and interpretable.

The ability to measure intermediate states as probability judgments enables the Quan-

tum Sequential Sampler to have two different interpretations for different experimental tasks.

First, for probability judgments, which is the primary concern of this paper, the model per-

forms a continuous update of the probability judgment distribution with a Markov process in

light of evidence from mental simulations. In such a case, the distribution of the probability

judgments evolves deterministically following the Kolmogorov equation. However, when one

obtains a sample point from the probability distribution, such a sample point is obtained

randomly from the distribution. The uncertainty in our model is meant to correspond to

people’s assumed inherent uncertainty about the exact value of a probability judgment for

a particular event. In fact, this is very similar to Bayesian belief updating, but instead we

use a continuous time Markov process for a continuous time update. That is, the previous

state at time t can be seen as a Bayesian prior and the next state in time t+∆t can be seen

as a posterior, after some evidence has accumulated. The model stops after running for a

fixed duration, determined by stopping condition determined by working memory capacity

and cognitive loads (Usher & McClelland 2001; Ratcliff, 2006).

Second, the Quantum Sequential Sampler could be applied for measuring choice and

response time. In this case, the Quantum Sequential Sampler functions exactly the same as

traditional evidence accumulation models except that the evidence states are interpretable.

As in traditional evidence accumulation models, stochasticity in the sequential sampling
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part now arises from noisy updating of the state at each time step, until it hits one of the

boundaries. The choice probability is then computed as the proportion of hits. Since we are

concerned with probability judgment instead of choice and response time, we focus on the

first interpretation in the present work.

Formally, the sequential sampling part can be specified using a discrete state Markov

process or a continuous state diffusion process. In most practical cases, probability judg-

ments are expressed as integers on some scale. Even when using an approximately continuous

scale for ratings, positions on the scale are actually discrete. Therefore, below we present

the corresponding discrete state Markov process (cf., Busemeyer et al., 2006; Appendix 1,

describes the corresponding continuous state diffusion process).

We start by assuming N = 101 states representing probability ratings on an integer

scale from i = 0, 1, 2, ..., 100. Before evaluating the probability judgment, the person starts

with an N × 1 initial state vector ϕ(0), which is a probability distribution across the states

that sums to unity. The coordinate, ϕi(0), is the probability of starting at probability

judgment i. We define this initial state ϕ(0) with a symmetric beta distribution Beta(γ, γ),

which is the same Bayesian prior as that employed in Zhu et al. (2020) – the same initial

condition is used for the diffusion model in Appendix 1. Since the beta distribution is a

continuous-space distribution, we need to discretize it for the Markov model with N states

and we do so by using the same technique as for the Bayesian Sampler model (Equation

9). Also, given that ϕ(0) represents a probability mass function at time 0, we normalize the

density mapping u in Equation (7).

During the evaluation process, the distribution across states evolves according to a

Markov process with a drift rate determined by the subjective probability obtained from

the quantum probability model. The evolution of the Markov process is determined by the

following Kolmogorov forward equation

d

dt
ϕ(t) = K · ϕ(t), (15)

which has the solution

ϕ(t) = eK·tϕ(0). (16)
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In the above, K is an N × N intensity matrix which encodes the state transition

rates, ϕ(t) is a time-dependent N × 1 vector that encodes the probability mass function

across the N states (where each state represents a probability judgment value in this case),

and ϕ(0) is the initial probability mass function. To define the Markov process that maps

the subjective probabilities to probability judgment responses, we therefore need to define

the intensity matrix K.

For each subjective probability P (A), where the event A can be a marginal, conjunc-

tion, disjunction, or conditional, the intensity matrix K with a reflecting boundary can be

specified as follows

Ki,i+1 = β+ for 1 ≤ i ≤ N − 1

Ki+1,i = β− for 1 ≤ i ≤ N − 1

Ki,i = −(β+ + β−) for 2 ≤ i ≤ N − 1

K1,1 = −β+
KN,N = −β−,

K =



−β+ β− 0 · · · 0 .
β+ −(β− + β+) β− · · · . .
0 β+ −(β− + β+) · · · . .

0 β+ · · · . .
. . 0 · · · . .
. . . · · · 0 .
. . . · · · β− .
. . 0 · · · −(β− + β+) β−
0 0 0 · · · β+ −β−


. (17)

The parameters β−, β+ are also employed in the diffusion model (Equation A3.2) and
are given by

β+ = α · P (A) + c+

β− = α · (1− P (A)) + c−, (18)

where α ≥ 0 moderates the effect of the subjective probability on the drift parameter. The

constants c+, c− are further defined by a free additive bias parameter b as follows. If b > 0

then c+ = 1 + b and c− = 1; if b < 0 then c+ = 1 and c− = 1 − b; finally if b = 0 then

c+ = c− = 1. These assignments guarantee that the intensity matrix parameters are always
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Figure 5. An illustration of the sequential sampling part of the model. The α parameter for the
above model is 38 and the bias parameter b is 5. As can be seen, with a positive bias parameter,
ϕ(0) drifts faster towards the right, to produce probability judgments greater than 0.5, than it drifts
towards the left, to produce probability judgments less than 0.5.

positive.

Conceptually, β+ and β− represent the transition rate of increase and decrease, re-

spectively, in a probability judgment over time. Their difference determines the drift rate

and their sum determines the diffusion rate (see Appendix 1 for how drift and diffusion rates

influences the change in means and variances of the Markov process). Parameters α, c+, c−,

for specifying β+ and β−, control the strength of transition rates. Note that since c+, c− are

defined through b, we only need two free parameters, α and b, along with the relevant sub-

jective probability, to specify the intensity matrix for each probability question; we assume

α and b to be the same for different probability questions.

Behaviorally, the quantities β+, β− embody two key mechanisms. First, they depend

on the subjective probabilities for a particular question, thus linking responses to a veridical,

internal probabilistic process by the agent. Second, they embody biases which allow over-

(or under-) estimation of probabilities and so systematic biases in probability estimation.

Note, this bias is blind to the probability question at hand, that is, it does not a priori

differentiate between conjunctions and marginals, which contrasts with the corresponding

key parameters in Costello and Watts (2014) and Zhu et al. (2020). Specifically, when b > 0
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versus b < 0 people overestimate versus underestimate probability judgments, relative to the

subjective probabilities (Figure 5). That is, b > 0 could be interpreted as an overestimation

bias, which exists prior to any mental simulation, while P (A) · α and (1− P (A)) · α reflect

the evidence gathered from mental simulations, which regulates this preexisting bias.

To fit the Quantum Sequential Sampler model to data, we need to define a likelihood

function. Let x be an observed probability judgment and denote the x + 1 element of the

final state vector (assuming the first index is 1) at time t as ϕ(x+1)(t). Then the likelihood

of the judgment at response time t can then be written as:

L(x, t|model) = ϕx+1(t). (19)

For example, for probability judgments corresponding to integers from 0 to 100, if we

have x = 50, then L(x = 50, t|model) = ϕ51(t). That is, the prediction of the model when

observing a probability judgment of 50 would be the 51st entry of ϕ(t). Note that for each

event A, there will be one corresponding likelihood in equation 19 and the final aggregated

likelihood will be the product of each of these likelihoods. While this Markov process allows

for time dependence, our current data do not track time and so fits proceeded assuming

that the response time is the same for all judgments. This means that the time parameter

can be absorbed into the other parameters of the intensity matrix; time is just a constant

multiplying to the matrix. However, the Quantum Sequential Sampler can be extended to

allow time to vary according to experimentally measured response times – this is just a

matter of de-clamping time from existing parameters. In the future, it would be worthwhile

to manipulate time, with a view to examine whether the present model can jointly predict

response time and probability judgments.

There is an additional remark regarding the fixed response time in our model as

compared to the fixed sample size in the Bayesian Sampler model. We do not make any

assumption that a fixed response time has to map to a single fixed sample size and in fact it

is possible that varying degrees of response time can correspond to the same sample size. In

other words, even if response time can vary, our model does not contradict the assumption

that sample size might be fixed. Besides, we also do not assume a process of how samples
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are drawn: samples could be autocorrelated or drawn in parallel or maybe what is needed is

even a partial simulation sample (Bass et al., 2022). To sum up, despite the fact that sample

size is related to response time, it has no functional role in how the Quantum Sequential

Sampler produces predictions. This contrasts with the Bayesian Sampler model: in the

Bayesian Sampler, sample size is a parameter which has to be fitted directly as part of

explaining a set of probability judgments.

In conclusion, we followed mostly standard formalism for Markov processes, with a

particular definition for the intensity matrix. The intensity matrix is standard for any

Markov version of a random walk model (e.g., Busemeyer & Diederich, 2009; Ratcliff &

Smith, 2015). Together with the subjective probability part, the Quantum Sequential Sam-

pler has the following ten parameters {P (A), P (B), P (C), P (B|A), P (C|A), P (C|B), o,

γ, α, b}, where o is the interference parameter, γ determines the initial distribution across

ratings, and α, b are used to determine the drift rates of the Markov model. Overall, while

sequential sampling processes have been widely employed in judgment and decision making,

to the best of our knowledge this is the first time they are applied to probabilistic reasoning.

Analytical predictions: Binary Complementarity. The question of whether analytical

mean predictions can be derived from the Quantum Sequential Sampler model, analogous to

those for the Bayesian Sampler model, presents an intriguing line of inquiry. However, this

task presents substantial challenges, largely due to the intricate nature of the Markovian

dynamics and the implementation of reflecting boundaries. Despite these difficulties, linear

approximation is an effective method to acquire some insights into model behavior and

predictions. In Appendix 3, we examine analytically model behavior for various major

probabilistic fallacies, including conjunction and disjunction fallacies, as well as violations

of probability identities.

Here, we show how linear approximation can illuminate the ways in which the Quan-

tum Sequential Sampler model addresses violations of binary complementarity, a fallacy that

is prominently represented in our current dataset. Amongst the several kinds of probabilis-

tic fallacies in our data (and previous work), binary complementarity uniquely distinguishes
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between the Quantum Sequential Sampler and the other computational models: as far as we

know, the Quantum Sequential Sampler is the only model which can account for violations

of binary complementarity. In this section, we explain how.

For a Markov process characterized by a constant intensity matrix and initialized from

a symmetric beta distribution, the mean of an arbitrary event A is anticipated to exhibit

a roughly linear increment with time, adhering to the relationship according to Equation

A.1.7 (see Appendix 1 for more details):

µQSS(t, A) ≈
1

2
+ (β+ − β−)t, (20)

where µ0 = 1
2 represents the mean of the symmetric beta distribution and (β+ − β−) delin-

eates the drift rate inherent to the Markov process. While µQSS(t, A) represents probability

judgments on a scale from 0 to 1, note that in the current dataset judgments were fitted

as integers from 0 to 100. The [0, 1] scale is employed here to maintain consistency with

the approach used by Costello and Watts (2014) in their demonstration of violations of

probability identities.

By incorporating the expressions for β+ and β− from Equation 19, we arrive at:

µQSS(t, A) ≈
1

2
+ {α(2P (A)− 1) + b} t = 1

2
+ 2αtP (A) + (b− α)t. (21)

Under the assumption that the processing time t remains constant for any event A, it

becomes feasible to absorb t as a constant factor into the parameters d and k. As noted, this

modeling assumption is specific to the dataset at hand, but the model retains its functionality

even when t varies across judgments. This results in the simplified expression:

µQSS(A) ≈
1

2
+ 2αP (A) + (b− α). (22)

Using the above expression, the Quantum Sequential Sampler can predict violation of

binary complementarity as follows: for any event A

µQSS(A) + µQSS(¬A) ≈
1

2
+ 2αP (A) + (b− α) +

1

2
+ 2αP (¬A) + (b− α)

= 1 + 2α(P (A) + P (¬A)) + 2(b− α)

= 1 + 2b, (23)
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where α is the drift rate parameter, b is the overestimation/underestimation parameter, and

P (A) + P (¬A) = 1. The same result holds for conjunctions and disjunctions as well, since

in the Quantum Sequential Sampler model, regardless of whether A or B is measured first,

it must be the case that P (A ∧B) + P (¬A ∨ ¬B) = 1.

From Equation 23, it is clear that the sum of the judgments for an event and its

negation can deviate from 1, depending on the value of b:

• When b > 0, we observe a subadditivity effect, resulting in an overestimation.

• When b < 0, we observe a superadditivity effect, resulting in an underestimation.

In summary, the sequential part of the Quantum Sequential Sampler can be distorted

based on parameter b, allowing the model to explain phenomena beyond the reach of the

Bayesian Sampler model. In the present study, this translates to a general overestimation

of probabilities, corresponding to a positive value of b. While we think this analysis illus-

trates reasonably well one source of advantage for the Quantum Sequential Sampler, there

are two important caveats. First, actual model behavior is more complex than the linear

approximation warrants. Exploring full model behavior cannot be done analytically and sim-

ulation methods would be the only viable approach. Second, the capacity of the Quantum

Sequential Sampler to explain violations of binary complementarity is a theoretical advan-

tage. However, this is not the only reason for the model’s advantage over other models. For

example, while the Bayesian Sampler model cannot account for conjunction fallacies when

both marginals and conjunctions are greater than 0.5, our model can explain such fallacies,

because of quantum probabilities. In general, the predictions from the Quantum Sequen-

tial Sampler depend on both the sequential sampling part and the quantum probabilistic

calculus.

