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Bridging the Gap Between Subjective Probability and
Probability Judgments: The Quantum Sequential Sampler

Jiaqi Huang1, Jerome R. Busemeyer1, Zo Ebelt2, and Emmanuel M. Pothos2
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2 Department of Psychology, City, University of London

One of the most important challenges in decision theory has been how to reconcile the normative
expectations from Bayesian theory with the apparent fallacies that are common in probabilistic reasoning.
Recently, Bayesian models have been driven by the insight that apparent fallacies are due to sampling errors
or biases in estimating (Bayesian) probabilities. An alternative way to explain apparent fallacies is by
invoking different probability rules, specifically the probability rules from quantum theory. Arguably,
quantum cognitive models offer a more unified explanation for a large body of findings, problematic from
a baseline classical perspective. This work addresses two major corresponding theoretical challenges: first,
a framework is needed which incorporates both Bayesian and quantum influences, recognizing the fact
that there is evidence for both in human behavior. Second, there is empirical evidence which goes beyond
any current Bayesian and quantum model. We develop a model for probabilistic reasoning, seamlessly
integrating both Bayesian and quantum models of reasoning and augmented by a sequential sampling
process, which maps subjective probabilistic estimates to observable responses. Our model, called the
Quantum Sequential Sampler, is compared to the currently leading Bayesian model, the Bayesian Sampler
(J. Zhu et al., 2020) using a new experiment, producing one of the largest data sets in probabilistic reasoning
to this day. The Quantum Sequential Sampler embodies several new components, which we argue offer
a more theoretically accurate approach to probabilistic reasoning. Moreover, our empirical tests revealed
a new, surprising systematic overestimation of probabilities.

Keywords: probabilistic reasoning, sequential sampling, quantum cognition, Bayesian, probabilistic
fallacies
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One of the most theoretically important and practically significant
problems in cognitive science is to understand human probabilistic
reasoning. A vexing and enduring challenge has been how to
reconcile an expectation of Bayesian rationality with extensive
evidence of apparent paradoxes and fallacies. We will review some
of the predominant Bayesian approaches to understanding fallacies
and propose a new probabilistic reasoning model, based on the
alternative probability rules, from quantum theory.
The development of probabilistic reasoning theory to its current

state of the art, including both Bayesian variants and quantum

models, is compelling: The position of Bayesian rationality is that,
in probabilistic reasoning and decision making generally, human
behavior ought to be consistent with the principles of Bayesian
probability theory. There are powerful formal arguments as to why
this should be the case (Oaksford & Chater, 2007). For example, the
Dutch Book Theorem states that probability systems consistent with
a particular set of requirements inoculate a reasoner from incoherent
assignments of probabilities to events, that is, assignments which
allow a sure loss in a betting situation (de Finetti et al., 1993).
Bayesian probability theory is consistent with the requirements for
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the Dutch Book Theorem, as well as other important results, for
example, concerning the convergence of posterior probabilities
(Aumann, 1976) and the practicalities of Bayesian convergence
(Aaronson, 2004; Hanson, 2006). There is a large body of evidence
in favor of Bayesian cognitive models, in a wide range of situations,
including categorization, learning, and reasoning (e.g., Griffiths
et al., 2010; Sanborn et al., 2010; Tenenbaum et al., 2011).
In addition, the optimality embodied in Bayesian reasoning has

been argued to confer adaptive, evolutionary advantage, for example,
for foraging (Valone & Giraldeau, 1993) or mating (Luttbeg &
Warner, 1999). For many nonhuman animals, statistical estimation of
environmental information has a very tangible evolutionary value
(McNamara et al., 2006; Trimmer et al., 2011; Valone, 2006). If there
is even a small evolutionary advantage from Bayesian processes
in behavior, across generations, we expect a trend for increasing
conformity with Bayesian constraints. The current evidence seems to
support such views.
The picture of unquestionable benefits from Bayesian reasoning

has to be moderated by the problem that full Bayesian reasoning
is, in fact, intractable for any finite agent. These observations have
a long history, notably with the proposal of bounded rationality
(Simon, 1955), work which was recognized with a Nobel prize (for
Simon in 1978). Bayesian researchers have been aware of these
limitations and there has been extensive effort to develop versions
of Bayesian reasoning suitable for finite agents (Gershman et al.,
2015; Griffiths et al., 2015; Howes et al., 2009). For example, Lieder
and Griffiths (2019) offered a framework for bounded Bayesian
reasoning and argued that many instances of apparent deviations
from Bayesian prescription can be explained as Bayesian reasoning
with limited resources. As another example, in an application of
Bayesian reasoning with data sets of realistic size, Lake et al.
(2015) employed a combination of Bayesian networks and other
simplifications to tackle the problem of learning how to recognize
handwritten characters. Overall, when we encounter human behavior
apparently at odds with Bayesian reasoning, it is reasonable to ask
whether maybe there is an underlying Bayesian component to
behavior, which through simplification or other approximations,
leads to the apparent errors and fallacies.
Bayesian probability is the most established framework for

probabilistic reasoning, whether in cognitive modeling or in science
more generally (e.g., Howson & Urbach, 1993). Nevertheless, it is
not the only one (e.g., Narens, 2014). In fact, there is an infinite
hierarchy of probability systems, ordered in terms of the complexity
of the basic sum rule (i.e., the complexity of the law of total
probability; Sorkin, 1994). Below, we will introduce a probability
system related to Bayesian theory, but with a sum rule just a bit more
complex than the Bayesian one, quantum theory. Quantum and
Bayesian theories are based on different axioms and offer different
predictions for how basic probabilities combine to produce more
complex probabilities. Interestingly, quantum theory satisfies the
Dutch Book Theorem too (Pothos et al., 2017). Quantum and
Bayesian theory underwrite two different hypotheses for probabilistic
reasoning. There have been several proposals of successful quantum
cognitive models, adding credibility to the notion that, sometimes,
quantum, rather than Bayesian, principles offer a better approach to
understanding probabilistic reasoning (Bruza, Wang, & Busemeyer,
2015; Busemeyer & Bruza, 2011; Haven & Khrennikov, 2013;
Pothos & Busemeyer, 2013, 2022).

Another consideration is that, even though the present focus is
probabilistic reasoning, the corresponding models and ideas might
well turn out to be more general. Part of the appeal of probabilistic
models rests in their general applicability, offering promise that
successful application in one area might translate to novel theory and
prediction in other areas. For example, there have been proposals of
Bayesian models in just about all areas of cognitive psychology,
including learning (e.g., Griffiths & Tenenbaum, 2009; Steyvers et
al., 2003), memory (Steyvers et al., 2006), perception (Chater, 1996),
language (Griffiths & Kalish, 2007; Xu & Tenenbaum, 2007), and
logical reasoning (Oaksford & Chater, 1994), as well as probabilistic
reasoning. Analogously, quantum theory has been applied in models
for conceptual structure (Aerts, 2009; Aerts et al., 2016; Bruza, Kitto,
et al., 2015), memory (Brainerd et al., 2015; Trueblood & Hemmer,
2017), similarity (Epping et al., 2023; Pothos et al., 2013), and even
attentional dynamics (Atmanspacher & Filk, 2010; Rosner et al.,
2022). The scope of applicability of such models is underwritten by
an assumption that large parts of cognition can be understood as the
processing of statistical structure.

For all their promise, probabilistic models, whether classical or
quantum, do not exhaust approaches in probabilistic reasoning
theory. For some researchers, instead of probability theory (Bayesian
or quantum), a better route to understand probabilistic reasoning is
heuristics and biases (Hertwig et al., 2013; Kahneman et al., 1982).
For example, Lopez-Astorga et al. (2021) conclude, in relation to
conditional probabilities, that “the probability calculus supplements
human intelligence rather than underlies its deliberations” (p. 3).
Without doubt, heuristics often embody deep intuitions about
human cognition. However, heuristics and biases are sometimes
imprecisely expressed or have a narrow focus. For example, Tversky
and Kahneman (1983; E. B. Shafir et al., 1990) proposed to explain
the conjunction fallacy (CF) with the representativeness heuristic,
according to which a similarity process drives probabilistic
judgments in the Linda scenario. This approach has been criticized
as being vague and unsuitable for detailed empirical predictions
(Moro, 2009). In addition, using heuristics, it is hard to see how one
can predict results consistent with violations of probability identities
and the cancelation of noise terms in F. Costello andWatts (2014). As
another example, the fast-and-frugal approach is quantitatively
expressed and so, for example, can provide specific predictions
regarding the way naive observers answer questions like which city
between Bristol and Bath has the higher population (Gigerenzer &
Goldstein, 1996). However, as currently specified, this model cannot
be applied to general probabilistic judgments.

Despite these shortcomings, heuristics provide important insight
to probabilistic reasoning. Notably, there are aspects of behavior
beyond formal probabilistic approaches and in these cases heuristic
and biases approaches come into their own. Moreover, heuristics
such as representativeness and availability have descriptive value
and offer alternative explanatory narratives, which complement those
from formal models. That is, in some cases, probabilistic models
attempt to offer an explanation combining and consistent with heuristic
accounts. For example, a heuristic such as representatives tells us that
probabilistic reasoning might share some elements with similarity
processes—this perspective to explanation is complementary, not
mutually exclusive, to that from a formal model, such as quantum
theory (Busemeyer et al., 2011). Another example of this point is
Trueblood et al.’s (2017) model of causal inference, which involved
a quantummodel, which could capture a range of heuristic accounts,
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as well as a Bayesian influence (see Rehder, 2014). Bayesian
researchers have also tried to re-express heuristics within their
frameworks (e.g., Lieder & Griffiths, 2019). While we acknowledge
the importance of heuristics in explaining probabilistic reasoning,
in the present work, we do not consider them in detail. Rather, our
focus is on exploring the capacity of formal probabilistic models to
describe probabilistic reasoning, across a large range of judgments.
A final preliminary remark is that, even if we accept the merits of

approaching probabilistic reasoning theory with a formal probability
framework, it seems unlikely that probabilistic principles as such
would suffice for a complete explanation. A reasonable expectation
is that a full model should include some process assumptions of how
probabilities and/or responses are produced. For example, even if
the mind embodies probabilistic principles which are consistent with
Bayesian prescription, the way relevant probabilities are estimated
might be faulty or there might be a noisy response mechanism.
Accordingly, apparent fallacies could be explained in a way which
still allows a statement of Bayesian rationality for humans. All these
points produce interesting conundrums, regarding whether fallacies
show fault with probabilistic principles versus whatever additional
mechanisms the mind employs in the production of probabilities
or responses. Earlier models for the conjunction fallacy and
probabilistic fallacies in general have been focused on just the
probabilistic framework—this includes our own model (Busemeyer
et al., 2011; see also, e.g., Tentori et al., 2013). More recent work has
been adopting a more complete approach (F. J. Costello & Watts,
2018; J. Zhu et al., 2020).

Apparent Probabilistic Fallacies

No finding has had as much influence in probabilistic reasoning
theory than Tversky and Kahneman’s (1983) conjunction fallacy.
Participants were told of a hypothetical person, Linda, who was
described very much like a feminist and not at all like a bank teller.
They were then asked to rank order how likely different statements
about Linda are. The three statements of interest concern whether
she is a bank teller (BT), a feminist (F), and the conjunction between
two (F ˄ BT). Participant ratings typically indicate thatP(F)>P(F ˄
BT), as would be expected, but also that P(F ˄ BT) > P(BT). The
latter finding challenges a fundamental principle in Bayesian theory,
that a conjunction can never be more likely than a marginal. At the
root cause of the problem is the fact that probabilities in Bayesian
theory need to conform with set-theoretical constraints. So, in the
same way that it is impossible to have more blue and red balls in
an urn, than just blue balls (blue and red balls are a subset of just
blue balls), it is likewise impossible to have P(F ˄ BT) > P(BT), in
classical probability theory.
The conjunction fallacy has proven robust across a large number

of disambiguations, clarifications, and other manipulations (Dulany
& Hilton, 1991; Moro, 2009; Tentori et al., 2004). For example,
researchers have considered whether a frequentist presentation of
the relevant information might make participants less prone to a
conjunction fallacy, since, the argument goes, probabilistic reasoning
based on frequencies would be more natural for humans, than based
on subjective probabilities (e.g., Gigerenzer, 1994; Sanborn & Chater,
2016). Another suggestion has been that making the set-theoretic
structure of a problem more salient can foster compliance with
Bayesian theory. For example, Tentori et al. (2004) asked participants
whether a Scandinavian person was more likely to have blond hair

versus blond hair and blue eyes; in such a case, the relevant
probabilities directly correspond to countable instances, as opposed,
for example, to subjective probabilities for a single case, such as
Linda—of course, the two are formally equivalent, but perhaps not
subjectively so. Such manipulations can reduce the conjunction
fallacy rate, but they rarely eliminate it completely (Moro, 2009).

Regarding disambiguations, there is the possibility that, perhaps,
participants misunderstand the question in a way that implies there
is no longer a fallacy (cf. Tentori, 2021). Dulany and Hilton (1991;
Hilton, 1995; Hilton & Slugoski, 2001; see also Adler, 1984)
considered how the so-called conversational implicatures (Grice,
1975) might be relevant in the way participants understand the
various statements in the Linda conjunction fallacy example. The
proposal is that participants might be assuming that when the BT
predicate is presented by itself, ¬F is also implied, that is P(BT) =
P(BT ˄ ¬F). Of course, if the BT statement is augmented in this way,
then there is no longer a fallacy, since the probability that Linda is a
bank teller and a feminist can easily be higher than the probability of
another conjunction. The prediction from this account is that when
the question about just BT is properly disambiguated, the rate of
conjunction fallacy should be greatly diminished (Dulany & Hilton,
1991; Macdonald & Gilhooly, 1990). However, there have been
several studies testing this prediction and in most cases a conjunction
fallacy could still be identified (e.g., Agnoli & Krantz, 1989; Messer
& Griggs, 1993, as well as the original Tversky & Kahneman, 1983,
study; review in Moro, 2009).

One way to disambiguate potentially unclear statements, such
as a marginal in isolation, has been to introduce a fuller range of
probability judgments: For example, Tentori et al. (2004) and
Wedell and Moro (2008) also included BT ˄ ¬F (or the equivalent
of) in conjunction fallacy experiments, so as to prevent participants
from mistakenly inferring BT to be BT ˄ ¬F. To sum up this point, it
is always possible that participants do not understand a probability
judgment as intended. The current evidence suggests that a more
complete set of probability judgments will make it less likely that
participants will employ unintended interpretations. Indeed, the
most recent work on probabilistic fallacies, such as that from
F. Costello and Watts (2014) and J. Zhu et al. (2020), has employed
an increasingly more expansive set of probability judgments. Our
work is in this vein.

The conjunction fallacy is nonsensical from a baseline Bayesian
perspective. How can people decide that there are more Scandinavian
individuals with both blond hair and blue eyes, than just blue eyes?
It seems that the conjunction fallacy is such a simple result that it
is tempting to imagine that it can be explained and presumably
immediately corrected by anyone. However, as Stephen J. Gould
famously said (1992, p. 469) about the conjunction fallacy, “I know
that the conjunction is least probable, yet a little homunculus in
my head continues to jump up and down, shouting at me—‘but she
can’t be just a bank teller; read the description.’” At the same time,
Bayesian theory is intuitive too: Bayesian theory has been described
as “common sense reduced to calculations” (Laplace, 1816, cited in
Perfors et al., 2011). Arguably, one of the drivers of the applicability
of Bayesian theory in cognition is exactly the fact that Bayesian
principles are intuitive since, after all, it is human intuition that we
are trying to model. The conjunction fallacy exemplifies this clash
between two different, equally powerful, intuitions, and the persistence
(Gilboa, 2000) of this clash has had a defining influence in the field
of probabilistic reasoning and decision making.
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The singular influence of the conjunction fallacy in the literature
on probabilistic reasoning should not obscure the fact that there have
been several other apparent fallacies, which challenge any picture of
reasoning based on baseline Bayesian theory. Notably, there are
disjunction fallacies, according to which people judge P(A ˅ B) <
P(B), even though a disjunction will always be at least as likely than
either of its individual premises (Carlson & Yates, 1989). There
are disjunction effects, whereby people judge P(A) ≠ P(A ˄ X) +
P(A ˄ ¬X) thus violating the classical law of total probability
(Broekaert et al., 2020; E. Shafir & Tversky, 1992). There have
also been reports of unpacking effects, when the probability of a
“packed” disjunction is judged as lower than the sum of mutually
exclusive “unpacked” components (Tversky & Koehler, 1994).
Moreover, question order effects have been observed, so that pairs
of yes/no questions are responded to differently, depending on the
order in which they are presented (Moore, 2002). A final example of
this nonexhaustive list of apparent fallacies is errors in the way
conditionalizing information impacts on probability updating (Bergus
et al., 1998; McKenzie et al., 2002; Trueblood & Busemeyer, 2011)
and problems with estimating conditional probabilities generally
(Lopez-Astorga et al., 2021).
Understanding human probabilistic reasoning is a challenge of

proposing a framework which encompasses as many of the findings
generally considered fallacies as possible. There are some ideas
which, though promising for particular results, have not generalized
well. We have already briefly encountered Tversky and Kahneman’s
(1983) representativeness heuristic. Tentori et al. (2013) suggested
that conjunctions are evaluated using inductive confirmation. For
example, in the Linda problem, participants estimate the likelihood
for the conjunction as the result of evaluating a confirmation measure
that reflects the increase in probability from the initial judgment for
PðFjBTÞ to PðFjBT ∧ storyÞ when introducing the information
about the story. This account works well for the conjunction fallacy,
but it is difficult to adapt it to other probabilistic judgments, such as
disjunctions or conditional probabilities (Busemeyer et al., 2015). As
a final example, averaging accounts have been proposed for the
conjunction fallacy, which purport that conjunctions are evaluated as
the averages of the probabilities of each conjunct individually
(Abelson et al., 1987; Birnbaum et al., 1990; Fantino et al., 1997;
Nilsson et al., 2009). Such accounts encounter difficulty when it
comes to explanations of conditional dependencies between
items, as well as the way conjunction fallacies vary depending on
the causal strength between the conjuncts.
There are other examples of judgment theory focused on a

single or a few apparent fallacies, but with limited capacity for
generalization. The conjunction fallacy especially has attracted
enormous attention, but, ultimately, this is a one degree of freedom
finding (either P(A ∩ B) < P(B) or P(A ∩ B) > P(B)) and so is poorly
suited for comprehensively testing complex theories. Overall, the
value of models focused on a single or a handful of effects is
unquestionable, not least because in such models it is often possible
to acquire substantial insight into the reasons for good or bad
performance. At the same time, there is a natural trend in the field
toward more encompassing accounts.
Two recent theories have been evaluated against larger sets of

probability judgments. F. Costello and Watts (2014) examined
their theory against marginals, two-way conjunctions in different
combinations of two conjuncts and their negations, and disjunctions.
Even though no detailed model fits were carried out, F. Costello and

Watts (2014) considered several probabilistic identities, purported
to allow tests of their account. F. J. Costello and Watts (2016)
extended the range of probabilities judgments to 10 judgments, for
five pairs of weather events, so that marginals, conjunctions,
disjunctions, and conditionals were included. J. Zhu et al. (2020)
provided a more extensive empirical examination of human
probabilistic judgments, by asking participants to estimate the
probabilities of 20 unique questions about weather events,
marginals, conjunctions, conditionals, and so forth, involving
the pair {icy, frosty}; there were another 20 questions, involving the
pair {normal, typical}. J. Zhu et al. (2020) compared the fit of their
model to this data set and the one from F. Costello andWatts (2014).

Overall, there has been a trend in examining theories of
probabilistic reasoning against larger data sets, which encompass all
of marginals, conjunctions, disjunctions, and conditionals. From the
perspective of any formal model, whether Bayesian or not, more
comprehensive evaluations are essential, since the strength of such
models lies exactly in how different probability terms constrain each
other. For example, in a baseline Bayesian model, for three events,
the three-way joint probability distribution (eight probabilities
constrained to sum to one) allows the specification of all other
probabilities: conjunctions, disjunctions, conditionals, and so forth.
The empirical examinations from F. Costello and Watts (2014,
2016) and J. Zhu et al. (2020) go some way toward addressing these
issues, because, for a particular pair of events, several possible
probability questions were considered. However, we think that the
descriptive power of formal probabilistic models is better assessed
against several pairs of events, assessed concurrently. In this work,
we consider three events, all three event pairs, and for each pair all
conjunctions, disjunctions, and conditional probabilities—altogether
78 probabilistic judgments per participant. Such a set of probability
terms subsumes individual apparent probabilistic fallacies, including
conjunction fallacies, disjunction fallacies, and violations of the law
of total probability. Perhapsmore importantly, the interdependence of
probabilities among each other would offer a more sensitive test of
probabilistic models. While we think that the motivation for a new,
more expansive data set is reasonably clear, is there a need for
corresponding theoretical development too?

