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Abstract

This paper examines how excess verdicts affect the insurance industry and studies in-

surance contract design from the policyholder’s perspective, focusing on cases where

court awards exceed policy limits. Excess verdicts refer to court decisions that grant

compensation higher than the maximum coverage stated in an insurance policy. They

are increasingly common in severe liability cases such as wrongful death claims and

create both financial and legal risks for insurers and policyholders. These risks lead

to uncertainty in premiums, solvency management, and overall risk control within the

insurance market. To address these issues, we develop a mathematical framework that

models excess verdicts by separating loss levels, legal outcomes, and contractual terms

that specify coverage beyond standard policy limits. The framework applies Value-

at-Risk (VaR) and Conditional Value-at-Risk (CVaR) within a premium principle to

capture the trade-off between risk exposure and cost in a manageable form. This ap-

proach provides a structured way to study how insurers and policyholders can share

risks more efficiently when facing large and unpredictable legal awards. The results

show that insurance contracts with multiple layers of indemnity can improve financial

stability and fairness by distributing losses across different levels of coverage. Layered
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contracts reduce legal disputes, support balanced cost-sharing between insurers and

policyholders, and give both sides clearer expectations about loss coverage. In prac-

tice, this structure helps insurers maintain solvency under extreme outcomes while

offering policyholders more certainty about compensation in severe claim situations.

The study provides a quantitative basis for designing more stable and transparent in-

surance products that can handle the growing problem of excess verdicts in modern

markets.

1 Introduction

Excess verdicts, also called “nuclear verdicts”, happen when a court awards damages far

beyond an insurance policy’s limit. For example, if a policy covers $1 million but the court

awards $10 million, the extra $9 million is an excess verdict. These large awards, common

in serious injury or wrongful death cases, create financial strain for both insurers and policy-

holders. Though they may seem similar to operational risks like system failures or internal

mistakes, the two differ in cause and how they are managed. Operational risks come from

within the organization and are usually predictable through models and scenario analysis

(Power, 2005; Amin, 2016). Excess verdicts, however, arise from external legal actions and

depend on unpredictable factors such as jury decisions and court interpretation. This makes

them especially challenging in layered insurance, where excess coverage only starts after

the primary policy is used up. Unlike primary coverage, excess insurance often lacks clear

rules for handling large claims (Richmond, 2000), and sometimes, settling below the primary

limit shifts full liability to the excess layer, increasing financial risk and solvency concerns

(O’Connor, 2003).

In recent years, various legal doctrines, social trends, and plaintiff strategies have driven

both the frequency and size of excess verdicts upward. The landmark 1977 case of Bates

v. State Bar of Arizona raised awareness of litigation rights and expanded non-economic

damages such as pain and suffering (Supreme Court Of The United States, 1976; Sharma,

2023), while tort reform efforts have not succeeded in curbing these amounts (Heaton and
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Lucas, 2000). Evolving tort doctrines, notably those involving “bad faith” and “negligence”,

have increased insurer exposure. “Bad faith” typically refers to fraudulent or dishonest

conduct by the insurer (Epps and Chappell, 1958), while “negligence” captures failures in

reasonable claims handling. Courts may find bad faith where insurer actions are objectively

unreasonable (Gallogly, 2006), often leading to elevated settlements and penalties (Asmat

and Tennyson, 2014). On the plaintiff side, strategies such as the reptile theory (Murray

et al., 2020), which appeals to jurors’ concern for community safety (Silverman and Appel,

2023), and the anchoring effect of high initial damage demands (Chang et al., 2015), have

contributed to rising award levels. Broader economic and social factors also play a role;

social inflation, where claims costs outpace general inflation, has placed additional pressure

on settlements and verdicts (Pain, 2020). In some jurisdictions, courts have shown increasing

willingness to impose insurer liability beyond policy limits in cases involving severe harm or

delayed settlements, and litigation involving bad faith claims continues to grow (see Appendix

Table 6; Deng and Zanjani, 2018). High litigation costs and uncertain outcomes frequently

push parties to settle early to avoid lengthy disputes, high legal fees, and delayed recovery

(Shavell, 1982; Cooter and Rubinfeld, 1989).

To address the risks posed by excess verdicts, this study proposes a contract framework

that makes excess coverage explicit and easier to manage. We consider contracts where both

the trigger and payment structure are agreed in advance, reducing disputes and clarifying the

responsibilities of each party. Inspired by parametric insurance designs (Broberg, 2020) and

the trigger-based approach of Asimit et al. (2021), our framework introduces two sequential

triggers. The first activates when the court award exceeds the primary policy limit, and

the second determines the excess payment based on both the total award and the insurer’s

conduct. We derive the optimal indemnity function by minimizing a combination of the

policyholder’s capital requirement and the premium, using risk measures such as VaR and

CVaR and a general premium principle. The solution offers a simple and effective structure

combining a fixed deductible with a cap tailored to the risk environment. This contract design

enhances pricing transparency, mitigates moral hazard by clarifying each party’s obligations,
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and facilitates policyholders’ better understanding and comparison of coverage.

This contract design is part of a class of trigger-based indemnity contracts that operate

in settings with multiple risks, where coverage depends on externally defined events rather

than realized losses. Such triggers appear in index-linked insurance, catastrophe bonds and

other risk-linked securities. For example, Miranda and Vedenov (2001) showed that index-

linked insurance can reduce weather-related crop losses and smooth income in developing

countries. The foundations of optimal contract design were set by Borch (1960) with the

expected value principle for reinsurance and by Arrow (1963) with stop loss contracts for

risk averse insurers. Later work by Raviv (1979) on deductibles and coinsurance and by

Young (1999) using Wang’s premium principle extended these ideas. To measure risk more

precisely, Cai and Tan (2007) introduced VaR and CVaR, and follow-up studies by Cai et al.

(2008), Chi and Tan (2011, 2013), Asimit et al. (2013a, 2013b) and Cheung et al. (2015)

found that layered contracts remain optimal under these measures. Frees and Valdez (1998)

used copulas to build multivariate risk models, while Cummins et al. (2004) and Goodwin

(1993) emphasized the importance of clear triggers in catastrophe and crop insurance. In

more complex situations, coverage may depend on multiple events occurring in sequence, as

often happens with excess verdicts.

While the proposed contract structure addresses cost allocation, behavioral factors such

as background risk also influence risk preferences and insurance decisions. Gollier and Pratt

(1996) introduced the concept of risk vulnerability, showing that external risks can heighten

aversion to independent risks. Eeckhoudt et al. (1996) demonstrated that background wealth

changes may increase risk aversion under certain conditions. Heaton and Lucas (2000)

applied these ideas to portfolio decisions, finding that labor and business income risks affect

asset allocations. More recently, Strobl (2022) showed that healthcare costs as background

risk lead individuals to prefer safer investments, while low insurance literacy and reluctance

to pay premiums also matter. These behavioral effects alter optimal contract design. For

example, Lu et al. (2018) showed that when background risk becomes large relative to

insurable risk, deductible contracts become optimal, a result confirmed by Chi and Wei
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(2018) under various correlation structures. Chi and Tan (2021) found that background

risk reduces opportunities for inflated claims by affecting incentive compatibility, and Hinck

and Steinorth (2023) showed that risk vulnerability and loss-dependent background risk

can increase insurance demand. This aligns with Hofmann et al. (2019), who found that

limited liability and background risk can explain demand for excess coverage under negative

correlations.

The rest of the paper is organized as follows. Section 2 discusses key issues in optimal in-

surance contracts and presents our model. Section 3 explores excess verdict modeling within

our framework. Section 4 presents numerical simulations that support the model. Finally,

Section 5 summarizes our findings and suggests directions for future research. Additional

details are in Appendix A, with full proofs in Appendix B.

2 Optimal Insurance with Multiple Indemnity Envi-

ronments

The concept of excess verdict insurance can be represented with four distinct and mutually

exclusive environments, each of which depends on the progress of the legal proceedings and

the conduct of the insurer. The first situation is where there is no loss. The second scenario

corresponds to the case in which the damages awarded remain within the prescribed insurance

limit. In the third scenario, the damages awarded exceed the limit specified in the insurance

policy. However, the subsequent litigation does not reveal any bad faith or misconduct on

the part of the insurer. The last scenario describes a situation where, after the compensation

awarded exceeds the insurance limit, a further lawsuit also reveals bad faith from the insurer.