Model comparisons

We perform our model comparisons at the individual level using log likelihood criteria,

and explore its ability to capture all the probability judgments in the present dataset. This

approach subsumes all individual fallacies and effects, which have previously been discussed
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in the literature, including some new effects we identified. Two different log likelihood criteria

are employed. The first is to estimate the parameters using all 78 ratings from each partici-

pant and compare models using the Bayesian Information Criterion, BIC = −2·G2+p·ln(N),

where p = number of parameters and N = 78 observations per person. The Bayesian In-

formation Criterion (BIC) serves as an approximate measure for the Bayes factor. Under

ideal circumstances, the Savage-Dickey method would be the preferred choice for accurately

determining the Bayes Factor (Lee & Wagenmakers, 2014), but this approach is too com-

putationally expensive for our models. Despite facing criticism, the BIC remains a popular

tool for model comparison within the field of psychology. To enhance our analysis beyond

the limitations of BIC, we have also employed a generalization test method, which provides

a more rigorous evaluation of model complexity (Busemeyer and Wang, 2000). This involves

estimating model parameters using a calibration set of conditions and subsequently applying

these parameters to predict outcomes for a generalization set of conditions. Compared with

cross-validation methods often used inmachine learning models (LeCun et al., 1998; Lecun,

Bengio, & Hinton, 2015; Nair & Hinton, 2010), generalization tests are similar but even

more rigorous. In the generalization test we employed, instead of merely excluding random

data points to form a test set, we strategically removed key elements, such as conjunctions

and disjunctions, thereby subjecting the model to a more rigorous evaluation.

Regarding models to compare, we can only compare models that can make predictions

for all 78 probability queries. Reviewing the points made above, some models, like the

averaging model (Nilsson et al., 2009) or inductive confirmation (Tentori et al., 2013), have

not been formulated in a way that allows predictions for some queries, such as conditional

probabilities. Other models, like the probability-plus-noise model (Costello & Watts, 2014),

which use a binomial distribution, produce zero likelihoods for some ratings, which make

comparisons based on log likelihood impossible. Furthermore, the Bayesian Sampler is a

similar and arguably better account compared to the probability-plus-noise model, as shown

in Zhu et al. (2020). Finally, with such a large number of participants to fit, it is very costly

in time to fit many models. Therefore, we focus on comparing four models: simple and
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complex forms of the Bayesian and quantum sequential samplers.

Regarding the comparisons between simple and complex versions of each model, we

remind readers that these comparisons were discussed earlier in the article. In the previous

section presenting the Bayesian Sampler, we summarized a comparison of a simpler version,

using only two sample sizes, with a more complex model, using four sample sizes. The sta-

tistical results reported in that section did not indicate a rejection of the simpler model and

so we will use the simpler version that includes only two sample sizes for model comparisons.

In the section presenting the Quantum Sequential Sampler, we summarized a comparison of

a simpler version with no interference, which we refer to as the classical variant or Classical

Sequential Sampler, to a more complex model which included an interference parameter,

which we refer to as the quantum variant. Statistical results favored the quantum variant

and it is this version which will be the focus for the comparison with the Bayesian Sampler.

BIC comparison

Both the Quantum Sequential Sampler and the Bayesian Sampler were fitted to indi-

vidual participant judgments through maximizing log-likelihood, which can be converted to

G2 values. We also evaluated a baseline uniform distribution model that uniformly randomly

guesses integers from 0 to 100 as probability judgments. The models were compared using

the BIC score averaged across all participants, computed from mean G2, with appropriate

penalties for the number of parameters of the models. The baseline model (random rating)

produced a BIC of 718.41, which is much higher than both models. The Quantum Sequential

Sampler model (10 parameters) produced a mean BIC of 616.53, which is much lower than

that of the Bayesian Sampler model (9 parameters) at 662.94. The classical variant of the

Quantum sequential sampler model (9 parameters), which assumes no quantum interference,

is also much better than the Bayesian Sampler model, with a BIC of 618.32. The classical

and quantum variants of the Quantum Sequential Sampler have comparable BIC results,

but the quantum variant performs slightly better.

We also used BIC to examine the number of participants fitted better by either model.

Consistently with the above conclusion, the Quantum Sequential Sampler produces a lower
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QSS CSS BS
Conjunction Training 396.11 400.39 418.44
Conjunction Test 183.84 185.78 231.21
Disjunction Training 384.77 386.03 429.69
Disjunction Test 209.63 216.98 204.68

Table 3: Generalization test results (mean G2 value) for the Quantum Sequential Sampler (QSS),
the classical variant of Quantum Sequential Sampler (CSS), and Bayesian Sampler models (BS).
‘Conjunction training’ refers to the G2 when training the model on all probabilities, apart from
conjunctions and ‘Conjunction test’ when testing the trained model on conjunctions; analogously
for disjunctions.

BIC value for 66% of all participants (769 counts). Therefore, according to mean BIC,

the Quantum Sequential Sampler is a better model. Note, these statistics apply to testing

both triplets; recall, we used two triplets of events for probability judgments, in a between

participants condition. Hereafter, in most cases we report only aggregate results for both

triplets for ease of presentation. Where aggregate results are reported, results broken down

by triplet offer minor variations to the overall pattern, without altering conclusions.

Similar analyses were carried out for the Zhu et al. (2020) data set. The aggregated

BIC over all five weather conditions for the Bayesian Sampler is 1607 and for the Quantum

Sequential Sampler 1610, which shows that the two models have comparable performance

(details in Appendix 2 and Supplementary Material 8). There are some possible reasons why

Quantum Sequential Sampler did not achieve a clear advantage over the Bayesian Sampler in

the data set of Zhu et al. (2020), as was the case in our dataset. Notably, responses in Zhu et

al. (2020) were entered as numbers into a computer and judgments to the same events were

measured repeatedly. With this response mode, it is possible that there is a stronger bias in

reporting integers 5s and 10s (Budescu et al., 1988). Additionally, an earlier answer could

bias subsequent responses for the same event, producing dependencies across replications.

This in turn questions the suitability of a log likelihood approach that assumes independent

observations. Another reason is that questions about the weather might be more likely to

be represented in a compatible way, e.g., because of familiarity of such questions (Trueblood

et al., 2017; Yearsley & Trueblood, 2018). Appendix 2 offers a more detailed discussion

regarding the difference between the two datasets.
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Generalization test

A stronger comparison of the models is obtained using a generalization test, which

addresses the issue of model complexity in a more general manner (Busemeyer & Wang,

2000). We adopted two approaches: first, we trained each model on all the probabilities

except conjunctions and then tested the model on conjunctions. Second, we trained each

model on the all probabilities except disjunctions and then tested the model on disjunctions.

This is a conservative test of the Quantum Sequential Sampler: when fitted across the

entire set of judgments, the interference parameter balances the inflation of conjunctions

and deflation of disjunctions. But considering each set of judgments individually removes

this advantage.

The results of this generalization test are presented in Table 3, which shows the

mean G2 across all participants separately for the training set versus the test set and for

conjunction versus disjunction test conditions. The Quantum Sequential Sampler performs

better by a large margin for the conjunction test set, and the Bayesian sampler performs

better by a small margin for the disjunction test set. The total G2 across both test conditions

for the generalization test set favors the Quantum Sequential Sampler (total G2 equals

392) over the Bayesian sampler (total G2 equals 436). Comparing the quantum variant of

Quantum Sequential Sampler with its classical variant, the quantum variant outperforms

the classical variant in both generalization tests.

We again examined the percentage of individuals for whom each model performed bet-

ter. The results again support the Quantum Sequential Sampler model (quantum variant),

with 79% of participants (921 counts) with a lower G2 on the conjunctions test and 52% of

participants (604 counts) with a lower G2 on the disjunction test set. In sum, the Quantum

Sequential Sampler overall outperforms the Bayesian Sampler, in terms of these general-

ization tests. Comparing the classical variant and the quantum variant of the Quantum

Sequential Sampler with this generalization test, we also found that the quantum variant

outperformed the classical variant, with 58% (679 counts) of participants better with a lower

G2 on the conjunctions test and 60% (702 counts) better on the disjunction test. The gen-
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eralization test result further emphasizes the need of quantum probability, at least for some

of the participants in our dataset.

Predictions

We compared the mean predictions to the mean response, across all participants, for

each probability question, and the distribution of predictions compared to the distribution of

responses, across all participants, again for each probability question. The prediction from

the Quantum Sequential Sampler for an arbitrary probability question A is computed as

the expected value of the final distribution of the Markov process, for arbitrary probability

question A, which is:

Pred(A)QSS =

100∑
i=o

i · ϕi+1(t)[P (A)] (24)

The prediction for the Bayesian Sampler is computed in the same way as in Zhu et
al. (2020):

Pred(A)BS = 100 ∗ NP (A) + β

N + 2β
(25)

Note, the ‘100’ factor is used to convert probabilities to integers from 0 to 100, which

correspond to the possible responses. So as to have a baseline model against which to com-

pare the Quantum Sequential Sampler and the Bayesian Sampler, we also fitted the relative

frequency model (also used in Zhu et al., 2020), which computes probability predictions

based on relative percentages in a binomially distributed sample. The prediction of this

relative frequency model corresponds to the relative percentage of the binomial mean, which

is simply Bayesian probabilities, and thus is expected to strictly follow Bayesian probability

axioms. Since the likelihood distribution of the relative frequency model is binomial, this

model cannot be fitted with a likelihood-based method, and we thus fitted the model in

the same way as Zhu et al. (2020), using sum of square error to compare the data against

predictions from the relative frequency model. Note, this is a different baseline model from

5In Figure 6, we found a systematic overestimation bias so that for most judgments the mean is above
0.5. We checked and ensured that these are the correct results (See Figure S.2.2). Similar overestimation
effects were found in Epping and Busemeyer (2023).
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Figure 6. Mean predictions of the Quantum Sequential Sampler, Bayesian Sampler, and relative
frequency models, against empirical results.5 Here and elsewhere the responses on the vertical axis
show probability judgments that the events on the horizontal axis occur on the scale [0,100]. Events
A,B,C correspond to Biden winning the different states, as shown above, and negations correspond
to Trump winning. The error bar in the middle shows the 95% confidence interval of the means.
The results are for the T1 triplet.



QUANTUM SEQUENTIAL SAMPLER 62

Figure 7. Violin plots showing the distribution of empirical data versus the distribution of pre-
dictions from the Quantum Sequential Sampler (top panel) and the distribution of empirical data
versus the distribution of predictions of the Bayesian Sampler model (bottom panel). The black bar
in the middle shows the first and third quartile of data points (25% to 75%). The data are for the
{A, B} pair of events, for the T1 triplet.

the one considered above (the uniform random model), but we include it here so as to follow

more closely Zhu et al. (2020) and to illustrate an alternative approach to a baseline model.

Mean model predictions are shown in Figure 6, for the first triplet of events and

the distribution of predictions in Figure 7, for one pair of events from the first triplet.

Supplementary Material 3 (Figures S.3.1 − S.3.5) shows predictions for the second triplet

and distributions for the remaining pairs. In all of these plots, only the quantum variant of

the Quantum Sequential Sampler model is shown. Given how similar their BIC results are,

one can expect the classical variant to have a similar mean prediction as the quantum variant.

The difference between the classical variant only matters when we examine prediction at the
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individual level, which we will consider more closely later. Overall, the Quantum Sequential

Sampler not only makes better mean predictions, compared to both the Bayesian Sampler

and the relative frequency model, but also predicts the distribution of probability judgments,

across participants, reasonably better.

As an additional point, inspecting the distributions of responses allows us to consider

whether there are empirical indications that the different probability terms, such as P (A∧B)

versus P (A|B), were understood differently by participants. Without undertaking detailed

analyses, it can be seen that there are many instances in Figure 7 where conditionals and

conjunctions/ disjunctions appear to have different distributions.

Probability identities

We presented earlier the probabilistic identities derived by Costello, Watts, and Fisher

(2018) and also employed by Zhu, Sanborn, and Chater (2020, Table 2). The important point

is that expectation diverges, depending on whether one adopts (Bayesian) probability plus

noise or quantum rules. Costello et al. (2018) originally argued that their results uniformly

support their account over and above the quantum model, but their work concerned Buse-

meyer et al.’s (2011) model, which we pointed out is incomplete. In Figure 8, we present the

results examining the Quantum Sequential Sampler, the Bayesian Sampler, and the relative

frequency models in predicting these 18 identities, computed using the mean predictions

across participants, as Zhu et al. (2020) did, for the first triplet (results for the second

triplet are shown in Supplementary Material 3). Note, for the empirical data, we ignored or-

der differences in conjunctions and disjunctions and simply computed the average across the

two orders. For any model, since there is only a single subjective probability for conjunction

and disjunction, we do not need to compute an average. As expected, the relative frequency

model, which strictly follows Bayesian principles, predicts zero for all the identities, while

both the Quantum Sequential Sampler and the Bayesian Sampler may predict non-zero for

the identities, which is closer to what is empirically observed.

The Quantum Sequential Sampler model offers a uniformly better correspondence with

the value of the identities compared to the Bayesian Sampler. One reason that the Quantum
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Figure 8. The empirical value of probability identities in Table 2, together with values computed
from best-fit predictions of the Quantum Sequential Sampler model, the Bayesian Sampler, and the
relative frequency model, averaged across all participants. The error bar in the middle shows the
95% confidence interval of the means. The results are for Triplet T1.

Sequential Sampler model predicts these identities better than the Bayesian Sampler is that

there are some systematic differences between the observed value of these identities in our
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dataset, compared with Zhu et al.’s (2020) one, as mentioned above. This potentially also

explains why the Bayesian Sampler model did not perform as well in our dataset, compared to

in the original Zhu et al. (2020) study. In the Quantum Sequential Sampler, the interference

parameter interacts in a more complex way with the various probability terms, offering a

more precise balance.

Another interesting observation about the probability identities is that the values of

all these identities seem to be relatively constant, across the different question pairs we

investigated. This is an unexpected result, given that there are some variations between the

values of conjunctions, disjunctions, and conditionals, across the three pairs in each triplet.