Theoretical Progress

We can summarize a large portion of recent theoretical progress in
probabilistic reasoning in terms of three main ideas. The first main
idea is that reasoning has a kernel of Bayesian influence, but in a way
that is noisy or biased, so that deviations from strict Bayesian
prescription can arise. Noise (or bias) can be motivated in several
ways. For example, in Lieder and Griffiths (2019), there is a trade-off
between Bayesian consistency and resource limitations and in
Dasgupta et al. (2020) probability updating can be noisy. A proposal
particularly relevant to us is the one from F. Costello and Watts
(2014), since their work offers a more complete calculus for
probabilistic reasoning. In F. Costello and Watts (2014) probability
plus noise model, probability judgments are based on sample
frequencies computed from a fixed number of samples generated
from memory. For example, if a person wants to decide whether they
are likely to enjoy a camping trip, they will invoke from memory
previous instances of camping trips and assess the probability of
enjoyment against the relevant frequencies, in a way akin to the
availability heuristic from Tversky and Kahneman (1983). When
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there are no prior relevant instances, such as when we are called to
evaluate probabilities about Linda, whomwe have never encountered
before (unless we are cognitive psychologists), a mental simulation
process can generate such instances and employ them to compute
probabilities. It can be questioned whether a mental simulation
process is a plausible mechanism for generating probabilities,
still, this is a common assumption in corresponding models (e.g., see
F. J. Costello & Watts, 2016, p. 120, or J. Zhu et al., 2020, p. 2).
In the work by F. Costello and Watts (2014), these sampling

mechanisms are subject to faulty evaluations, and it is these errors
which can give rise to apparent fallacies. Specifically, they define
d as the probability of an evaluation error (e.g., evaluate a memory
as true when in fact it was false), from which they derive the
prediction P(judged A)= (1− 2d) · P(truly A)+ d, but then they add
the assumption that the error rate is higher for conjunctions so that
P( judged A ˄ B) = (1 − 2 · [d + Δd]) · P((truly A ˄ B) = [d + Δd]),
and analogously for disjunctions, with Δd > 0. The key point is
that more complex probability evaluations, such as conjunctions
and disjunctions, suffer from higher noise, relative to simpler
probabilities (marginals). For both simple and complex probabilities,
this model implements a regression to the mean, so that true
probabilities below 0.5 increase toward 0.5 and true probabilities
above 0.5 decrease toward 0.5. Thismodel can explain the occurrence
of conjunction fallacies. For example, in the Linda problem, assume
that participants “truly” judge P(BT) to be only slightly greater than
P(F ˄ BT), such that in both cases the probabilities are less than 0.5.
Regression to the mean for the conjunction is faster (because there
is higher noise) than for the individual question, so that the apparent
P(F ˄ BT) increases more so than P(BT), leading to a conjunction
fallacy. A similar explanation can be used to explain apparent
disjunction fallacies. Moreover, F. Costello and Watts (2014, 2018)
examined several probabilistic identities, expected to hold under their
model, and reported evidence that this is indeed so.
There are some difficulties with this proposal. For example, it

cannot accommodate conjunction fallacies when the true probabilities
of the marginals and conjunction are over 0.5, however, there is
evidence for conjunction fallacies in that range (Yearsley &
Trueblood, 2018). Also, the probability plus noise model predicts a
regression toward the mean for all probabilities, even for events
manifestly impossible (“there is a flying cat made of cheese outside
my house”) or manifestly possible (“there is water on earth”). A
more theoretical concern with this model is the assumption that the
sampling process for generating P(A) is different from the one to
generate P(A ˄ B). In other words, the person makes a judgment
about A using one sample and then disregards this sample, to
generate a separate sample for A ˄ B. This seems wasteful and
indeed other Bayesian researchers have argued that “many real-
world tasks require making many decisions based on the same
information. In these scenarios, it makes sense for an agent to cache
and reuse samples for several decisions” (Vul et al., 2014, p. 29).
If the probability plus noise model employs a single sample for
marginals and conjunctions, then no conjunction fallacy can emerge.
A possible shortcoming of F. Costello and Watts (2014) model,
shared with the quantum probability one (Busemeyer et al., 2011; we
will consider this just below), is that it cannot account for double
conjunction fallacies.1 So far, there has been limited evidence for
double conjunction fallacies (Crupi et al., 2018; Wojciechowski &
Pothos, 2018; Yates & Carlson, 1986); we hope to make progress
with this important empirical question in the present work. Finally,

the probability plus noise model assumes that judgments come from
sampling frequencies and thus follow the binomial distribution. In the
case of small sample sizes, this means that many possible judgments
would be predicted to have a zero likelihood of occurring. To
circumvent this limitation, F. Costello et al. (2018) proposed that
people round numbers in a specific way to produce the final
probability judgments. Rounding mechanisms have been well
supported in the literature and are a reasonable addition to a model
for probabilistic reasoning. Nevertheless, it is interesting to consider
whether a model with no external rounding mechanism can perform
equally well.

The Bayesian Sampler (J. Zhu et al., 2020) is a related model,
based on an analogous sampling process. Like F. Costello andWatts
(2014), the Bayesian sampler assumes that there is a separation
between internally generated frequencies and observed participant
responses. The Bayesian Sampler model assumes that the sampling
process is veridical, subject to sampling limitations, but there is a
second step of integrating the sample estimates with a prior belief
to produce a final biased mean estimate. In this work, we focus on
the Bayesian Sampler, because predictions between the two models
mostly converge and, where they diverge, the evidence seems to
favor the Bayesian Sampler (J. Zhu et al., 2020). Additionally,
a minimal modification of the Bayesian Sampler model, which will
be discussed in detail later, can solve the likelihood-zero problem of
the probability plus noise model mentioned above.

The second main idea in the present work is that the relevant
probabilistic calculus may include a non-Bayesian influence. The
relevance of quantum theory in cognition can be motivated in a way
which is, perhaps surprisingly, very similar to that for the Bayesian
Sampler. J. Zhu et al. (2020; see also Lieder&Griffiths, 2019) note that

We start from the perspective that people, quite possibly implicitly,
have an internal Bayesian model of the tasks they engage in. … A
serious challenge to Bayesian models is that Bayesian calculations
(e.g., inferring and averaging over the posterior distribution) appear
computationally daunting (p. 1).

Note, it may not be immediately obvious why baseline Bayesian
theory is intractably complex. One way to see this is in terms of
the exponential growth in the complexity of joint probability
distributions, as the number of predicates grows. A counterargument
might be that if we assume independence then this exponential
growth does not occur. However, complete independence is
unrealistic and partial independence, for example, in the form of
Bayesian networks, is still problematic (Pothos et al., 2021). In any
case, in terms of motivating quantum theory, a similar point applies.
That is, and as noted, the use of quantum theory in cognition can
be motivated as a framework for probabilistic reasoning, which
mitigates the computational intractability of baseline Bayesian
theory. But how does this come about?

Bayesian and quantum theories are based on different axioms
and offer strikingly different approaches to the representation of
information and computation of probabilities. Bayesian theory has a
set-theoretic structure, so that probabilities are computed against
subsets of an overall sample space, while quantum theory is a
geometric model of probability, whereby probabilities correspond to

1 In a single conjunction fallacy, the conjunction is rated as more probable
than one marginal; with a double conjunction fallacy, the conjunction is rated
as more probable than both marginals.
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projections of a state vector onto different subspaces. For example, in
Figure 1a, probabilities for different possibilities about Linda are
subsets, whereas in Figure 1b the state vectorψ is projected to different
subspaces. As seen in Figures 1a and 1b, the set-theoretic structure of
Bayesian theory illustrates the requirement of closure: we are always
able to make a judgment about, for example, overlap (and so
probability) for any combination of subsets. By contrast, in quantum
theory, incompatible questions are impossible to resolve concurrently;
these are questions for which the corresponding subspaces are at
“angles” to each other, which are not multiples of π/2. Compatible
questions in quantum theory on the other hand are such for which the
situation is entirely Bayesian. It is in this way that we have argued that
quantum theory may be a plausible bounded-rational approach, for
agents striving to be Bayesian, but overwhelmed by the multitude of
questions they are facedwith (Pothos&Busemeyer, 2022): rather than
trying to be fully Bayesian for all available questions, an agent aims to
do so only for the subsets of compatible questions.
In the context of probability judgments, a quantum probability

model can offer an axiomatic way of modeling various probability
fallacies such as conjunction and disjunction fallacies, order effects,
and violations of law of total probability, in a unified account.
Additionally, we are led to a fairly natural way to understand
influential distinctions in cognitive theory, such as between slow
versus fast, reflective versus reflexive, or analytic versus heuristic
thinking (Elqayam & Evans, 2013; Kahneman, 2001). We propose
that such distinctions can be understood as ones of Bayesian versus
quantum computations. Indeed, there is some evidence that task
demands, familiarity, and individual differences can affect the relative
weight of Bayesian versus quantum reasoning, as one would expect
if the former versus the latter correspond to, broadly speaking, slow
versus fast cognition (Trueblood et al., 2017). In our work, we
continue to explore the boundary between quantum and Bayesian
cognition, by presenting amodel which allows a seamless (parametric)
transition between quantum versus Bayesian reasoning.

Busemeyer et al.’s (2011) quantum probability model is
incomplete in modeling human probability judgments. In fact, since
Busemeyer et al.’s (2011) model is (mostly) just quantum probability
theory, it offers little parametric flexibility to accommodate some
important findings. For example, Busemeyer et al. cannot explain the
violations of some probability identities (F. Costello & Watts, 2014;
F. J. Costello&Watts, 2016). Additionally, Busemeyer et al.’s (2011)
model, as well as the Bayesian Sampler model, cannot explain
violations of the identity equation, that is P(A) + P(¬A) ≠ 1, namely
binary complementarity. Note, A here can be either marginals or a
more general event (e.g., a conjunction, disjunction, conditional).

Binary complementarity deserves a few further remarks, because
of its importance in modeling, as putative violations are beyond
the scope of all current theories of probabilistic judgments. Binary
complementarity may appear too obvious to be violated and indeed
consistency with this constraint is well documented in the literature
(Budescu et al., 1997; Tversky & Koehler, 1994; Wallsten,
Budescu, Zwick, & Kemp, 1993). Theoretically, binary comple-
mentarity is essential in support theory (Tversky & Koehler, 1994).
However, prior work already offers some hints that binary
complementarity may not always be behaviorally valid. Violations
of binary complementarity have been observed in choice behavior
(E. Shafir, 1993; see also Macchi et al., 1999) and in similarity
judgements (Tversky & Gati, 1978). Violations of this constraint
are related to the subadditivity effect in unpacking, whereby the
probability of a packed disjunction event or category is lower than
the sum of the probabilities of its unpacked mutually exclusive
components (Tversky & Koehler, 1994), especially when the
components are typical instances of the packed category (S. Sloman
et al., 2004). More pertinently, Epping and Busemeyer (2023)
showed that when one presents A ˄ ¬A as the two only possible
alternatives (e.g., Gift Card A vs. Gift Card B; there is no other
choice), rather than Gift Card A and not Gift Card A, the constraint
can be violated. Given the above, whether violations of binary

Figure 1
The Two Figures Show Bayesian (a) and Quantum (b) Representations of the
Information in the Linda Problem (Tversky & Kahneman, 1983)

Note. In the Bayesian case, the conjunction corresponds to the intersection between the feminist
(F) and bank teller (BT) sets. In the quantum case, the conjunction corresponds to the sequential
projection to the F and then BT subspaces, of the mental state vector ψ. In (b), the darker plane
represents BT and the lighter plane represents F; the yellow projection represents judging BT alone
and the orange projection represents judging F and then BT (both projections are along the
BT subspace). See the online article for the color version of this figure.
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complementarity are present in the present data is an important
question we will address.
The third main idea in our work is that there might be a separation

between relevant probabilistic principles and the responsemechanism.
The work of F. Costello and Watts (2014) and J. Zhu et al. (2020)
are recent examples for how to accomplish this. F. Costello andWatts
(2014) assume noisy sampling and J. Zhu et al. (2020) that the
sampling process is veridical (subject to sampling limitations), but
there is a second step of introducing bias in responding, when the
internal estimates are adjusted against prior beliefs. An important
assumption in both these models is that the samples for probabilistic
calculations need to be specified in advance. That is, the cognitive
agent needs to make a commitment regarding the extent of her
sampling, at the initial state of their probabilistic judgment. However,
a sampling process for probabilistic reasoning need not be specified in
such a way: Notably, sequential sampling models assume that agents
collect samples sequentially, with the duration of the sampling process
flexibly limited or extended depending on the accumulated evidence,
time pressure, engagement with a task, among possible factors (e.g.,
Brown &Heathcote, 2008; Ratcliff & Smith, 2015; Trueblood et al.,
2014; Usher & McClelland, 2001). In our proposal for probabilistic
reasoning, we thus assume that there is a separation between
subjective probabilities and response production and employ a
sequential sampling process for the latter.
The idea of a separation between internal probabilities and response

mechanisms allows us to address an interesting question regarding
models of probabilistic reasoning: Do probability judgments require
or assume rule following by people? As with F. Costello and Watts
(2014) and J. Zhu et al. (2020), we assume that people’s probability
judgments are consistent with the rules of formal probability
theory, whether Bayesian or quantum. Yet, what people articulate
as “probabilities” are typically not pure subjective probabilities but
rather “noisy” judgments influenced by these underlying probabilities.
Marr’s analysis (Marr, 1982) provides a framework for understanding
this distinction: formal probability rules offer a computational-level
or top-down (Griffiths et al., 2010) explanation of probabilistic
reasoning, whereas a process such as noisy sampling mechanism
aligns with Marr’s algorithmic-level description, detailing how such
inferences are formulated. At the same time, some aspects of
probabilistic reasoning may be guided by heuristic rules, rather than
formal probabilistic ones, such as the representativeness one from
Tversky andKahneman (1983). Note, as discussed, representativeness
is limited in scope; but one can imagine similar principles capturing
aspects of probability estimation, outside accounts based on formal
probability theory. In any case, if rules are involved in probabilistic
reasoning—especially rules from formal probability theory—the
relevant computations and cognitive processes are likely to be outside
direct conscious control and awareness: Lay people, without any
mathematical training, are perfectly capable of forming probabilistic
intuitions—it is these intuitions we are trying to explain. This is
analogous to how young children can perform intuitive physics,
without learning classical physics. The consideration of explanation
levels as above underscores the importance of algorithmic-level
models, such as a sampling algorithm that can account for the intuitive
generation of responses based on rules.
Overall, the above ideas certainly have much merit. However,

it also seems fairly clear that the predominant formalisms for
probabilistic reasoning suffer from notable limitations, even in the
absence of evaluation against larger data sets, which, we think, are

likely to offer additional challenges to existing models. We next
describe a novel experiment, to collect an extensive data set on
probabilistic reasoning, and follow with the specific novel theoretical
proposals.

Experimental Investigation

Both F. Costello and Watts (2014) and J. Zhu et al. (2020)
asked participants to judge the probabilities of pairs of weather
events. A priori, there are reasonable grounds for expecting that such
judgments might be more likely to conform to Bayesian constraints,
because we are generally familiar with judgments for weather events,
a weather event is less likely to create unique contexts or perspectives
for other weather events, and resolving a weather question is unlikely
to create an impression of “disturbance” for subsequent related
questions (Pothos & Busemeyer, 2022). Overall, there is little doubt
that human judgments are sometimes consistent with Bayesian
constraints. Therefore, it is more interesting to examine behavior
with judgments more likely to challenge Bayesian prescription.
We carried out two pilot experiments to preselect materials more
likely to result in apparent probabilistic fallacies, which are described
in Supplemental Material 1. The results of the pilot studies were
analyzed primarily in terms of the emergence of conjunction
fallacies, without detailed analyses or model fits.

For both the two pilots and the main experiment, we requested
judgments concerning the presidential election in the United States
in 2020. This presidential election attracted, for various reasons,
widespread interest and was extensively covered internationally.
Therefore, we anticipated that judgments concerning the probability
of the two candidates winning or losing different states would
offer an engaging and interesting task to participants, who were all
recruited in the United States.

All experiments were approved by City, University of London
Research Ethics Committee with the ethics approval code ETH2223-
0571 and title of study “Decision making for election results.” We
report how we determined our sample size, all data exclusions, all
manipulations, and all measures in the study. This study was not
preregistered; all data and data analysis codes will be available in our
Github repository at https://github.com/adamhuang11111/quantum_
sequential_sampler_public.

Main Experiment

Participants

We recruited 1,451 (908male) participants, restricting geographical
location to the United States, from AmazonMechanical Turk. Sample
size was determined a priori primarily on the basis of practical
considerations: Recruitment took place just before the presidential
election in the United States in 2020 and we recruited the maximum
number of participants we believed we could test within a reasonable
period prior to the election. No restrictions apart from location were
placed on participation. Each participant was paid $2.25 and the
experiment lasted approximately 25 min. A simple attention check
question was included: Halfway the survey, a question similar in
style to the other ones was presented, asking participants to simply
move the slider to a specific number (e.g., 47). As a result of
failing to answer the attention check question correctly, being
identified as a spam bot, or having provided incomplete data,
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289 participants were excluded from further analysis. Thus, the
final sample size was reduced to 1,162 participants (730 male).
One thousand one hundred eighteen out of these participants
were at least 25 years of age and therefore eligible to vote in the
United States.

Method

Participants were asked to provide 78 probability judgments
(below, we invariably refer to these as probability questions, events,
or judgments) concerning the likelihood of one or both presidential
candidates (Trump and Biden) winning the popular vote in the states
corresponding to the triplets chosen from the pilot experiments:

• T1: Ohio, Missouri, Michigan.

• T2: Georgia, Montana, Nevada.

If we label the states in a triplet as A, B, C, Table 1 shows the
28 probability judgments for pair A, B. For pair A, C there are an
additional 26 judgments because the marginals for A are already
covered in the first set of 28 judgments; and for pair B, C, an
additional 24 judgments, for a total of 78. Note, we can arbitrarily
consider P(Biden to win A) as P(A) and P(Trump to win A) as P(¬A),
thereby avoiding the need to ask participants to rate event negations.
Even though there were other candidates, Biden and Trump were
the dominant ones and, as an approximation, we can ignore the
possibility of other candidates; no other candidates were mentioned
in the experiment. The judgments were comprised of six marginals,
12 conjunctions, 12 disjunctions, and 12 conditionals, with all
composite events presented in both possible orders. All participants
were asked to rate the marginal probabilities first, before being
presented questions about composite events in different blocks
(described just below). The reason why the marginals were shown
first was so that participants would be exposed to the range of atomic
events, prior to any other questions. Within blocks, question order
was randomized.
The rating scale consisted of an adjustable slider, with anchor

points 0% and 100% and movement in 1% increments. The slider
consisted of a circle, which participants could move around with
a mouse. Just above this circle, participants could see the rating the

slider corresponded to, at any given position. Additionally, above
the slider, we indicated the locations of 10% increments. The slider
was always initialized at 50 in all trials. Note, this might be a source
of bias, for example, in that more effort would be required to produce
more extreme responses. There are two mitigating considerations.
First, simple inspection of the probability judgments distributions
(Figure 2) shows that the mode of many of these distributions is away
from 50. This indicates that, even if there is a bias, it is not strong
enough to dominate the mode of the distributions. Second, as will
be explained later, there is an overestimation bias present in the
probability judgments. Should a motor bias be influencing these
judgments, due to the initial placement of the slider at its midpoint,
we would expect to see a more balanced distribution of judgments
across the slider’s range. Supplemental Material 1 offers more details
about the procedure for rating elicitation and some example
screenshots of the slider we employed.

The design involved two between participants conditions. The
first condition was the triplet, Triplet 1 (T1) versus Triplet 2 (T2).
We tested different participants on each triplet, as a way to limit
the total number of probability judgments for each participant. The
second condition was a counterbalancing one, corresponding to
whether participants completed all judgments for a particular pair
first before proceeding to the judgments for another pair (blocked
order, BO) versus completing all judgments for all pairs together,
in a randomized order (fully randomized order, FO). The number of
participants in each combination of conditions was, for the T1 BO,
T1 FO, T2 BO, T2 FO conditions, 284, 301, 269, 308, respectively.
As participants in the BO condition did not provide responses
noticeably different from those in the FO one, this counter-
balancing condition will not be further considered.