This categorization, pertinent to excess verdict insurance, motivates the study of the broader

conceptual framework of “multiple indemnity environments”, a notion rigorously examined

through the lens of Pareto optimal risk-sharing in the work by Asimit et al. (2021). In the

following sections, we state and solve an optimal insurance problem where the indemnity

function depends on the prevailing environment. This discussion encompasses the problem’s
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definition, optimization using VaR and CVaR, and further analysis through the Proportional

Hazard Transform.

2.1 Problem Definition

Let (Ω,F ,P) be a probability space on which all random variables are defined. We consider

a one-period economy where a primary risk holder is endowed with a non-negative loss X

which is payable at a fixed future time T > 0. We denote by E the expectation under P.

The primary risk holder, or (insurance) buyer, intends to share the loss at time T with

another party, or (insurance) seller and accepts to pay a premium at time 0. Both parties

agree to achieve optimality in terms of their risk positions by choosing appropriate amounts

of indemnity and premium. However, unlike classical risk-sharing problems, this paper

considers a setting such that the indemnity level depends upon an external factor, which

cannot be influenced by either party, yet can be precisely observed at time T .

To this end, let Y be the trigger characterizing the exogenous environment so that the

sample space Ω is partitioned intoK+1 disjoint events {ω ∈ Ω ∶ Y (ω) = k}, for k = 0,1, . . . ,K,

all with positive probability. Moreover, if Y = 0 then X = 0, implying that under the

environment Y = 0 there is no loss. For each remaining environment k = 1, . . . ,K, the loss

is risky, in the sense that P (X > 0∣Y = k) > 0. Thus, we explicitly assume that the random

variables X and Y are not independent.

If the realized environment is non-risky, i.e., Y = 0, no indemnity transfer is required.

Moreover, if the prevailing environment is Y = k, for some k = 1, . . . ,K, the buyer will transfer

the amount Ik (X) to the seller at time T and retain the amount Rk(X) =X − Ik(X), where
Ik ∶ [0,∞) → R is called an indemnity function and Rk ∶ [0,∞) → R is called a retention

function. Note that both parties have to agree at time 0 on a profile of indemnity functions

I = (I1, . . . , IK) since the exogenous environment is not revealed until time T .

A profile of indemnity functions is admissible if it belongs to the set

I ={I ∶ 0 ≤ Ik ≤ Id, Rk = Id − Ik, Ik and Rk are non-decreasing for all k = 1, . . . ,K} ,
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where Id denotes the identity function. Hence, under each environment, the indemnity is at

most the loss, and misrepresentation of the loss is disincentivized, precluding ex-post moral

hazard from both parties, as suggested by Huberman et al. (1983). Note that the functions

Ik and Rk are 1-Lipschitz continuous. We refer to a tuple I ∈ I as a contract.

For each contract I ∈ I, we letRY (X) = ∑K
k=1Rk(X)1{Y =k} and IY (X) = ∑K

k=1 Ik(X)1{Y =k}.
The realized risk position of the buyer is given by

B(I) =RY (X) + (1 + ρ)Pg (IY (X)) , (2.1)

where 1A is the indicator function of an event A ⊂ Ω. On the right-hand side of (2.1), the first

component is the loss retained by the buyer, which depends on the prevailing environment.

The second term is the seller’s premium, calculated with Wang’s (risk-adjusted) Premium

Principle Pg and inflated by the explicit safety load ρ ≥ 0. For any loss Z ≥ 0, Pg(Z) is
defined as

Pg (Z) = ∫
∞

0
g (SZ(z))dz, (2.2)

where g ∶ [0,1] → [0,1] is a distortion function, that is a non-decreasing concave function

with g (0) = 0, g (1) = 1, and SZ is the survival function of Z.

Let φ denote the buyer’s risk measure, designed to rank their risk preferences at time t = 0.
Formally, φ is a real function defined on a linear space of losses containing the constants.

We assume φ to be translation invariant and monotone, therefore ensuring consistency in

the evaluation of risk positions with respect to capital injections. With this in mind, the

buyer’s risk position at t = 0 corresponding to (2.1) can be expressed as

Rφ(I) = φ (B(I)) = φ (RY (X)) + (1 + ρ)Pg (IY (X)) , (2.3)

2.2 Optimality with VaR and CVaR Preferences

In this section, we assume that the risk preferences φ of the buyer are represented by either

VaR or CVaR. Then φ = VaR or φ = CVaR.
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Recall that for a loss Z, the VaR at level α ∈ (0,1) is

VaRα(Z) = inf{z ∈ R ∶ P(Z > z) ≤ 1 − α}.

The solvency probability α is associated with the buyer’s risk tolerance level.

The Conditional VaR at level α ∈ (0,1) is

CVaRα(Z) =
1

1 − α ∫
1

α
VaRs(Z) ds.

The CVaR is alternatively called Expected Shortfall and has gained practitioners’ interest

since the introduction of Basel III regulations, see McNeil et al. (2015) for further discussion.

The buyer seeks to minimize his/her risk position at time t = 0, given by (2.3), over all

admissible indemnity profiles. The buyer’s minimization problem is then given by

min
I∈I
Rφ(I). (2.4)

Consider now the following subset of admissible indemnity profiles

I∗ ={I ∈ I∶ for each k = 1, . . . ,K, there exist mk ∈ [0, ess sup(X)] ,

and nk ∈ [mk, ess sup (X)] , such that Ik(x) = (x −mk)+ − (x − nk)+}.

where (x)+ = max{x,0} and ess sup(X) denotes the essential supremum of X. Each profile

Ĩ = (Ĩ1, . . . , ĨK) ∈ I∗ represents a layer-type contract that provides indemnity for losses

between a deductible mk and an upper limit nk, specific to each environment k.

The buyer may wish to restrict attention to the subclass I∗, reducing the infinite-

dimensional optimization problem (2.4) to a finite-dimensional one. In general, such a re-

striction may lead to sub-optimal solutions. However, the next result shows that, under

specific risk preferences, this restriction is without loss of generality.

Theorem 2.2.1. Let φ = VaRα or φ = CVaRα. For any ρ ≥ 0 and any indemnity profile
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I ∈ I, there exists a layer-type profile Ĩ ∈ I∗ such that Rφ (Ĩ) ≤ Rφ (I). Furthermore, Ĩ can

be chosen so that the deductible levels are the same across environments.

The proof of Theorem 2.2.1 is provided in Appendix B.1 for the case φ = VaRα, and in

Appendix B.2 for the case φ = CVaRα.

Remark 2.2.1. Theorem 2.2.1 establishes that for widely used risk measures such as VaR

and CVaR, the class of layer-type indemnity profiles I∗ is sufficient to attain optimality. That

is, any admissible indemnity profile is dominated by one in I∗. This structural insight allows
one to replace the infinite-dimensional space of feasible contracts with a finite-dimensional

subset parametrized by the deductible and upper limit in each environment.

Theorem 2.2.1 also shows, as a by-product, that the deductible mk can be taken to be the

same in each environment, that is m1 = ⋯ = mK. This means that there is no particular

benefit in having an environment specific cut-off level above which losses are transferred to the

seller. The left tails of the conditional loss distribution jointly concur in determining a unique

optimal deductible level. As the buyer is concerned mostly with large losses, it is however

essential to have the freedom of setting upper limits contingent on the prevailing scenario.

Note that the inclusion of a deductible in the optimal insurance contract is consistent with

the existing related literature, see for instance, Arrow (1974) and Ghossoub (2017).

Theorem 2.2.1 also has practical value. It justifies restricting the search for an optimal

indemnity to the subclass I∗ when performing numerical optimization. Although the objective

function Rφ is generally non-convex, the reduced dimensionality of the feasible set makes

computational approaches tractable. We illustrate this in Section 4.

The following result strengthens Theorem 2.2.1 by establishing that a strict improvement

can be achieved whenever the initial indemnity profile is not of layer type. In particular,

if the minimum of (2.4) exists, it is attained in I∗, and optimal contracts may be selected

from the class of layer-type profiles.

Corollary 2.2.1. Let φ = VaRα or φ = CVaRα, and suppose I ∈ I − I∗. If the support of
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X is an interval in every environment, then there exists a layer-type profile Ĩ ∈ I∗ such that

Rφ (Ĩ) < Rφ (I).

Appendix B.3 provides a proof of Corollary 2.2.1 for φ = VaRα based on the argument

in Theorem 2.2.1 from Appendix B.1. The case φ = CVaRα follows by the same reasoning,

using the results in Appendix B.2. Details of the proof are omitted for brevity.