One reason for the constancy of the identity values might be that variations between pairs

may not just be large enough in our dataset. For instance, participants might rate similarly

the probabilities of the two candidates winning some states. It is an interesting question

for future research whether the value of these identifies survives variation in the probability

judgments, in datasets where such variation is more pronounced.

Finally, a noteworthy aspect of Costello and Watts’ (2014) and Zhu et al.’s (2020)

work is that they were able to analytically derive exact predictions for these identities from

their models. With the Quantum Sequential Sampler, this is not possible – the model is too

complex and, in the most general case, it is impossible to disentangle the influence of the two

parts, quantum probabilities and sequential sampling. However, a linear approximation to

the model can help somewhat in this respect, as we showed above for binary complementarity.

In Appendix 3 we consider the probabilistic identities, as well as some other notable fallacies.

Qualitatively, we replicate the multiplicative relations between various probability identities

in Costello and Watts (2014), using a linear approximation to our model.

Binary Complementarity

As noted previously, a distinguishing feature of the Quantum Sequential Sampler is its

ability to account for binary complementarity violations, a fallacy that eludes explanation

by existing models. In Figure 9 and in Supplementary Material 3, we show how model pre-

dictions regarding this fallacy are in line with empirical results. We also show corresponding
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predictions from the Bayesian Sampler and a simple relative frequency model. Both models

are constrained to obey binary complementarity and so they fail to accurately predict the

substantial violations observed in the data. As shown in Figure 9, another notable finding is

the consistent overestimation effect observed across all complementary pairs. This effect is

not only pervasive but also exhibits a remarkable uniformity in its magnitude: for each pair

of complementary elements, the sum of their probabilities consistently approximates 1.2.

Because Zhu et al. (2020) and Costello and Watts (2014) did not find violations

of binary complementarity in their studies on weather events, and given the prevalence

of probability anomalies in studies concerning electoral events (e.g., Moore, 2002; Years-

ley & Trueblood, 2018; Wang et al., 2014), we hypothesize that the occurrence of binary

complementarity violations in our experiment may be linked to the specific characteristics of

questions in election scenarios. For instance, a Trump supporter might logically assess Biden

as the likely winner of Michigan, yet may be hesitant to assign a definitively low probability

to Trump’s victory in that state, leading to overestimation. An interesting direction for

future research is to explore a wider array of question types and evaluate the incidence of

binary complementarity violations at the individual level.

Comparing quantum and classical variant of Quantum Sequential Sampler

It is interesting to examine differences between the classical variant and the quan-

tum variant of the Quantum Sequential Sampler, to pinpoint situations where quantum

probability enhances the prediction of probability judgment estimates.

Before delving into the details, we consider a few preliminary points. First, theoreti-

cally speaking, quantum interference is vital for explaining the conjunction and disjunction

fallacies in averaged probability judgements, akin to the role played by the additional noise

term in Costello and Watts’ (2014) model and the smaller sample size in Zhu et al.’s (2020)

model. This can be seen in Equation 22: with constant b and α, the mean judgment

µQSS(A ∧ B) exceeds µQSS(B) only when P (A ∧ B) > P (B), a requirement that necessi-

tates the use of quantum probabilities. Nevertheless, it is possible to observe conjunction

and disjunction fallacies at the individual participant level, even if there are no such fallacies
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Figure 9. Empirical values for binary complementarity, together with predictions from the Quantum
Sequential Sampler, the Bayesian Sampler, and the relative frequency model, averaged across all
participants. The error bar in the middle shows the 95% confidence interval of the means. The
results are for Triplet T1.

in average probability judgments (Costello & Watts, 2014). This suggests that the classical

variant could by itself account for the random occurrence of conjunction fallacies as a result
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of stochastic sampling processes.

Second, we mentioned earlier that for 576 out of 1162 participants, the quantum in-

terference parameter was significant. This finding implies that an integration of sequential

sampling and quantum probabilities is essential for a considerable subset of participants.

However, when we analyze the averaged predictions for the entire participant pool, distin-

guishing between the classical and quantum variants becomes challenging (Supplementary

Material 4, Figures S.4.1 − S.4.3). This difficulty is evident in the mean BIC and the out-

comes of the generalization test. Although the quantum variant shows some enhancements

over the classical variant (after accounting for the complexity introduced by an additional pa-

rameter), these improvements are modest in contrast to the Quantum Sequential Sampler’s

advantage over the Bayesian Sampler model. Additionally, while the quantum interference

parameter significantly impacts half of the participants, for the remaining participants re-

sponses align well with the predictions of the classical variant.

In light of these factors, we have decided to carry out some further analyses for the

576 participants who exhibit a significant quantum interference parameter, as a way to gain

insight into when the quantum interference parameter is necessary for understanding the

probabilistic reasoning of these particular individuals. Below we present analyses both for

the full set of 576 participants and for a smaller subset for whom the quantum advantage

was established with a more strict criterion.

We first analyzed the mean predictions of the quantum and classical variants for

the 576 participants for whom the significance of the quantum interference parameter was

established according to the "two-sigma" criterion, that is, p < .05. These findings are

presented in Figures S.5.1, S.5.3 in Supplementary Material 5. For this subset of participants,

the quantum model demonstrates marginally superior accuracy in predicting both the mean

judgments and their distribution; the degree of improvement is, however, very small.

Besides examining predictions which, according to Equation 24, represent the expected

value of the final state ϕ(t), we also investigated the standard deviation of this final state (see

Figure 10). Here, the results more clearly favor the quantum variant, which exhibits a con-
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Figure 10. Histogram showing the distribution of standard deviation of the final state of the Markov
process ϕ(t). Since the likelihood of the data given the model is directly computed from this state,
the standard deviation of the state is the same the standard deviation of the likelihood distribution.

sistently smaller standard deviation for these "two-sigma" participants. To elaborate, within

our framework of maximum likelihood estimation (see Equation 19), a reduced standard de-

viation of ϕ(t) implies a greater probability that the model can generate the empirical data

successfully, particularly when ϕ(t) adheres to an approximately Gaussian distribution with

prediction close to the data. Given that both model variants closely replicate the observed

data and considering that ϕ(t) is initially constructed from a symmetric beta distribution,

the quantum variant’s reduced standard deviation indicates enhanced predictive capability.

This extra sharpness in prediction of the quantum variant is attributed to the additional

interference parameter, which allows the model to produce probabilities closer to empirical

results, when these reflect Bayesian fallacies. By contrast, the classical variant must account
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for such results with greater variability.

The role of the quantum interference parameter becomes more pronounced when ap-

plying the "four-sigma" criterion (p < .00008) to determine its significance. Under this more

stringent criterion, only 95 participants exhibit a significant quantum interference parame-

ter. For this smaller group, a clearer distinction emerges between the mean predictions of the

quantum and classical variants, with the quantum variant demonstrating superior perfor-

mance, as evident in Figures S.5.3, S.5.4, in Supplementary Material 5. For the "four-sigma"

participants, the distribution of predictions from the classical variant are more narrow and

less well aligned to empirical data. Additionally, for these participants, the quantum variant

shows a more substantial improvement over the classical variant in terms of the standard de-

viation of ϕ(t) compared to the "two-sigma" participants, according to Figure 10. Clearly, in

instances where predictions from the classical variant significantly deviate from probability

judgments, a larger standard deviation is necessary to accommodate the empirical data.

To verify that the results from the "four-sigma" participants are not simply the prod-

uct of random fluctuations within the fitting process, we replicated the fitting procedure

thrice for these individuals. Each iteration yielded virtually identical G2 values, indicat-

ing consistent outcomes. This consistency reinforces the notion that the classical variant’s

subpar fit for these participants is likely due to the inflexibility of the classical probability

framework, rather than random errors during fitting. Note, identifying all probabilistic fal-

lacies that challenge the classical variant is an open-ended objective. While the search for

probabilistic fallacies has been intensely carried out for several decades now, it is unclear how

definitive the current list is – indeed, in the present work, the newly established violations

of binary complementarity played a key role.

As a further attempt to understand the behavior of "four-sigma" participants, we

employed kernel density estimation to compare the predictions of classical and quantum

variants against the empirical data, as illustrated in Figure 11 and detailed in Supplemen-

tary Material 6. Additionally, we present the kernel density estimation for a participant

whose optimal quantum interference parameter is zero. Participants whose responses are
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Figure 11. Kernel density estimation for observed and predicted judgments, for two quantum par-
ticipants (215, 872) and one classical participant (1098), corresponding to whether the interference
terms are significantly non-zero or zero in the Quantum Sequential Sampler. For the first quantum
participant 215, the triplet is A = Ohio, B = Michigan, and C = Missouri, and for the the other
two participants 872 and 1098, the triplet is A = Georgia, B = Montana, and C = Nevada. Note,
all 78 judgments are represented in the figures.

accurately captured by the classical variant often exhibit bimodal distributions in their

kernel density estimations. These two modes correspond to the complements of the two

marginals, reflecting a tendency to categorize responses distinctly, as evidenced by the dual

peaks in the density plots for these classical participants. Conversely, the "four-sigma" quan-

tum participants display a broader range of responses, populating the continuum between

the two peaks. This distributional characteristic could arise from systematic conjunction

and disjunction fallacies, allowed by quantum interference, which can lead to predictions

intermingling more closely with those of the corresponding marginals. Moreover, the kernel

density plots for the quantum participants generally show higher entropy, with responses

demonstrating greater variance, compared to classical participants. Visually, the density

function for quantum participants appears more akin to a uniform distribution. It is im-

portant to note that these observations are qualitative and preliminary. Future research

is encouraged to rigorously explore the link between the entropy and variance in the dis-

tributions of probability judgments and the quantum interference evident in participants’

responses.
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General discussion

We proposed a novel framework for probability judgments in probabilistic reasoning.

Our aim has been to capture several insights about probabilistic reasoning, some of which

have already been expressed in current formalisms, but (we think) in incomplete ways and

never over a scope as encompassing as the present one. The main two insights driving our

work concern the nature of subjective probabilities and the way that subjective probabilities

drive observed responses.

Our first main assumption is that probabilistic reasoning reflects subjective probabili-

ties and these subjective probabilities need to be distinguished from the observed probability

ratings. This is an assumption which contrasts with heuristic or bias approaches to cognition

(e.g., Hertwig et al., 2013; Kahneman et al., 1982; Nilsson et al., 2009). Without doubt,

proposals for heuristics and biases have consistently captured important aspects of behav-

ior. However, the formalization of such accounts is often limited, so that researchers have

sought to incorporate such ideas into formal frameworks (whether Bayesian, as in Lieder

and Griffiths, 2019, or quantum, as in Busemeyer et al., 2011).

The theoretical difference between the Quantum Sequential Sampler and extant

Bayesian sampling models, notably the ones from Costello and Watts (2014) and Zhu et

al. (2020) is more subtle. In all models there is some sampling process. An agent only

experiences sample values and evaluates a question or rating using these values. All models

assume that this sampling process produces a distribution of sample values and distribution

means equal the corresponding subjective probabilities. Compared to Costello and Watts

(2014) and Zhu et al. (2020), in the present work, we explored a theory for probabilistic rea-

soning based on a different calculus for subjective probabilities (quantum versus Bayesian)

and a different sampling process (sequential sampling versus fixed sampling). As discussed,

we think there is ample evidence in the literature to justify both theoretical choices.

Regarding subjective probabilities, if we accept that they have some role in proba-

bilistic reasoning, then a question naturally arises of whether such probabilities should be

Bayesian or quantum or indeed something else. There is a pervasive intuition that cognition
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encompasses both an analytic/ reflective/ thoughtful mode and a heuristic/ reflexive/ spon-

taneous one (Kahneman, 2001). One way to develop these ideas is to assume that Bayesian

versus quantum models capture an analytic versus heuristic distinction and, importantly,

that the relative weight of these influences is continuous, in terms of the size of the interfer-

ence parameters. One can say that our formalism proposes an infinite number of cognitive

routes, from strongly Bayesian to strongly quantum, with all intermediate possibilities in

between.

What is the basis for associating Bayesian with analytic and quantum with heuristic?

It is uncontroversial to consider Bayesian reasoning as the absolute rational standard in

reasoning, at least in most cases, e.g., excluding cases where there might be inherent contex-

tuality (Pothos et al., 2017). Therefore, it seems that, if we could, we should just be baseline

Bayesians all the time. Of course, it is well known that this is not possible, placing an extra

‘cost’ on any situation when we attempt to be Bayesian (e.g., Lieder and Griffiths, 2019).

One way to simplify Bayesian reasoning is to use quantum probabilities. This is because

quantum theory can be seen as a compartmentalized version of Bayesian reasoning, that is,

Bayesian reasoning which applies only in subsets of questions (in some question space), elim-

inating the need for complex probability distributions (Pothos et al., 2021; Lewandowsky et

al., 2002). Note, if the situation is Bayesian and we apply quantum probabilities, we might

misrepresent the world – simplification usually comes at a price. In any case, we think it

is reasonable to consider quantum as fulfilling the role of heuristic modes of thought and

indeed there is evidence that both unfamiliarity and more reflexive modes of thinking are as-

sociated with quantum reasoning (Trueblood et al., 2017). In the present work, we observed

some association between higher CRT scores (more reflective thinking; Frederick, 2005) and

fewer conjunction and disjunction fallacies. We do note that these ideas are offered here as

somewhat speculatively, awaiting further examination in future work.

The above argument is agnostic concerning possible influences in human probabilistic

reasoning beyond either Bayesian or quantum reasoning. Indeed, it seems likely that there

would be such influences, not least because it is well known that several factors can affect
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the judgment process, including emotion (Bower, 1981), motivated reasoning (Kunda, 1990),

values (Schwarz, 1992), and just plain biased thought (Lewandowsky et al., 2012). Knowl-

edge about probabilities, even if biased, surely corresponds to only one influence amongst

others.