In both the BO and the FO conditions, probability judgments were
blocked by type of judgment, so that when participants completed
the judgments for one block there was a small break, before
proceeding to the next one. In the FO case, participants first
responded to all possible conditionals in one direction (e.g., AjB),
then conjunctions, then disjunctions. Subsequently, participants saw
the same judgments in the reverse direction (e.g., BjA). The BO case
was analogous, but the judgments corresponding to each pair of
states were also blocked. Within each block, judgment order was
randomized for the first presentation, but kept the same for the second

Table 1
The 28 Probability Judgments Required for the Pair of Events {A, B}

Index Probability judgment
Probability

judgment name Index
Probability
judgment

Probability
judgment name

1 A Marginal 15 ¬A ˅ B Disjunction order 1
2 B Marginal 16 ¬A ˅ ¬B Disjunction order 1
3 ¬A Marginal 17 B ˅ A Disjunction order 2
4 ¬B Marginal 18 ¬B ˅ A Disjunction order 2
5 A ˄ B Conjunction order 1 19 B ˅ ¬A Disjunction order 2
6 A ˄ ¬B Conjunction order 1 20 ¬B ˅ A Disjunction order 2
7 ¬A ˄ B Conjunction order 1 21 AjB Conditional
8 ¬A ˄ ¬B Conjunction order 1 22 Aj¬B Conditional
9 B ˄ A Conjunction order 2 23 ¬AjB Conditional

10 ¬B ˄ A Conjunction order 2 24 ¬Aj¬B Conditional
11 B ˄ ¬A Conjunction order 2 25 BjA Conditional
12 ¬B ˄ ¬A Conjunction order 2 26 Bj¬A Conditional
13 A ˅ B Disjunction order 1 27 ¬BjA Conditional
14 ¬A ˅ B Disjunction order 1 28 ¬Bj¬A Conditional
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presentation. Once participants completed all probability judgments,
they were asked to answer three questions corresponding to the
Cognitive Reflection Test (CRT; Frederick, 2005). They were then
debriefed, thanked, and paid for their participation. Figure 3 provides
a sketch of the main parts of the survey flow in the experiment.

Behavioral Analyses

Response Biases

We first considered participants’ use of the ratings scale,
notably whether participants made full use of the ratings scale
and whether particular ratings might have been preferentially
employed, for example, as a result of rounding behavior (Budescu et
al., 1988; Wallsten, Budescu, & Zwick, 1993). Given there were 78
probability estimates in the experiment, each participant can give a
maximum of 78 different ratings. The number of points on the
ratings scale which were used by participants varied between 2
and 56 (M = 31.45, SD = 11.65). Only 29 participants out of
1,162 used fewer than 10 different points on the rating scale,
demonstrating that most participants made reasonable use of the
rating instrument provided. In Supplemental Figure S2.1 shows
how often each rating was observed in participant responses, with
the bars corresponding to multiples of five highlighted. It appears

that such ratings were indeed preferentially employed, but to
a lesser extent, compared to that in J. Zhu et al. (2020), where
probability judgments were numbers which were entered into
a computer.

Conjunction Fallacy

Single versus double conjunction fallacies can be identified
by considering whether the conjunction is higher than one or
both marginals, respectively. There was a high rate of conjunction
fallacies in the data set, with 59.4% of all conjunctions associated
with a conjunction fallacy. Of these cases, 38% corresponded
to single conjunction fallacies and 62% to double conjunction
fallacies; assessed against the total number of conjunctions these
percentages were 22.7% and 36.7% respectively. Therefore, our
work provides new evidence that double conjunction fallacies can
arise in human judgments (Crupi et al., 2018; Wojciechowski &
Pothos, 2018; Yates & Carlson, 1986).

We examined whether the emergence of probabilistic fallacies,
such as the conjunction fallacy, can be tied to individual differences
concerning the CRT, which has been employed in similar ways in
the past (Yearsley & Trueblood, 2018). We approximated with
CFrate (Supplemental Material 1) the number of instances in which a
conjunction fallacy, regardless of size, was detected per participant.

Figure 2
Violin Plots Showing the Distribution of Empirical Data Versus the Distribution of Predictions From the
Quantum Sequential Sampler (QSS; Top Panel) and the Distribution of Empirical Data Versus the
Distribution of Predictions of the Bayesian Sampler Model (BS; Bottom Panel)

Note. The black bar in the middle shows the first and third quartile of data points (25%–75%). The data are for the {Ohio,
Michigan} pair of events, for the Triplet 1. See the online article for the color version of this figure.
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Note, results here were analyzed for both triplets together; for
this analysis, separating out results from each triplet is irrelevant
(Table 2). A one-way between participants analysis of variance
(ANOVA)was conducted, with the proportion of conjunction fallacies
as the dependent variable and the CRT score as an independent
variable with four levels, which were the four possible scores in
the CRT. A significant effect of CRT scores on the proportion of
conjunction fallacies was found,F(3, 1158)= 78.76, p< .001 (BF10>
150). Repeated contrasts revealed that for each point gained in the
CRT score, the frequency of conjunction fallacies was reduced (p =
.001–.017, BF10 ranging from 1.27 to >150). A summary of the
contrast analyses can be found in Supplemental Table S2.1 and an
illustration of the relationship between conjunction fallacies and
CRT is in Figure 4.

Disjunction Fallacy

Analogous to conjunction fallacies, a disjunction fallacy (DF)
occurs when the probability of a disjunction is judged lower than
that of either constituent. In the present data set, there was an
apparent disjunction fallacy for 53% of all disjunctions. Most
disjunction fallacies corresponded to a single disjunction fallacy
(63.9%), but there was a sizeable proportion of double ones as
well (26.1%).
The proportion of disjunction fallacies DFrate (Supplemental

Material 1), that is the number of instances in which a disjunction
fallacy (again regardless of size) was detected, differed across
participants with different CRT scores, as assessed with a one-way
between participants ANOVA, with CRT as a four-level independent
variable, F(3, 1158) = 31.709, p < .001 (BF10 > 1,000). As seen in
Figure 4, the rate of disjunction fallacies is reduced with increasing

CRT, a pattern that was mostly confirmed statistically, with repeated
contrasts: the disjunction fallacy rate of participants with a CRT score
of 3 was lower than that of all other participants, p < .001 (BF10 >
106); analogously for participants with a CRT of 2 relative to
ones with a CRT score of 0 p < .029 (BF10 > 3.11), but no other
comparisons were significant (Supplemental Table S2.2).2

Order Effects

Any deviation between the conjunction in one order and the same
conjunction in the opposite order, regardless of how small it is,
implies the presence of an order effect, that is, a conjunction order
effect is evidenced when P(A and then B) ≠ P(B and then A) and a
disjunction order effect when P(A or then B) ≠ P(B or then A). It is
notable that such order effects are beyond both Bayesian theory
and the current quantum models for the conjunction fallacy. In the
latter case, in quantum theory, it is possible to have P(A and then
B) ≠ P(B and then A). However, in the original quantum model, it
was assumed that conjunctions are evaluated so that the more likely
predicate is considered first, regardless of the order in which the
predicates appear in the conjunction (analogously for disjunctions;
Busemeyer et al., 2011). Instead, order effects have been postulated
to be relevant when participants answer one question after another
(Z. Wang et al., 2014). So, if this approach is behaviorally accurate,
then we do not expect systematic order effects in conjunctions
and disjunctions. The results, shown in Supplemental Tables S2.3
and S2.4, indicate no evidence for order effects, based on Bayesian
one-sample t tests against 0, in nearly all cases.

Concerning a putative association between order effects and CRT,
the absolute magnitude between the same conjunction or disjunction,
in different orders, can be taken as a measure of deviation from both
classical prediction and the prediction from Busemeyer et al. (2011)
quantum model. A between-subjects ANOVA with the average
order effect size as the dependent variable and the CRT score as the
independent variable (with four levels) revealed an effect of CRT
score on order effect size, F(3, 1158) = 3.045, p < .028. However,
post hoc t tests failed to show systematic changes in effect size
depending on the CRT score.

Reciprocity

The constraint of reciprocity is that PðXjYÞ = PðY jXÞ. Clearly,
reciprocity does not apply to Bayesian theory and it does not apply
to quantum theory, when subspaces of varying dimensionalities
are employed (Busemeyer et al., 2011). However, quantum models
with one-dimensional subspaces are constrained by reciprocity
(Busemeyer & Bruza, 2011) and such models are sometimes
employed (e.g., White et al., 2020; Yearsley & Pothos, 2016).
There is some evidence that humans are sometimes constrained
by reciprocity (Trueblood et al., 2017). In the present data,
overall, there was limited evidence for reciprocity. Out of the
78 probability judgments, there were 24 conditional probability
ones (12 pairs for each triplet, so 24 pairs in total). Only in six out
of 24 pairs of matched conditional probability judgments (e.g.,

Figure 3
Survey Flow Highlighting the Differences Between the Blocked
Order and the Fully Randomized Order Conditions

Note. CRT = Cognitive Reflection Test. See the online article for the color
version of this figure.

2 In Table 2 and throughout the article, we use ∩ and ∪ to denote classical
probabilities, and ˄ and ˅ to denote probabilities with “and” and “or” that
do not need to obey classical probability theory like those found in the
probability judgments and quantum probabilities.
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PðAjBÞ vs. PðBjAÞ) was there evidence for reciprocity, using
Bayesian paired-samples t tests (Supplemental Table S2.5).

Z-Identities

F. J. Costello and Watts (2016) derived several probabilistic
identities that must hold in a baseline Bayesian probability
framework. The list of these identities was also tested by J. Zhu
et al. (2020; Table 2). If participant judgments can be described by
basic Bayesian probabilities, that is without noise or other additional
assumptions, one would expect all identities Z1 to Z18 to be equal to
zero. Violations of these identities were found in the experiments of
F. J. Costello and Watts (2016) and J. Zhu et al. (2020), indicating,
unsurprisingly, that peoples’ judgments are not consistent with
baseline Bayesian theory.

For the present data, the Z-identities were tested using average
probabilities from participant ratings within each triplet. Each test
was based on a Bayesian one-sample t test, against zero. Systematic
deviations from zero could be observed for all identities, apart from
Z1, Z2, Z9, and Z14. The observed Bayes factors indicate that the
alternative hypothesis, Z ≠ 0, is vastly more likely than the null
(Supplemental Table S2.6; Figure 5). For the four identities for
which evidence was consistent with the Bayesian expectation,
Z1,2,9,14 = 0, evidence ranged from anecdotal to strong (BF01 from
1.2 to 9.1). This pattern of results differs in an interesting way
compared to the one in J. Zhu et al. (2020). Notably, we observed
higher values for many of these identities, compared to J. Zhu et al.
(2020), which raises the question of whether the Bayesian Sampler
model will cope with the present results. We compared the identity
values from the present data set versus the ones from J. Zhu
et al. (2020) data set (Supplemental Material 7). There was strong
evidence for differences in all cases, except from Z1, Z9, Z15, Z16.

Binary Complementarity and the Law of Total Probability

A key requirement for both Bayesian and quantum theories
concerns binary complementary and the law of total probability.
Note, for quantum theory, interference effects can allow violations
of this constraint only when conjunction orders are mixed.
Specifically, we expect consistency with binary complementarity,
such as P(A) + P(¬A) = 1 and the four-way law of total probability
P(A ∩ B) + P(A ∩ ¬B) + P(¬A ∩ ¬B) + P(¬A ∩ ¬B) = 1.
The conjunction fallacy and related findings perhaps encourage
an expectation for violations regarding expressions including
conjunctions or disjunctions. However, in any specific data set, it
cannot be taken for granted than such violations will emerge and,
moreover, it is unclear what to expect for the seemingly obvious
version of binary complementarity with marginals.

We tested binary complementarity for marginals and the four-way
law of total probability in the present data set using one-sample
Bayesian t tests (against 1). These tests yielded strong evidence for
deviations from 1 for both equations, that is none of the identities hold
for the present data: BF10 > 1050 for all identities, regardless of the
particular triplet (Triplet 1 or Triplet 2) or the order of conjunctions
(cf. Erev et al., 1994). The results of the Bayesian t tests are shown in
Supplemental Table S2.7 and the distributional information for the
various versions of the identities, depending onwhich event or pair of
events is considered, in Supplemental Figure S.2.2.

The observed violation of binary complementarity,P(A)+P(¬A)> 1,
might be related to the unpacking effect (Tversky & Koehler,
1994). In the present case, even though Trump and Biden were
the two only plausible alternatives for presidential candidates,
presenting these typical, unpacked events of the packed category
“presidential candidate”may be inducing a subadditivity unpacking
effect, leading to overestimation. In any case, violations of binary
complementarity are a surprising, important finding. Note, the effect
is unidirectional: in our data set 72.1% of all binary complementarity
expressions produce more than 1, that is, there is a reliable
overestimation effect. As far as we know, because this is a relatively
newly discovered effect in probabilistic reasoning, no model can
directly account for this overestimation effect for binary comple-
mentarity, other than the Quantum Sequential Sampler. Behaviorally,
the most surprising violation of binary complementarity concerns
marginals, but there are several versions all trending in the same

Figure 4
An Illustration of the Relationship Between CRT and Conjunction
(a) and Disjunction (b) Fallacies

Note. CRT = Cognitive Reflection Test; CF = conjunction fallacy; DF =
disjunction fallacy.

Table 2
Probabilistic Identities From (Baseline) Bayesian Theory,
According to J. Zhu et al. (2020)

Identity name Identity calculation

Z1 P(A) + P(B) − P(A ∩ B) − P(A ∪ B)
Z2 P(A) + P(B ∩ ¬A) − P(B) − P(A ∪ ¬B)
Z3 P(A) + P(B ∩ ¬A) − P(A ∪ B)
Z4 P(B) + P(A ∩ ¬B) − P(A ∪ B)
Z5 P(A ∩ ¬B) + P(B ∩ A) − P(A)
Z6 P(B ∩ ¬A) + P(A ∩ B) − P(B)
Z7 P(A ∩ ¬B) + P(B ∩ ¬A) + P(A ∩ B) − P(A ∪ B)
Z8 P(A ∩ ¬B) + P(B ∩ ¬A) + 2 P(A ∩ B) − P(A) − P(B)
Z9 PðAjBÞPðBÞ − PðBjAÞPðAÞ
Z10 PðAjBÞPðBÞ + PðAj¬BÞPð¬BÞ − PðAÞ
Z11 PðBjAÞPðAÞ + PðBj¬AÞPð¬AÞ − PðBÞ
Z12 PðBjAÞPðAÞ + PðAj¬BÞPð¬BÞ − PðAÞ
Z13 PðAjBÞPðBÞ + PðBj¬AÞPð¬AÞ − PðBÞ
Z14 PðAj¬BÞPð¬BÞ + PðBÞ − PðBj¬AÞPð¬AÞ − PðAÞ
Z15 PðA∩BÞ − PðAjBÞPðBÞ
Z16 PðA∩BÞ − PðBjAÞPðAÞ
Z17 PðA∩BÞ − PðAÞ + PðAj¬BÞPð¬BÞ
Z18 PðA∩BÞ − PðBÞ + PðBj¬AÞPð¬AÞ

Note. In all cases, the predicted value is 0. Identities are abbreviated
using P(¬A) and P(¬B) for 1 − P(A) and 1 − P(B).
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direction (e.g., P(A ∩ B) + P(¬A ∩ ¬B) > 1). Figure 6 provides more
details about violations of binary complementarity for all possible
complementary pairs.
Given how surprising violations of binary complementarity

are, especially for marginals, we can ask whether this effect might be
due to some aspect of the data collection procedure. We followed
all the standard procedures and incorporated several checks to
ensure data quality. Note, the procedure we adopted closely follows
J. Zhu et al. (2020). There are three further considerations mitigating
any concerns about the validity of the observed violations of binary
complementarity. First, all the marginals were presented together,
prior to the more complex probabilities. As noted, we chose this
method to make participants aware of all the basic events early on.
Moreover, this meant that participants would see events and their
negations in close proximity, suggesting that any violation of binary
complementarity do not arise from, for example, memory failures.
Second, regarding binary complementarity for marginals, events

and their negations were not presented explicitly as such, for
example, as P(A) versus P(¬A). Instead, participants would see for
example, P(Biden to win in state X) versus P(Trump to win in state
X). Plausibly, this encouraged violations of binary complementarity
(as in Epping & Busemeyer, 2023). Third, the empirical probability
judgments were collected using a slider that defaults to a neutral
midpoint of 50 (see Supplemental Material 1). Considering this
neutral starting point, it seems implausible to attribute the
overestimation effect to the data collection instrument itself.

Generally, there is a long history of surprising and counterintuitive
findings in probabilistic reasoning. The observed violation of binary
complementarity in the present study is indeed puzzling, given
the intuitiveness of this constraint and the broad spectrum of
literature supporting it (Budescu et al., 1997; Tversky & Koehler,
1994; Wallsten, Budescu, Zwick, & Kemp, 1993). However, the
intuitiveness of a probability constraint should not get in the way of
rejecting it, when there is compelling and statistically significant

Figure 5
The Observed Values for the Z-Identities (Table 2) in the Present Data Set, Computed From Average
Probabilities, Separately for Each of the Two Triplets and Orders of Conjunctions and Disjunctions

Note. In all cases, the predicted value is 0. See the online article for the color version of this figure.
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empirical evidence. Indeed, we could easily imagine a reviewer of
Tversky and Kahneman (1983) asking “how can we take seriously
data where participants judge a conjunction as more probable than
a marginal, when the two judgments are so close to each other?”.
Invariably, the key drivers of decision research have exactly been
surprising and unexpected findings like these.

Computational Models

Bayesian Sampler

J. Zhu et al. (2020) proposed that probability judgments are
generated fromBayesian reasoning, based on subjective probabilities

estimated from an internal sampling process and a biased prior
distribution. Specifically, the Bayesian Sampler model assumes that
participants initially have a symmetric β prior distribution of
probability judgments, which is updated, using Bayes rule, via
mental sampling. A response to a probability judgment would then
correspond to the binomially distributed expected values of the
β posterior distribution after mental sampling. The sample size of
the mental sampling process is considered a free parameter of the
model. Since responses depend on both the frequencies for mental
sampling and the prior distribution, the Bayesian Sampler has the
flexibility to generate various probability fallacies. Note, concerning
conjunction and disjunction fallacies, J. Zhu et al. (2020) required

Figure 6
Empirical Values for Binary Complementarity, Together With Predictions From the Quantum Sequential
Sampler, the Bayesian Sampler, and the Relative Frequency Model, Averaged Across All Participants

Note. The error bar in the middle shows the 95% confidence interval of the means. The results are for Triplet 1. See the
online article for the color version of this figure.
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two further assumptions, which are analogous to the ones made
by F. Costello and Watts (2014): first, that such judgments are
computationallymore expensive to simulate and thus employ smaller
mental sample size; second, that different samples are employed for,
for example, conjunctions and corresponding marginals.
J. Zhu et al.’s (2020) model shares some similarities with

F. Costello and Watts (2014) model and there is overlap in
predictions too, for example, the Bayesian Sampler model also
adjusts probabilities away from extreme values. J. Zhu et al. (2020)
reported an equation linking the noise parameter in F. Costello and
Watts (2014) model with the sample size parameter in the Bayesian
Sampler. Formal comparison between the probability plus noise
model and the Bayesian Sampler is complicated by the fact that
the two models make equivalent average predictions for probabili-
ties of single events, conjunctions, and disjunctions. However, the
two models diverge for conditional probabilities and the distribution
of probability estimates and, on that basis, J. Zhu et al. (2020)
concluded in favor of the Bayesian Sampler model. So, in the
present work, we focus on the Bayesian Sampler. In the following,
we summarize the mathematical details of the Bayesian Sampler
model and discuss how we fitted the model to the present data.
The model assumes that previous experience establishes a generic

prior on probability judgments, with a symmetric β distribution,
Beta(β, β). As noted, this prior is updated in light of information
from an internal sampling process, according to Bayes rule. LetN be
the sample size in this internal process. Then, S(A) ∼ Bin(N, P(A))
and F(A) = N − S(A) denote the instances consistent and not
consistent with some generic event A occurring in the sampling
process, assuming that P(A) is the subjective probability of A (A can
be a marginal, a conditional, a conjunction, etc.). The posterior
distribution for A, given a particular sample in which there are S(A)
instances consistent with A, has the form:

PBSðAjSðAÞÞ∼Betaðβ + SðAÞ, β + FðAÞÞ: (1)

This approach can be readily adapted to identify the posterior
probability corresponding to conditional event AjB, so that
PBSððAjBÞjSðAjBÞÞ∼Betaðβ + SðAjBÞ, β + FðAjBÞÞ, where now
SðAjBÞ∼BinðN,PðAjBÞÞ denotes the number of times event A
occurs, in a sample of size N where B is true; as before, FðAjBÞ =
N − SðAjBÞ. To account for the conjunction and disjunction fallacies,
the Bayesian Sampler assumes that N′ ≤ N, where N′ denotes the
number of samples to evaluate a conjunction or disjunction and N the
samples for any other judgment.
The posterior distributions for the conjunctions and the

disjunctions follow from Equation 1 above, with the various
quantities defined analogously, for example, S(A ˄ B) is the number
of instances in the sampling process whereby both A and B occur and
SðA ∧ BÞ∼BinðN ′,PðA∩BÞÞ

PBSðA ∧ BjSðA ∧ BÞÞ∼Betaðβ + SðA ∧ BÞ, β + FðA ∧ BÞÞ, (2)

PBSðA ∨ BjSðA ∨ BÞÞ∼Betaðβ + SðA ∨ BÞ, β + FðA ∨ BÞÞ: (3)

J. Zhu et al. (2020) assumed that the reported estimate for the
probability of individual event A is the mean of the corresponding
posterior distribution (Equation 1). The mean of the posterior
distribution of probability judgments (Equation 1), for a specific
value of S(A), is given by

E½PBSðAjSðAÞÞ� =
SðAÞ + β
N + 2β

: (4)

Note that PBS(A) is binomially distributed as S(A) follows the
binomial distribution. The assumed reported probabilities for
conditional events, conjunctions, and disjunctions follow from
Equation 4 and are given by (note, N′ ≤ N, for conjunctions and
disjunctions):

E½PBSððAjBÞjSðAÞÞ� =
SðAjBÞ + β
N + 2β

,

E½PBSðA∩BjSðA∩BÞÞ� = SðA∩BÞ + β
N

0
+ 2β

,

E½PBSðA∪BjSðA∪BÞÞ� = SðA∪BÞ + β
N

0
+ 2β

:ð5Þ

For a particular probability judgment, if the sample size is N,
the Bayesian Sampler makes N discrete predictions, distributed
binomially, as the means of the β posterior distribution (recall, the
mean of the β posterior is itself a random variable). If for a
probability judgment N is small, say 5, the Bayesian Sampler
predicts only five possible responses, for example, 0.11, 0.20, 0.30,
0.40, 0.50. Then, if a participant’s responses for this judgment
is, for example, 0.12 (only 0.01 away from one of the predicted
responses), the likelihood of this response from the model is 0. This
is a counterintuitive and unrealistic constraint.