Following from the structural result of Theorem 2.2.1 that the optimal contract can be

chosen to be of a layer-type, we now examine the conditions that characterize the optimal

deductible and upper limits. We restrict ourselves, for the sake of simplicity, to the case of

CVaRα risk preferences and of expected value premium principle.

Proposition 2.2.1. Let φ = CVaRα, and g(x) = x, x ∈ [0,1] in (2.2). The optimal indem-

nity profile I∗ ∈ I∗ is characterized by a deductible m∗ ≥ 0 and upper limits n∗k ≥ m∗ for

k = 1, . . . ,K.

(i) (No Insurance) If ρ > α
1−α , then m∗ = n∗k for all k.

(ii) If P(X > 0) > 1
1+ρ , then m∗ > 0 or n∗k =m∗ = 0 for at least one k.

Remark 2.2.2. Case (i) implies that if the loading rate is excessively high (insurance too

expensive), or the solvency probability is not too high (lenient capital requirement), then the

buyer will react by retaining all the risk in every environment.

Case (ii) holds when the (unconditional) probability of no loss is limited. In this situation,

the optimal contract features either a positive deductible or at least one environment with

no insurance. Note that this case holds whenever X > 0 almost surely (this requires both

P(Y = 0) = 0 and X > 0∣Y = k almost surely in every environment).

2.3 Pareto Optimal Contracts

The problem considered in (2.3) focuses on minimizing the buyer’s risk, accounting for the

premium determined by the seller. We show in this section that the solution of (2.3) can
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be framed as a Pareto optimal contract. The proof is omitted, as similar arguments are

developed in the Pareto insurance literature, for example in Ghossoub et al. (2022).

A contract is a pair C = (I, π) ∈ I ×R, where π denotes the premium paid by the buyer.

The buyer’s risk position at time t = 0 is given by

Φ(C) ∶= φ (RY (X) + π) , (2.5)

where φ is as before. The seller evaluates their risk exposure using a distortion risk measure

Ψg(C) ∶= Pg (c (IY (X)) − π) , (2.6)

where g is a distortion function, see (2.2), and c ∶ [0,+∞) → [0,+∞) is an increasing and

convex cost function.

A contract C = (I, π) ∈ I×R is Pareto optimal if it cannot be strictly improved by another

contract, when the targets of the buyer and seller are given by Φ and Ψg, respectively. It

can be shown that a contract is Pareto optimal if and only if it solves, for some λ ≥ 0, the
constrained optimization problem

min
C∈I×R

Φ(C) subject to Ψg(C) = λ. (2.7)

This formulation seeks to minimize the buyer’s risk in (2.5) subject to a fixed level of seller

exposure in (2.6), where λ reflects the seller’s required profit or surplus. In particular, when

c(x) = (1 + ρ)x and λ = 0, that is the seller is exactly compensated for their risk exposure,

the constraint in (2.7) reduces to π = (1+ρ)Pg (IY (X)) and the Pareto optimization problem

in (2.7) reduces to the buyer’s problem in (2.3).

2.4 Optimality with the Proportional Hazard Transform

In this section, we consider a modification of the premium principle employed in (2.1). Specif-

ically, we allow for the distortion function used to calculate the premium to be dependent on
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the prevailing risk environment, which can therefore be assessed assuming a different degree

of risk aversion. Of particular interest is the case of Proportional Hazard (PH) transform

(see Wang (1995)), which features a power distortion function with the power coefficient

depending on the prevailing environment and featuring a scenario-specific buyer’s risk aver-

sion. Thus, for any given indemnity profile I ∈ I, the realized risk position of the buyer can

be expressed as

B(I) = RY (X) +
K

∑
k=1

Pgk (Ik(X)1{Y =k}) , (2.8)

where the second term on the right-hand side is the seller’s risk-adjusted premium. Analo-

gously, with respect to equation (2.8), the buyer’s risk position at t = 0 is articulated as

φ (B(I)) = φ (RY (X)) +
K

∑
k=1

Pgk (Ik(X)1{Y =k}) (2.9)

The main theorem in Section 2.2 still works if the objective function in (2.4) is replaced

by (2.9). The proof is omitted as it is similar to that in the main Theorem (2.2.1). The Pareto

interpretation of the optimal buyer’s indemnity seen in Section 2.3 can also be extended to

this setting with a suitable modification of the seller’s distortion risk measure.

3 Excess Verdicts

This section builds on the theoretical framework in Section 2 by applying it to the problem

of excess verdicts. We aim to model how these outcomes arise by examining the joint

decisions made by insurance buyers and sellers, particularly in the presence of gaps between

court awarded damages and policy coverage. The focus is on identifying the main triggering

factors and understanding how external conditions influence these outcomes, particularly in

legal systems where insurance contracts may fall short in covering unexpected losses.

Suppose a loss, denoted by X, occurs due to an external event, such as injury or property

damage. Let L be the loss amount that triggers the policy limit. When X ≤ L, the loss is

handled according to the contract terms, with both buyer and seller sharing the cost. When
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X > L, the amount above L is generally the buyer’s responsibility.

As in Section 2, let Y be a variable that represents how the legal process unfolds, especially

in relation to excess verdicts and the seller’s conduct. The flowchart in Figure 4 helps

illustrate the different cases: Y = 0 means no loss; Y = 1 means a legal claim is made, but

the awarded damages stay within the insurance limit (X ≤ L), so excess verdict does not

exist; Y = 2 means X > L, so there is excess verdict, but no finding of bad faith by the seller;

and Y = 3 means there is both an excess verdict and a court decision that the seller acted in

bad faith. Clearly, in both cases Y = 2 and Y = 3, the loss exceeds the policy limit.

Note that we do not consider the possibility of bankruptcy or solvency constraints for

either the buyer or seller. Also, the legal process works in two steps: first, whether there is

an excess verdict, and second, whether the seller is found to have acted in bad faith. In the

next Sections 3.1 and 3.2, we look at contracts with and without provisions that depend on

the legal outcome and compare their effects.

3.1 Contract Without Environment Contingent Provisions

Let Î be the indemnity function and define the retention as R̂(X) =X − Î(X). We consider

a contract that does not include any special rules for how to handle excess verdicts. The

contract terms apply in scenarios Y = 1 and Y = 2. In case Y = 2, where the loss exceeds the
policy limit (X > L), the seller pays only up to the limit, so Î(X) = Î(L). The buyer then

covers the rest, with total liability equal to R̂(X) = R̂(L) + (X −L).
In case Y = 3, when the loss exceeds L, the court will decide how to split the payment

between the buyer and the seller, which may require a lengthy legal process. Let Îc(X) be
the seller’s payment as decided by the court, and R̂c(X) = X − Îc(X) be the buyer’s share.

These court ordered amounts differ from the original contract terms. Also, the longer the

legal process, the greater the financial and emotional stress faced by the plaintiff. Therefore,

the loss X in case Y = 3 tends to be larger than in cases Y = 1 or Y = 2, and the seller’s

actual obligation Îc(X) is usually much higher than the agreed indemnity Î(X) = Î(L).
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3.2 Contract With Environment Contingent Provisions

Now consider a contract that includes special terms for handling excess verdicts, especially

when bad faith by the seller is confirmed after the verdict. The goal of such a provision is

to reduce the uncertainty and length of legal disputes related to excess losses.

For cases Y = 1 and Y = 2, the contract works similarly to the one in Section 3.1, with

indemnity functions I1, I2 and retention functions R1, R2. In case Y = 2, where X > L, the
buyer pays the excess: R2(X) = R2(L) + (X − L). In the excess verdict case Y = 3, where
the seller’s bad faith is found and X > L, the contract uses a new indemnity rule I3 and

retention R3 that were agreed in advance. Including these provisions affects how losses are

handled in all three cases (Y = 1,2,3), and the limit L may be different from the Section 3.1.

Based on the results in Section 2.2, the optimal contract in each case will share a common

deductible m and have an upper limit ni for each scenario i = 1,2,3. In normal situations

(Y = 1 or Y = 2), the indemnity can follow a common structure, but with different ranges of

X. The limit L used in these cases corresponds to n1 = n2. When Y = 3, the seller agrees to

pay for all losses up to a higher limit L̃ = n3, where L̃ > L. Then, the seller’s indemnity is

given by I3(X) =X −R3(L̃) if X ≤ L̃, and I3(X) = L̃−R3(L̃) if X > L̃. The buyer’s retention
is R3(X) = R3(L̃) when X ≤ L̃, and R3(X) = R3(L̃) + (X − L̃) when X > L̃. Table 1 shows

how the buyer and seller payments differ depending on whether the contract includes these

environment-contingent provisions.