Our second main assumption is that subjective probabilities are not known directly,

but rather serve as drift rates guiding a sequential sampling process, corresponding to a par-

ticipant trying to decide on an appropriate response. Compared to previous proposals with

a sampling component (Costello & Watts, 2014; Zhu et al., 2020), the main advantage of a

sequential sampling framework is that it obviates the need for an a priori commitment con-

cerning the extent of sampling: sampling can be terminated when there is enough evidence

for a particular response or more flexibly, depending on any combination of task demands

which might arise after the start of the judgment process. Additionally, a response is likely

to be a function of many different influences, over and above the actual subjective proba-

bilities. While we cannot model such influences directly, we can allow for a process which

distorts subjective probabilities, in some principled way, in terms of the way the parameters

for the process are set up.

Model comparisons showed our proposal, the Quantum Sequential Sampler, to be

superior to the Bayesian Sampler and to a classical variant of the Quantum Sequential

Sampler. Even though in recent years there have been several sophisticated proposals for

bounded-rational Bayesian reasoning (e.g., Dasgupta et al., 2020; Lieder & Griffiths, 2019),

the Bayesian Sampler offers a full probabilistic calculus, capable for accommodating predic-

tions for any probability question. There is a valid question concerning whether advantage

of the Quantum Sequential Sampler over the Bayesian Sampler one comprehensively proves

the necessity of quantum probabilities in probabilistic reasoning. We have presented several

analyses which we think support this conclusion, but clearly this is an issue which cannot

be definitely settled yet. For example, it is always possible that, if one of these alternative

Bayesian proposals were to be more fully developed, conclusions might be different from the

present ones. Overall, with increasingly complex approaches to biased probabilities, sam-
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pling, and noise, there is a concern regarding the coherence of models under a particular

label (Jones & Love, 2011). This is one reason why we think it is appealing to employ tools

which are as standard as possible, in developing a formalism, as is the case with our use of a

sequential sampling process. Sequential sampling processes have been extensively employed

in cognition (e.g., Brown & Heathcote, 2008; Busemeyer & Diederich, 2009; Johnson &

Busemeyer, 2005; Ratliff & Smith, 2015).

An important concern for the present results is whether the probabilistic task we em-

ployed is adequate. It seems uncontroversial that the main appeal of a formal probabilistic

model (Bayesian or quantum), as opposed to one based on heuristics, is that probabilities

constrain each other in a precise way. Thus, the more the probability judgments from each

participant, the more precise the test for a particular model. Costello and Watts (2014) and

Zhu et al. (2020) considered, for each participant, probability questions corresponding to a

single pair of events – even though more than one pair were included, questions were not

mixed across pairs. By contrast, we asked participants to respond to all pairwise combina-

tions of three events, leading to 78 judgments per participant. Of course, the large number

of judgments raises concerns both for the present work and previous related work (Zhu et

al., 2020; Costello and Watts, 2014) that participants might fail to engage sufficiently with

a task throughout its duration. Such problems have been well documented in cognitive re-

search. In the present work, we sought a theme which, with reasonable justification, might

be expected to engage participants to a greater extent than otherwise. But we have no direct

measure of participant engagement, apart from a fairly soft attention check. A related, and

much discussed issue, is whether participants correctly understand the algebraic meaning

of the various logical connectives, e.g., conjunctions, disjunctions etc. Overall, the evidence

seems to suggest that this is the case, especially when more judgments are included together

(Moro, 2009).

We think exploring a larger set of inter-related judgments pays off: though this has

not been our primary objective, the larger set of judgments enabled us to identify some novel

empirical findings. Notably, we observed systematic overestimation effects and violations of
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binary complementarity, even for marginals. There has been very sparse evidence for such

violations previously (e.g., Epping & Busemeyer, 2023; Shafir, 1993) and the present results

represent a main empirical contribution from this work. We also identified evidence for

double conjunction fallacies (Crupi et al., 2018). These findings preclude a model based on

just subjective probabilities, even quantum ones, since the quantum model of Busemeyer et

al. (2011) cannot accommodate double conjunction fallacies and is limited in its capacity to

accommodate violations of the law of total probability – violations of binary complementarity

are not possible at all. Such conclusions bring into focus the point that investigations of

probabilistic reasoning on the basis of limited test procedures are bound to offer likewise

limited tests of models.

So, are we to conclude for a general recommendation of just ‘more is better’? There

are two potential difficulties here: first, with more elaborate question combinations, there

might be genuine processing limitations, either in terms of memory or attention or even

basic comprehension. For example, it is unclear how well participants might understand

a question of probability conditioned on three predicates. One has to consider how often

questions involving multiple predicates in complex arrangements really occur in real life.

Additionally, concerning tests of probabilistic models, it is less clear how new constraints

could be tested by extending the range of events beyond what has been presently employed.

In this work, the point of having three pairs has been exactly that probabilistic assignment

in one pair impacts on assignment in the other two pairs – because of the law of total

probability and, in the Bayesian case, the requirement that all events conform to a three-

way probability distribution (in the quantum case there are different constraints concerning

processing order). If, for example, one were to consider four events and corresponding pairs/

triplets, the tests would be of the same constraints, just over a greater range of events. It is

unclear whether this matters.

We can also call into question whether a decision paradigm might be the best way to

study probabilistic reasoning. Specifically, throughout this and related work, the emphasis

has been on probabilistic reasoning with questions which concern the general knowledge
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and experience of participants. But maybe this is a problematic approach. For example,

there are certainly advantages in having participants infer probabilities directly from ex-

perimental materials (as in Fiedler et al., 2009) or if the true probabilities of the relevant

events are known (as in Zhao et al., 2009). One advantage of using perceptual stimuli for

probability judgments is that the same judgments can be queried repeatedly, without partic-

ipants necessarily realising that this is the case (Zhao et al., 2009). Note, repeating identical

probability judgments is a concern regarding the procedure of Zhu et al. (2020), as we have

discussed elsewhere. Such research has led to many interesting findings, including in relation

to pseudo-contingencies or illusory correlations (for the latter see Bott et al., 2021). We think

there are complementary advantages between, what one might call, probability judgments

on novel or meaningless stimuli and ones concerning knowledge-rich questions. In the latter

case, there is less direct, experimenter control over the probabilities participants assign to

different events. To use an example from the present paradigm, different participants might

have wildly different notions of the probability that Biden will win in Arizona. Nevertheless,

such individual differences do not impact on the formal modelling, since the question is how

participant judgments for the different probability terms constrain each other. Additionally,

for a task spanning several judgments (78 in the present research), employing a theme which

should hold natural interest for most participants would be expected to help with engage-

ment and attentiveness. Overall, it is reasonable that different empirical approaches might

be better suited towards different empirical objectives. In the present case, the objective

was to explore whether the constraints from probability theory, classical or quantum, about

how different terms constrain each other are reflected in behaviour. As such, we think the

choice of a current affairs theme of great topical interest, at the time of testing, is justified.

Regarding theoretical considerations, we think that the use of sequential sampling in

probabilistic reasoning has considerable potential to expand this research area. Sequential

sampling models have been shown to offer versatile and powerful predictions, for example,

concerning task demands (such as time pressure, Ratliff and Smith, 2015), neural recording

(Gold & Shadlen, 2002, 2007), in categorization (Nosofsky & Palmeri, 1997), and in per-
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ceptual discrimination (Laming, 1968; Usher & McClelland, 2001). Recasting a model of

probabilistic reasoning within the sequential sampling framework offers promise of extending

work on fallacies in a wide scope. Additionally, a sequential sampling framework paves the

way for expanding the range of dependent variables studied in probabilistic reasoning, no-

tably response time and confidence (e.g., Pleskac & Busemeyer, 2010). Response times have

not been a focus of attention in probabilistic reasoning, so this is an interesting direction for

future work. This is indeed what has been partly accomplished by Zhu et al.’s (2023) work

extending the Bayesian Sampler and we hope to carry out similar work for the Quantum

Sequential Sampler in the future.

There are several challenges to the Quantum Sequential Sampler. First, in physics,

the move to quantum theory was as difficult and counterintuitive for the scientists of the

early 20th century, as it has been for psychologists about 15 years ago, when the quantum

cognition program started. The adoption of quantum theory was initially driven by rec-

ognizing that in some cases the structure of the physical world conformed to the strange

mathematics of quantum theory. Analogously, in psychology, the initial case for quantum

cognitive models was based on the discovery that quantum interference terms sometimes

provided simple and compelling explanations for the various apparent fallacies, especially in

probabilistic reasoning (Pothos & Busemeyer, 2022). However, subsequently, in physics, an

extensive and profound foundational debate ensued, concerning why quantum theory might

sometimes offer a good description of the natural world (Hardy, 2002a). The objective

has been to derive the axioms of quantum theory from some basic intuitions about nature

(Hardy, 2002b). This step has been missing in psychology: if there is sometimes incompat-

ibility in mental representations, why might this be the case? Or, put differently, could we

consider what is the purpose of these quantum-like interference terms? Some researchers

have attempted to develop an informational efficiency argument (Pothos et al., 2021), but

much more work is needed. There are some related problems, such as the a priori determi-

nation of incompatibility, though in practice such problems can be circumvented, e.g., by

empirical tests for incompatibility.
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Second, the biggest challenge is to consider whether the present approach, based on a

flexible mix between Bayesian and quantum influences, might itself be a special case of an

even more general model. Note that, in the same way quantum theory generalizes Bayesian

theory with the introduction of an interference term, it is possible to generalize quantum

theory with even more powerful interference terms (Sorkin, 1994; Narens, 2014). In physics,

it has not proved necessary to pursue such developments (Hardy, 2002a). Perhaps in psy-

chology they might be more necessary? Additionally, there have been other probability

frameworks, such as support theory (Tversky & Koehler, 2012). On the whole, such alterna-

tive probability frameworks have attracted less attention in the exploration of probabilistic

reasoning, because they neither benefit from the normative/ formal justifications of proba-

bility frameworks proper (such as Bayesian theory) nor from the flexibility of pure heuristics

and biases accounts. Nevertheless, it is possible, that there is a non-standard probability

framework, which exactly captures the structure of human probability judgments, without

the necessity of postulating separate influences.

Third, the adoption of quantum theory in this and other work is underwritten by the

question of whether quantum theory might be needed at all. The finding that the Quantum

Sequential Sampler (with interference effects) accounted for more participants than the

Classical Sequential Sampler (without interference effects) indicates the necessity for using

quantum probabilities. An interesting direction is to consider ways to resolve the problem

of whether quantum probabilities are needed or not, even in cases for which fits with and

without the quantum part are similar. More generally, research in probabilistic reasoning

has shown that mimicries in more limited datasets can sometimes be resolved in extended

ones. Perhaps extending the range of probabilities each participant considers might be

useful , though, as discussed, it seems unclear whether it is worth pursuing more extensive

datasets. An alternative direction might be manipulations on the nature of the events, e.g.,

whether the probability judgments concern weather events versus election events. Perhaps

more extreme or incongruent events are more likely to be represented in a quantum-like

manner.
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Fourth, a technical consideration is that the form of the sequential sampling process

need not be restricted to a Markov / diffusion model based on the Kolmogorov forward

equation, as presently employed. It is possible to specify an analogous dynamical process

based on quantum theory (Busemeyer et al., 2006; Kvam et al, 2015; Rosner et al., 2022).

In quantum theory, instead of the Kolmogorov forward equation, one would use either the

Schrödinger equation or the Lindblad equation. In such a case, a model would evolve not by

sequentially sampling from a Markov process, but, instead by a quantum walk process. The

quantum walk process evolves a superposition state of probability judgments across time,

which offers some interesting characteristics compared to the classical approach.

Cognitive models based on quantum dynamical equations have been previously de-

veloped. Dynamical models using Schrödinger’s equation display a characteristic indefinite

oscillatory pattern and so they have been considered appropriate for capturing ambivalence

in decision making (Kvam, Busemeyer, & Pleskac, 2021). The Lindblad equation includes

a part which allows eventual stabilization of the dynamics and offers patterns more analo-

gous to standard diffusion models (Rosner et al., 2022). However, the distinction between

Schrödinger and Lindblad dynamics also involves additional assumptions concerning the na-

ture of representations, which cannot be mapped to cognitive applications, without further

theory (Asano et al., 2011). Also, in some cases, we have found that Markov dynamics

captures human behavior better (Busemeyer, Wang, & Townsend, 2006). Concerning the

Quantum Sequential Sampler, there was a good a priori reason why to include a part based

on quantum probabilities – some of the fallacies have a fairly natural explanation employing

quantum probabilities. However, a similar justification was just not available concerning the

dynamical part; there was no reason to motivate the use of either the Schrödinger or the

Lindblad equations, instead of the Kolmogorov forward equation (Kvam et al., 2021; Rosner

et al., 2022). So, we think we are justified concerning this modeling option.

Fifth, another technical consideration is whether to employ projectors for cognitive

measurements or allow for the possibility that judgments are made with POVMs. POVMs

offer a mechanism for introducing noise in probabilistic calculations. In quantum models
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based on just quantum probabilities, such as mechanism may be necessary, e.g., as in White

et al. (2020) or Yearsley and Pothos (2016). The Quantum Sequential Sampler already

incorporates a source of noise, in the form of the sequential sampling component of the

model. So, could we say that the alternative source of noise, from POVMs, is not needed?

Recall that the Quantum Sequential Sampler allows for both projectors and POVMs and

the latter are essential depending on the value of the interference parameter in relation to

its various boundary conditions. As things turned out, model fits indicated that for many

participants POVMs were needed. Therefore, it seems that the two sources of noise make

unique contributions to model behavior and it is not possible to subsume one into the other.

A technical direction for future work is to explore whether different kinds of operators,

alternative to POVMs, might allow correspondingly different conclusions.