J. Zhu et al. (2020) circumvent this zero-likelihood issue with
two methods. First, they fitted only the means of the repeated
measurements from the same participant and compared it with the
expected value of posterior means, using a sum of squares error.
However, this approach under-represents data distributional infor-
mation. Second, they proposed an external rounding mechanism.
In their experiment, participants were asked to type answers into
the computer corresponding to probability estimates. It is plausible
that such reports were influenced by people’s tendency to round
to the nearest multiple of 0.05, when probabilities are measured in a
0–1 scale (Budescu et al., 1988; Wallsten, Budescu, & Zwick, 1993).
It may be reasonable or not for the Bayesian Sampler to include
this additional mechanism, but either way it is interesting to consider
whether good fits are possible without it. Note, in our study, we asked
participants to report probability values using a continuous rating
slide, so that a rounding mechanism to the nearest multiple of
0.05 would not have been evoked to the same extent as in J. Zhu
et al. (2020).

In order to fit the Bayesian Sampler model by maximum
likelihood to the continuous data we obtained, we circumvented this
zero-likelihood problem for the Bayesian Sampler by a different
method: We minimally extended the Bayesian Sampler model, by
taking a step back and directly using the posterior β distribution
corresponding to the predictions for a probability judgment. We
can then assume that people report a sampled value from this
posterior distribution, instead of reporting the posterior mean. Since
the β posterior is a continuous distribution, the Bayesian Sampler
can predict a nonzero likelihood for any empirical judgment.
Formally, let B((β, S(E), N))(x) denote the probability density function
of the posterior distribution Beta(β+ S(E), β+ F(E)), where E is any
possibility for an individual event (a conditional, a conjunction, or
a disjunction), and S(E), F(E) are defined as the samples consistent
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and inconsistent with E. We also have S(E) ∼ Bin(N, P(E)) and
denote Bin((N, P(E)))(x) as the probability of obtaining S(E) true
instances when sampling E events, from a binomial distribution with
sample size N. The likelihood of observing a probability judgment
of value x from the Bayesian Sampler model (with parameters N,
P(E)), is given by:

LBSðxjN,PðEÞÞ =
XN

SðEÞ=0
PðSðEÞÞ · PðxjSðEÞÞ

=
XN

SðEÞ=0
BinðN,PðEÞÞðSðEÞÞ · Bðβ, SðEÞ,NÞðxÞ: (6)

This likelihood function works for continuous probability
judgments, but in our empirical investigation, probability judgments
were measured as integers from 0 to 100. We therefore need to
discretize the symmetric β distribution. Specifically, we define a
function u that maps integers from 0 to 100 to the β probability
density as:

uðβ, SðEÞ, NÞðiÞ = Bðβ, SðEÞ, NÞ

�
i

100

�
, 1 ≤ i ≤ 99,

uðβ, SðEÞ, NÞð0Þ = Bðβ, SðEÞ, NÞð0.005Þ,
uðβ, SðEÞ, NÞð100Þ = Bðβ, SðEÞ, NÞð0.995Þ: (7)

In Equation 7, the probability density function of the symmetric
β distribution is undefined at exactly 0 and exactly 1, so we
approximate the corresponding densities with 0.005 and 0.995. The
likelihood function of the Bayesian Sampler model that will be fitted
to our data for each event E can then be written as:

LBSðxjN,PðEÞÞ =
XN

SðEÞ=0
PðSðEÞÞ · PðxjSðEÞÞ

=
XN

SðEÞ=0
BinðN, PðEÞÞðSðEÞÞ ·

uðβ, SðEÞ, NÞðxÞP
100
i=0 uðβ, SðEÞ, NÞðiÞ

: (8)

Note, when we shortly present our own Quantum Sequential
Sampler model, we will also employ a similar assumption of a
symmetric β distribution for the initial state and the same discretization
techniques as in Equation 7. Regarding the Bayesian Sampler,
Equation 8 allows us to fit the model by maximizing the product of
likelihoods for all of the probability judgments, for each participant.3

The likelihood value can then be converted to Bayesian information
criterion (BIC) values.
There are some additional, fairly minor, considerations, before

the Bayesian Sampler model can be applied to the present data
set. Recall, the present data set involves all possible probability
judgments, arising from the three pairs formed by the three events
we employed. For example, for the three events Biden wins New
Hampshire, Trump wins Florida, and Biden wins Penn, we would
consider all probabilities from the three pairs Biden wins Penn,
Biden wins NewHampshire; Biden wins Penn, Trump wins Florida;
and Biden wins New Hampshire, Trump wins Florida. Instead,
J. Zhu et al. (2020) considered probability queries from a single pair
of weather events, for example, normal weather, typical weather.
With a single pair of events, there are at most two sample size
parameters, corresponding to the sample size employed for estimating

marginals and conditionals versus conjunctions and disjunctions.
With three pairs of events, we decided to test two variants of the
Bayesian Sampler model. With the first variant, we assumed that
marginals/conditionals are sampled using one sample size, N1, and
three further samples sizes were required for the three pairs of
conjunctions/disjunctions, N2,N3,N4<N1. With the second variant,
there was a sample size for marginals/conditionals, N1 and a single
sample size for conjunctions/disjunctions, N2. The two versions
of the model are nested and so can be compared through a G2 test
over all participants. The result showed that only six out of 1,162
participants are fitted significantly better (p value< .05) by the more
elaborate version of the model, representing 0.5% < 5% of all
participants. Therefore, we fail to reject the simpler model version
over all participants and, in further analyses, it is the simpler version
of the Bayesian Sampler model which we will consider.

To summarize, the simpler version of the Bayesian Sampler
model that we employed has a total of nine parameters, which are
{N1, N2, P(A), P(B), P(C), PðBjAÞ, PðCjAÞ, PðCjBÞ, β}, where the
six subjective probabilities are employed to compute all other
probabilities, β is the β distribution parameter, and the two sample
sizes correspond to the marginals/conditionals and conjunctions/
disjunctions respectively.

J. Q. Zhu et al. (2023) recently extended the Bayesian Sampler
model, by relaxing the assumption that the samples involved in the
generation of probabilities are independent; instead, they assumed
autocorrelated samples, in their Autocorrelated Bayesian Sampler.
Their model was argued to be consistent with a range of findings in
probabilistic reasoning, including response times and confidence
intervals. However, J. Q. Zhu et al. (2023, p. 12) do note that the
Autocorrelated Bayesian Sampler produces average probability
judgments approximately equivalent to that of the Bayesian Sampler,
except for effects explained by autocorrelated sampling, such as an
implicit unpacking effect, which is not assessed in our data set.
Therefore, in this work, it should suffice to compare the Bayesian
Sampler with the Quantum Sequential Sampler. Additionally,
because the Quantum Sequential Sampler includes a sequential
sampling component, it should be possible to extend its application
to response times, confidence intervals etc. and so compare with
the Autocorrelated Bayesian Sampler—but this is an objective for
future work, not least because the Autocorrelated Bayesian Sampler
is not yet at a form that can be directly fitted to data.

Quantum Sequential Sampler

As for the Bayesian Sampler model, our proposal of the Quantum
Sequential Sampler assumes that probability responses are the
result of an internal sampling process. However, the corresponding
subjective probabilities are quantum and the sampling process a
sequential sampling one. Specifically, the Quantum Sequential
Sampler combines Busemeyer et al. (2011) axiomatized explanation
of probability fallacies with a psychologically plausible response
process. The response process is inspired by sampling models but
takes a step forward: Instead of assuming sampling with fixed sample

3 The fitting result following a maximum likelihood approach might
be different from that based on minimizing the sum of square error, as
performed in J. Zhu et al. (2020), because the maximum likelihood technique
minimizes a weighted sum of square error, that equals the sum of square error
(from corresponding means) only when the distribution is normal.
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sizes, we consider a dynamical sequential sampling process. In short,
our model assumes that discrepancy from Bayesian reasoning can
arise in two ways. First, in a way analogous to that of F. Costello and
Watts (2014) or J. Zhu et al. (2020), it can arise from the response
process. Second, the subjective probabilities themselves can be
more Bayesian or less Bayesian, to varying degrees. That is, we
assume that there is a duality of human reasoning, between something
which approximates Bayesian reasoning and another influence—our
argument is that this alternative influence can be captured by
quantum theory. Each individual is not necessarily Bayesian or
quantum in a black and white manner, rather there is a continuum
covering all intermediate points, from strongly Bayesian to
strongly quantum.
There are several theoretical motivations for the present approach.

First, Busemeyer et al.’s (2011) quantum model, based nearly
exclusively on just the probabilistic calculus from quantum theory,
is overly restrictive. Second, J. Zhu et al.’s (2020) assumptions
that sampling complexity varies between conjunctions/disjunctions
versus other probabilities and that samples are drawn independently
for each probability judgment are not ideal. Third, it would be
desirable to avoid reliance on a rounding mechanism (as in the
Bayesian Sampler) and also develop a new model with a dynamical
component, with potential for additional predictions such as
concerning response times. Finally, the Bayesian sampler and other
sampling models have the zero-likelihood problem as mentioned
previously. The Quantum Sequential Sampling model, by combining
quantum probability with a sequential sampling response process,
circumvents these problems.
In what follows, we introduce the Quantum Sequential Sampler

model in detail. Our explanation of the model is divided into two
parts. In the first part, we explain the quantum internal probabilistic
calculus for computing subjective probabilities. In the second part,
we introduce the Markov sequential sampling model employed to
map subjective probabilities into responses.

Quantum Sequential Sampler First Part—Subjective
Probability

Before presenting formal details, it may be helpful to offer a brief
example of how quantum probability works, with reference to
Tversky and Kahneman’s (1983) conjunction fallacy example. In
fact, it is helpful to first consider how Bayesian probability theory
works. In Figure 1a, we present a classical sample space, which
shows a sample of hypothetical Lindas that we can imagine or have
experienced (i.e., women like Linda). The red dots are Lindas
consistent with the feminist property, which are numerous, since
Linda was described to look like a feminist. Analogously, the blue
dots represent instances for which the bank teller property is true.
The instances for which both the feminist and the bank teller
properties are true are then the intersection of the feminist and bank
teller one, shown as dots which are both blue and red, in the
smudged area. Clearly, the instances in the intersection can never
be more numerous than the instances in either the bank teller or
feminist sets and so, in Bayesian theory, it is impossible to have
P(F ˄ BT ) > P(BT ). This example alludes to the set-theoretic or
Kolmogorov instantiation of classical probability theory, but there
are alternative approaches to formulate classical probability theory
(e.g., Cox, 1961; Jaynes, 2003). All the different approaches share

deep equivalences, at least insofar that they are all constrained in
similar ways.

Figure 1b shows a quantum theory caricature of the Linda
situation. The state vectorψ represents the mental state after reading
the Linda story. Different subspaces correspond to different
questions, such that subspace dimensionality reflects the complexity
(or facets) of the corresponding question (Pothos et al., 2013). In
Figure 1b, we show the subspaces corresponding to the answers to
the Linda questions as one-dimensional. The state vector is placed
close to the feminism subspace and further away from the bank teller
one. This is because probability depends on the overlap between the
state vector and the corresponding subspace. When a question is
resolved, with a probability depending on overlap, the state vector
is “projected” in one of possible subspaces (using a projector). The
feminist and bank teller questions are called incompatible, because
in most cases we cannot concurrently resolve them. Incompatibility
is unique to quantum theory. For incompatible questions, certainty
about one question in general implies uncertainty about the other.
Quantum theory also allows compatible questions for which the
situation is Bayesian. For incompatible questions, conjunctions
have to be computed in a sequential way—there is no other possible
way to compute such conjunctions (Busemeyer et al., 2011, 2015;
Pothos et al., 2017). Because feminism is the more likely possibility,
Busemeyer et al. (2011) assumed that participants evaluate the
conjunction as P(F and then BT), instead of in the other order, which
involves projecting the state vector, first onto the feminism subspace
and then (without normalizing) onto the bank teller one. In
Figure 1b, it can be seen that P(F and then BT) > P(BT).

More formally, the Linda story generates an initial state jψLi in an
N dimensional Hilbert space, the projector PF is used to map the
state onto the subspace for feminist, and the projector PB is used to
map the state onto the subspace for bank teller. Then, the probability
of the conjunction is computed by the quantum expression
PðF and thenBTÞ = kPB · PF · jψLik2 and the marginal probability
of bank teller equals PðBÞ = kPB · jψiLk2. An order effect occurs
when the two projectors do not commute, PF · PB≠ PB · PF, in which
case the measurements are called incompatible.

The geometric character of quantum probabilities may tempt
an inference that this is the main difference relative to Bayesian
probabilities—and so perhaps it might suffice to label the general
approach as just “projection geometry” (M. D. Lee, personal
communication, September 2023). However, quantum cognitive
models also employ various key results from quantum theory about
the way projections to subspaces correspond to probabilities and the
interpretation of linear mixtures, called superpositions. We briefly
mention four such results. First, quantum cognitive models follow
Born’s rule that probabilities are computed from squared magnitude
of quantum states, after projections. Second, the models obey the
remarkable Gleason’s theorem showing that the quantum rule for
associating probabilities to subspaces is the only possible way for
doing so. Third, the models obey Kochen–Specker theorem which
states that systems in superposition do not have definitive values
until measured. Finally, the models follow Luder’s law which
determines how a state should update postmeasurement. Note,
Luder’s law is the quantum equivalent of Bayes rule. It is the use of
these key results which make more suitable the label “quantum,” or
more precisely quantum-like, for these kind of models. Other work
in psychology has employed projections (e.g., S. A. Sloman, 1993),
but they did not use these additional theorems from quantum theory.
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In previous work, we emphasized presentation in terms of vectors
and projectors, as we wanted to explain the geometrical nature of
quantum probabilities. In the current work, the emphasis is on the
probability relations derived from the geometrical properties of the
quantum models, expressed in terms of the quantum interference
term (Busemeyer et al., 2011). Accordingly, we will present the
Quantum Sequential Sampler model using classical probabilities
along with a quantum interference parameter, which can be turned
on and off, to allow deviation and consistency with classical
probabilities respectively. This will also help illustrate the Quantum
Sequential Sampler as a hybrid model, encompassing both Bayesian
and quantum probabilities.
Despite the difference in presentation, quantum probabilities in

the Quantum Sequential Sampler can be seen as almost equivalent to
that in the Busemeyer et al.’s (2011) model, except for one important
difference when the quantum probabilities in the Quantum Sequential
Sampler are right at the bounds. Busemeyer et al.’s (2011) model
assumes projectors and as a result the quantum question (QQ) equality
must be satisfied. However, when computing probabilities at the
bounds, the Quantum Sequential Sampler model allows for violations
of the QQ equality and positive-operator valued measures (POVMs)
are employed, instead of projectors. The difference between a POVM
and a projector is that for the former there is a small probability for
a mismatch between measurement and projection. For example, in
Figure 1b, an observer may decide that Linda is a feminist, but the
mental state might accidentally project to the ¬F subspace. Therefore,
POVMs offer a mechanism for noise in probability calculations. A
theoretical reason for employing POVMs is they are the appropriate
approximations to projectors (Nielsen & Chuang, 2010), when
describing processes in a subspace of a givenHilbert space, denoted as
H. That is, if we assume that our knowledge is represented by a space
of huge dimensionality H and a particular thought process requires
focus/restriction to a certain subspace, then projectors in H are
approximated as POVMs in the subspace; this is Naimark’s dilation
theorem, for example, Paulsen (2002). POVMs have been employed
in some quantum cognitive models (Lebedev & Khrennikov, 2024;
White et al., 2020; Yearsley & Pothos, 2016). We will return to this
difference when we introduce the bounds formally.
The first steps in the quantum calculus for computing subjective

probabilities are essentially Bayesian, requiring us to specify three
probabilities P(A), P(B), PðBjAÞ for each pair of arbitrary events A
and B. Like in the Bayesian Sampler, these are treated as free
parameters in the model. Given these free parameters, we can then
compute

Pð¬AÞ = 1 − PðAÞ,Pð¬BÞ = 1 − PðBÞ,Pð¬BjAÞ = 1 − PðBjAÞ: (9)

Equation 9 can be straightforwardly employed to compute
two conjunctions and, using quantum interference/order effect
parameters o1, o2, we can compute the same conjunctions, but in the
opposite order:

PðA and thenBÞ = PðAÞPðBjAÞ,
PðA and then ¬BÞ = PðAÞPð¬BjAÞ,
PðB and thenAÞ = PðA and thenBÞ − o1,

Pð¬B and thenAÞ = PðA and then ¬BÞ − o2: (10)

With the aid of a third order effect parameter, o3, we finally
compute:

PðB and then ¬AÞ = PðBÞ − PðB and thenAÞ,
Pð¬B and then ¬AÞ = Pð¬BÞ − Pð¬B and thenAÞ,
Pð¬A and then ¬BÞ = Pð¬B and then ¬AÞ − o3,

Pð¬A and thenBÞ = Pð¬AÞ − Pð¬A and then ¬BÞ: (11)

In general, the three interference effect parameters are bounded in
the following way:

PðA and thenBÞ − PðBÞ ≤ o1 ≤ PðA and thenBÞ,
PðA and then ¬BÞ − Pð¬BÞ ≤ o2 ≤ PðA and then ¬BÞ,
Pð¬B and then ¬AÞ − Pð¬AÞ ≤ o3 ≤ Pð¬B and then ¬AÞ: (12)

The order effects are at the heart of a quantum probability model
and quantify the extent to which P(A and then B) ≠ P(B and then A)
(analogously for disjunctions). Thus, an ambiguity arises, concerning
the way an observer would interpret the conjunction betweenA andB.
Busemeyer et al. (2011, 2015) suggested that, unless primed in a
specific way, observers process a conjunction in the order of the most
likely predicate first. This is a necessary assumption for the
emergence of conjunction fallacies: assume P(A) > P(B). Quantum
theory is constrained so that PðAand thenBÞ = PðAÞPðBjAÞ ≤ PðAÞ.
Therefore, we can only have conjunction fallacies of the form P(B) ≤
P(A and then B), that is, for the less likely predicate. Busemeyer et al.
(2011, 2015) further justified the “more likely first” assumption by
invoking the ideas in Gigerenzer and Goldstein (1996), concerning
the prioritization of information. Concerning disjunctions, in
quantum theory P(X or then Y) = 1 − P(¬X and then ¬Y), as is
the case in Bayesian theory, but expressed in an order-specific way.
Using the more likely first rule for P(¬X and then ¬Y), the required
order would be as shown, if P(¬X) > P(¬Y). Therefore, following
from the above example where P(A) > P(B), the disjunction order
would be P(B or then A). Noting that in quantum theory P(B or then
A) ≥ P(B) the only allowed disjunction fallacy would be of the form
P(B or then A)< P(A), that is, in relation to the more likely predicate,
as expected.