Environment Party Without Provisions With Provisions

Y = 1
Buyer R̂(X) R1(X)

Seller Î(X) I1(X)

Y = 2
Buyer R̂(X) = R̂(L) + (X −L) R2(X) = R2(L) + (X −L)

Seller Î(X) = Î(L) I2(X) = I2(L)

Y = 3
Buyer R̂c

(X) R3(L̃) + (X − L̃)+
Seller Îc(X) I3(X) =X −R3(L̃) − (X − L̃)+

Table 1: Payments of the buyer and seller in the contract with/without environment con-
tingent provisions across different environments.
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4 Numerical Optimization Analysis

In this section, we provide some numerical examples, focusing on the role played by risk

aversion.

4.1 Model Parameters Setting

We consider three risk environments, each representing a different legal outcome. In each

case, the loss (in thousands of monetary units) follows a Type II Pareto distribution. Table 2

summarizes the scenario probabilities and distribution parameters. The expected loss and

standard deviation increase across the scenarios, with the third environment representing

the highest and most uncertain losses, such as those from excess verdicts.

Risk Environment P (Y = k) λ α E[X ∣Y = k] SD[X ∣Y = k]

Y = 1 60% 40 5 10 12.91

Y = 2 30% 200 3 100 173.21

Y = 3 10% 1,500 2.5 1,000 2236.07

Table 2: Risk environment parameters and their statistical properties.

We use CVaR95% as the risk measure and apply the PH transformation (introduced in

Section 2.4) to adjust risk premiums in the presence of heavy-tailed losses. Figure 1 shows

how the premium for full insurance changes with the distortion parameter β in the function

g(z) = zβ. Lower values of β make the distortion more concave, leading to higher premiums.

4.2 Results Analysis

This section presents numerical results for the optimal contracts described in Section 2, and in

particular Section 2.4. According to Theorem 2.2.1, these contracts can be chosen to feature a

common deductible m =m1 =m2 =m3 and environment-specific limits n1, n2, n3. We exploit

the finite-dimensional nature of the problem to find the optimal contract by minimizing,

using standard numerical optimization tools, the objective function over the parameters
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Figure 1: Risk-adjusted premium Pg(X), on a log-scale, with g(z) = zβ for different value of
β and environment.

m,n1, n2, n3. We analyze the interplay between the distortion parameters β1, β2, β3 and the

policyholder coverage preferences across different risk scenarios.

We use as baseline values for the distortion coefficients β1 = 0.65, β2 = 0.55, and β3 =
0.45, so that the risk aversion and the loading increase with the riskiness of the scenario.

Tables 3, 4, and 5 show the loss quantiles, conditional on each environment, corresponding to

the deductible m and the limits n1, n2, n3, as each of the distortion coefficients is separately

stressed. These values show the chance of not exceeding the deductible (the loss is fully paid

by the buyer) and of exceeding the scenario-specific limit (the coverage is exhausted).

When βk increases, the risk aversion in scenario k decreases, making insurance cheaper

and leading to more generous coverage, i.e., lower deductible and higher upper limit. How-
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ever, changes in βk mostly affect coverage in scenario k and have limited impact on the limits

in the other scenarios. In scenario k, the limit rises quickly with βk, and eventually full in-

surance is offered above the deductible, similar to classic optimal insurance results. This

pattern also appears in the high-risk case Y = 3, although the pricing rule must embody a

much-limited distortion before full insurance is attained.

The coverage structure depends strongly on the scenario. The common deductible is

high enough that, in the low-risk case Y = 1, insurance only starts to pay for large losses,

but almost all losses beyond that are covered. In contrast, in the high-risk case Y = 3, very
extreme losses are not covered unless the buyer has low risk aversion in that scenario.

Risk environment Y1 Risk environment Y2 Risk environment Y3

β1 FX(m) SX(n1) FX(m) SX(n2) FX(m) SX(n3)

0.45 93.13% 0.72% 32.80% 0.43% 4.57% 4.31%

0.55 89.44% 0.21% 27.58% 0.43% 3.69% 4.31%

0.65 85.40% 0.03% 23.60% 0.43% 3.06% 4.31%

0.75 81.19% 0.00% 20.48% 0.43% 2.60% 4.31%

0.85 76.93% 0.00% 17.95% 0.43% 2.24% 4.31%

0.95 72.71% 0.00% 15.87% 0.43% 1.95% 4.31%

Table 3: CDF at the deductible and survival function at the upper limit, conditional on each
scenario, for different values of β1.

Risk environment Y1 Risk environment Y2 Risk environment Y3

β2 FX(m) SX(n1) FX(m) SX(n2) FX(m) SX(n3)

0.45 90.69% 0.032% 29.12% 1.44% 3.94% 4.31%

0.55 85.40% 0.032% 23.60% 0.43% 3.06% 4.31%

0.65 79.93% 0.032% 19.67% 0.06% 2.48% 4.31%

0.75 74.51% 0.032% 16.72% 0.00% 2.07% 4.31%

0.85 69.28% 0.00% 14.41% 0.00% 1.75% 4.31%

0.95 64.32% 0.00% 12.57% 0.00% 1.51% 4.31%

Table 4: CDF at the deductible and survival function at the upper limit, conditional on each
scenario, for different values of β2.
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Risk environment Y1 Risk environment Y2 Risk environment Y3

β3 FX(m) SX(n1) FX(m) SX(n2) FX(m) SX(n3)

0.45 85.40% 0.032% 23.60% 0.43% 3.06% 4.31%

0.55 78.72% 0.032% 18.95% 0.43% 2.38% 1.28%

0.65 72.53% 0.00% 15.80% 0.43% 1.94% 0.19%

0.75 67.09% 0.00% 13.56% 0.43% 1.64% 0.006%

0.85 62.45% 0.00% 11.94% 0.43% 1.43% 0.00002%

0.95 58.57% 0.00% 10.73% 0.43% 1.27% 0.00%

Table 5: CDF at the deductible and survival function at the upper limit, conditional on each
scenario, for different values of β3.

5 Conclusions and Future Research

In this paper, we study the optimal insurance problem from the buyer’s perspective in multi-

ple indemnity environments, with a focus on the legal and financial effects of excess verdicts.

Our model examines risk sharing between policyholders and insurers, especially when legal

judgments lead to damages far beyond policy limits. The occurrence of excess verdicts,

where court mandated payments exceed the policyholder’s coverage, shows the practical im-

portance of our framework. Our analysis demonstrates that the optimal contract structure

is a layered indemnity for each risk environment while keeping consistent deductibles across

all environments. By using risk measures such as VaR and CVaR, we simplify complex

optimization problems and improve the efficiency of numerical optimization and decision-

making. This approach may improve risk sharing among parties and provide a practical

framework for managing excess liability in real-world insurance cases.

While VaR and CVaR are widely used in the insurance industry, future research may con-

sider alternative risk measures to gain further insight into risk sharing in different indemnity

settings. A possible line of future research may explore whether Theorem 2.2.1 holds true

under a wide class of risk measures, including VaR and CVaR. In addition, evaluating the

enforceability of anticipatory clauses across jurisdictions could enhance the legal strength

of the excess verdict model. Empirical studies using real-world insurance data, particularly

in cases involving excess verdicts, are important for validating our theoretical framework.
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These topics offer promising directions for future work.
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A Ancillary Results

A.1 Left and right continuous inverses

Given the role of left and right continuous inverse functions in the proof of the main result

of this paper, Theorem 2.2.1. We provide in this section their definitions and some of their

properties.

Definition A.1. Let f ∶ R → R be a real function. The right-continuous inverse of f is

given by

f−1+(y) = inf {x ∈ R ∶ f(x) > y} , y ∈ R.

The left-continuous inverse of f ∶ R→ R is given by

f−1(y) = inf {x ∈ R ∶ f(x) ≥ y} , y ∈ R.

In this definition, we use the convention that inf ∅ = +∞.
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The next result summarizes key properties of right-continuous functions and their right-

continuous inverses. For detailed discussions and proofs related to left- and right-continuous

inverses, see Embrechts and Hofert (2013).