Sixth, one could also question our use of quantum probability, because we do not test

for order effects along with the conjunction and disjunction fallacies. A general point is that

order effects and conjunction fallacy are explained by the same quantum mechanism. Even

if we have not explored order effects in the present work, experiments have been conducted

regarding the connection between conjunction fallacy and order effects in e.g. political polls

that support the quantum model. For example, Trueblood and Yearsley (2017) observed

significant and large order effects and conjunction fallacies in election scenarios comparing

the likelihood of Trump and Hillary winning specific states. Boyer et al. (2016) presented

evidence suggesting that order effects might not always manifest in the Linda problem given

some specific framing of the questions. However, in other experiments of the same work,

they did identify the expected order effects.

To address a potential confusion, in our experiment, we did not assess question order

effects in the way of these previous studies, that is, comparing responses to questions A and

B in one order versus another order. Instead, we assessed order effects in the probabilities of

conjunctions and disjunctions by presenting their components in varied orders (e.g., Trump

winning Ohio followed by Biden winning Michigan and vice versa). No significant difference

was observed in the probability judgments for the two different orders. We postulate that this
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is because, even with varied presentation orders, participants still perceived all components

simultaneously and employed a consistent processing order of the two components. We

suggest participants invariably process the more likely event first, a notion introduced by

Busemeyer et al. (2011) for the original quantum model for probability fallacies. The

lack of systematic order effects in conjunctions and disjunctions in our data offers some

indirect support that this is a reasonable approach (but see Fantino et al., 1997). In any

case, it is important to differentiate this from traditional order effects experiments (e.g.,

as in Trueblood & Yearsley, 2017, or Trueblood & Busemeyer, 2017), whereby participants

respond to two separate, binary questions one at a time and question order naturally has to

match processing order.

In any case, our main objective in this work was to model the judgments for all po-

tential probability queries concerning the two candidates winning a state within the given

triplets, not just conjunction and disjunction fallacies. There are many other other notewor-

thy results in probabilistic reasoning, like the violations of probability identities highlighted

in Costello and Watts (2014), which can be tackled by our model. Note also that in our

framework not all conjunction and disjunction fallacies stem from quantum probabilities.

Some may arise from noisy sampling or mere chance (see Appendix 3). That is, our model’s

efficacy hinges on integrating both the quantum probability and sequential sampling com-

ponents. The emphasis is not on validating either component individually, but on their

collective ability to predict all probability judgments.

A final related point is that conjunction and disjunction fallacies would still arise from

a quantum framework, even without the more likely first assumption. However, on average,

such effects would be smaller. In general, we think that processing order depends on several

factors, such as salience of the questions, attentional biases, or incidental processing biases

specific to individual participants. With future work, we hope to elaborate both the model

and the empirical paradigms, to refine our understanding of processing order effects (see

Epping et al., 2022, for corresponding work relating to similarity judgments).

In conclusion, probabilistic reasoning and decision making in general have been one of
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the most researched aspects of cognition – and with good reason too, given both the immense

practical importance of this area and their central role in our understanding of what it

means to be human. The present contribution advances this area in three directions: first,

by offering a unique, precise way to incorporate Bayesian and non-Bayesian (in the form of

quantum theory) influences; second, by proposing a novel process for mapping subjective

probabilities to responses, based on the widely adopted sequential sampling framework;

finally, by offering detailed model examinations against the largest to date dataset on human

probabilistic judgments – our dataset offered new evidence for double conjunction fallacies

and, importantly, violations of binary complementarity. This work offers a comprehensive

response to the question of what apparent probabilistic fallacies are about: they are a

combination of response biases on Bayesian probabilities (as others have noted, e.g., Costello

and Watts, 2014; Dasgupta et al., 2020; Zhu et al., 2020) and quantum probabilities. We

hope that further clarity concerning the nature of fallacies and the integration of models

about probability judgments with sequential sampling ones will help advance judgment and

decision theory in novel, exciting directions.
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Appendix 1

We describe our proposal for a diffusion process, matched to the Markov one in main
text. The evidence accumulation process with continuous time and continuous state space
(e.g., when probability judgments are measured by real numbers) is governed by the Fokker
Planck Equation, with constant drift rate δ and constant diffusion rate D = σ2

2 > 2 (Wang
& Busemeyer ,2021):

ψt(x, t) = Dψxx(x, t)− δψx(x, t), (A.1.1)

where ψ is some probability density function over probability judgments. Judgments cor-

respond to some event A, where A can be an isolated conjunct, a conjunction, disjunction,

or conditional event. Equation A.1.1 can be made to depend on the subjective probability

of A, P (A). We are looking to solve it, by specifying δ, D, an initial condition, and two

boundary conditions. We first define

β+ = P (A) ∗ α+ c+

β− = (1− P (A)) ∗ α+ c−, (A.1.2)

where α ≥ 0 is the drift parameter, and c+, c− are further defined by a free additive bias

parameter b: c+ =

{
1 if b ≤ 0

b if b > 0
and c− =

{
1 if b ≥ 0

−b if b < 0
.

Note, the definition of k ensures that β+, β− are always positive. Regarding an

intuitive understanding of the β+, β− quantities, we refer readers to the description of the

Markov model in main text – these parameters can be more easily understood in relation

to the Markov model and, moreover, the diffusion model depends more obviously on the

diffusion rate and the drift rate, which we consider next.

The diffusion rate D and the drift rate δ are defined as

D =
σ2

2
=

∆2(β− + β+)

2
δ = ∆(β+ − β−). (A.1.3)

Note that σ2/2 is just another notation for the diffusion rate (we make no further use

of this quantity later on). In the above, ∆ denotes the step size of the Markov process in

discrete space. Since in our case the states are integers from 0 to 100, step size ∆ = 1.
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The initial condition for ψ is assumed to correspond to a probability density function

(since ψ is a probability density function too), distributed according to a symmetric beta

distribution Beta(β, β), with free parameter β. Note, the same distribution is also employed

as the Bayesian prior for the Bayesian Sampler model (Zhu et al., 2020). When α < 1, this

initial condition corresponds to

ψ(x, 0) =
xβ−1(1− x)β−1

B(β, β)
, x ∈ (0, 1) (A.1.4)

where B is the beta function. When α ≥ 1, the initial condition can be specified as

ψ(x, 0) =
xβ−1(1− x)β−1

B(β, β)
, x ∈ [0, 1]. (A.1.5)

We finally state the Neumann boundary conditions for solving Equation A3.1 with a

reflecting boundary condition (Bhattacharya & Waymire, 2009):

lim
x→0

ψx(x, t) = 0

lim
x→1

ψx(x, t) = 0, (A.1.5)

Given all the conditions above, we can find a unique solution for the probability density

function over all probability judgments ψ using numerical methods. Note that ψ is also the

likelihood function of a person producing a probability judgment d ∈ [0, 100] in the data

with a response time t, that is

L(d, t|model) = ψ(
d

100
, t). (A.1.6)

Since the beta distribution is not defined at 0 and 1, we need to make the approxi-

mation that L(a, t|model) = ψ(0, t) ≈ ψ(0.005, t) and ψ(1, t) ≈ ψ(0.995, t), so as to have

well-behaved likelihoods at these points.

Mean and Variance

According to Bhattacharya and Waymire, (2009), the change in mean for a constant

coefficient diffusion process, assuming the process exists in (−∞,∞) and vanishes at ±∞,
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is the following:

d

dt
µ(t) =

∫ ∞

−∞
xψt(x, t)dx

=

∫ ∞

−∞
x(Dψxx(x, t)− δψx(x, t))dx

= D

∫ ∞

−∞
xψxx(x, t)dx− δ

∫ ∞

−∞
xψx(x, t)dx

= 0− (−δ) = δ. (A.1.7)

The same holds for a discrete space Markov process, except the differential equation and

integral change into a difference equation and sums. Similarly for variances:

d

dt
V (t) =

∫ ∞

−∞
x2ψt(x, t)dx− d

dt
(µ(t)2)

=

∫ ∞

−∞
x2(Dψxx(x, t)− δψx(x, t))dx− 2δµ(t)

= D

∫ ∞

−∞
x2ψxx(x, t)dx− δ

∫ ∞

−∞
x2ψx(x, t)dx− 2δµ(t)

= 2D + 2δµ(t)− 2δµ(t) = 2D. (A.1.8)

For a reflecting boundary, analytical solutions for the mean and variance are not always

possible to derive given an arbitrary initial state. However, Equation A.1.7 and A.1.8 still

makes possible a linear approximation of the behavior of the Markov process, when the

process is fairly far away from the reflecting boundary.

References
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Appendix 2

In this section, we report the fitting results for the Zhu et al. (2020) data, considering

the full Quantum Sequential Sampler (including the quantum part, that is, with non-zero

interference parameters) and Quantum Sequential Sampler with only Bayesian probabilities

(interference parameters set to zero).

In Zhu et al.’s procedure, participants indicated their responses by reporting actual

numbers. Therefore, it is likely that responses were biased towards multiples of 5, more so

than what presently observed. For this reason, and so as to make our fits more comparable

to those in Zhu et al. (2020), we rearranged integers in the 0 to 100 range into categories

corresponding to multiples of 5, when computing G2, to avoid complicating model fits by

this bias (which is not part of any of the models). Note, we think that using a ratings scale

to assess probability judgments, as in the present case, is a more robust approach, in that

the distributions of responses should be more spread out across the full range of integers.

Table A2.1 shows the fitting results. The Bayesian Sampler (slightly) outperforms the

Quantum Sequential Sampler for the frosty, icy, normal, typical, and warm, snowy pairs,

but not for the other two cases. Note, the models were fitted separately for each pair,

because this was the approach of Zhu et al. (2020) as well. We also examine the mean

predictions, distribution of predictions, and predictions of probability identities comparing

the two models, with results shown in Supplementary Material 8.

We can speculate concerning the apparent advantage of the Bayesian Sampler model

in this case. As mentioned in main text, we think there are three possible reasons. First, Zhu

et al. utilized a repeated measures procedure to assess probability, that is, participants pro-

vided three ratings for each event. It is unclear whether multiple decisions like this should be

considered identical or whether probability updating might be influencing responding, e.g.,

judgments sometimes change corresponding beliefs (White et al., 2020, 2014 and references

therein). Repeated judgments might also introduce biases in responding. For example, in

the first round, a participant might say that tomorrow will be rainy with a probability of

0.9 while in the second round this becomes 0.2. In such a case, is it that they really respond
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following the beta distribution or because they are asked twice and so doubt their original

answer? If a participant is asked the same question over and over again, then they might

wonder whether there is something going across these identical trials (e.g., a pattern to be

discovered) and act accordingly. Second, the response format in the present case was more

flexible than in the work of Zhu et al. (2020). The format of typing responses into the com-

puter in the latter case plausibly encouraged responses in multiples of 5 (when measuring

probabilities in a [0,100] range), motivating an additional rounding mechanism to model re-

sponses in that work. Third, we think that the weather events in Zhu et al. (2020) are more

likely to be represented in a compatible way, so that interference terms would be 0. This is

because, as far we know, one way in which compatible and incompatible questions are distin-

guished is familiarity (Trueblood et al., 2017; Yearsley & Trueblood, 2018). Weather events

are very frequently considered together, whereas there would be lower familiarity for election

questions, especially concerning opposing candidates. Fourth, in Zhu et al.’s (2020) case a

more limited range of judgments was employed. Perhaps the available probabilities did not

provide sufficiently strong constraints, to allow a cleaner separation of the models. A final

possible reason is that an election, and especially that particular election, plausibly evokes

more extreme opinions, which might be inducing incompatibility. For example, it might be

hard to reconcile the possibility of Biden winning Ohio with Trump winning Pennsylvania,

even if both possibilities are individually reasonable – that is, in quantum-like terms, such

possibilities are incompatible.

Note also that the Bayesian Sampler model, which has six parameters, was fitted to

20 data points, already doing quite well. So there is not a lot of room for the Quantum

Sequential Sampler to improve fit, especially bearing in mind that it has one more parameter

than the Bayesian Sampler (seven parameters in total). This underscores the importance

of employing triplets of events: they offer more data from a single experiment for each

individual, allowing for a more nuanced assessment of model performance. Indeed, we

showed that with this more complex dataset, involving 78 judgments rather than 20 for

each participant, the Bayesian Sampler model does not perform as well.
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Clearly, further work is necessary before any of these possibilities is supported. At

this point, we are basically unsure as to why the Bayesian Sampler shows a slight advantage

over the Quantum Bayesian Sampler, for the Zhu et al. (2020) dataset, even though in the

case of the new dataset we collected, the Quantum Sequential Sampler comes out ahead.

Event pair Bayesian Sampler Classical Quantum

{frosty, icy} 321.87 327.94 326.40

{normal, typical} 319.90 324.32 325.87

{windy, cloudy} 321.97 314.71 317.94

{cold, rainy} 328.58 322.04 323.63

{warm, snowy} 314.95 324.43 320.31

Table A2.1: Fit scores (BIC) for the Bayesian Sampler model and the Quantum Sequential Sampler,

with (‘quantum’) and without (‘classical’) the interference term.

References
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Appendix 3

In this section, we examine how we could use the estimated prediction of mean proba-

bility judgment from the Quantum Sequential Sampler model, to unravel the model’s mech-

anisms for addressing a range of probabilistic fallacies. To refresh the reader’s memory,

according to Equation 22, the estimated mean prediction using linear approximation is

given by:

µQSS(A) ≈
1

2
+ 2αP (A) + (b− α). (A.3.1)

Note again that despite we illustrate probabilistic fallacies using µQSS(A) ∈ [0, 1], the actual
prediction of QSS fitted to the actual empirical data are integers from 0 to 100.