When computing the conditionals, the order of the conjunctions
still matters, and they are computed as PðXjYÞ = PðY and thenXÞ

PðYÞ , for
arbitrary events X and Y. Given the assumption that the more likely
event is always processed first, one might question the need for
the interference term at all. However, this is needed for the
computations involving the marginal probability of the less likely
event and the conditional probability of the more likely event, given
the less likely event. For example, P(B)= P(B and then A)+ P(B and
the ¬A), and PðAjBÞ = PðB and thenAÞ

PðAÞ .
Accordingly, the quantum model requires, at most, six parameters

for each pair of questions, fPðAÞ,PðBÞ,PðBjAÞ, o1, o2, o3g; note, all
classical probabilities can be computed using just three parameters. For
the three pairs of questions we explored empirically, the potential
number of parameters grows to 15. Note also that o1, o2, o3 may have
different bounds for different pairs according to Equation 12. Initially,
assume that all of o1, o2, o3 are in the bounds of each other. To reduce
modeling complexity, we adopted the following assumptions.
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First, following Busemeyer et al. (2011), we assume initially
that the measurements are performed by projectors. This implies that
the QQ equality is satisfied (Busemeyer et al., 2011), which is
equivalent to assuming that o1 = o3. As noted, quantum theory
includes more general measurement operators, POVMs, which do
not necessarily satisfy the QQ equality, in which case o1 is not
required to equal o3 (Yearsley & Busemeyer, 2016). However, to
start with, we restrict the model to satisfy the QQ equality when the
bounds are not violated.
Second, we assume that the interference effects, o1, o2, o3, are the

same across the three pairs of questions. This is reasonable because
each pair of questions is about a pair of state election results for
the same candidates. This is analogous to the assumption in the
Bayesian sampler that the sample size is constant across pairs.
Third, we equated interference effects o1 and o2 as follows:

SupposeP(A)≥P(B), we assume that o2=−o1; supposeP(A)<P(B),
we assume o2 = o1. These assumptions imply that a conjunction error
can only occur with the less likely event when o2≠ 0.More formally,

PðBÞ = PðB and thenAÞ + PðB and then ¬AÞ
= PðA and thenBÞ − o1 + Pð¬A and thenBÞ + o2

= PðA and thenBÞ + Pð¬A and thenBÞ − ðo2 − o1Þ: (13)

A similar derivation shows that

PðAÞ = PðB and thenAÞ + Pð¬B and thenAÞ − ðo2 + o1Þ: (14)

The interference −(o2 + o1) is zero when o2 = −o1 and nonzero
when o2 = o1, and vice versa for the term −(o2 − o1). Thus, by
equating o2 and o1 this way, the model produces interference only
for the less likely event. Note that we need −(o2 − o1) to be negative
to produce P(B)< P(A and then B) when P(A)> P(B), and vice versa
when P(B) > P(A). Therefore, having interference on the less likely
event biases themodel to identify conjunction fallacies, remembering
that in the quantum model conjunction fallacies arise only against
the less likely predicate.
However, as mentioned, o1, o2, o3 are bounded differently for

each pair. Therefore, when one of the interference effect parameters
is greater than the upper bound or smaller than the lower bound of
the other interference effect parameter, it is not possible to set o1 =
o2= o3 or o1=−o2= o3. To circumvent this problem, we adopted an
additional assumption that the interference effect parameters whose
bounds are violated by other interference effect parameters would
be set to the values of their bounds being violated (the bound
assumption). To illustrate, consider the case when P(¬B and then
¬A) − P(¬A) < o3 < P(A and then B) − P(B), and both o1 and o3 are
within the bounds of o2. In this case, since o3 is less than the lower
bound of o1, it is not possible to set o1 = o3. Under the bound
assumption, we would instead reset o′1 = PðA and thenBÞ − PðBÞ
so that it is as close to o3 as possible, without violating the axioms of
quantum probabilities. Similarly, when o2 is initially set to −o1, but
−o1 > P(A and then ¬B), we would reset o′2 = PðA and then ¬BÞ.
Following the bound assumption, there are two consequences

when the bounds of the interference effect parameters are violated
by the other interference effect parameters. First, since the
interference effect parameters are reset to their bounds when
violated, the QQ equality may no longer hold for certain parameter
values. This is evident in the previous example, where o1 is reset to

o′1 = PðA and thenBÞ − PðBÞ and o3 < P(A and then B) − P(B).
However, as mentioned, a violation of QQ equality is possible in
quantum probability when POVMs are employed. Second, it is
now possible that there could be a nonzero interference effect for
the more likely predicate, even though there would still be no
conjunction error for the more likely predicate. Consider the example
where P(A) > P(B). According to Equation 14, the interference term
of themore likely predicate is−(o2+ o1).When no bound is violated,
this interference term is set to zero. On the other hand, when the lower
bound of o2 is violated by−o1, we set o2= P(A and then ¬B)− P(¬B)
< −o1, and thus −(o2 + o1) ≠ 0. However, there must still be a
nonzero interference effect for the less likely event with the bound
assumption. To see why, suppose−o1 violates the upper bound of o2
and o2 is initially set to −o1. Then, since −o1 > P(A and then ¬B) ≥
0, it must be the case that o1 < o2 = P(A and then ¬B) and thus o2 −
o1 ≠ 0. Conversely, for −o1 violating the lower bound of o2.
The same logic applies to when o2 is initialized as o1. Therefore, the
bound assumption does not alter the quantum model’s ability to
produce conjunction fallacy for the less likely predicate.

To summarize, we computed the quantum probability part of the
model through the following procedure: we first assume that o1 = o3
and set o2 = −o1 when P(A) ≥ P(B), and assume that o2 = o1 when
P(A) < P(B). Next, we checked the bounds of the three interference
effect parameters, using the initialized values of these order effect
parameters. We then constrained the interference effect parameters
to equal the violated bounds, if any bound were violated. Finally,
we used the constrained interference effect values, the Bayesian
probabilities, and the more likely first assumption to compute all
quantum probabilities.

The key feature of this formulation of the quantum probability
part is that it allows seamless transition between strongly quantum
probabilities and strongly Bayesian ones, simply by virtue of
the size and necessity of the interference effect parameter. At a
preliminary level, we can ask whether the model where o1, o2, o3≠ 0
is needed at all versus when all of the order effects parameters
are 0. Note the Bayesian (classical) variant also requires that P(B) >
P(A and then B), P(¬B) > P(A and then ¬B), and P(¬A) > P(¬B and
then ¬A) are satisfied. The Bayesian and the quantum interference
variants of the model are nested. Comparing these two model
versions with a G2 test over all participants revealed that 576 out of
1,162 participants were better fitted by the version with nonzero
quantum interference parameters. Given that the percentage of
participants better fitted by the quantum interference version is 50%,
much higher than expected by chance using a 5% significance level,
we will use the quantum interference variant of the model in further
analysis. Recall that this is much higher than 0.6% of significant
improvement of the more complex version of the Bayesian Sampler
from the simpler version. The two variants of the models were
also compared using a generalization test, where the quantum
variant outperformed the classical variant for both tests. The details
of the generalization test will be discussed in theModel Comparisons
Section.

Quantum Sequential Sampler Second Part—Sequential
Sampling Process

We assume that subjective probabilities cannot be used for
responding directly, but rather correspond to drift rates in a sequential
sampling process, which eventually results in probability responses.
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There is considerable evidence that probability judgments are
not just a simple linear transformations of subjective probabilities
(see Wallsten & Budescu, 1983, for a review). Even if subjective
probabilities are mentally represented, they are likely to be
unconscious, uncertain (e.g., because of concerns with the precision
or fidelity of information), and lack clarity. Therefore, a sampling
estimation process is still required to convert what could be vague
information concerning probabilities to actual probability estimates,
that is, probability ratings. Additionally, there might be other reasons
a probability response might be a distorted version of a subjective
probability. For example, a cognitive agent may feel they are unable
to accurately estimate subjective probabilities (e.g., because of time
pressure) or is intentionally seeking to distort subjective probabilities
(e.g., because probability estimates biased in a certain direction serve
a particular purpose). Such considerations justify the assumption that
subjective probabilities are best approached as drivers of a response
process, rather than directly corresponding to responses themselves.
F. Costello and Watts (2014) and J. Zhu et al. (2020) pioneered

the idea that sampling can be employed as the response process.
However, asmentioned, these samplingmodels require a commitment
to sample size prior to any evidence about the relevant probabilities
and independently of any dynamic task demands, such as a prompt
to hurry up with a judgment, after the start of the judgment process.
An alternative proposal is that the response process is a sequential
sampling one, where evidence is gradually accumulated toward the
available responses, until a stopping criterion is reached (Ratcliff &
Smith, 2015). There is extensive experimental evidence for sequential
sampling processes (e.g., Brown & Heathcote, 2008; Diederich,
2003; Johnson & Busemeyer, 2005; Trueblood et al., 2014; Usher &
McClelland, 2001), as well as neuroscience evidence of such
processes in the brain. Including a sequential sampling component
to our model extends the predictive scope to encompass reaction
times, confidence ratings, and uncertainty in choice behavior (e.g.,
Busemeyer & Diederich, 2009; Ratcliff, 1978; Ratcliff et al., 2016;
Ratcliff & Smith, 2015; Usher & McClelland, 2004), which could
be exploited in future extensions of paradigms for probabilistic
reasoning. As a technical point, a sequential sampling process offers
prediction across the range of possible ratings.
Despite being inspired by traditional sequential sampling models

for evidence accumulation processes, the sequential sampling part of
Quantum Sequential Sampler has one key difference when compared
to them. Typically, states in evidence accumulation models represent
evidence that cannot be directly measured in experiments, with
evidence accumulating toward a specific boundary for choice
responses. In contrast, the states in Quantum Sequential Sampler
model are directly measurable responses. The model operates within
a vector space where states denote probability judgments, making
even intermediate states measurable and interpretable.
The ability to measure intermediate states as probability

judgments enables the Quantum Sequential Sampler to have two
different interpretations for different experimental tasks. First, for
probability judgments, which is the primary concern of this article,
the model performs a continuous update of the probability judgment
distribution with a Markov process in light of evidence from mental
simulations. In such a case, the distribution of the probability
judgments evolves deterministically following the Kolmogorov
equation. However, when one obtains a sample point from the
probability distribution, such a sample point is obtained randomly
from the distribution. The uncertainty in our model is meant to

correspond to people’s assumed inherent uncertainty about the
exact value of a probability judgment for a particular event. In fact,
this is very similar to Bayesian belief updating, but instead we use
a continuous time Markov process for a continuous time update.
That is, the previous state at time t can be seen as a Bayesian prior
and the next state in time t + Δt can be seen as a posterior, after
some evidence has accumulated. The model stops after running for
a fixed duration, determined by stopping condition determined
by working memory capacity and cognitive loads (Ratcliff, 2006;
Usher & McClelland, 2001).

Second, the Quantum Sequential Sampler could be applied
for measuring choice and response time. In this case, the Quantum
Sequential Sampler functions exactly the same as traditional
evidence accumulation models except that the evidence states are
interpretable. As in traditional evidence accumulation models,
stochasticity in the sequential sampling part now arises from noisy
updating of the state at each time step, until it hits one of the
boundaries. The choice probability is then computed as the
proportion of hits. Since we are concerned with probability
judgment instead of choice and response time, we focus on the first
interpretation in the present work.

Formally, the sequential sampling part can be specified using a
discrete state Markov process or a continuous state diffusion process.
In most practical cases, probability judgments are expressed
as integers on some scale. Even when using an approximately
continuous scale for ratings, positions on the scale are actually
discrete. Therefore, below we present the corresponding discrete
state Markov process (cf. Busemeyer et al., 2006; Appendix A,
describes the corresponding continuous state diffusion process).

We start by assuming N = 101 states representing probability
ratings on an integer scale from i = 0, 1, 2, … , 100. Before
evaluating the probability judgment, the person starts with an N × 1
initial state vector ϕ(0), which is a probability distribution across the
states that sums to unity. The coordinate, ϕi(0), is the probability
of starting at probability judgment i. We define this initial state
ϕ(0) with a symmetric β distribution Beta(γ, γ), which is the same
Bayesian prior as that employed in J. Zhu et al. (2020)—the same
initial condition is used for the diffusion model in Appendix A.
Since the β distribution is a continuous-space distribution, we need
to discretize it for the Markov model with N states and we do so
by using the same technique as for the Bayesian Sampler model
(Equation 9). Also, given that ϕ(0) represents a probability mass
function at time 0, we normalize the densitymapping u in Equation 7.

During the evaluation process, the distribution across states
evolves according to a Markov process with a drift rate determined
by the subjective probability obtained from the quantum probability
model. The evolution of the Markov process is determined by the
following Kolmogorov forward equation

d

dt
ϕðtÞ = K · ϕðtÞ, (15)

which has the solution

ϕðtÞ = eK·tϕð0Þ: (16)

In the above, K is an N × N intensity matrix which encodes the
state transition rates, ϕ(t) is a time-dependent N × 1 vector that
encodes the probability mass function across the N states (where
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each state represents a probability judgment value in this case), and
ϕ(0) is the initial probability mass function. To define the Markov
process that maps the subjective probabilities to probability
judgment responses, we therefore need to define the intensity
matrix K.
For each subjective probability P(A), where the event A can be

a marginal, conjunction, disjunction, or conditional, the intensity
matrix K with a reflecting boundary can be specified as follows

Ki, i+1 = β+ for 1 ≤ i ≤ N − 1

Ki+1, i = β− for 1 ≤ i ≤ N − 1

Ki, i = −ðβ+ + β−Þ for 2 ≤ i ≤ N − 1

K1,1 = −β+

KN,N = −β−,

K =

2
666666666666666666666664

−β+ β− 0 · · · 0 :

β+ −ðβ− + β+Þ β− · · · : :

0 β+ −ðβ− + β+Þ · · · : :

0 β+ · · · : :

: : 0 · · · : :

: : : · · · 0 :

: : : · · · β− :

: : 0 · · · −ðβ− + β+Þ β−

0 0 0 · · · β+ −β−

3
777777777777777777777775

:(17)

The parameters β−, β+ are also employed in the diffusion model
(Equation A3) and are given by

β+ = α · PðAÞ + c+ β− = α · ð1 − PðAÞÞ + c−, (18)

where α ≥ 0 moderates the effect of the subjective probability on
the drift parameter. The constants c+, c− are further defined by a
free additive bias parameter b as follows. If b > 0 then c+ = 1 + b
and c− = 1; if b < 0 then c+ = 1 and c− = 1 − b; finally if b = 0 then
c+ = c− = 1. These assignments guarantee that the intensity matrix
parameters are always positive.
Conceptually, β+ and β− represent the transition rate of increase

and decrease, respectively, in a probability judgment over time.
Their difference determines the drift rate and their sum determines
the diffusion rate (see Appendix A for how drift and diffusion rates
influences the change in means and variances of the Markov
process). Parameters α, c+, c−, for specifying β+ and β−, control the
strength of transition rates. Note that since c+, c− are defined through
b, we only need two free parameters, α and b, along with the relevant
subjective probability, to specify the intensity matrix for each
probability question; we assume α and b to be the same for different
probability questions.
Behaviorally, the quantities β+, β− embody two key mechanisms.

First, they depend on the subjective probabilities for a particular
question, thus linking responses to a veridical, internal probabilistic
process by the agent. Second, they embody biases which allow over-
(or under-) estimation of probabilities and so systematic biases in
probability estimation. Note, this bias is blind to the probability
question at hand, that is, it does not a priori differentiate between
conjunctions and marginals, which contrasts with the corresponding

key parameters in F. Costello and Watts (2014) and J. Zhu et al.
(2020). Specifically, when b > 0 versus b < 0 people overestimate
versus underestimate probability judgments, relative to the
subjective probabilities (Figure 7). That is, b > 0 could be
interpreted as an overestimation bias, which exists prior to any
mental simulation, while P(A) · α and (1 − P(A)) · α reflect the
evidence gathered from mental simulations, which regulates this
preexisting bias.

To fit the Quantum Sequential Sampler model to data, we need to
define a likelihood function. Let x be an observed probability judgment
and denote the x+ 1 element of the final state vector (assuming the first
index is 1) at time t as ϕ(x+ 1)(t). Then the likelihood of the judgment
at response time t can then be written as:

Lðx, tjmodelÞ = ϕx+1ðtÞ: (19)

For example, for probability judgments corresponding to integers
from 0 to 100, if we have x = 50, then Lðx = 50, tjmodelÞ = ϕ51ðtÞ.
That is, the prediction of the model when observing a probability
judgment of 50 would be the 51st entry of ϕ(t). Note that for each
event A, there will be one corresponding likelihood in Equation 19
and the final aggregated likelihood will be the product of each
of these likelihoods. While this Markov process allows for time
dependence, our current data do not track time and so fits proceeded
assuming that the response time is the same for all judgments.
This means that the time parameter can be absorbed into the other
parameters of the intensity matrix; time is just a constant multiplying
to the matrix. However, the Quantum Sequential Sampler can
be extended to allow time to vary according to experimentally
measured response times—this is just a matter of de-clamping time
from existing parameters. In the future, it would be worthwhile to
manipulate time, with a view to examine whether the present model
can jointly predict response time and probability judgments.

There is an additional remark regarding the fixed response time
in our model as compared to the fixed sample size in the Bayesian
Sampler model. We do not make any assumption that a fixed
response time has to map to a single fixed sample size and in fact it
is possible that varying degrees of response time can correspond to
the same sample size. In other words, even if response time can vary,
our model does not contradict the assumption that sample size might

Figure 7
An Illustration of the Sequential Sampling Part of the Model

Note. The α parameter for the above model is 38 and the bias parameter
b is 5. As can be seen, with a positive bias parameter,ϕ(0) drifts faster toward
the right, to produce probability judgments greater than 0.5, than it drifts
toward the left, to produce probability judgments less than 0.5. See the online
article for the color version of this figure.

20 HUANG, BUSEMEYER, EBELT, AND POTHOS



be fixed. Besides, we also do not assume a process of how samples
are drawn: samples could be autocorrelated or drawn in parallel
or maybe what is needed is even a partial simulation sample (Bass et
al., 2021). To sum up, despite the fact that sample size is related
to response time, it has no functional role in how the Quantum
Sequential Sampler produces predictions. This contrasts with the
Bayesian Sampler model: in the Bayesian Sampler, sample size is a
parameter which has to be fitted directly as part of explaining a set of
probability judgments.
In conclusion, we followed mostly standard formalism for

Markov processes, with a particular definition for the intensity
matrix. The intensity matrix is standard for any Markov version of a
random walk model (e.g., Busemeyer & Diederich, 2009; Ratcliff &
Smith, 2015). Together with the subjective probability part, the
Quantum Sequential Sampler has the following 10 parameters
{P(A), P(B), P(C), PðBjAÞ, PðCjAÞ, PðCjBÞ, o, γ, α, b}, where o is
the interference parameter, γ determines the initial distribution
across ratings, and α, b are used to determine the drift rates of the
Markov model. Overall, while sequential sampling processes have
been widely employed in judgment and decision making, to the
best of our knowledge this is the first time they are applied to
probabilistic reasoning.

Analytical Predictions: Binary Complementarity

The question of whether analytical mean predictions can be
derived from the Quantum Sequential Sampler model, analogous to
those for the Bayesian Sampler model, presents an intriguing line of
inquiry. However, this task presents substantial challenges, largely
due to the intricate nature of the Markovian dynamics and the
implementation of reflecting boundaries. Despite these difficulties,
linear approximation is an effective method to acquire some insights
into model behavior and predictions. In Appendix C, we examine
analytically model behavior for various major probabilistic fallacies,
including conjunction and disjunction fallacies, as well as violations
of probability identities.
Here, we show how linear approximation can illuminate the

ways in which the Quantum Sequential Sampler model addresses
violations of binary complementarity, a fallacy that is prominently
represented in our current data set. Among the several kinds of
probabilistic fallacies in our data (and previous work), binary
complementarity uniquely distinguishes between the Quantum
Sequential Sampler and the other computational models: as far as
we know, the Quantum Sequential Sampler is the only model
which can account for violations of binary complementarity. In this
section, we explain how.
For a Markov process characterized by a constant intensity matrix

and initialized from a symmetric β distribution, the mean of an
arbitrary event A is anticipated to exhibit a roughly linear increment
with time, adhering to the relationship according to Equation A8
(see Appendix A for more details):

μQSSðt,AÞ≈
1
2
+ ðβ+ − β−Þt, (20)

where μ0 = 1
2 represents the mean of the symmetric β distribution

and (β+ − β−) delineates the drift rate inherent to the Markov
process. While μQSS(t, A) represents probability judgments on a
scale from 0 to 1, note that in the current data set judgments were fitted

as integers from 0 to 100. The [0, 1] scale is employed here to
maintain consistency with the approach used by F. Costello andWatts
(2014) in their demonstration of violations of probability identities.

By incorporating the expressions for β+ and β− from Equation 19,
we arrive at:

μQSSðt,AÞ≈
1
2
+ fαð2PðAÞ − 1Þ + bgt = 1

2
+ 2αtPðAÞ + ðb − αÞt: (21)

Under the assumption that the processing time t remains constant
for any event A, it becomes feasible to absorb t as a constant factor
into the parameters d and k. As noted, this modeling assumption is
specific to the data set at hand, but the model retains its functionality
even when t varies across judgments. This results in the simplified
expression:

μQSSðAÞ≈
1
2
+ 2αPðAÞ + ðb − αÞ: (22)

Using the above expression, the Quantum Sequential Sampler
can predict violation of binary complementarity as follows: for any
event A

μQSSðAÞ + μQSSð¬AÞ≈
1
2
+ 2αPðAÞ + ðb − αÞ + 1

2
+ 2αPð¬AÞ

+ ðb − αÞ = 1 + 2αðPðAÞ + Pð¬AÞÞ + 2ðb − αÞ = 1 + 2b, (23)

where α is the drift rate parameter, b is the overestimation/
underestimation parameter, and P(A) = P(¬A) = 1. The same result
holds for conjunctions and disjunctions as well, since in the
Quantum Sequential Sampler model, regardless of whether A or B is
measured first, it must be the case that P(A ˄ B) + P(¬A ˅ ¬B) = 1.