Proposition A.1.1. Let f ∶ R → R be a real-valued function. Then, for a given y ∈ R, the
following properties hold:

a) f−1+ (y) = −∞ if and only if f (x) > y for all x ∈ R; further, f−1+ (y) = +∞ if and only

if f (x) ≤ y for all x ∈ R.

b) Assume f is right-continuous and f−1+ (y) < ∞, then f (f−1+ (y)) ≥ y; further, if f is

continuous, then f (f−1+ (y)) = y.

c) x > f−1+ (y) implies that f (x) > y, and the reverse implication holds if f is left-

continuous; further, f (x) ≤ y implies that x ≤ f−1+ (y), and the reverse implication

holds if f is left-continuous.

d) Let f be non-decreasing and right-continuous. Then f−1(y) ≤ x if and only if f(x) ≥ y,
for any (x, y) ∈ R2.

B Proofs of the Main Results

We now present the proof of our main results. For clarification, we will focus on using

Wang’s premium principle. Although our provided numerical optimization is based on the

risk-adjusted premium of the PH transform, the proof approaches are similar. Therefore, we

do not provide a separate proof for the PH transform method.

Since our proof will rely on some properties related to stochastic ordering, we recall

the formal definition of stop-loss order and apply some related results, see Denuit et al.

(2006), Rolski et al. (1999) and Shaked and Shanthikumar (2007),

20



B.1 Proof of Theorem 2.2.1 with VaR Preferences

Fix I ∈ I and let Rk = Id − Ik. Define

b ∶= VaRα (RY ) . (B.1)

For each k = 1, . . . ,K, let R−1+k denote the right-continuous inverse of Rk and note that

Rk(R−1+k (b)) = b provided R−1+k (b) < +∞, see Proposition A.1.1b). In this case, it holds

b ≤ R−1+k (b) since Rk + Ik = Id. The same inequality holds if R−1+k (b) = +∞. Consequently,

define mk = b, nk = R−1+k (b) and Ĩk by

Ĩk(x) = (x − b)+ − (x −R−1+k (b))+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < b,

x − b if b ≤ x ≤ R−1+k (b),

R−1+k (b) − b if R−1+k (b) < x.

(B.2)

Note that the deductible mk = b is independent of the environment. It follows that

R̃k(x) = Id(x) − Ĩk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if 0 ≤ x < b,

b if b ≤ x ≤ R−1+k (b),

x −R−1+k (b) + b if R−1+k (b) < x.

(B.3)

It is understood that, in (B.2) and (B.3), only the first two cases apply when R−1+k (b) =
+∞. The first step is to demonstrate that

{Rk (X) > b} = {R̃k (X) > b} for any k = 1, . . . ,K. (B.4)

According to Proposition A.1.1a), if R−1+k (b) = +∞ then Rk(x) ≤ b for all x. But it is seen

from (B.3) that the latter is equivalent to R̃k(x) ≤ b for all x. Therefore, we only need to

consider the case when R−1+k (b) < +∞. Suppose Rk(x) > b. According to Proposition A.1.1c),

we deduce that x > R−1+k (b) and from (B.3), we obtain R̃k(x) > b. Conversely, suppose
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R̃k(x) > b. From (B.3) it follows that x > R−1+k (b) and Proposition A.1.1c) implies that

Rk(x) > b. Therefore, (B.4) holds.
In the second step, we aim to prove that Ĩk(x) ≤ Ik(x) for all x, from which

Ĩk (X) ≤ Ik (X) for any k = 1, . . . ,K. (B.5)

We proceed by cases on the value of x, exploiting the form of Ĩk(x) in (B.2). For 0 ≤ x < b,
we have Ĩk(x) = 0 ≤ Ik(x). For b ≤ x ≤ R−1+k (b), we find Ĩk(x) = x − b. Therefore, Ĩk(x) ≤
Ik(x) if and only if Rk(x) ≤ b. If R−1+k (b) = +∞, this follows from Proposition A.1.1a).

If instead R−1+k (b) < +∞, then Rk(x) ≤ Rk (R−1+k (b)) = b by Proposition A.1.1b). Finally,

assume R−1+k (b) < x, so that R−1+k (b) < +∞ and we have Ĩk(x) = R−1+k (b) − b. Therefore,

Ĩk(x) ≤ Ik(x) if and only if Rk(x) ≤ x − R−1+k (b) + b. By the 1-Lipschitz-continuity of Rk,

we have 0 ≤ Rk(x) − Rk (R−1+k (b)) ≤ x − R−1+k (b), from which the conclusion follows since

Rk (R−1+k (b)) = b by Proposition A.1.1b). Thus, (B.5) is obtained.

Letting R̃Y (X) = ∑K
k=1 R̃k (X)1{Y =k}, the third step is to demonstrate

VaRα (RY (X)) = VaRα (R̃Y (X)) . (B.6)

From (B.5), we have R̃k (X) ≥ Rk (X) for all k = 1, . . . ,K, which implies VaRα (R̃Y (X)) ≥
VaRα (RY (X)) by stochastic dominance. From (B.4) we get P (Rk (X) > b) = P (R̃k (X) > b)

for k = 1, . . . ,K. Consequently, we deduce P (R̃Y (X) > b) = P (RY (X) > b) ≤ 1 − α, since,
by definition, b = VaRα (RY (X)). By Proposition A.1.1d), it follows that VaRα (R̃Y (X)) ≤
VaRα (RY (X)). Therefore, (B.6) holds.

Let ĨY (X) = ∑K
k=1 Ĩk (X)1{Y =k}, the last step establishes the inequality

Pg (ĨY ) ≤ Pg (IY ) . (B.7)

Recall that Ĩk (X) ≤ Ik (X) for all k = 1, . . . ,K, which implies that ĨY (X) ≤ IY (X). (B.7)

follows as the distortion premium principle Pg with stochastic dominance. From which

Pg (ĨY (X)) ≤ Pg (IY (X)) follows and (B.7) holds, which completes the last step.
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Finally, (B.6), together with (B.7) show that, for any ρ ≥ 0,

R(Ĩ) = VaRα (R̃Y ) + (1 + ρ)Pg (ĨY ) ≤ VaRα (RY ) + (1 + ρ)Pg (IY ) = R(I) .

B.2 Proof of Theorem 2.2.1 with CVaR Preferences

Fix I ∈ I and define b as in the Appendix B.1. For k = 1, . . . ,K, define mk = b and nk should

be a value which satisfies nk ≥ R−1+k (b). Further, define Ĩk by

Ĩk(x) = (x − b)+ − (x − nk)+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < b,

x − b if b ≤ x ≤ nk,

nk − b if nk < x,

(B.8)

and

R̃k(x) = Id(x) − Ĩk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if 0 ≤ x < b,

b if b ≤ x ≤ nk,

x − nk + b if nk < x.

(B.9)

In the initial step, we confirm that there exists an nk ≥ R−1+k (b) for which

E [(R̃k (X) − b)+] = E [(Rk (X) − b)+] holds for every k = 1, . . . ,K. (B.10)

According to Proposition A.1.1a), if nk = R−1+k (b) = +∞, then Rk(x) ≤ b for all x, and also

R̃k(x) ≤ b for all x from (B.9). Consequently, both sides of (B.10) equate to zero. Given

this, we restrict our attention only to the case R−1+k (b) < +∞.

For x ≤ R−1+k (b), it follows from Proposition A.1.1c) that Rk(x) ≤ b and from (B.9), it

leads to R̃k(x) ≤ b, which further means that

E [(R̃k (X) − b)+ 1{X≤R−1+k
(b)}] = E [(Rk (X) − b)+ 1{X≤R−1+k

(b)}] = 0. (B.11)
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For x > R−1+k (b), using the 1-Lipschitz-continuity of Rk, it follows that 0 ≤ Rk(x) −
Rk (R−1+k (b)) ≤ x−R−1+k (b), and then by Proposition A.1.1b), we have Rk(x) ≤ x−R−1+k (b)+b
for all x > R−1+k (b). If we consider the case Rk(x) = x−R−1+k (b) + b for all x > R−1+k (b), which
can be visualized in the Figure 2. Then we can choose nk = R−1+k (b) exactly, so R̃k(x) =
x−R−1+k (b)+ b holds for x > nk = R−1+k (b) from (B.9), which implies that Rk(X)1{X>R−1+

k
(b)} =

R̃k(X)1{X>R−1+
k
(b)}. It means E [(R̃k (X) − b)+ 1{X>R−1+k

(b)}] = E [(Rk (X) − b)+ 1{X>R−1+k
(b)}],

which can be combined with (B.11) to obtain (B.10) holds. If we consider the case Rk(ck) <
ck −R−1+k (b) + b for some ck > R−1+k (b), which can be visualized in the Figure 3. Then we can

have R−1+k (b) < ck −Rk(ck)+ b. Furthermore, we can suppose there exists a nk > R−1+k (b) such
that Rk(ck) = ck −nk + b holds, which implies that nk = ck −Rk(ck) + b < ck since ck > R−1+k (b)
implies Rk(ck) > b from Proposition A.1.1c). Besides, we also have R̃k(ck) = ck − nk + b
from (B.9) since ck > nk, so Rk(ck) = R̃k(ck) means that for x > R−1+k (b), Rk(x) and R̃k(x)
can always intersect at a point with x = ck > R−1+k (b), then there exist a nk > R−1+k (b)
satisfying nk = ck −Rk(ck)+ b such that, for x ∈ (R−1+k (b), ck], R̃k(x) ≤ Rk(x) < x−R−1+k (b)+ b
is established, which further yields that