Noise Cancellation

Costello and Watts (2014) identified a pivotal result concerning noise cancellation,

articulated through the probability identity:

Z1 = J(A) + J(B)− J(A ∧B)− J(B ∨A) ≈ 0, (A.3.3)

where J symbolizes the empirical mean probability judgment, intentionally distinguished

in this section from the subjective probabilities P . In the subsequent analysis, we employ

Equation 22 to reveal how the Quantum Sequential Sampler predicts the noise cancellation

phenomenon. Given the ’more likely first’ principle in conjunctions and, without loss of

generality, assuming that P (A) > P (B), we deduce:

P (A ∧B)− P (B ∨A) = P (A and then B) + (1− P (¬B and then ¬A)). (A.3.4)

Given that:

P (A)− P (A and then B) = P (A and then ¬B), (A.3.5)
P (B)− (1− P (¬B and then ¬A)) = 1− P (¬B)− 1 + P (¬B and then ¬A)
= −P (¬B and then A), (A.3.5)

it is evident that:

P (A)+P (B)−P (A∧B)−P (B∨A) = P (A and then ¬B)−P (¬B and then A) = o, (A.3.7)
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where o is the quantum interference parameter. Consequently:

Z1 = µQSS(A) + µQSS(B)− µQSS(A ∧B)− µQSS(B ∨A)

≈ 1

2
+ 2αP (A) + (b− α) +

1

2
+ 2αP (B) + (b− α)−(

1

2
+ 2αP (A ∧B) + (b− α)

)
−
(
1

2
+ 2αP (B ∨A) + (b− α)

)
= 2α(P (A) + P (B)− P (A ∧B)− P (B ∨A))

= 2αo ≈ 0 (when o ≈ 0 or 2α≪
∣∣∣∣1o

∣∣∣∣). (A.3.8)

When o equals zero, the system aligns with the classical (Bayesian) framework, ren-

dering J(A) + J(B)− J(A ∧ B)− J(B ∨ A) ≈ 0. This is consistent with predictions made

by the probability plus noise model when ∆d ≈ 0.

It is important to acknowledge that for substantial values of α (keeping in mind that

α ≥ 0), the model is likely close to the reflecting boundary, where the behavior of the

means becomes hard to predict. Therefore, it is not valid to assert that noise increases

monotonically as a function of α or, most pertinently, as a function of time t, which is

incorporated into α.

Probability Identity Violation

Another important result for the Bayesian Sampler model is the identity:

Z5 = J(A ∧B) + J(A ∧ ¬B)− J(A) ̸= 0, (A.3.9)
Z7 = J(A ∧B) + J(A ∧ ¬B) + P (B ∧ ¬A)− J(A ∪B) ̸= 0, (A.3.9)

where

Z7 ≈ 2Z5. (A.3.10)

For the Quantum Sequential Sampler suppose without loss of generality that P (A) >

P (B). In the case of P (A) > P (¬B):
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Z5 = µQSS(A ∧B) + µQSS(A ∧ ¬B)− µQSS(A)

≈ 1

2
+ 2α(P (A and then B) + P (A and then ¬B)− P (A)) + (b− α)

=
1

2
+ (b− α), (A.3.11)

Z7 = µQSS(A ∧B) + µQSS(A ∧ ¬B) + µQSS(B ∧ ¬A)− µQSS(A ∪B)

≈ 1 + 2α(P (A and then B) + P (A and then ¬B)

− P (B and then ¬A)− 1 + P (¬B and then ¬A)) + 2(b− α)

= 1 + 2α(P (A and then B) + P (A and then ¬B)− P (A and then ¬B)− o

+ P (¬A and then ¬B) + o− 1)) + 2(b− α)

= 1 + 2(b− α). (A.3.11)

And thus when P (A) > P (¬B):

Z7 ≈ 2 ∗ Z5, (A.3.12)

Similarly, when P (A) < P (¬B),

Z5 ≈
1

2
+ (b− α) + 2αo, (A.3.13)

Z7 ≈ 1 + 2 ∗ (b− α), (A.3.13)

so
Z7 ≈ 2 ∗ Z5 (when o ≈ 0 or 2α << |1

o
|). (A.3.14)

Similarly, one can show that

Z8 ≈ 1 + 2(b− α) + 2αo ≈ 2 ∗ Z5 (when o ≈ 0 or 2α << |1
o
|), (A.3.15)

Z6 ≈ Z5 − 2αo. (A.3.15)

Conjunction and Disjunction Fallacy

The study of conjunction and disjunction fallacies is crucial in understanding prob-

abilistic reasoning errors. These fallacies can manifest in various ways, including random

occurrences in individual participants’ responses and as systematic biases in the mean prob-

ability judgments. The Bayesian Sampler model addresses these fallacies by introducing an
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additional parameter, N ′, representing a reduced sample size for evaluating conjunctions

and disjunctions. On the other hand, the probability plus noise model accounts for these

fallacies by incorporating an error propagation parameter, ∆d, corresponding to higher er-

ror for conjunctions and disjunctions. In the case of the Quantum Sequential Sampler, the

phenomena of conjunction and disjunction fallacies are elucidated through the quantum

interference parameter o. Consider a scenario where P (A) > P (B):

µQSS(B)− µQSS(A ∧B) ≈ 2α (P (B)− P (A and then B))

= 2α (P (B)− P (B and then A)− o)

= 2α (P (B and then ¬A)− o) . (A.3.15)

In cases where o < P (B and then ¬A), for instance when o = 0 and

P (B and then ¬A) > 0, we observe that µQSS(B) − µQSS(A ∧ B) > 0. However, if

o > P (B and then ¬A), this sets the stage for a potential conjunction fallacy. Analogous

reasoning applies to disjunctions:

µQSS(A ∨B)− µQSS(B) ≈ 2α (P (¬B and then A)− o) , (A.3.16)

where a disjunction fallacy can occur if o > P (¬B and then A).

When will Quantum Sequential Sampler be completely normative?

Much like the Bayesian Sampler Model and the probability plus noise model, the

Quantum Sequential Sampler is capable of predicting participants’ probability judgments to

be completely consistent with classical Kolmogorov axioms. Specifically, this occurs when

α = 1
2 and both o and b are set to zero. For any given event A, this situation can be

illustrated as follows:

µQSS(A) ≈
1

2
+ 2 · 1

2
· P (A)− 1

2
= P (A). (A.3.17)

The same hold true for conjunctions, as when o = 0

P (A ∧B) = P (A and then B) = P (B and then A), (A.3.18)

and vice versa for disjunctions.
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In this section, we describe the two pilot experiments which were conducted to identify

judgments and materials more likely to challenge classical constraints.

Pilot Experiments 1, 2

Participants. For Pilot Experiment 1, 98 participants (70 male) from the USA were

recruited on Amazon Mechanical Turk, to take part in a linked Qualtrics experiment. No

other restrictions apart from location and the mandatory minimum age of 16 years were

placed on participation. Each individual was paid $1.75 to take part in the experiment,

which was approximately 20 minutes long. To identify participants disengaged with the

task, an attention check question was used (the same one as we used for the experimental

investigation, described in the main text). Twenty-two participants failed to answer the

attention check correctly and were excluded from any analyses. Another two participants

were excluded, despite giving correct answers to the attention check question, since they

failed to complete the task in a meaningful way by either rating all probabilities 100% or

0%. Hence the final sample size was reduced to 74 participants (52 male). 73 out of 74

participants were at least 25 years of age and therefore eligible to vote in the USA.

For Pilot Experiment 2, 56 participants (25 male) from the USA were recruited in

the same manner as above using Amazon Mechanical Turk. This was a shorter experiment,
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lasting approximately 10 minutes, for which participants were paid $ 1.00 each. Again, par-

ticipants failing a simple attention check question were excluded from subsequent analyses.

Two participants were excluded in this way, resulting in a final sample of 54 (24 male). 49

out of those participants were at least 25 years of age and as such eligible to vote in the

USA.

Method. For Pilot Experiment 1, participants were asked to provide 68 probability

judgments each on the likelihood of one or both USA presidential candidates (Trump and

Biden) winning the popular vote in certain states in the USA. Since the purpose of this

experiment was to identify triplets of states that make conjunction fallacies more likely, four

triplets of states were tested against each other:

• T1: Ohio, Missouri, Michigan

• T2: North Carolina, South Carolina, Pennsylvania

• T3: Georgia, Montana, Nevada

• T4: Ohio, North Carolina, Florida

Note, the reason why we examined triplets of states was because we intended the main

manipulation to involve three events and their negations. The three basic events were Biden

to win in state A, B or C, with the negation of these three events corresponding to Trump

winning in these states. Three events would allow better tests of Bayesian constraints,

for example, all two-way conjunctions in Bayesian theory are constrained by three-way

conjunctions.

Participants were asked to judge the likelihood of possible combinations of events just

for conjunctions, thus there were 12 conjunctions for each triplet, as well as 20 marginals,

one for each state and candidate. Marginals and conjunctions were answered in two separate

blocks and all questions were randomized within blocks. Examples for the questions used

can be found in Figure S.1.1. All ratings were given by adjusting a slider between 0% and

100% in 1% increments, allowing for a total of 101 possible ratings along the scale. In the

question text presented to participants, the candidate’s name was highlighted in the color

usually associated with the republican (red) and democratic (blue) parties. This choice was
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made to enhance readability and allow participants to perceive the relevant information in

the questions correctly, since the repetitive nature of the questions might cause attention to

decline. Analogously, the ‘and’ in conjunctions and the ‘or’ in disjunctions were presented in

boldface, so as to make them more noticeable to participants. All participants also answered

three more questions corresponding to the Cognitive Reflection Test (CRT; Frederick, 2005),

which were used to assess cognitive style. The version of the CRT used in this experiment

included the following questions: (a) A bat and a ball cost $1.10 in total. The bat costs

$1.00 more than the ball. How much does the ball cost? (b) If it takes five minutes for

five machines to make five widgets, how long would it take for 100 machines to make 100

widgets? (c) In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If

it takes 48 days for the patch to cover the entire lake, how long would it take for the patch

to cover half of the lake?

Pilot Experiment 2 was nearly identical to Pilot Experiment 1 and aimed to test an

additional triplet, triplet 5, which was:

• T5: Ohio, Wisconsin, Florida

Result

The objective of the analyses was to establish which triplets of states were more

likely to lead to conjunction fallacies. Straightforwardly, a conjunction fallacy is detected,

if the conjunction of two events is rated more likely than one of the marginals. This means

that a conjunction fallacy is found if at least one marginal satisfies this condition. Clearly,

since in these pilots we are not concerned with double conjunction fallacies, it suffices to

compare the rating of a conjunction against the marginal with the lower rating. Accordingly,

one-sided, paired Bayesian t-tests were conducted on all possible pairs of conjunctions and

their corresponding lowest marginals. These t-tests are not correct inferential tests for the

presence or absence of conjunction fallacies, because using the ‘lower than either marginal’

function can lead to a biased estimate of conjunction fallacy rates, if probabilities are noisy.

However, here, we are only interested in whether there appear to be more conjunction

fallacies for some candidate triplets vs. others, so the t-tests are useful (in main text, we
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Figure S.1.1. Example questions for marginal, conditional, conjunction and disjunction probabili-
ties.

rely directly on model fits).

We first consider the results of Pilot Experiment 1. Some conjunction fallacies were

detected for all four triplets, as seen in Figure S.1.3. The results are mixed. For all triplets,

we observed few significant results (i.e., conjunction fallacies), for questions that only con-

sider one candidate at a time (these questions appear in the first block, for each triplet, in

Figure S.1.3). A striking exception concerns the highly significant conjunction fallacy for

the question “Trump wins Ohio & Missouri” (triplet 1, BF10 = 460). By contrast, when

both candidates were mentioned in a conjunction (see the second block of questions, for



QUANTUM SEQUENTIAL SAMPLER 5

each triplet, in Figure S.1.3), there was a much higher rate of conjunction fallacies. The

greatest number of conjunction fallacies was observed for triplet 4. However, for that triplet,

the evidence for conjunction fallacies in cases when only one candidate was considered at a

time was very weak (Bayes factors ranging between 1.50 and 6.02). Triplets 2 and 3 fall in

between the extremes of triplet 1 and triplet 4, with three significant conjunction fallacies

respectively and Bayes factors ranging between 2.66 and 135 for triplet 2 and between 1.49

and 8.04 for triplet 3. Note that all the figures here also contain the results for triplet 5, for

ease of comparison, which will be discussed in the next section.

It is possible that the preponderance of conjunction fallacies is impacted upon by style

of thinking, more reflective vs. less reflective, and previous research has offered some corre-

sponding evidence (Yearsley & Trueblood, 2018). To examine this possibility, we computed

the CRT score from each participant, which was a number between 0 and 3, depending on

the questions answered correctly by each participant. In our sample, 21 participants scored

0 points, 16 participants scored 1 point, 24 scored 2 points and the remaining 13 scored 3

points. We also computed an approximate measure of each participant’s tendency to pro-

duce conjunction fallacies, using the equation (as in Yearsley & Trueblood, 2018), noting

again that this equation is problematic, if probability estimates are noisy (it is not used in

the main part of our investigation; it is only used here, in the context of these pilots):

CFmeasure =
1

σ

∑
i,j

max(P (state i ∩ state j)−min(P (state i), P (state j)), 0) (1)

This equation offers a heuristic measure of the tendency for a participant to produce

conjunction fallacies, since it increases with every instance of a conjunction fallacy, while

it stays constant (0 is contributed to the sum), when there is no conjunction fallacy. The

measure is normalized by σ, the standard deviation of the probability judgments of each

participant, to take into account participant variability in the utilization of the ratings scale.