From Equation 23, it is clear that the sum of the judgments for
an event and its negation can deviate from 1, depending on the
value of b:

• When b > 0, we observe a subadditivity effect, resulting in
an overestimation.

• When b < 0, we observe a superadditivity effect, resulting
in an underestimation.

In summary, the sequential part of the Quantum Sequential
Sampler can be distorted based on parameter b, allowing the model to
explain phenomena beyond the reach of the Bayesian Sampler
model. In the present study, this translates to a general overestimation
of probabilities, corresponding to a positive value of b. While we
think this analysis illustrates reasonably well one source of advantage
for the Quantum Sequential Sampler, there are two important
caveats. First, actual model behavior is more complex than the linear
approximation warrants. Exploring full model behavior cannot be
done analytically and simulation methods would be the only viable
approach. Second, the capacity of the Quantum Sequential Sampler
to explain violations of binary complementarity is a theoretical
advantage. However, this is not the only reason for the model’s
advantage over other models. For example, while the Bayesian
Sampler model cannot account for conjunction fallacies when both
marginals and conjunctions are greater than 0.5, our model can
explain such fallacies, because of quantum probabilities. In general,
the predictions from the Quantum Sequential Sampler depend on
both the sequential sampling part and the quantum probabilistic
calculus.
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Model Comparisons

Weperform ourmodel comparisons at the individual level using log-
likelihood criteria, and explore its ability to capture all the probability
judgments in the present data set. This approach subsumes all
individual fallacies and effects, which have previously been discussed
in the literature, including some new effects we identified. Two
different log-likelihood criteria are employed. The first is to estimate the
parameters using all 78 ratings from each participant and compare
models using the BIC, BIC = −2·G2 + p·ln(N), where p = number of
parameters and N = 78 observations per person. The BIC serves as an
approximate measure for the Bayes factor. Under ideal circumstances,
the Savage–Dickey method would be the preferred choice for
accurately determining the Bayes factor (Lee & Wagenmakers,
2014), but this approach is too computationally expensive for our
models. Despite facing criticism, the BIC remains a popular tool for
model comparison within the field of psychology. To enhance our
analysis beyond the limitations of BIC, we have also employed a
generalization test method, which provides a more rigorous evaluation
of model complexity (Busemeyer & Wang, 2000). This involves
estimating model parameters using a calibration set of conditions and
subsequently applying these parameters to predict outcomes for a
generalization set of conditions. Compared with cross-validation
methods often used in machine learning models (LeCun et al., 1998,
2015; Nair & Hinton, 2010), generalization tests are similar but even
more rigorous. In the generalization test we employed, instead of
merely excluding random data points to form a test set, we strategically
removed key elements, such as conjunctions and disjunctions, thereby
subjecting the model to a more rigorous evaluation.
Regarding models to compare, we can only compare models that

can make predictions for all 78 probability queries. Reviewing the
points made above, some models, like the averaging model (Nilsson
et al., 2009) or inductive confirmation (Tentori et al., 2013), have not
been formulated in a way that allows predictions for some queries,
such as conditional probabilities. Other models, like the probability
plus noise model (F. Costello &Watts, 2014), which use a binomial
distribution, produce zero likelihoods for some ratings, which make
comparisons based on log-likelihood impossible. Furthermore, the
Bayesian Sampler is a similar and arguably better account compared
to the probability plus noise model, as shown in J. Zhu et al. (2020).
Finally, with such a large number of participants to fit, it is very
costly in time to fit many models. Therefore, we focus on comparing
four models: simple and complex forms of the Bayesian and
quantum sequential samplers.
Regarding the comparisons between simple and complex versions of

each model, we remind readers that these comparisons were discussed
earlier in the article. In the previous section presenting the Bayesian
Sampler, we summarized a comparison of a simpler version, using only
two sample sizes, with a more complexmodel, using four sample sizes.
The statistical results reported in that section did not indicate a rejection
of the simpler model and so we will use the simpler version that
includes only two sample sizes for model comparisons. In the section
presenting the Quantum Sequential Sampler, we summarized a
comparison of a simpler version with no interference, which we
refer to as the classical variant or Classical Sequential Sampler, to a
more complex model which included an interference parameter,
which we refer to as the quantum variant. Statistical results favored
the quantum variant and it is this version which will be the focus for
the comparison with the Bayesian Sampler.

BIC Comparison

Both the Quantum Sequential Sampler and the Bayesian Sampler
were fitted to individual participant judgments through maximizing
log-likelihood, which can be converted to G2 values. We also
evaluated a baseline uniform distribution model that uniformly
randomly guesses integers from 0 to 100 as probability judgments.
The models were compared using the BIC score averaged across
all participants, computed from mean G2, with appropriate penalties
for the number of parameters of the models. The baseline model
(random rating) produced a BIC of 718.41, which is much higher
than both models. The Quantum Sequential Sampler model
(10 parameters) produced a mean BIC of 616.53, which is much
lower than that of the Bayesian Sampler model (nine parameters) at
662.94. The classical variant of the Quantum sequential sampler
model (nine parameters), which assumes no quantum interference,
is also much better than the Bayesian Sampler model, with a BIC
of 618.32. The classical and quantum variants of the Quantum
Sequential Sampler have comparable BIC results, but the quantum
variant performs slightly better.

We also used BIC to examine the number of participants fitted
better by either model. Consistently with the above conclusion, the
Quantum Sequential Sampler produces a lower BIC value for 66%
of all participants (769 counts). Therefore, according to mean BIC,
the Quantum Sequential Sampler is a better model. Note, these
statistics apply to testing both triplets; recall, we used two triplets of
events for probability judgments, in a between participants condition.
Hereinafter, in most cases, we report only aggregate results for both
triplets for ease of presentation.Where aggregate results are reported,
results broken down by triplet offer minor variations to the overall
pattern, without altering conclusions.

Similar analyses were carried out for the J. Zhu et al. (2020) data
set. The aggregated BIC over all five weather conditions for the
Bayesian Sampler is 1,607 and for the Quantum Sequential Sampler
1,610, which shows that the two models have comparable
performance (details in Appendix B and Supplemental Material 8).
There are some possible reasons why Quantum Sequential Sampler
did not achieve a clear advantage over the Bayesian Sampler in the
data set of J. Zhu et al. (2020), as was the case in our data set. Notably,
responses in J. Zhu et al. (2020) were entered as numbers into
a computer and judgments to the same events were measured
repeatedly. With this response mode, it is possible that there is a
stronger bias in reporting integers 5 s and 10 s (Budescu et al., 1988).
Additionally, an earlier answer could bias subsequent responses
for the same event, producing dependencies across replications.
This in turn questions the suitability of a log-likelihood approach
that assumes independent observations. Another reason is that
questions about the weather might be more likely to be represented
in a compatible way, for example, because of familiarity of such
questions (Trueblood et al., 2017; Yearsley & Trueblood, 2018).
Appendix B offers a more detailed discussion regarding the difference
between the two data sets.

Generalization Test

A stronger comparison of the models is obtained using a
generalization test, which addresses the issue of model complexity
in a more general manner (Busemeyer & Wang, 2000). We adopted
two approaches: first, we trained each model on all the probabilities
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except conjunctions and then tested the model on conjunctions.
Second, we trained each model on the all probabilities except
disjunctions and then tested the model on disjunctions. This is a
conservative test of the Quantum Sequential Sampler: When fitted
across the entire set of judgments, the interference parameter balances
the inflation of conjunctions and deflation of disjunctions. But
considering each set of judgments individually removes this advantage.
The results of this generalization test are presented in Table 3,

which shows the mean G2 across all participants separately for the
training set versus the test set and for conjunction versus disjunction
test conditions. The Quantum Sequential Sampler performs better
by a large margin for the conjunction test set, and the Bayesian
sampler performs better by a small margin for the disjunction test
set. The total G2 across both test conditions for the generalization
test set favors the Quantum Sequential Sampler (totalG2 equals 392)
over the Bayesian sampler (total G2 equals 436). Comparing the
quantum variant of Quantum Sequential Sampler with its classical
variant, the quantum variant outperforms the classical variant in
both generalization tests.
We again examined the percentage of individuals for whom

each model performed better. The results again support the Quantum
Sequential Sampler model (quantum variant), with 79% of
participants (921 counts) with a lower G2 on the conjunctions
test and 52% of participants (604 counts) with a lower G2 on the
disjunction test set. In sum, the Quantum Sequential Sampler overall
outperforms the Bayesian Sampler, in terms of these generalization
tests. Comparing the classical variant and the quantum variant of the
Quantum Sequential Sampler with this generalization test, we also
found that the quantum variant outperformed the classical variant,
with 58% (679 counts) of participants better with a lower G2 on the
conjunctions test and 60% (702 counts) better on the disjunction test.
The generalization test result further emphasizes the need of quantum
probability, at least for some of the participants in our data set.

Predictions

We compared the mean predictions to the mean response, across
all participants, for each probability question, and the distribution
of predictions compared to the distribution of responses, across
all participants, again for each probability question. The prediction
from the Quantum Sequential Sampler for an arbitrary probability
question A is computed as the expected value of the final distribution
of the Markov process, for arbitrary probability question A,
which is:

PredðAÞQSS =
X100
i=o

i · ϕi+1ðtÞ½PðAÞ�: (24)

The prediction for the Bayesian Sampler is computed in the same
way as in J. Zhu et al. (2020):

PredðAÞBS = 100 ×
NPðAÞ + β
N + 2β

: (25)

Note, the “100” factor is used to convert probabilities to integers
from 0 to 100, which correspond to the possible responses. So as
to have a baseline model against which to compare the Quantum
Sequential Sampler and the Bayesian Sampler, we also fitted the
relative frequency model (also used in J. Zhu et al., 2020), which
computes probability predictions based on relative percentages in
a binomially distributed sample. The prediction of this relative
frequency model corresponds to the relative percentage of the
binomial mean, which is simply Bayesian probabilities, and thus is
expected to strictly follow Bayesian probability axioms. Since the
likelihood distribution of the relative frequency model is binomial,
this model cannot be fitted with a likelihood-based method, and we
thus fitted the model in the same way as J. Zhu et al. (2020), using
sum of square error to compare the data against predictions from
the relative frequency model. Note, this is a different baseline model
from the one considered above (the uniform random model), but we
include it here so as to followmore closely J. Zhu et al. (2020) and to
illustrate an alternative approach to a baseline model.

Mean model predictions are shown in Figure 8, for the first triplet
of events and the distribution of predictions in Figure 2, for one pair of
events from the first triplet. Supplemental Figures S3.1–S3.5 shows
predictions for the second triplet and distributions for the remaining
pairs. In all of these plots, only the quantum variant of the Quantum
Sequential Sampler model is shown. Given how similar their BIC
results are, one can expect the classical variant to have a similar mean
prediction as the quantum variant. The difference between the
classical variant only matters when we examine prediction at the
individual level, which we will consider more closely later.
Overall, the Quantum Sequential Sampler not only makes better
mean predictions, compared to both the Bayesian Sampler and the
relative frequency model, but also predicts the distribution of
probability judgments, across participants, reasonably better.

As an additional point, inspecting the distributions of responses
allows us to consider whether there are empirical indications that the
different probability terms, such as P(A ˄ B) versus PðAjBÞ, were
understood differently by participants. Without undertaking detailed
analyses, it can be seen that there are many instances in Figure 2
where conditionals and conjunctions/disjunctions appear to have
different distributions.

Probability Identities

We presented earlier the probabilistic identities derived by
F. Costello et al. (2018) and also employed by J. Zhu et al. (2020,
Table 2). The important point is that expectation diverges, depending
on whether one adopts (Bayesian) probability plus noise or quantum
rules. F. Costello et al. (2018) originally argued that their results
uniformly support their account over and above the quantum model,
but their work concerned Busemeyer et al. (2011) model, which
we pointed out is incomplete. In Figure 9, we present the results

Table 3
Generalization Test Results (Mean G2 Value) for the Quantum
Sequential Sampler (QSS), the Classical Variant of Quantum
Sequential Sampler (CSS), and Bayesian Sampler Models (BS)

Dataset name QSS CSS BS

Conjunction training 396.11 400.39 418.44
Conjunction test 183.84 185.78 231.21
Disjunction training 384.77 386.03 429.69
Disjunction test 209.63 216.98 204.68

Note. “Conjunction training” refers to the G2 when training the model on
all probabilities, apart from conjunctions and “Conjunction test” when
testing the trained model on conjunctions; analogously for disjunctions.
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examining the Quantum Sequential Sampler, the Bayesian Sampler,
and the relative frequency models in predicting these 18 identities,
computed using the mean predictions across participants, as J. Zhu et
al. (2020) did, for the first triplet (results for the second triplet are
shown in Supplemental Material 3). Note, for the empirical data,
we ignored order differences in conjunctions and disjunctions and
simply computed the average across the two orders. For any model,
since there is only a single subjective probability for conjunction

and disjunction, we do not need to compute an average. As
expected, the relative frequency model, which strictly follows
Bayesian principles, predicts zero for all the identities, while both
the Quantum Sequential Sampler and the Bayesian Sampler may
predict nonzero for the identities, which is closer to what is
empirically observed.

The Quantum Sequential Sampler model offers a uniformly better
correspondence with the value of the identities compared to the

Figure 8
Mean Predictions of the Quantum Sequential Sampler, Bayesian Sampler, and Relative Frequency Models,
Against Empirical Results

Note. We found a systematic overestimation bias so that for most judgments the mean is above 0.5. We checked and
ensured that these are the correct results (see Supplemental Figure S2.2). Similar overestimation effects were found in
Epping and Busemeyer (2023). Here and elsewhere the responses on the vertical axis show probability judgments that the
events on the horizontal axis occur on the scale [0, 100]. EventsA, B,C correspond to Bidenwinning the different states, as
shown above, and negations correspond to Trump winning. The error bar in the middle shows the 95% confidence interval
of the means. The results are for the Triplet 1. See the online article for the color version of this figure.
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Bayesian Sampler. One reason that the Quantum Sequential Sampler
model predicts these identities better than the Bayesian Sampler is
that there are some systematic differences between the observed
value of these identities in our data set, compared with J. Zhu et al.
(2020) one, as mentioned above. This potentially also explains why
the Bayesian Sampler model did not perform as well in our data set,
compared to in the original J. Zhu et al. (2020) study. In the Quantum
Sequential Sampler, the interference parameter interacts in a more
complex way with the various probability terms, offering a more
precise balance.

Another interesting observation about the probability identities is
that the values of all these identities seem to be relatively constant,
across the different question pairs we investigated. This is an
unexpected result, given that there are some variations between
the values of conjunctions, disjunctions, and conditionals, across the
three pairs in each triplet. One reason for the constancy of the
identity values might be that variations between pairs may not just
be large enough in our data set. For instance, participants might rate
similarly the probabilities of the two candidates winning some states.
It is an interesting question for future research whether the value of

Figure 9
The Empirical Value of Probability Identities in Table 2, Together With Values Computed From Best-Fit
Predictions of the Quantum Sequential Sampler Model, the Bayesian Sampler, and the Relative Frequency
Model, Averaged Across All Participants

Note. The error bar in the middle shows the 95% confidence interval of the means. The results are for Triplet 1. See the
online article for the color version of this figure.
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these identifies survives variation in the probability judgments, in
data sets where such variation is more pronounced.
Finally, a noteworthy aspect of F. Costello and Watts (2014) and

J. Zhu et al. (2020) work is that they were able to analytically derive
exact predictions for these identities from their models. With the
Quantum Sequential Sampler, this is not possible—the model is too
complex and, in the most general case, it is impossible to disentangle
the influence of the two parts, quantum probabilities and sequential
sampling. However, a linear approximation to the model can
help somewhat in this respect, as we showed above for binary
complementarity. In Appendix C, we consider the probabilistic
identities, as well as some other notable fallacies. Qualitatively,
we replicate the multiplicative relations between various probability
identities in F. Costello andWatts (2014), using a linear approximation
to our model.

Binary Complementarity

As noted previously, a distinguishing feature of the Quantum
Sequential Sampler is its ability to account for binary complementarity
violations, a fallacy that eludes explanation by existing models. In
Figure 6 and in Supplemental Material 3, we show how model
predictions regarding this fallacy are in line with empirical results.
We also show corresponding predictions from the Bayesian Sampler
and a simple relative frequency model. Both models are constrained
to obey binary complementarity and so they fail to accurately predict
the substantial violations observed in the data. As shown in Figure 6,
another notable finding is the consistent overestimation effect
observed across all complementary pairs. This effect is not only
pervasive but also exhibits a remarkable uniformity in its magnitude:
For each pair of complementary elements, the sum of their
probabilities consistently approximates 1.2.
Because J. Zhu et al. (2020) and F. Costello and Watts (2014) did

not find violations of binary complementarity in their studies on
weather events, and given the prevalence of probability anomalies in
studies concerning electoral events (e.g., Moore, 2002; Yearsley &
Trueblood, 2018; Z. Wang et al., 2014), we hypothesize that the
occurrence of binary complementarity violations in our experiment
may be linked to the specific characteristics of questions in election
scenarios. For instance, a Trump supporter might logically assess
Biden as the likely winner of Michigan, yet may be hesitant to
assign a definitively low probability to Trump’s victory in that state,
leading to overestimation. An interesting direction for future research
is to explore a wider array of question types and evaluate the incidence
of binary complementarity violations at the individual level.

Comparing Quantum and Classical Variant of
Quantum Sequential Sampler

It is interesting to examine differences between the classical
variant and the quantum variant of the Quantum Sequential Sampler,
to pinpoint situations where quantum probability enhances the
prediction of probability judgment estimates.
Before delving into the details, we consider a few preliminary

points. First, theoretically speaking, quantum interference is vital for
explaining the conjunction and disjunction fallacies in averaged
probability judgements, akin to the role played by the additional
noise term in F. Costello and Watts’ (2014) model and the smaller
sample size in J. Zhu et al. (2020) model. This can be seen in

Equation 22: with constant b and α, the mean judgment μQSS(A ˄ B)
exceeds μQSS(B) only when P(A ˄ B) > P(B), a requirement that
necessitates the use of quantum probabilities. Nevertheless, it is
possible to observe conjunction and disjunction fallacies at the
individual participant level, even if there are no such fallacies in
average probability judgments (F. Costello & Watts, 2014). This
suggests that the classical variant could by itself account for the
random occurrence of conjunction fallacies as a result of stochastic
sampling processes.

Second, we mentioned earlier that for 576 out of 1,162
participants, the quantum interference parameter was significant.
This finding implies that an integration of sequential sampling
and quantum probabilities is essential for a considerable subset of
participants. However, when we analyze the averaged predictions
for the entire participant pool, distinguishing between the classical
and quantum variants becomes challenging (Supplemental
Figures S4.1–S4.3). This difficulty is evident in the mean BIC
and the outcomes of the generalization test. Although the quantum
variant shows some enhancements over the classical variant (after
accounting for the complexity introduced by an additional parameter),
these improvements are modest in contrast to the Quantum Sequential
Sampler’s advantage over the Bayesian Sampler model. Additionally,
while the quantum interference parameter significantly impacts half
of the participants, for the remaining participants responses align
well with the predictions of the classical variant.

In light of these factors, we have decided to carry out some further
analyses for the 576 participants who exhibit a significant quantum
interference parameter, as a way to gain insight into when the
quantum interference parameter is necessary for understanding the
probabilistic reasoning of these particular individuals. Below, we
present analyses both for the full set of 576 participants and for a
smaller subset for whom the quantum advantage was established
with a more strict criterion.

We first analyzed the mean predictions of the quantum and
classical variants for the 576 participants for whom the significance
of the quantum interference parameter was established according
to the “two-sigma” criterion, that is, p < .05. These findings are
presented in Supplemental Figures S5.1 and S5.3. For this subset of
participants, the quantum model demonstrates marginally superior
accuracy in predicting both themean judgments and their distribution;
the degree of improvement is, however, very small.