E [Rk(X)1{R−1+
k
(b)<X≤ck}] ≥ E [R̃k(X)1{R−1+

k
(b)<X≤ck}] . (B.12)

And for x > ck, the inequalities Rk(x) ≤ R̃k(x) < x −R−1+k (b) + b is held, which further yields

that

E [Rk(X)1{X>ck}] ≤ E [R̃k(X)1{X>ck}] . (B.13)

Then we can define a function as f(ck) = E [R̃k(X)1{X>R−1+
k
(b)}] −E [Rk(X)1{X>R−1+

k
(b)}] for

ck > R−1+k (b). If ck ↑ +∞, then nkmax ↑ ck − Rk(ck) + b, we can further obtain that 0 ≤
E [R̃k(X)1{X>ck}] − E [Rk(X)1{X>ck}] → 0, then combined with the inequality from (B.12),

it further means that

f(ck) = E [R̃k(X)1{R−1+
k
(b)<X≤ck}] −E [Rk(X)1{R−1+

k
(b)<X≤ck}] ≤ 0 (B.14)

If ck ↓ R−1+k (b) then nk ↓ R−1+k (b), we can further deduce that 0 ≤ E [Rk(X)1{R−1+
k
(b)<X≤ck}] −
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E [R̃k(X)1{R−1+
k
(b)<X≤ck}] → 0, then combined with the inequality from (B.13), which further

implies that

f(ck) = E [R̃k(X)1{X>ck}] −E [Rk(X)1{X>ck}] ≥ 0. (B.15)

Furthermore, we know that f(ck) is non-decreasing and continuous for ck > R−1+k (b), so

from (B.14) and (B.15), it is evident to find a suitable ck0 > R−1+k (b) to satisfy that Rk(ck0) <
ck0 −R−1+k (b) + b, then for nk > R−1+k (b), we can have that

f(ck0) = E [R̃k(X)1{X>R−1+
k
(b)}] −E [Rk(X)1{X>R−1+

k
(b)}] = 0. (B.16)

This further indicate that E [(R̃k (X) − b)+ 1{X>R−1+k
(b)}] = E [(Rk (X) − b)+ 1{X>R−1+k

(b)}] since
for x > R−1+k (b), Rk(x) > b from Proposition A.1.1c) and R̃k(x) ≥ b from (B.9), which can be

combined with (B.11) to obtain (B.10) holds.

In our second step, we aim to demonstrate that

Ĩk (X) ≤sl Ik (X) for any k = 1, . . . ,K. (B.17)

which means that Ĩk (X) is smaller than Ik (X) in stop-loss order based on (B.10). We

proceed by cases on the value of x.

For 0 ≤ x ≤ R−1+k (b) ≤ nk, by cross-referencing with our earlier derivations in Ap-

pendix B.1, we can confirm that Ĩk(x) ≤ Ik(x) for all x ≤ R−1+k (b). Taking this a step

further, define P (X) = Ĩk(X)1{X≤R−1+
k
(b)} and Q(X) = Ik(X)1{X≤R−1+

k
(b)}. So for any realiza-

tion of X, we have P (X) ≤ Q(X), which further leads to P (X) ≤sl Q(X) from Theorem

3.2.1 in Rolski et al. (1999) .

For x > R−1+k (b), define M(X) = Ĩk(X)1{X>R−1+
k
(b)} and N(X) = Ik(X)1{X>R−1+

k
(b)}. If for

the case Rk(x) = x −R−1+k (b) + b, we have R̃k(x) = Rk(x) for x > R−1+k (b) from the first step,

which mean that Ĩk(x) = Ik(x) for x > R−1+k (b) by using the identity Ik = Id−Rk, this further
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Figure 2: Construction of Rk under the conditions for CVaR risk preference: Rk(x) = x −
R−1+k (b) + b for x > R−1+k (b). A linear Rk is chosen for graphical convenience.

lead to M(X) = N(X), then we can get that

Ĩk(X) = Ĩk(X)1{X≤R−1+
k
(b)} + Ĩk(X)1{X>R−1+

k
(b)} = P (X) +M(X) = P (X) +N(X)

≤ Q(X) +N(X) = Ik(X)1{X≤R−1+
k
(b)} + Ik(X)1{X>R−1+

k
(b)}Ik(X)

This implies (B.17) holds by applying Theorem 3.2.1 in Rolski et al. (1999). If for the case

Rk(x) < x −R−1+k (b) + b, then focusing on x ∈ (R−1+k (b), ck], we have R̃k(x) ≤ Rk(x) from the

first step, which guarantees that Ĩk(x) ≥ Ik(x). This further implies that Ĩk(X)1{R−1+
k
(b)<X≤ck} ≥

Ik(X)1{R−1+
k
(b)<X≤ck}, which can be Ĩk(X)1{X>R−1+

k
(b)}1{X≤ck} ≥ Ik(X)1{X>R−1+k

(b)}1{X≤ck}. So
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Figure 3: Construction of R̃k under the conditions for CVaR risk preference: R̃k(x) < x −
R−1+k (b) + b for x > R−1+k (b). The increase in ck leads to an increase in the lower part of the
shaded region, while the upper part of the shaded region decreases, which is consistent with
our proof. A linear Rk is chosen for graphical convenience.

for any realization of X, we have M(X) ⋅ 1{X≤ck} ≥ N(X) ⋅ 1{X≤ck}. Then it means that

P (M(X) ≤ t,X ≤ ck) ≤ P (N(X) ≤ t,X ≤ ck) (B.18)

Then for x > ck, Rk(x) ≤ R̃k(x) in the initial step can lead to Ik(x) ≥ Ĩk(x). This fur-

ther implies that Ik(X)1{X>ck} ≥ Ĩk(X)1{X>ck}, which can be Ik(X)1{X>R−1+
k
(b)}1{X>ck} ≥

Ĩk(X)1{X>R−1+
k
(b)}1{X>ck}. So for any realization of X, N(X) ⋅ 1{X>ck} ≥ M(X) ⋅ 1{X>ck}
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holds. Then it leads to

P (N(X) ≤ t,X > ck) ≤ P (M(X) ≤ t,X > ck) . (B.19)

Besides, from the definition of M and N , it is clear that M(x) = N(x) = 0 for x ≤ R−1+k (b).
For x ∈ (R−1+k (b), ck], we know that Ĩk(x) ∈ (R−1+k (b) − b, nk − b] from (B.8), which im-

plies that M(x) ∈ (R−1+k (b) − b, nk − b]. Furthermore, we have Ik (R−1+k (b)) = R−1+k (b) −
Rk (R−1+k (b) = R−1+k (b)− b by using the Proposition A.1.1b), and Ik(ck) = Ĩk(ck) = nk − b since
Rk(ck) = R̃k(ck) from the first step and the identity Ik = Id −Rk, which implies that Ik(x) ∈
(R−1+k (b) − b, nk − b] for x ∈ (R−1+k (b), ck]. So we obtain that N(x) ∈ (R−1+k (b) − b, nk − b]

for x ∈ (R−1+k (b), ck]. For x > ck, we have Ĩk(x) = nk − b from (B.8), which means that

M(x) = nk − b. Besides, we also have that Ik(x) ≥ Ĩk(x) for x > ck, which means that

N(x) ≥ nk − b for x > ck. Therefore, we can summarize M as

M(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ R−1+k (b),

∈ (R−1+k (b) − b, nk − b] if x ∈ (R−1+k (b), ck] ,

nk − b if x > ck,

(B.20)

and N as

N(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ R−1+k (b),

∈ (R−1+k (b) − b, nk − b] if x ∈ (R−1+k (b), ck] ,

≥ nk − b if x > ck.