A Bayesian regression analysis was conducted between the CFmeasure and the CRT,

yielding positive evidence for a correlation between the two variables (r = −.35, BF10 =

14.1), such that higher CRT scores were associated with larger values in the CFmeasure. Post-
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Figure S.1.2. This figure shows the CFmeasure against different levels of the CRT score. It can be
seen that participants with a CRT score of 3 were associated with a weaker CFmeasure, compared
to participants in other groups.

hoc Bayesian t-tests were conducted to unveil the exact relationship between conjunction

fallacies and CRT scores. We observed strong evidence that participants with a CRT score of

3 showed weaker conjunction fallacies compared to any other group (BF10 = 17.8, BF10 =

34.7 and BF10 = 10.9, respectively), see Figure S.1.2. This finding is consistent with

expectation from Yearsley and Trueblood (2018), since a higher CRT score would, generally,

be indicative of more reflective thinking.

Given these results, it is possible that a cleaner picture regarding the preponderance of

conjunction fallacies for different triplets might be obtained if we excluded participants with

a CRT score of 3, since these participants are more likely to avoid apparent classical fallacies.

Repeating the above analysis with this exclusion restricted the sample to 61 participants.

As shown in Figure S.1.4 (new results are indicated by shading), for all triplets there was

an additional significant conjunction fallacy, with weak to strong evidence (Bayes factors

ranging between 1.90 to 9.03). For triplet 3, we observed two further conjunction fallacies,

but one of the previously noted ones dropped below the significance threshold.

The strength of different conjunction fallacies, which can be heuristically approximated

using the CFmeasure, is of particular interest for testing formal probabilistic models (both

Bayesian and quantum, since, even though conjunction fallacies are allowed in the latter
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case, they are bounded and so particularly strong conjunction fallacies might be outside

quantum models, Yearsley & Trueblood, 2018).

The results from Pilot Experiment 1 offered a somewhat unclear picture regarding

the triplets of states more likely to produce strong conjunction fallacies. Triplets 1 and 3

produced the highest (average) CFmeasure, while triplets 2 and 4 offered the strongest results,

in terms of the significance of Bayesian tests comparing probabilities for conjunctions against

marginals.

For Pilot Experiment 2, as can be seen in Figures S.1.3, S.1.4, triplet 5 was associ-

ated with fewer significant instances of conjunction fallacies and weaker CFmeasure. In this

case, excluding participants with CRT = 3 decreased the number of significant conjunction

fallacies, contrary to what we observed for triplets 1-4.

Taking together all results, a few options present themselves for reasonable expectation

regarding the emergence of results problematic for a classical perspective. Bearing in mind

that the sampling for the main experiment would be much larger than for the pilot studies,

(somewhat arbitrarily) we placed more faith on the higher CFmeasure values observed for

triplets 1 and 3 and chose these for the next steps:

• T1: Ohio, Missouri, Michigan

• T3: Georgia, Montana, Nevada
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Figure S.1.3. Average conjunction probabilities (blue lines) compared to the lower corresponding

marginal (red lines) for the four triplets in Pilot Experiment 1 (triplets 1-4) and Pilot Experiment

2 (triplet 5). We indicate with stars the BF10 evidence strength (* = weak evidence, ** = positive

evidence, *** = strong evidence, **** = very strong evidence).
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Figure S.1.4. Average conjunction probabilities (blue lines) compared to the lower corresponding

marginal (red lines) for the four triplets in Pilot Experiment 1 (triplets 1-4) and Pilot Experiment

2 (triplet 5), when excluding participants with CRT = 3. We indicate with stars the BF10 evidence

strength (* = weak evidence, ** = positive evidence, *** = strong evidence, **** = very strong

evidence). Shading indicates differences relative to Figure S.1.3.
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Supplementary Material 2

In this section, we offer some additional notes, figures, and tables, related to the

standard statistical analyses of the behavioral results in main text. Note that in some cases

it is less (or not at all) relevant to separate out results by triplet and so, where sensible, for

brevity, we present combined results.

Prior Odds Posterior Odds BF10,U error%
0 1 0.414 0.527 1.273 2.583× 10−5

1 2 0.414 652643 1.576× 106 8.045× 10−13

2 3 0.414 1787 4314 1.384× 10−8

Table S2.1: Linear repeated contrasts and Bayesian post-hoc tests for the effect of CRT scores on
the frequency of conjunction fallacies. Note: the posterior odds have been corrected for multiple
testing by fixing to 0.5 the prior probability that the null hypothesis holds across all comparisons
(Westfall, Johnson, & Utts, 1997). Individual comparisons are based on the default t-test with a
Cauchy (0, r = 1√

2
) prior. The “U” in the Bayes factor denotes that it is uncorrected.

Prior Odds Posterior Odds BF10,U error%
0 1 0.414 0.043 0.104 3.68× 10−4

1 2 0.414 0.261 0.631 9.123× 10−6

2 3 0.414 2.391× 106 5.772× 106 8.616× 10−12

Table S2.2: Linear repeated contrasts and Bayesian post-hoc tests for the effect of CRT scores on
the frequency of disjunction fallacies. Note: the posterior odds have been corrected for multiple
testing by fixing to 0.5 the prior probability that the null hypothesis holds across all comparisons
(Westfall, Johnson, & Utts, 1997). Individual comparisons are based on the default t-test with a
Cauchy (0, r = 1√

2
) prior. The “U” in the Bayes factor denotes that it is uncorrected.
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Figure S.2.1. A histogram of all observed probability ratings in the experiment. Ratings which are

a multiple of 5 are highlighted.
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Order Effect BF10 error%

COE A1 A2 0.149 9.857× 10−6

COE A1 ¬A2 0.104 1.403× 10−5

COE ¬A1 A2 0.047 3.104× 10−5

COE ¬A1 ¬A2 0.047 3.146× 10−5

COE A2 A3 0.05 2.957× 10−5

COE A2 ¬A3 0.047 3.096× 10−5

COE ¬A2 A3 0.158 9.313× 10−6

COE ¬A2 ¬A3 0.071 2.056× 10−5

COE A3 A1 0.139 1.057× 10−5

COE A3 ¬A1 0.103 1.417× 10−5

COE ¬A3 A1 0.140 1.049× 10−5

COE ¬A3 ¬A1 0.057 2.567× 10−5

DOE A1 A2 0.211 6.929× 10−6

DOE A1 ¬A2 0.120 1.220× 10−5

DOE ¬A1 A2 0.047 3.112× 10−5

DOE ¬A1 ¬A2 0.105 1.389× 10−5

DOE A2 A3 0.161 9.084× 10−6

DOE A2 ¬A3 0.069 2.125× 10−5

DOE ¬A2 A3 0.047 3.127× 10−5

DOE ¬A2 ¬A3 0.050 2.908× 10−5

DOE A3 A1 0.100 1.470× 10−5

DOE A3 ¬A1 0.059 2.499× 10−5

DOE ¬A3 A1 0.057 2.590× 10−5

DOE ¬A3 ¬A1 0.047 3.148× 10−5

Table S2.3: Bayesian one sample t-tests of all conjunction order effects (COE) and disjunction order

effects (DOE) for Triplet 1, suggesting strong evidence against order effects for all questions pairs.

Note: for all tests, the alternative hypothesis specifies that the population mean differs from 0.
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Order Effect BF10 error %

COE A1 A2 0.233 6.169× 10−6

COE A1 ¬A2 0.059 2.465× 10−5

COE ¬A1 A2 0.120 1.205× 10−5

COE ¬A1 ¬A2 0.047 3.080× 10−5

COE A2 A3 0.115 1.250× 10−5

COE A2 ¬A3 0.051 2.849× 10−5

COE ¬A2 A3 0.051 2.946× 10−6

COE ¬A2 ¬A3 0.047 3.077× 10−5

COE A3 A1 0.054 2.688× 10−5

COE A3 ¬A1 0.051 2.823× 10−5

COE ¬A3 A1 0.114 1.267× 10−5

COE ¬A3 ¬A1 0.063 2.304× 10−5

DOE A1 A2 0.065 2.234× 10−5

DOE A1 ¬A2 0.052 2.794× 10−5

DOE ¬A1 A2 0.060 2.423× 10−5

DOE ¬A1 ¬A2 0.051 2.830× 10−5

DOE A2 A3 0.143 1.010× 10−5

DOE A2 ¬A3 0.052 2.782× 10−5

DOE ¬A2 A3 0.047 3.076× 10−5

DOE ¬A2 ¬A3 0.052 2.785× 10−5

DOE A3 A1 0.050 2.910× 10−5

DOE A3 ¬A1 3.049× 107 4.366× 10−14

DOE ¬A3 A1 0.097 1.486× 10−5

DOE ¬A3 ¬A1 0.051 2.850× 10−5

Table S2.4: Bayesian one sample t-tests of all conjunction order effects (COE) and disjunction order

effects (DOE) for Triplet 2, suggesting strong evidence against order effects for all but one (printed

in boldface) question pair. Note: for all tests, the alternative hypothesis specifies that the population

mean differs from 0.
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Measure 1 Measure 2 BF01 triplet 1 error% BF01 triplet 2 error%

P (A1|A2) P (A2|A1) 0.016 2.385× 10−8 0.010 1.436× 10−8

P (A1|¬A2) P (¬A2|A1) 10.431 1.528× 10−5 1.085× 10−5 1.436× 10−14

P (¬A1|A2) P (A2|¬A1) 15.018 2.202× 10−5 1.851× 10−9 2.426× 10−15

P (¬A1|¬A2) P (¬A2|¬A1) 4.028× 10−6 5.671× 10−12 1.434× 10−4 1.989× 10−10

P (A2|A3) P (A3|A2) 1.487× 10−12 1.952× 10−18 9.055× 10−18 1.033× 10−23

P (A2|¬A3) P (¬A3|A2) 3.658 5.349× 10−6 0.871 1.248× 10−6

P (¬A2|A3) P (A3|¬A2) 1.884 2.757× 10−6 6.104× 10−4 8.517× 10−10

P (¬A2|¬A3) P (¬A3|¬A2) 2.888× 10−13 3.755× 10−19 1.658× 10−21 1.749× 10−27

P (A3|A1) P (A1|A3) 4.763× 10−5 6.767× 10−11 1.477× 10−9 1.932× 10−15

P (A3|¬A1) P (¬A1|A3) 0.054 7.859× 10−8 12.678 1.829× 10−5

P (¬A3|A1) P (A1|¬A3) 0.003 3.677× 10−9 7.378 1.063× 10−5

P (¬A3|¬A1) P (¬A1|¬A3) 2.581× 10−6 3.623× 10−12 6.349× 10−10 8.262× 10−16

Table S2.5: Bayesian paired sample t-tests comparing conditional probabilities to their reciprocal

counterpart, for both triplets together. Results confirming the assumption of reciprocity are printed

in boldface.
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BF01 error% BF01 error%

Z1A1,A2 1.199 0.000 Z9A1,A2 27.306 0.011

Z1A2,A1 13.706 0.006 Z9A2,A3 9.120 0.004

Z1A2,A3 11.802 0.005 Z9A3,A1 15.034 0.006

Z1A3,A2 24.521 0.010 Z10A1, A2 0.000 0.000

Z1A3,A1 1.271 0.000 Z10A2, A3 0.000 0.000

Z1A1,A3 1.637 0.000 Z10A3, A1 0.000 0.000

Z2A1,A2 26.892 0.011 Z11A1, A2 0.000 0.000

Z2A2,A1 19.309 0.008 Z11A2, A3 0.000 0.000

Z2A2,A3 30.067 0.012 Z11A3, A1 0.000 0.000

Z2A3,A2 15.176 0.006 Z12A1, A2 0.000 0.000

Z2A3,A1 21.341 0.009 Z12A2, A3 0.000 0.000

Z2A1,A3 29.938 0.012 Z12A3, A1 0.000 0.000

Z3A1, A2 0.000 0.000 Z13A1, A2 0.000 0.000

Z3A2, A1 0.000 0.000 Z13A2, A3 0.000 0.000

Z3A2, A3 0.000 0.000 Z13A3, A1 0.000 0.000

Z3A3, A2 0.000 0.000 Z14A1A2 27.045 0.011

Z3A3, A1 0.000 0.000 Z14A2,A3 30.189 0.012

Z3A1, A3 0.000 0.000 Z14A3,A1 25.437 0.010

Z4A1, A2 0.000 0.000 Z15A1, A2 0.000 0.000

Z4A2, A1 0.000 0.000 Z15A2, A1 0.000 0.000

Z4A2, A3 0.000 0.000 Z15A2, A3 0.000 0.000

Z4A3, A2 0.000 0.000 Z15A3, A2 0.000 0.000

Z4A3, A1 0.000 0.000 Z15A3, A1 0.000 0.000

Z4A1, A3 0.000 0.000 Z15A1, A3 0.000 0.000
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Z6A1, A2 0.000 0.000 Z17A1, A2 0.000 0.000

Z6A2, A1 0.000 0.000 Z17A2, A1 0.000 0.000

Z6A2, A3 0.000 0.000 Z17A2, A3 0.000 0.000

Z6A3, A2 0.000 0.000 Z17A3, A2 0.000 0.000

Z6A3, A1 0.000 0.000 Z17A3, A1 0.000 0.000

Z6A1, A3 0.000 0.000 Z17A1, A3 0.000 0.000

Z7A1, A2 0.000 0.000 Z18A1, A2 0.000 0.000

Z7A2, A1 0.000 0.000 Z18A2, A1 0.000 0.000

Z7A2, A3 0.000 0.000 Z18A2, A3 0.000 0.000

Z7A3, A2 0.000 0.000 Z18A3, A2 0.000 0.000

Z7A3, A1 0.000 0.000 Z18A3, A1 0.000 0.000

Z7A1, A3 0.000 0.000 Z18A1, A3 0.000 0.000

Z8A1, A2 0.000 0.000

Z8A2, A1 0.000 0.000

Z8A2, A3 0.000 0.000

Z8A3, A2 0.000 0.000

Z8A3, A1 0.000 0.000

Z8A1, A3 0.000 0.000

Table S2.6: Bayesian one sample t-tests for all the Z identities, for both triplets together (Table 2

in main text). Results that confirm Bayesian probability theory are printed in boldface. Note, we

evaluated the identities separately for each order (for conjunctions, disjunctions). Note: for all tests,

the null hypothesis specifies that the population mean equals 0. Figure 4 in main text illustrates the

results differently, separating them out by triplet; it can be seen that there is hardly any difference

between the two triplets, hence the aggregated presentation in this table.
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BF10 error %