Besides examining predictions which, according to Equation 24,
represent the expected value of the final state ϕ(t), we also
investigated the standard deviation of this final state (see Figure 10).
Here, the results more clearly favor the quantum variant, which
exhibits a consistently smaller standard deviation for these “two-
sigma” participants. To elaborate, within our framework of
maximum likelihood estimation (see Equation 19), a reduced
standard deviation of ϕ(t) implies a greater probability that the
model can generate the empirical data successfully, particularly
when ϕ(t) adheres to an approximately Gaussian distribution with
prediction close to the data. Given that both model variants closely
replicate the observed data and considering that ϕ(t) is initially
constructed from a symmetric β distribution, the quantum variant’s
reduced standard deviation indicates enhanced predictive capability.
This extra sharpness in prediction of the quantum variant is
attributed to the additional interference parameter, which allows the
model to produce probabilities closer to empirical results, when
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these reflect Bayesian fallacies. By contrast, the classical variant
must account for such results with greater variability.
The role of the quantum interference parameter becomes more

pronouncedwhen applying the “four-sigma” criterion (p< .00008) to
determine its significance. Under thismore stringent criterion, only 95
participants exhibit a significant quantum interference parameter. For
this smaller group, a clearer distinction emerges between the
mean predictions of the quantum and classical variants, with the
quantum variant demonstrating superior performance, as evident in
Supplemental Figures S5.3 and S5.4. For the “four-sigma”
participants, the distribution of predictions from the classical variant
are more narrow and less well aligned to empirical data. Additionally,
for these participants, the quantum variant shows a more substantial
improvement over the classical variant in terms of the standard
deviation ofϕ(t) compared to the “two-sigma” participants, according
to Figure 10. Clearly, in instanceswhere predictions from the classical
variant significantly deviate from probability judgments, a larger
standard deviation is necessary to accommodate the empirical data.
To verify that the results from the “four-sigma” participants are not

simply the product of random fluctuations within the fitting process,
we replicated the fitting procedure thrice for these individuals. Each
iteration yielded virtually identical G2 values, indicating consistent
outcomes. This consistency reinforces the notion that the classical
variant’s subpar fit for these participants is likely due to the

inflexibility of the classical probability framework, rather than
random errors during fitting. Note, identifying all probabilistic
fallacies that challenge the classical variant is an open-ended
objective. While the search for probabilistic fallacies has been
intensely carried out for several decades now, it is unclear how
definitive the current list is—indeed, in the present work, the newly
established violations of binary complementarity played a key role.

As a further attempt to understand the behavior of “four-sigma”
participants, we employed kernel density estimation to compare the
predictions of classical and quantum variants against the empirical
data, as illustrated in Figure 11 and detailed in Supplemental
Material 6. Additionally, we present the kernel density estimation
for a participant whose optimal quantum interference parameter is
zero. Participants whose responses are accurately captured by the
classical variant often exhibit bimodal distributions in their kernel
density estimations. These two modes correspond to the comple-
ments of the two marginals, reflecting a tendency to categorize
responses distinctly, as evidenced by the dual peaks in the density
plots for these classical participants. Conversely, the “four-sigma”
quantum participants display a broader range of responses, populating
the continuum between the two peaks. This distributional
characteristic could arise from systematic conjunction and disjunction
fallacies, allowed by quantum interference, which can lead to
predictions interminglingmore closely with those of the corresponding

Figure 10
Histogram Showing the Distribution of Standard Deviation of the Final State of the Markov Process ϕ(t)

Note. Since the likelihood of the data given the model is directly computed from this state, the standard deviation of the
state is the same the standard deviation of the likelihood distribution. See the online article for the color version of this
figure.
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marginals. Moreover, the kernel density plots for the quantum
participants generally show higher entropy, with responses demon-
strating greater variance, compared to classical participants. Visually,
the density function for quantum participants appears more akin to a
uniform distribution. It is important to note that these observations
are qualitative and preliminary. Future research is encouraged to
rigorously explore the link between the entropy and variance in the
distributions of probability judgments and the quantum interference
evident in participants’ responses.

General Discussion

We proposed a novel framework for probability judgments in
probabilistic reasoning. Our aim has been to capture several insights
about probabilistic reasoning, some of which have already been
expressed in current formalisms, but (we think) in incomplete ways
and never over a scope as encompassing as the present one. The main
two insights driving our work concern the nature of subjective
probabilities and the way that subjective probabilities drive observed
responses.
Our first main assumption is that probabilistic reasoning reflects

subjective probabilities and these subjective probabilities need to be
distinguished from the observed probability ratings. This is an
assumption which contrasts with heuristic or bias approaches to
cognition (e.g., Hertwig et al., 2013; Kahneman et al., 1982; Nilsson
et al., 2009). Without doubt, proposals for heuristics and biases have
consistently captured important aspects of behavior. However, the
formalization of such accounts is often limited, so that researchers
have sought to incorporate such ideas into formal frameworks
(whether Bayesian, as in Lieder & Griffiths, 2019, or quantum, as in
Busemeyer et al., 2011).
The theoretical difference between the Quantum Sequential

Sampler and extant Bayesian sampling models, notably the ones
from F. Costello and Watts (2014) and J. Zhu et al. (2020) is more
subtle. In all models, there is some sampling process. An agent only

experiences sample values and evaluates a question or rating using
these values. All models assume that this sampling process produces
a distribution of sample values and distribution means equal the
corresponding subjective probabilities. Compared to F. Costello and
Watts (2014) and J. Zhu et al. (2020), in the present work, we
explored a theory for probabilistic reasoning based on a different
calculus for subjective probabilities (quantum vs. Bayesian) and a
different sampling process (sequential sampling vs. fixed sampling).
As discussed, we think there is ample evidence in the literature to
justify both theoretical choices.

Regarding subjective probabilities, if we accept that they have
some role in probabilistic reasoning, then a question naturally arises
of whether such probabilities should be Bayesian or quantum or
indeed something else. There is a pervasive intuition that cognition
encompasses both an analytic/reflective/thoughtful mode and a
heuristic/reflexive/spontaneous one (Kahneman, 2001). One way to
develop these ideas is to assume that Bayesian versus quantummodels
capture an analytic versus heuristic distinction and, importantly, that
the relative weight of these influences is continuous, in terms of the
size of the interference parameters. One can say that our formalism
proposes an infinite number of cognitive routes, from strongly
Bayesian to strongly quantum, with all intermediate possibilities in
between.

What is the basis for associating Bayesian with analytic and
quantum with heuristic? It is uncontroversial to consider Bayesian
reasoning as the absolute rational standard in reasoning, at least
in most cases, for example, excluding cases where there might be
inherent contextuality (Pothos et al., 2017). Therefore, it seems that,
if we could, we should just be baseline Bayesians all the time. Of
course, it is well known that this is not possible, placing an extra
“cost” on any situation when we attempt to be Bayesian (e.g., Lieder
& Griffiths, 2019). One way to simplify Bayesian reasoning is to
use quantum probabilities. This is because quantum theory can be
seen as a compartmentalized version of Bayesian reasoning, that is,
Bayesian reasoning which applies only in subsets of questions (in

Figure 11
Kernel Density Estimation for Observed and Predicted Judgments, for TwoQuantum Participants (215, 872) and One Classical Participant
(1,098), Corresponding to Whether the Interference Terms Are Significantly Nonzero or Zero in the Quantum Sequential Sampler

Note. For thefirst quantumparticipant 215, the triplet isA=Ohio,B=Michigan, andC=Missouri, and for the other two participants 872 and 1,098, the triplet
is A = Georgia, B =Montana, and C = Nevada. Note, all 78 judgments are represented in the figures. See the online article for the color version of this figure.
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some question space), eliminating the need for complex probability
distributions (Lewandowsky et al., 2002; Pothos et al., 2021). Note,
if the situation is Bayesian and we apply quantum probabilities,
we might misrepresent the world—simplification usually comes at a
price. In any case, we think it is reasonable to consider quantum
as fulfilling the role of heuristic modes of thought and indeed there
is evidence that both unfamiliarity and more reflexive modes of
thinking are associated with quantum reasoning (Trueblood et al.,
2017). In the present work, we observed some association between
higher CRT scores (more reflective thinking; Frederick, 2005) and
fewer conjunction and disjunction fallacies. We do note that these
ideas are offered here as somewhat speculatively, awaiting further
examination in future work.
The above argument is agnostic concerning possible influences in

human probabilistic reasoning beyond either Bayesian or quantum
reasoning. Indeed, it seems likely that there would be such
influences, not least because it is well known that several factors
can affect the judgment process, including emotion (Bower,
1981), motivated reasoning (Kunda, 1990), values (Schwartz,
1992), and just plain biased thought (Lewandowsky et al., 2012).
Knowledge about probabilities, even if biased, surely corresponds
to only one influence among others.
Our second main assumption is that subjective probabilities are not

known directly, but rather serve as drift rates guiding a sequential
sampling process, corresponding to a participant trying to decide on an
appropriate response. Compared to previous proposalswith a sampling
component (F. Costello & Watts, 2014; J. Zhu et al., 2020), the main
advantage of a sequential sampling framework is that it obviates the
need for an a priori commitment concerning the extent of sampling:
sampling can be terminated when there is enough evidence for a
particular response or more flexibly, depending on any combination of
task demands which might arise after the start of the judgment process.
Additionally, a response is likely to be a function of many different
influences, over and above the actual subjective probabilities. While
we cannot model such influences directly, we can allow for a process
which distorts subjective probabilities, in some principled way, in
terms of the way the parameters for the process are set up.
Model comparisons showed our proposal, the QuantumSequential

Sampler, to be superior to the Bayesian Sampler and to a classical
variant of the Quantum Sequential Sampler. Even though in recent
years there have been several sophisticated proposals for bounded-
rational Bayesian reasoning (e.g., Dasgupta et al., 2020; Lieder &
Griffiths, 2019), the Bayesian Sampler offers a full probabilistic
calculus, capable for accommodating predictions for any probability
question. There is a valid question concerning whether advantage
of the Quantum Sequential Sampler over the Bayesian Sampler one
comprehensively proves the necessity of quantum probabilities in
probabilistic reasoning. We have presented several analyses which
we think support this conclusion, but clearly this is an issue which
cannot be definitely settled yet. For example, it is always possible
that, if one of these alternative Bayesian proposals were to be more
fully developed, conclusions might be different from the present
ones. Overall, with increasingly complex approaches to biased
probabilities, sampling, and noise, there is a concern regarding the
coherence of models under a particular label (Jones & Love, 2011).
This is one reason why we think it is appealing to employ tools
which are as standard as possible, in developing a formalism, as is
the case with our use of a sequential sampling process. Sequential
sampling processes have been extensively employed in cognition

(e.g., Brown & Heathcote, 2008; Busemeyer & Diederich, 2009;
Johnson & Busemeyer, 2005; Ratcliff & Smith, 2015).

An important concern for the present results is whether the
probabilistic task we employed is adequate. It seems uncontroversial
that the main appeal of a formal probabilistic model (Bayesian or
quantum), as opposed to one based on heuristics, is that probabilities
constrain each other in a precise way. Thus, the more the probability
judgments from each participant, the more precise the test for
a particular model. F. Costello and Watts (2014) and J. Zhu et al.
(2020) considered, for each participant, probability questions
corresponding to a single pair of events—even though more than
one pair were included, questions were not mixed across pairs. By
contrast, we asked participants to respond to all pairwise combinations
of three events, leading to 78 judgments per participant. Of course, the
large number of judgments raises concerns both for the present work
and previous related work (F. Costello & Watts, 2014; J. Zhu et al.,
2020) that participants might fail to engage sufficiently with a task
throughout its duration. Such problems have been well documented in
cognitive research. In the present work, we sought a theme which,
with reasonable justification, might be expected to engage participants
to a greater extent than otherwise. But we have no direct measure
of participant engagement, apart from a fairly soft attention check. A
related, and much discussed issue, is whether participants correctly
understand the algebraic meaning of the various logical connectives,
for example, conjunctions, disjunctions, and so forth. Overall, the
evidence seems to suggest that this is the case, especially when more
judgments are included together (Moro, 2009).

We think exploring a larger set of interrelated judgments pays off:
Though this has not been our primary objective, the larger set of
judgments enabled us to identify some novel empirical findings.
Notably, we observed systematic overestimation effects and violations
of binary complementarity, even for marginals. There has been very
sparse evidence for such violations previously (e.g., Epping &
Busemeyer, 2023; E. Shafir, 1993) and the present results represent a
main empirical contribution from this work. We also identified
evidence for double conjunction fallacies (Crupi et al., 2018). These
findings preclude a model based on just subjective probabilities, even
quantum ones, since the quantum model of Busemeyer et al. (2011)
cannot accommodate double conjunction fallacies and is limited in its
capacity to accommodate violations of the law of total probability—
violations of binary complementarity are not possible at all. Such
conclusions bring into focus the point that investigations of
probabilistic reasoning on the basis of limited test procedures are
bound to offer likewise limited tests of models.

So, are we to conclude for a general recommendation of just
“more is better”? There are two potential difficulties here: First,
with more elaborate question combinations, there might be genuine
processing limitations, either in terms of memory or attention or
even basic comprehension. For example, it is unclear how well
participants might understand a question of probability conditioned
on three predicates. One has to consider how often questions
involving multiple predicates in complex arrangements really occur
in real life. Additionally, concerning tests of probabilistic models, it
is less clear how new constraints could be tested by extending the
range of events beyond what has been presently employed. In this
work, the point of having three pairs has been exactly that
probabilistic assignment in one pair impacts on assignment in the
other two pairs—because of the law of total probability and, in the
Bayesian case, the requirement that all events conform to a three-
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way probability distribution (in the quantum case, there are different
constraints concerning processing order). If, for example, one were
to consider four events and corresponding pairs/triplets, the tests
would be of the same constraints, just over a greater range of events.
It is unclear whether this matters.
We can also call into question whether a decision paradigm

might be the best way to study probabilistic reasoning. Specifically,
throughout this and related work, the emphasis has been on
probabilistic reasoning with questions which concern the general
knowledge and experience of participants. But maybe this is a
problematic approach. For example, there are certainly advantages in
having participants infer probabilities directly from experimental
materials (as in Fiedler et al., 2009) or if the true probabilities of the
relevant events are known (as in Zhao et al., 2009). One advantage
of using perceptual stimuli for probability judgments is that the
same judgments can be queried repeatedly, without participants
necessarily realizing that this is the case (Zhao et al., 2009). Note,
repeating identical probability judgments is a concern regarding the
procedure of J. Zhu et al. (2020), as we have discussed elsewhere.
Such research has led to many interesting findings, including in
relation to pseudocontingencies or illusory correlations (for the latter
see Bott et al., 2021). We think there are complementary advantages
between, what one might call, probability judgments on novel or
meaningless stimuli and ones concerning knowledge-rich questions.
In the latter case, there is less direct, experimenter control over the
probabilities participants assign to different events. To use an
example from the present paradigm, different participants might
have wildly different notions of the probability that Biden will win
in Arizona. Nevertheless, such individual differences do not impact
on the formal modeling, since the question is how participant
judgments for the different probability terms constrain each other.
Additionally, for a task spanning several judgments (78 in the present
research), employing a theme which should hold natural interest for
most participants would be expected to help with engagement and
attentiveness. Overall, it is reasonable that different empirical
approaches might be better suited toward different empirical
objectives. In the present case, the objective was to explore
whether the constraints from probability theory, classical or quantum,
about how different terms constrain each other are reflected in
behavior. As such, we think the choice of a current affairs theme of
great topical interest, at the time of testing, is justified.
Regarding theoretical considerations, we think that the use of

sequential sampling in probabilistic reasoning has considerable
potential to expand this research area. Sequential sampling models
have been shown to offer versatile and powerful predictions, for
example, concerning task demands (such as time pressure, Ratcliff
& Smith, 2015), neural recording (Gold & Shadlen, 2002, 2007),
in categorization (Nosofsky & Palmeri, 1997), and in perceptual
discrimination (Laming, 1968; Usher & McClelland, 2001).
Recasting a model of probabilistic reasoning within the sequential
sampling framework offers promise of extending work on fallacies
in a wide scope. Additionally, a sequential sampling framework
paves the way for expanding the range of dependent variables
studied in probabilistic reasoning, notably response time and
confidence (e.g., Pleskac &Busemeyer, 2010). Response times have
not been a focus of attention in probabilistic reasoning, so this is an
interesting direction for future work. This is indeed what has been
partly accomplished by J. Q. Zhu et al. (2023) work extending the

Bayesian Sampler and we hope to carry out similar work for the
Quantum Sequential Sampler in the future.

There are several challenges to the Quantum Sequential Sampler.
First, in physics, the move to quantum theory was as difficult and
counterintuitive for the scientists of the early 20th century, as it has
been for psychologists about 15 years ago, when the quantum
cognition program started. The adoption of quantum theory was
initially driven by recognizing that in some cases the structure of the
physical world conformed to the strange mathematics of quantum
theory. Analogously, in psychology, the initial case for quantum
cognitivemodels was based on the discovery that quantum interference
terms sometimes provided simple and compelling explanations for
the various apparent fallacies, especially in probabilistic reasoning
(Pothos & Busemeyer, 2022). However, subsequently, in physics,
an extensive and profound foundational debate ensued, concerning
why quantum theory might sometimes offer a good description of
the natural world (Hardy, 2002). The objective has been to derive the
axioms of quantum theory from some basic intuitions about nature
(Hardy, 2002). This step has been missing in psychology: If there is
sometimes incompatibility in mental representations, whymight this
be the case? Or, put differently, could we consider what is the
purpose of these quantum-like interference terms? Some researchers
have attempted to develop an informational efficiency argument
(Pothos et al., 2021), but much more work is needed. There are some
related problems, such as the a priori determination of incompati-
bility, though in practice such problems can be circumvented, for
example, by empirical tests for incompatibility.

Second, the biggest challenge is to consider whether the present
approach, based on a flexible mix between Bayesian and quantum
influences, might itself be a special case of an even more general
model. Note that, in the same way quantum theory generalizes
Bayesian theory with the introduction of an interference term, it is
possible to generalize quantum theory with even more powerful
interference terms (Narens, 2014; Sorkin, 1994). In physics, it has
not proved necessary to pursue such developments (Hardy, 2002).
Perhaps in psychology they might be more necessary? Additionally,
there have been other probability frameworks, such as support
theory (Tversky & Koehler, 2012). On the whole, such alternative
probability frameworks have attracted less attention in the exploration
of probabilistic reasoning, because they neither benefit from the
normative/formal justifications of probability frameworks proper
(such as Bayesian theory) nor from the flexibility of pure heuristics
and biases accounts. Nevertheless, it is possible, that there is a
nonstandard probability framework, which exactly captures the
structure of human probability judgments, without the necessity of
postulating separate influences.

Third, the adoption of quantum theory in this and other work is
underwritten by the question of whether quantum theory might be
needed at all. The finding that the Quantum Sequential Sampler
(with interference effects) accounted for more participants than
the Classical Sequential Sampler (without interference effects)
indicates the necessity for using quantum probabilities. An
interesting direction is to consider ways to resolve the problem
of whether quantum probabilities are needed or not, even in cases
for which fits with and without the quantum part are similar. More
generally, research in probabilistic reasoning has shown that
mimicries in more limited data sets can sometimes be resolved in
extended ones. Perhaps extending the range of probabilities each
participant considers might be useful, though, as discussed, it
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seems unclear whether it is worth pursuing more extensive data
sets. An alternative direction might be manipulations on the nature
of the events, for example, whether the probability judgments
concern weather events versus election events. Perhaps more
extreme or incongruent events are more likely to be represented in
a quantum-like manner.
Fourth, a technical consideration is that the form of the sequential

sampling process need not be restricted to aMarkov/diffusion model
based on the Kolmogorov forward equation, as presently employed.
It is possible to specify an analogous dynamical process based on
quantum theory (Busemeyer et al., 2006; Kvam et al., 2015; Rosner
et al., 2022). In quantum theory, instead of the Kolmogorov forward
equation, one would use either the Schrödinger equation or the
Lindblad equation. In such a case, a model would evolve not
by sequentially sampling from a Markov process, but, instead by
a quantum walk process. The quantum walk process evolves
a superposition state of probability judgments across time, which
offers some interesting characteristics compared to the classical
approach.
Cognitive models based on quantum dynamical equations have

been previously developed. Dynamical models using Schrödinger’s
equation display a characteristic indefinite oscillatory pattern and
so they have been considered appropriate for capturing ambivalence
in decision making (Kvam et al., 2021). The Lindblad equation
includes a part which allows eventual stabilization of the dynamics
and offers patterns more analogous to standard diffusion models
(Rosner et al., 2022). However, the distinction between Schrödinger
and Lindblad dynamics also involves additional assumptions
concerning the nature of representations, which cannot be mapped
to cognitive applications, without further theory (Asano et al.,
2011). Also, in some cases, we have found that Markov dynamics
captures human behavior better (Busemeyer et al., 2006).
Concerning the Quantum Sequential Sampler, there was a good a
priori reason why to include a part based on quantum probabilities—
some of the fallacies have a fairly natural explanation employing
quantum probabilities. However, a similar justification was just not
available concerning the dynamical part; there was no reason to
motivate the use of either the Schrödinger or the Lindblad equations,
instead of the Kolmogorov forward equation (Kvam et al., 2021;
Rosner et al., 2022). So, we think we are justified concerning this
modeling option.
Fifth, another technical consideration is whether to employ

projectors for cognitive measurements or allow for the possibility
that judgments are made with POVMs. POVMs offer a mechanism
for introducing noise in probabilistic calculations. In quantum
models based on just quantum probabilities, such as mechanism
may be necessary, for example, as in White et al. (2020) or Yearsley
and Pothos (2016). The Quantum Sequential Sampler already
incorporates a source of noise, in the form of the sequential sampling
component of the model. So, could we say that the alternative source
of noise, from POVMs, is not needed? Recall that the Quantum
Sequential Sampler allows for both projectors and POVMs and
the latter are essential depending on the value of the interference
parameter in relation to its various boundary conditions. As things
turned out, model fits indicated that for many participants POVMs
were needed. Therefore, it seems that the two sources of noise make
unique contributions to model behavior and it is not possible to
subsume one into the other. A technical direction for future work

is to explore whether different kinds of operators, alternative to
POVMs, might allow correspondingly different conclusions.