(B.21)

Now, for t < 0, we have FM(X)(t) = FN(X)(t) = 0 from (B.20) and (B.21). For t ∈ [0, nk − b),
from (B.20) and (B.21), we know that for x > ck, N(x) ≥ nk − b =M(x), it further leads to
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P (M(X) ≤ t,X > ck) = P (N(X) ≤ t,X > ck) = 0. Therefore, we have

FM(X)(t) = P (M(X) ≤ t,X ≤ ck) + P (M(X) ≤ t,X > ck) = P (M(X) ≤ t,X ≤ ck)

≤ P (N(X) ≤ t,X ≤ ck)

= P (N(X) ≤ t,X ≤ ck) + P (N(X) ≤ t,X > ck) = FN(X)(t).

The third inequality comes from (B.18). For t ≥ nk − b, we have FM(X)(t) = 1 since M(x) ≤
nk − b from (B.20), and FN(X)(t) ≤ 1 because from (B.21), we have N ≥ nk − b when x > ck.
Consequently, FN(t) ≤ FM(t) for t ≥ nk − b. So denote t0 = nk − b, when t < t0, we have the

condition FM(X)(t) ≤ FN(X)(t), when t ≥ t0, FN(X)(t) ≤ FM(X)(t). Besides, (B.16) and the

identity Ik = Id − Rk give that E [Ik(X)1{X>R−1+
k
(b)}] = E [Ĩk(X)1{X>R−1+

k
(b)}], which means

that E[M(X)] = E[N(X)] and applying Theorem 3.2.4 in Rolski et al. (1999), we can assert

that M(X) ≤sl N(X). Now, for any d ≥ 0, we have

E [(Ĩk (X) − d)+] = E [(Ĩk (X) − d)+ 1{X≤R−1+k
(b)}] +E [(Ĩk (X) − d)+ 1{X>R−1+k

(b)}]

= E [(Ĩk (X)1{X≤R−1+
k
(b)} − d)+] +E [(Ĩk (X)1{X>R−1+k

(b)} − d)+]

= E [(P (X) − d)+] +E [(M(X) − d)+]

≤ E [(Q(X) − d)+] +E [(N(X) − d)+]

= E [(Ik (X)1{X≤R−1+
k
(b)} − d)+] +E [(Ik (X)1{X>R−1+k

(b)} − d)+]

= E [(Ik (X) − d)+ 1{X≤R−1+k
(b)}] +E [(Ik (X) − d)+ 1{X>R−1+k

(b)}]

= E [(Ik (X) − d)+] .

The justification for the fourth inequality is grounded in the established stop-loss orders

P (X) ≤sl Q(X) and M(X) ≤sl N(X), coupled with the application of Theorem 3.2.2 in Rol-

ski et al. (1999). Besides, Ĩk(x) ≤ Ik(x) for all x ≤ R−1+k (b) means E [Ĩk(X)1{X≤R−1+
k
(b)}] ≤

E [Ik(X)1{X≤R−1+
k
(b)}], combined with the fact that E [Ĩk(X)1{X>R−1+

k
(b)}] = E [Ik(X)1{X>R−1+

k
(b)}],
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then we have for any d < 0 that

E [(Ĩk (X) − d)+] = E [Ĩk (X) − d] = E [Ĩk (X)] − d

= (E [Ĩk(X)1{X≤R−1+
k
(b)}] +E [Ĩk(X)1{X>R−1+

k
(b)}]) − d

≤ (E [Ik(X)1{X≤R−1+
k
(b)}] +E [Ik(X)1{X>R−1+

k
(b)}]) − d

= E [Ik (X)] − d = E [Ik (X) − d]

= E [(Ik (X) − d)+]

Therefore, all d ∈ R, we have E [(Ĩk (X) − d)+] ≤ E [(Ik (X) − d)+]. Then, by Theorem 3.2.2

in Rolski et al. (1999), equation (B.17) follows, which completes the second part of the proof.

The third step demonstrates that

CVaRα (R̃Y ) = CVaRα (RY ) . (B.22)

From (B.17), we haveRk (X) ≤sl R̃k (X) for all k = 1, . . . ,K, which implies CVaRα (R̃Y (X)) ≥
CVaRα (RY (X)) by stochastic dominance. Recall (B.10), we can deduce E [(R̃Y (X) − b)+] =
E [(RY (X) − b)+]. Utilizing the dual representation of CVaR by Rockafellar and Uryasev

(2000), we have

CVaRα (RY (X)) = inf
t∈R
{t + 1

1 − αE [(RY (X) − t)+]} .

where the infimum is achieved at t∗ = b, yielding CVaRα (RY (X)) = b+ 1
1−αE [(RY (X) − b)+].

Therefore, we have

CVaRα (R̃Y (X)) = inf
t∈R
{t + 1

1 − αE [(R̃Y (X) − t)+]}

≤ b + 1

1 − αE [(R̃Y (X) − b)+]

= b + 1

1 − αE [(RY (X) − b)+] = CVaRα (RY (X)) .

Thus, we establish (B.22) and the third part of the proof is done.
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In the final step, we aim to show that

Pg (ĨY ) ≤ Pg (IY ) , (B.23)

Recall from (B.17), which further implies ĨY (X) ≤sl IY (X). Applying Theorem 1 in Wang

(1996), we obtain Pg (ĨY (X)) ≤ Pg (IY (X)). Therefore, (B.23) holds.
Thus, combining (B.22) and (B.23) demonstrates that, for ρ ≥ 0,

R(Ĩ) = CVaRα (R̃Y ) + (1 + ρ)Pg (ĨY ) ≤ CVaRα (RY ) + (1 + ρ)Pg (IY ) = R(I) .

B.3 Proof of Corollary 2.2.1 with VaR Preferences

Let (I1, . . . , Im) ∈ I − I∗, and define Ĩk as in (B.8) for all k. Since (I1, . . . , Im) is not of

layer type, there exists at least one index k0 ∈ {1, . . . ,m} such that P (Ĩk0(X) < Ik0(X)) > 0.
Since P(Y = k0) > 0 and Ĩk0(X) < Ik0(X) on a set of positive probability, it follows that

P (ĨY (X) < IY (X)) > 0 and ĨY (X) ≤ IY (X) almost surely. As a result, IY (X) strictly

dominates ĨY (X) in the usual stochastic dominance order. Since the function g is non-

decreasing and strictly concave on (0,1), we obtain

Pg (ĨY (X)) < Pg (IY (X)) . (B.24)

Combining (B.6) and (B.24), we have for any ρ > 0,

Rφ (Ĩ) = VaRα (R̃Y (X)) + (1 + ρ)Pg (ĨY (X)) < VaRα (RY (X)) + (1 + ρ)Pg (IY (X)) = Rφ(I),

Proof of Proposition 2.2.1

As established in Theorem 2.2.1, the optimal contract can be found within the class I∗.
Under CVaR risk preferences and the expected premium principle, and exploiting the dual

representation of CVaR by Rockafellar and Uryasev (2000), the optimal contract can be
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found by solving the problem

min
t,m,{nk}

(t + 1

1 − αE[(RY (X) − t)+] + (1 + ρ)E[IY (X)]) ,

subject to m ≥ 0, nk ≥ m for all k and t ∈ R. The KKT first-order necessary conditions for

an optimum (t∗,m∗,{n∗k}) require the existence of multipliers µk for k = 0, . . . ,K, s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(R∗Y (X) > t∗) = 1 − α

− 1

1 − αP(R
∗
Y (X) > t∗,X >m∗) + (1 + ρ)P(X >m∗) =

K

∑
k=1

µk − µ0

− 1

1 − αP(R
∗
k(X) > t∗,X > n∗k, Y = k) + (1 + ρ)P(X > n∗k, Y = k) = µk,

for k = 1, . . . ,K

µ0m
∗ = 0 and µk(m∗ − n∗k) = 0, for k = 1, . . . ,K

(B.25)

(B.26)

(B.27)

(B.28)

Proof of (i). Assume by contradiction that n∗j >m∗ for at least one environment 1 ≤ k ≤K,

so that µk = 0 and (B.27) for environment j gives, after rearranging,

P(R∗k(X) > t∗∣X > n∗k, Y = j) = (1 + ρ)(1 − α), (B.29)

a contradiction as (1 + ρ)(1 − α) > 1.
Proof of (ii). Assume by contradiction that m∗ = 0 < n∗k for all k. This requires that

µk = 0 for all k, so that (B.26) becomes

1

1 − αP(R
∗
Y (X) > t∗,X > 0) − (1 + ρ)P(X > 0) = µ0.