T1 P (A1) + P (¬A1) 1.216× 1056 8.807× 10−59

T1 P (A2) + P (¬A2) 1.020× 1056 9.258× 10−60

T1 P (A3) + P (¬A3) 6.273× 1053 5.756× 10−61

T1 P (A1 ∧A2) + P (A1 ∧ ¬A2) + P (¬A1 ∧A2) + P (¬A1 ∧ ¬A2) 1.157× 10184 4.970× 10−188

T1 P (A2 ∧A3) + P (A2 ∧ ¬A3) + P (¬A2 ∧A3) + P (¬A2 ∧ ¬A3) 1.216× 10201 1.546× 10−250

T1 P (A3 ∧A1) + P (A3 ∧ ¬A1) + P (¬A3 ∧A1) + P (¬A3 ∧ ¬A1) 5.853× 10190 1.547× 10−195

T1 P (A2 ∧A1) + P (A2 ∧ ¬A1) + P (¬A2 ∧A1) + P (¬A2 ∧ ¬A1) 4.127× 10204 4.930× 10−209

T1 P (A3 ∧A2) + P (A3 ∧ ¬A2) + P (¬A3 ∧A2) + P (¬A3 ∧ ¬A2) 1.192× 10188 6.566× 10−193

T1 P (A1 ∧A3) + P (A1 ∧ ¬A3) + P (¬A1 ∧A3) + P (¬A1 ∧ ¬A3) 2.036× 10189 4.822× 10−194

T2 P (A1) + P (¬A1) 1.186× 1053 8.359× 10−56

T2 P (A2) + P (¬A2) 3.444× 1050 1.032× 10−57

T2 P (A3) + P (¬A3) 5.499× 1050 6.395× 10−58

T2 P (A1 ∧A2) + P (A1 ∧ ¬A2) + P (¬A1 ∧A2) + P (¬A1 ∧ ¬A2) 3.766× 10167 2.172× 10−170

T2 P (A1 ∧A2) + P (A1 ∧ ¬A2) + P (¬A1 ∧A2) + P (¬A1 ∧ ¬A2) 3.766× 10167 2.172× 10−170

T2 P (A2 ∧A3) + P (A2 ∧ ¬A3) + P (¬A2 ∧A3) + P (¬A2 ∧ ¬A3) 1.132× 10171 2.294× 10−174

T2 P (A3 ∧A1) + P (A3 ∧ ¬A1) + P (¬A3 ∧A1) + P (¬A3 ∧ ¬A1) 8.408× 10182 1.025× 10−186

T2 P (A2 ∧A1) + P (A2 ∧ ¬A1) + P (¬A2 ∧A1) + P (¬A2 ∧ ¬A1) 3.706× 10164 6.860× 10−168

T2 P (A3 ∧A2) + P (A3 ∧ ¬A2) + P (¬A3 ∧A2) + P (¬A3 ∧ ¬A2) 9.390× 10165 4.566× 10−169

T2 P (A1 ∧A3) + P (A1 ∧ ¬A3) + P (¬A1 ∧A3) + P (¬A1 ∧ ¬A3) 5.264× 10−178 9.444× 10−182

Table S2.7: One-sample Bayesian t-tests concerning consistency with the binary complementarity

on marginals and four-way law of total probability. Note: For all tests, the null hypothesis is that

the population mean equals 1. T1 and T2 refer to the two different triplets.
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Figure S.2.2. Histograms of the quantities corresponding to binary complementarity on marginals

and the four-way law of total probability, for different triplets and for different predicate orders for

conjunctions. In all cases, the observed values exceed the expected value of 1.
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Supplementary Material 3

In this section, we offer some additional figures, illustrating the results of the compar-

ison between the Quantum Sequential Sampler and the Bayesian Sampler models.
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Figure S.3.1. Violin plots showing empirical data vs. the predictions of the Quantum Sequential

Sampler, and empirical data (top panel) vs. the predictions of the Bayesian Sampler (bottom panel)

for the first triplet. The data are for the {A,C} and {B,C} pairs of events of Triplet 1.
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Figure S.3.2. Mean predictions of the Quantum Sequential Sampler, Bayesian Sampler, and relative

frequency models, against empirical results. The data are for Triplet 2.
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Figure S.3.3. Violin plots showing empirical data vs. the predictions of the Quantum Sequential

Sampler, and empirical data (top panel) vs. the predictions of the Bayesian Sampler (bottom panel)

for the second triplet. The data are for the {A,B}, {A,C} and {B,C} pairs of events for Triplet 2.
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Figure S.3.4. The empirical value of probabilistic identities in Table 2, together with values com-

puted from best-fit predictions, from the Quantum, Sequential Sampler, the Bayesian Sampler, and

the relative frequency model. The data in this figure is from Triplet 2.
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Figure S.3.5. Empirical values for binary complementarity, together with predictions from the

Quantum Sequential Sampler, the Bayesian Sampler, and the relative frequency model, averaged

across all participants. The results are for Triplet T2.
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Supplementary Material 4

In this section we offer some additional figures, illustrating the results of comparing

the quantum and classical variant of Quantum Sequential Sampler, across all of the 1162

participants.
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Figure S.4.1. Mean predictions of the quantum and classical variants of the Quantum Sequential

Sampler against empirical results.
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Figure S.4.2. Violin plots showing empirical data vs. the predictions of the classical variant of the

Quantum Sequential Sampler model.
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Figure S.4.3. The empirical value of probabilistic identities in Table 2, together with values com-

puted from best-fit predictions, from the quantum and classical variants of the Quantum Sequential

Sampler.
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Supplementary Material 5

In this section, we display additional figures comparing participants whose quantum

interference parameters are significant by the two-sigma criterion (p < .05) with those whose

quantum interference parameters are significant by the four-sigma criterion (p < .00008).
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Figure S.5.1. Mean predictions of the quantum and classical variants of the Quantum Sequential

Sampler against empirical results for participants whose quantum interference parameter is signifi-

cant by the criterion (p < .05).
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Figure S.5.2. Mean predictions of the quantum and classical variants of the Quantum Sequential

Sampler against empirical results for participants whose quantum interference parameter is signifi-

cant by the criterion (p < .00008).
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Figure S.5.3. Violin plots showing empirical data vs. the predictions of the classical and quantum

variant of the Quantum Sequential Sampler model for for participants whose quantum interference

parameter is significant by the criterion (p < .05).
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Figure S.5.4. Violin plots showing empirical data vs. the predictions of the classical and quantum

variant of the Quantum Sequential Sampler model for for participants whose quantum interference

parameter is significant by the criterion (p < .00008).
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Supplementary Material 6

In this section, we showcase the kernel density plots for more participants whose

quantum interference parameter is significant by (p < .00008).
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Figure S.6.1. Example of kernel denisty plots of individual whose quantum interference parameters

are significant by the criterion (p < .00008). Classical refers to the classical variant of the quantum

sequential sampler, and quantum refers to the quantum variant.



QUANTUM SEQUENTIAL SAMPLER 47

Supplementary Material 7

In the following analysis, the values for the Z identities Z1 - Z18 were compared between

the probabilistic judgments of election events collected to test the Quantum Sequential

Sampler model, as well as the judgments of weather events collected by Zhu et al. (2020) to

test their Bayesian Sampler model.

First, in the case of the Bayesian Sampler, participants provided three ratings for each

question. We computed the average of these three ratings, so that there was a single score

for each probability judgment. In two out of the five weather conditions in their experiment

(normal/typical, icy/frosty, windy/cloudy, cold/rainy and warm/snowy) 59 participants pro-

vided probability ratings, while in the other three 84 participants provided ratings. This

results in a total of 370 data points (probability judgments) available for the computation

of the Z identities.

For the Quantum Sequential Sampler, data collection was more extensive and involved

multiple events and all possible orders thereof. For that reason, each Z identity could be

computed three times for each participant (six times if the order of events is considered rel-

evant). To keep the comparison between the two data sets consistent, the various iterations

of the same Z identity were averaged for each of the 1162 participants, before comparing

against the Z identities computed on the basis of the Bayesian Sampler data.

The Z identities were compared using classical and Bayesian two-sided, independent

samples t-tests. According to the Bayesian t-tests, there was very strong evidence that the

values of the identities computed from the present data were different from those computed

from the Zhu et al. (2020) data for all identities, except from Z1, Z9, Z16, Z17, as seen in

Table S7.1.

The results using classical t-tests were identical (see Table S7.2). Please note that

Levene’s tests of homogeneity of variance indicated violations of the assumption of equal

variances for most comparisons. As a consequence, Welch tests were also performed. There

were no differences in the conclusions however and so, for simplicity, only the results using

the classical t-tests are presented here.



QUANTUM SEQUENTIAL SAMPLER 48

The results are also shown in Figure S.7.1, highlighting the differences between the Z

values computed from the two different data sets for most of the identities.
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Bayesian Independent Samples T-Test BF10 error %

Z1 0.099 0.048

Z2 ∞ 0.000

Z3 3.586× 10232 2.565× 10−236

Z4 1.776× 1025 1.468× 10−28

Z5 7.227× 10257 8.398× 10−263

Z6 4.175× 10236 1.802× 10−239

Z7 7.268× 10145 2.204× 10−151

Z8 3.492× 10119 3.744× 10−124

Z9 0.100 0.047

Z10 4.820× 107 7.740× 10−11

Z11 3.583× 1024 7.376× 10−28

Z12 1.837× 107 2.051× 10−10

Z13 3.208× 1027 7.782× 10−31

Z14 2.875× 108 1.275× 10−11

Z15 0.068 0.069

Z16 0.087 0.054

Z17 7.999× 106 4.749× 10−10

Z18 2.601× 1021 1.080× 10−24

Table S7.1: Two-sided, independent samples Bayesian t-tests comparing the Z identities computed

from the data for the Quantum Sequential Sampler vs the Bayesian Sampler.
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Independent Samples T-Test t df p

Z1 -0.887 1530 0.375

Z2 -51.981 1530 < .001a

Z3 -39.630 1530 < .001a

Z4 -11.312 1530 < .001a

Z5 -42.618 1530 < .001a

Z6 -40.109 1530 < .001a

Z7 -29.277 1530 < .001a

Z8 -25.978 1530 < .001a

Z9 -0.906 1530 0.365

Z10 -6.468 1530 < .001a

Z11 -11.156 1530 < .001a

Z12 -6.311 1530 < .001a

Z13 -11.804 1530 < .001a

Z14 6.749 1530 < .001a

Z15 -0.179 1530 0.858

Z16 -0.724 1530 0.469

Z17 -6.173 1530 < .001a

Z18 -10.430 1530 < .001a

Table S7.2: Two-sided, independent samples classical t-tests comparing the Z identities computed

from the data for the Quantum Sequential Sampler vs the Bayesian Sampler.

a Levene’s test is significant (p < .05), suggesting a violation of the equal variances assumption
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Identity MeanBS Meanass SDBS SDQSS

Z1 -0.025 -0.014 0.195 0.212

Z2 -0.371 0.000 0.215 0.066

Z3 -0.028 0.508 0.124 0.250

Z4 0.344 0.508 0.216 0.251

Z5 -0.084 0.522 0.240 0.238

Z6 -0.002 0.523 0.154 0.236

Z7 0.342 1.031 0.224 0.435

Z8 0.367 1.045 0.314 0.470

Z9 -0.005 -0.001 0.092 0.069

Z10 0.067 0.153 0.250 0.214

Z11 0.019 0.152 0.148 0.215

Z12 0.072 0.154 0.236 0.212

Z13 0.014 0.151 0.124 0.213

Z14 0.054 0.002 0.231 0.067

Z15 0.162 0.163 0.142 0.107

Z16 0.157 0.162 0.142 0.116

Z17 0.229 0.317 0.229 0.240

Z18 0.176 0.315 0.172 0.237

Table S7.3: Descriptive data for the Z identities computed from the data for the Quantum Sequential

Sampler vs the Bayesian Sampler.
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Figure S.7.1. Z identities computed from the data for the Quantum Sequential Sampler vs the

Bayesian Sampler.
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Supplementary Material 8

In this section, we present all analysis plots that compare the Quantum Sequential

Sampler (quantum variant) with the Bayesian Sampler model, using the dataset from Zhu et

al. (2020) which includes repeated probability judgment measurements. It should be noted,

as detailed in Appendix 2, that we have applied a rounding mechanism to the nearest 5 or 10

during our model fitting process to account for the significant presence of this rounding bias

in Zhu et al.’s dataset. Consequently, the Bayesian Sampler’s predictions in our analysis may

slightly deviate from those reported in Zhu et al. (2020). Nonetheless, upon examination, it

is evident that these differences are minor to be seen in plots and do not alter any analytical

trend.
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Figure S.8.1. Mean predictions of the Bayesian Sampler and the Quantum Sequential Sampler

against empirical results in Zhu et al. (2020).
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Figure S.8.2. Violin plots showing empirical data of Zhu et al. (2020) vs. the predictions of the

Bayesian Sampler.
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Figure S.8.3. Violin plots showing empirical data of Zhu et al. (2020) vs. the predictions of the

Quantum Sequential Sampler.



QUANTUM SEQUENTIAL SAMPLER 59



QUANTUM SEQUENTIAL SAMPLER 60

Figure S.8.4. The empirical value of probabilistic identities in Zhu et al. (2020), together with

values computed from best-fit predictions, from the Bayesian Sampler and the Quantum Sequential

Sampler.
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