Sixth, one could also question our use of quantum probability,
because we do not test for order effects along with the conjunction
and disjunction fallacies. A general point is that order effects and
conjunction fallacy are explained by the same quantum mechanism.
Even if we have not explored order effects in the present work,
experiments have been conducted regarding the connection between
conjunction fallacy and order effects in, for example, political polls
that support the quantum model. For example, Yearsley and
Trueblood (2018) observed significant and large order effects and
conjunction fallacies in election scenarios comparing the likelihood
of Trump and Hillary winning specific states. Boyer-Kassem et al.
(2016) presented evidence suggesting that order effects might not
always manifest in the Linda problem given some specific framing
of the questions. However, in other experiments of the same work,
they did identify the expected order effects.

To address a potential confusion, in our experiment, we did not
assess question order effects in the way of these previous studies,
that is, comparing responses to questions A and B in one order
versus another order. Instead, we assessed order effects in the
probabilities of conjunctions and disjunctions by presenting their
components in varied orders (e.g., Trumpwinning Ohio followed by
Biden winning Michigan and vice versa). No significant difference
was observed in the probability judgments for the two different
orders.We postulate that this is because, evenwith varied presentation
orders, participants still perceived all components simultaneously and
employed a consistent processing order of the two components. We
suggest participants invariably process the more likely event first, a
notion introduced by Busemeyer et al. (2011) for the original quantum
model for probability fallacies. The lack of systematic order effects in
conjunctions and disjunctions in our data offers some indirect support
that this is a reasonable approach (but see Fantino et al., 1997). In any
case, it is important to differentiate this from traditional order effects
experiments (e.g., as in Yearsley & Trueblood, 2018, or Trueblood &
Busemeyer, 2011), whereby participants respond to two separate,
binary questions one at a time and question order naturally has to
match processing order.

In any case, our main objective in this work was to model the
judgments for all potential probability queries concerning the
two candidates winning a state within the given triplets, not just
conjunction and disjunction fallacies. There are many other
noteworthy results in probabilistic reasoning, like the violations
of probability identities highlighted in F. Costello and Watts
(2014), which can be tackled by our model. Note also that in our
framework not all conjunction and disjunction fallacies stem from
quantum probabilities. Some may arise from noisy sampling or
mere chance (see Appendix C). That is, our model’s efficacy
hinges on integrating both the quantum probability and sequential
sampling components. The emphasis is not on validating either
component individually, but on their collective ability to predict
all probability judgments.

A final related point is that conjunction and disjunction fallacies
would still arise from a quantum framework, even without the more
likely first assumption. However, on average, such effects would
be smaller. In general, we think that processing order depends on
several factors, such as salience of the questions, attentional biases,
or incidental processing biases specific to individual participants.
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With future work, we hope to elaborate both the model and the
empirical paradigms, to refine our understanding of processing order
effects (see Epping et al., 2023, for corresponding work relating to
similarity judgments).
In conclusion, probabilistic reasoning and decision making in

general have been one of the most researched aspects of cognition—
and with good reason too, given both the immense practical
importance of this area and their central role in our understanding of
what it means to be human. The present contribution advances this
area in three directions: First, by offering a unique, precise way to
incorporate Bayesian and non-Bayesian (in the form of quantum
theory) influences; second, by proposing a novel process for
mapping subjective probabilities to responses, based on the widely
adopted sequential sampling framework; finally, by offering detailed
model examinations against the largest to date data set on human
probabilistic judgments—our data set offered new evidence for
double conjunction fallacies and, importantly, violations of binary
complementarity. This work offers a comprehensive response to the
question of what apparent probabilistic fallacies are about: They are a
combination of response biases on Bayesian probabilities (as others
have noted, e.g., F. Costello & Watts, 2014; Dasgupta et al., 2020;
J. Zhu et al., 2020) and quantum probabilities. We hope that further
clarity concerning the nature of fallacies and the integration of
models about probability judgments with sequential sampling ones
will help advance judgment and decision theory in novel, exciting
directions.
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Appendix A

Continuous Version of Quantum Sequential Sampler

We describe our proposal for a diffusion process, matched to the
Markov one in main text. The evidence accumulation process with
continuous time and continuous state space (e.g., when probability
judgments are measured by real numbers) is governed by the Fokker
Planck Equation, with constant drift rate δ and constant diffusion
rate D = σ2

2 > 2 (Z. J. Wang & Busemeyer, 2021):

ψtðx, tÞ = Dψxxðx, tÞ − δψxðx, tÞ, (A1)

where ψ is some probability density function over probability
judgments. Judgments correspond to some event A, where A can
be an isolated conjunct, a conjunction, disjunction, or conditional
event. Equation A1 can be made to depend on the subjective
probability of A, P(A). We are looking to solve it, by specifying δ,
D, an initial condition, and two boundary conditions. We first
define

β+ = PðAÞ × α + c+

β− = ð1 − PðAÞÞ × α + c−, (A2)

where α ≥ 0 is the drift parameter, and c+, c− are further defined by

a free additive bias parameter b: c+ =
�
1 if b ≤ 0
b if b > 0

and c− =�
1 if b ≥ 0
−b if b < 0

.

Note, the definition of k ensures that β+, β− are always positive.
Regarding an intuitive understanding of the β+, β− quantities, we
refer readers to the description of the Markov model in main text—
these parameters can be more easily understood in relation to the
Markov model and, moreover, the diffusion model depends
more obviously on the diffusion rate and the drift rate, which we
consider next.
The diffusion rate D and the drift rate δ are defined as

D =
σ2

2
=
Δ2ðβ− + β+Þ

2
δ = Δðβ+ − β−Þ: (A3)

Note that σ2/2 is just another notation for the diffusion rate (we
make no further use of this quantity later on). In the above,Δ denotes
the step size of the Markov process in discrete space. Since in our
case the states are integers from 0 to 100, step size Δ = 1.
The initial condition for ψ is assumed to correspond to a

probability density function (since ψ is a probability density
function too), distributed according to a symmetric β distribution
Beta(β, β), with free parameter β. Note, the same distribution is
also employed as the Bayesian prior for the Bayesian Sampler
model (J. Zhu et al., 2020). When α < 1, this initial condition
corresponds to

ψðx, 0Þ = xβ−1ð1 − xÞβ−1
Bðβ, βÞ , x ∈ ð0, 1Þ, (A4)

where B is the β function. When α ≥ 1, the initial condition can be
specified as

ψðx, 0Þ = xβ−1ð1 − xÞβ−1
Bðβ, βÞ , x ∈ ½0, 1�: (A5)

We finally state the Neumann boundary conditions for solving
Equation A3 with a reflecting boundary condition (Bhattacharya &
Waymire, 2009):

lim
x→0

ψxðx, tÞ = 0

lim
x→1

ψxðx, tÞ = 0, (A6)

Given all the conditions above, we can find a unique solution for
the probability density function over all probability judgments ψ
using numerical methods. Note that ψ is also the likelihood function
of a person producing a probability judgment d∈ [0, 100] in the data
with a response time t, that is

Lðd, tjmodelÞ = ψ
�

d

100
, t

�
: (A7)

Since the β distribution is not defined at 0 and 1, we need to
make the approximation that Lða, tjmodelÞ = ψð0, tÞ≈ψð0.005, tÞ
and ψ(1, t) ≈ ψ(0.995, t), so as to have well-behaved likelihoods at
these points.

Mean and Variance

According to Bhattacharya and Waymire (2009), the change in
mean for a constant coefficient diffusion process, assuming the
process exists in (−∞, ∞) and vanishes at ±∞, is the following:

d

dt
μðtÞ =

ð
∞

−∞
xψtðx, tÞdx

=
ð
∞

−∞
xðDψxxðx, tÞ − δψxðx, tÞÞdx

= D

ð
∞

−∞
xψxxðx, tÞdx − δ

ð
∞

−∞
xψxðx, tÞdx

= 0 − ð−δÞ = δ: (A8)

The same holds for a discrete space Markov process, except the
differential equation and integral change into a difference equation
and sums. Similarly for variances:

d

dt
VðtÞ =

ð
∞

−∞
x2ψtðx, tÞdx −

d

dt
ðμðtÞ2Þ

=
ð
∞

−∞
x2ðDψxxðx, tÞ − δψxðx, tÞÞdx − 2δμðtÞ

= D

ð
∞

−∞
x2ψxxðx, tÞdx − δ

ð
∞

−∞
x2ψxðx, tÞdx − 2δμðtÞ

= 2D + 2δμðtÞ − 2δμðtÞ = 2D: (A9)

For a reflecting boundary, analytical solutions for the mean and
variance are not always possible to derive given an arbitrary initial
state. However, Equation A8 and A9 still makes possible a linear
approximation of the behavior of the Markov process, when the
process is fairly far away from the reflecting boundary.
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Appendix B

Model Fits for the Results of J. Zhu et al. (2020)

In this section, we report the fitting results for the J. Zhu et al. (2020)
data, considering the full Quantum Sequential Sampler (including
the quantum part, i.e., with nonzero interference parameters) and
Quantum Sequential Sampler with only Bayesian probabilities
(interference parameters set to zero).
In Zhu et al.’s procedure, participants indicated their responses by

reporting actual numbers. Therefore, it is likely that responses were
biased toward multiples of 5, more so than what presently observed.
For this reason, and so as to make our fits more comparable to those
in J. Zhu et al. (2020), we rearranged integers in the 0–100 range into
categories corresponding to multiples of 5, when computing G2,
to avoid complicating model fits by this bias (which is not part of
any of the models). Note, we think that using a ratings scale to assess
probability judgments, as in the present case, is a more robust
approach, in that the distributions of responses should be more
spread out across the full range of integers.
Table B1 shows the fitting results. The Bayesian Sampler (slightly)

outperforms the Quantum Sequential Sampler for the frosty, icy,
normal, typical, and warm, snowy pairs, but not for the other two
cases. Note, the models were fitted separately for each pair, because
this was the approach of J. Zhu et al. (2020) as well. We also examine
the mean predictions, distribution of predictions, and predictions of
probability identities comparing the two models, with results shown
in Supplemental Material 8.
We can speculate concerning the apparent advantage of the

Bayesian Sampler model in this case. As mentioned in main text,
we think there are three possible reasons. First, Zhu et al. utilized
a repeated measures procedure to assess probability, that is,
participants provided three ratings for each event. It is unclear
whether multiple decisions like this should be considered identical
or whether probability updating might be influencing responding,
for example, judgments sometimes change corresponding beliefs

(White et al., 2020, 2014 and references therein). Repeated
judgments might also introduce biases in responding. For example,
in the first round, a participant might say that tomorrow will be rainy
with a probability of 0.9 while in the second round this becomes
0.2. In such a case, is it that they really respond following the
β distribution or because they are asked twice and so doubt their
original answer? If a participant is asked the same question over and
over again, then they might wonder whether there is something
going across these identical trials (e.g., a pattern to be discovered)
and act accordingly. Second, the response format in the present case
was more flexible than in the work of J. Zhu et al. (2020). The format
of typing responses into the computer in the latter case plausibly
encouraged responses in multiples of 5 (when measuring probabilities
in a [0, 100] range), motivating an additional rounding mechanism to
model responses in that work. Third, we think that the weather events
in J. Zhu et al. (2020) are more likely to be represented in a compatible
way, so that interference terms would be 0. This is because, as far
we know, one way in which compatible and incompatible questions
are distinguished is familiarity (Trueblood et al., 2017; Yearsley &
Trueblood, 2018). Weather events are very frequently considered
together, whereas there would be lower familiarity for election
questions, especially concerning opposing candidates. Fourth, in
J. Zhu et al.’s (2020) case, a more limited range of judgments was
employed. Perhaps the available probabilities did not provide
sufficiently strong constraints, to allow a cleaner separation of the
models. A final possible reason is that an election, and especially that
particular election, plausibly evokes more extreme opinions, which
might be inducing incompatibility. For example, it might be hard to
reconcile the possibility of Biden winning Ohio with Trump winning
Pennsylvania, even if both possibilities are individually reasonable—
that is, in quantum-like terms, such possibilities are incompatible.

Note also that the Bayesian Sampler model, which has six
parameters, was fitted to 20 data points, already doing quite well. So
there is not a lot of room for the Quantum Sequential Sampler to
improve fit, especially bearing in mind that it has one more
parameter than the Bayesian Sampler (seven parameters in total).
This underscores the importance of employing triplets of events:
They offer more data from a single experiment for each individual,
allowing for a more nuanced assessment of model performance.
Indeed, we showed that with this more complex data set, involving
78 judgments rather than 20 for each participant, the Bayesian
Sampler model does not perform as well.

Clearly, further work is necessary before any of these possibilities
is supported. At this point, we are basically unsure as to why the
Bayesian Sampler shows a slight advantage over the Quantum
Bayesian Sampler, for the J. Zhu et al. (2020) data set, even though
in the case of the new data set we collected, the Quantum Sequential
Sampler comes out ahead.

Table B1
Fit Scores (BIC) for the Bayesian Sampler Model and the Quantum
Sequential Sampler, With (“Quantum”) and Without (“Classical”)
the Interference Term

Event pair Bayesian Sampler Classical Quantum

{Frosty, icy} 321.87 327.94 326.40
{Normal, typical} 319.90 324.32 325.87
{Windy, cloudy} 321.97 314.71 317.94
{Cold, rainy} 328.58 322.04 323.63
{Warm, snowy} 314.95 324.43 320.31

Note. Bold values indicate that the corresponding model in the column
of the bolded number has a better fit compared to others. BIC = Bayesian
information criterion.

(Appendices continue)
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Appendix C

Predictions of Probability Identities of Quantum Sequential Sampler

In this section, we examine how we could use the estimated
prediction of mean probability judgment from the Quantum
Sequential Sampler model, to unravel the model’s mechanisms
for addressing a range of probabilistic fallacies. To refresh the
reader’s memory, according to Equation 22, the estimated mean
prediction using linear approximation is given by:

μQSSðAÞ≈
1
2
+ 2αPðAÞ + ðb − αÞ: (C1)

Note again that despite we illustrate probabilistic fallacies using
μQSS(A) ∈ [0, 1], the actual prediction of QSS fitted to the actual
empirical data are integers from 0 to 100.

Noise Cancelation

F. Costello andWatts (2014) identified a pivotal result concerning
noise cancelation, articulated through the probability identity:

Z1 = JðAÞ + JðBÞ − JðA ∧ BÞ − JðB ∨ AÞ≈ 0, (C2)

where J symbolizes the empirical mean probability judgment,
intentionally distinguished in this section from the subjective
probabilities P. In the subsequent analysis, we employ Equation 22
to reveal how the Quantum Sequential Sampler predicts the noise
cancelation phenomenon. Given the “more likely first” principle in
conjunctions and, without loss of generality, assuming that P(A) >
P(B), we deduce:

PðA ∧ BÞ − PðB ∨ AÞ = PðA and thenBÞ + ð1 − Pð¬B and then ¬AÞÞ: (C3)

Given that:

PðAÞ − PðA and thenBÞ = PðA and then ¬BÞ, (C4)

PðBÞ − ð1 − Pð¬B and then ¬AÞÞ = 1 − Pð¬BÞ − 1 +

Pð¬B and then ¬AÞ = −Pð¬B and thenAÞ, (C5)

it is evident that:

PðAÞ + PðBÞ − PðA ∧ BÞ − PðB ∨ AÞ =
PðA and then¬BÞ − Pð¬B and thenAÞ = o, (C6)

where o is the quantum interference parameter. Consequently:

Z1 = μQSSðAÞ + μQSSðBÞ − μQSSðA ∧ BÞ − μQSSðB ∨ AÞ

≈
1
2
+ 2αPðAÞ + ðb − αÞ + 1

2
+ 2αPðBÞ + ðb − αÞ

−
�
1
2
+ 2αPðA ∧ BÞ + ðb − αÞ

�

−
�
1
2
+ 2αPðB ∨ AÞ + ðb − αÞ

�

= 2αðPðAÞ + PðBÞ − PðA ∧ BÞ − PðB ∨ AÞÞ

= 2αo≈ 0ðwhen o ≈ 0 or 2α ≪ j 1
o
jÞ: (C7)

When o equals zero, the system aligns with the classical (Bayesian)
framework, rendering J(A) + J(B) − J(A ˄ B) − J(B ˅ A) ≈ 0. This is
consistent with predictions made by the probability plus noise model
when Δd ≈ 0.

It is important to acknowledge that for substantial values of
α (keeping in mind that α ≥ 0), the model is likely close to the
reflecting boundary, where the behavior of the means becomes hard
to predict. Therefore, it is not valid to assert that noise increases
monotonically as a function of α or, most pertinently, as a function
of time t, which is incorporated into α.

Probability Identity Violation

Another important result for the Bayesian Sampler model is the
identity:

Z5 = JðA ∧ BÞ + JðA ∧ ¬BÞ − JðAÞ ≠ 0, (C8)

Z7 = JðA ∧ BÞ + JðA ∧ ¬BÞ + PðB ∧ ¬AÞ − JðA∪BÞ ≠ 0, (C9)

where

Z7 ≈ 2Z5: (C10)

For the Quantum Sequential Sampler suppose without loss of
generality that P(A) > P(B). In the case of P(A) > P(¬B):

Z5 = μQSSðA ∧ BÞ + μQSSðA ∧ ¬BÞ − μQSSðAÞ

≈
1
2
+ 2αðPðA and thenBÞ + PðA and then ¬BÞ − PðAÞÞ + ðb − αÞ

=
1
2
+ ðb − αÞ, (C11)

Z7 = μQSSðA ∧ BÞ + μQSSðA ∧ ¬BÞ + μQSSðB ∧ ¬AÞ − μQSSðA∪BÞ
≈ 1 + 2αðPðA and thenBÞ + PðA and then ¬BÞ − PðB and then ¬AÞ

− 1 + Pð¬B and then ¬AÞÞ + 2ðb − αÞ
= 1 + 2αðPðA and thenBÞ + PðA and then ¬BÞ
− PðA and then ¬BÞ − o + Pð¬A and then ¬BÞ + o − 1ÞÞ + 2ðb − αÞ

= 1 + 2ðb − αÞ: (C12)

And thus when P(A) > P(¬B):

Z7 ≈ 2 × Z5, (C13)

Similarly, when P(A) < P(¬B),

Z5 ≈
1
2
+ ðb − αÞ + 2αo, (C14)

Z7 ≈ 1 + 2 × ðb − αÞ, (C15)

so

Z7 ≈ 2 × Z5ðwhen o≈ 0 or 2α ≪ j 1
o
jÞ: (C16)
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Similarly, one can show that

Z8 ≈ 1 + 2ðb − αÞ + 2α o≈ 2 × Z5ðwhen o≈ 0 or 2α ≪ j 1
o
jÞ, (C17)

Z6 ≈ Z5 − 2αo: (C18)

Conjunction and Disjunction Fallacy

The study of conjunction and disjunction fallacies is crucial in
understanding probabilistic reasoning errors. These fallacies can
manifest in various ways, including random occurrences in individual
participants’ responses and as systematic biases in the mean
probability judgments. The Bayesian Sampler model addresses these
fallacies by introducing an additional parameter, N′, representing a
reduced sample size for evaluating conjunctions and disjunctions.
On the other hand, the probability plus noise model accounts
for these fallacies by incorporating an error propagation parameter,
Δd, corresponding to higher error for conjunctions and disjunctions.
In the case of the Quantum Sequential Sampler, the phenomena
of conjunction and disjunction fallacies are elucidated through
the quantum interference parameter o. Consider a scenario where
P(A) > P(B):

μQSSðBÞ − μQSSðA ∧ BÞ≈ 2αðPðBÞ − PðA and thenBÞÞ
= 2αðPðBÞ − PðB and thenAÞ − oÞ
= 2αðPðB and then ¬AÞ − oÞ: (C19)

In cases where o < P(B and then ¬A), for instance when o = 0 and
P(B and then ¬A) > 0, we observe that μQSS(B) − μQSS(A ˄ B) > 0.

However, if o > P(B and then ¬A), this sets the stage for a potential
conjunction fallacy. Analogous reasoning applies to disjunctions:

μQSSðA ∨ BÞ − μQSSðBÞ≈ 2αðPð¬B and thenAÞ − oÞ, (C20)

where a disjunction fallacy can occur if o > P(¬B and then A).

When Will Quantum Sequential Sampler Be
Completely Normative?

Much like the Bayesian Sampler model and the probability
plus noise model, the Quantum Sequential Sampler is capable of
predicting participants’ probability judgments to be completely
consistent with classical Kolmogorov axioms. Specifically, this
occurs when α = 1

2 and both o and b are set to zero. For any given
event A, this situation can be illustrated as follows:

μQSSðAÞ≈
1
2
+ 2 ·

1
2
· PðAÞ − 1

2
= PðAÞ: (C21)

The same hold true for conjunctions, as when o = 0

PðA ∧ BÞ = PðA and thenBÞ = PðB and thenAÞ, (C22)

and vice versa for disjunctions.
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