Noting that, from (B.25), t∗ ≥ 0, the latter equation can be simplified, again using (B.25),

into

1 − (1 + ρ)P(X > 0) = µ0 ≥ 0,

which rearranged gives P(X > 0) ≤ 1
1+ρ , a contradiction.
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C Flow charts: Court Process

Event
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Figure 4: Flowchart illustrating the stages of legal proceedings concerning insurance claims
and the subsequent apportionment of liabilities based on the loss threshold and seller conduct.
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D Excess Verdict in Auto & Liability Insurance

Case Event Time Court Start Time Verdict Time Compensatory Damage Cost Punitive Damage Cost Total Cost Excess Verdict Trigger Type of Policy

Dock vs McLendon et al. Jan. 26, 2019 July 27, 2021 July 30, 2021 $66.5 million N/A $66.5 million Motor Vehicle Auto Insurance

Cargal vs Forehand & FedEx Sep. 8, 2018 Oct. 15, 2021 Oct. 24, 2021 $30,000,000 N/A $30,000,000 Motor Vehicle Auto Insurance

Godwin vs Carroll & Eaton Asphalt

Paving Co., Inc.

Jan. 9, 2019 July 12, 2021 N/A $24,000,000 $50,000,000 $74,000,000 Motor Vehicle Auto Insurance

Leslie vs Rodriguez May 1, 2017 March 6, 2020 N/A 1.82 million & $2.8 million N/A $4.62 million Motor Vehicle Auto Insurance

Pedro Pasillas-Sanchez vs Consolidated

Materials, Inc. & Lee

March 26, 2018 Nov. 13, 2020 N/A $9,000,000 N/A $9,000,000 Motor Vehicle Auto Insurance

Ware vs Home Opportunity, LLC, Ewing

& Marchman

Oct. 2, 2016 Jan. 22, 2020 N/A $9,689,948.18 N/A $9,689,948.18 Premises Liability Liability Insurance

Church & Austin vs Case New Holland

Industrial of America, LLC

March 2, 2016 Nov. 12, 2020 N/A $3,000,000 $10,000,000 $13,000,000 Products Liability Liability Insurance

Madere & Thomas vs Greenwich Insur-

ance Company et al.

July 18, 2016 Aug. 23, 2019 Aug. 28, 2019 $180,065,000 $100,000,000 $280,065,000 Negligence Auto Insurance

Mayfield & Phillips vs Kennison April 10, 2006 Feb. 26, 2019 March 2, 2019 $33,413,000 N/A $32,412,610 (After Comparative

Negligence Adjustment)

Motor Vehicle Auto Insurance

Garmon vs Jenkins and Atlas Excavat-

ing/Atlas Trucking

Sept. 7, 2012 Oct. 3, 2019 Oct. 10, 2019 $22,144,971.88 $10,000,000 $32,144,971.88 Negligent Hiring Auto Insurance

Plascencia & Trujillo vs Newcomb etc. April 19, 2014 March 25, 2019 N/A $30,000,000 N/A $12,000,000 (After Apportionment) U-Turn Auto Insurance

Willoughby vs Ellison & 21st Century

Centennial Insurance Company

Nov. 2, 2012 March 15, 2019 March 22, 2019 $30,101,599 N/A $34,668,619 Passenger Auto Insurance

Thornton vs Ralston GA LLC d/b/a The

Ralston etc.

July 6, 2017 July 1, 2019 July 7, 2019 $35,000,000 $50,000,000 $125,000,000 Negligent Repair Liability Insurance

Enriquez, Jr., Martinez & Irene Gonzalez

vs Lasko Products, Inc.

Jan. 3, 2016 Nov. 21, 2019 Nov. 28, 2019 $36,240,000 N/A $36,240,000 Manufacturing Defect Liability Insurance

Johnson vs Lee & Corrugated Replace-

ments, Inc.

July 1, 2011 Sep. 14, 2018 Sep. 21, 2018 $128,813,522 N/A $128,813,522 Motor Vehicle Auto Insurance

Herrera & Sweeting vs Extended Stay

America, Inc., etc.

Nov. 12, 2014 Nov. 12, 2018 Nov. 20, 2018 $46,000,000 N/A $41,400,000 (After Apportionment) Negligence Liability Insurance

Barron vs B & G Crane Service etc. May 11, 2016 Sep. 13, 2018 N/A $44,370,000 N/A $20,791,235.34 Negligence Liability Insurance

The Estate of Kari Dunn vs OM Lodging

LLC etc.

Dec. 1, 2013 June 22, 2018 June 26, 2018 $41,550,000 N/A $2,400,000 Negligence Liability Insurance

Anaya vs Superior Industries Inc. et al. Oct. 7, 2013 March 19, 2018 March 26, 2018 $30,000,000 N/A $30,000,000 Negligence Auto Insurance

Sitton et al. v. Ceeda Enterprises, Inc. March 28, 2016 July 17, 2018 July 19, 2018 $27,091,054 N/A $27,091,054 Negligence Auto Insurance

Dougherty & Forester vs WCA of Florida,

LLC

Oct. 28, 2016 Oct. 5, 2018 Oct. 10, 2018 $25,000,000 N/A $20,000,000 (After 20% Compara-

tive Negligence Reduction)

Right Turn Motor Vehicle Auto Insurance

Braswell vs The Brickman Group Ltd,

LLC. et al.

May 16, 2014 May 3, 2017 May 9, 2017 $39,960,000 N/A $27,172,800 (After the Reduction

for Comparative Fault)

Motor Vehicle Liability Insurance

Jester vs Utilimap Corporation & Duke

Energy Ohio, Inc.

Feb. 27, 2014 Jun. 7, 2017 Jun. 28, 2017 $27,871,944 N/A $27,871,944 Negligent Training Liability Insurance

Cruz et al. vs Methenge et al. Aug. 29, 2012 Jul. 21, 2017 Aug. 10, 2017 $24,931,109 N/A $24,931,109 Design Defect Auto Insurance

Angulo & Lopez vs J. Calero et al. May 28, 2015 Oct. 26, 2017 N/A $20,000,000 $25,005,000 $45,005,000 Negligence Liability Insurance

Debra Morris et al. vs AirCon Corpora-

tion, et al.

April 26, 2014 Nov. 1, 2017 Nov. 10, 2017 $18,460,279 N/A $923,014 Negligence Liability Insurance

Stolowski et al. vs 234 East 178th Street

LLC & City N.Y

Jan. 23, 2005 Feb. 22, 2016 June, 2016 $140,100,000 N/A $183,261,737 Negligence Liability Insurance

Garcia vs Manhattan Vaughn JVP et al. Dec. 4, 2013 Feb. 10, 2016 April 29, 2016 $53,852,558 N/A $55,834,971.47 (Final Judgment) Worker/Workplace Negligence Liability Insurance

Garcia, et al. vs O’Reilly Auto Enter-

prises, LLC & Shoots

Feb. 28, 2015 Jul. 19, 2016 Jul. 25, 2016 $37,945,000 N/A $9,000,000 (Reduced due to

High/Low Agreement)

Motor Vehicle Auto Insurance

Swenson et a. vs Troy et al. May 22, 2012 April 18, 2016 May 1, 2016 $35,029,371 $100,000 $35,129,371 Motor Vehicle Auto Insurance

Dubuque vs Cumberland Farms, Inc. &

V.S.H. Realty, Inc.

Nov. 28, 2008 Feb. 23, 2016 March 8, 2016 $32,369,024.30 $10 $32,369,034.30 Negligence Auto insurance

Gonzalez et al. vs Atlas Construction

Supply Inc. et al.

Aug. 2, 2011 July 27, 2016 Aug. 8, 2016 $26,920,170 N/A $16,345,170 ( No jointly liability) Negligence Liability Insurance

Jacobs Engineering Group Inc. vS ConA-

gra Foods Inc

2013 March 25, 2016 April 22, 2016 $108,913,520.89 N/A $108,913,520.89 Exposition Liability Insurance

Hinson et al. vs Dorel Juvenile Group,

Inc et al.

May 15, 2013 June 17, 2016 June 21, 2016 $24,438,000 $10,000,000 $34,438,000 Failure to Warn Liability Insurance

Table 6: Wrongful Deaths Cases: Auto & Liability Insurance

∗Source: Case details from Report 1, Report 2, Report 3, Report 4, Report 5, and Report 6
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