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A B S T R A C T   

Irwin’s surface wind sensor is widely used in wind tunnel testing for urban and environmental aerodynamics 
studies. However, the conventional physics-based calibration of this sensor could result in reduced measurement 
accuracy in regions with low flow velocities and high turbulence intensity. To address this issue, this study 
proposes a novel physics-guided neural network (PGNN) calibration approach, which couples a physics-based 
calibration model, derived from extended Taylor series expansions of measured wind speed, with an adaptive, 
data-driven general regression neural network. Sensors are calibrated within the turbulent boundary layer of an 
empty flat plate, considering both mean and standard deviation of wind velocity measured by high-accuracy 
thermal anemometry. The accuracy of calibrated sensors is then assessed using a 1:400 benchmark urban 
model. Experimental results show significant improvement in measurement accuracy, reducing mean absolute 
percentage error for wind speed standard deviation from 92.3 % with the current model to 9.8 % using PGNN.   

1. Introduction 

Skin friction sensors, also known as wall shear stress sensors, are 
instruments designed to measure the tangential frictional stress resulting 
from the relative motion of a fluid over a body surface due to the non- 
slip condition [1]. These sensors play a crucial role in studying 
various boundary layer flow characteristics, including wall shear stress 
distribution, surface roughness effects, drag coefficient estimation, and 
flow separation [2]. By quantifying wall shear stress, they facilitate wind 
tunnel characterisation of wind flow patterns around buildings in urban 
environments relevant to pedestrian wind comfort [3,4], analysis of 
drag forces and surface flows on air vehicles [5,6], and investigation of 
various environmental phenomena such as soil erosion [7], snow drift-
ing [8], and sediment transport [9]. In all these applications, accurate 
measurement of wall shear stress and shear velocity is crucial, preferably 
at high spatial resolution. Therefore, an ideal skin friction sensor should 
be omnidirectional, cost-effective, compact, and easy to use, thereby 
eliminating the need for precise orientation during sensor placement, 
enabling spatially dense deployments, and fitting within restricted areas 

in small-scale wind tunnel test specimens. 
Depending on the application, various techniques based on different 

sensing principles have been developed for measuring wall shear stress. 
One widely used instrument for turbulent boundary layers is the Preston 
tube [10], whose measurement principle is based on the logarithmic law 
of the wall. It entails placing a Pitot tube on the wall surface facing the 
flow and measuring the pressure difference between the total pressure 
measured by the Pitot tube and the wall static pressure (through a 
nearby hole) on the wall. In this manner, local skin friction and shear 
velocity can be estimated with an accuracy typically within ± 3 % [11]. 
However, the Preston tube is not omnidirectional and needs to be 
aligned with the flow direction. More sophisticated sensors employ 
direct and “quasi-direct” measuring techniques such as oil-film inter-
ferometry [12], wall-implemented floating element sensors [13], and 
liquid crystal coating techniques [14], as well as indirect techniques 
such as hot-film probes [15] and micro-pillar sensors MPS3 [1]. Indirect 
techniques, including the use of the Preston tube, typically rely on 
empirical or theoretical relationships between the measured quantity 
and wall shear stress, specific to certain flow conditions. A commonly 
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used relationship involves the near-wall velocity gradient, parallel to the 
mean flow direction, and wall-shear stress. Comprehensive reviews on 
the development of skin friction sensors are available in [16,17,18]. In 
wind engineering, however, the adoption of these advanced sensors has 
been limited, arguably due to their inability to provide precise pointwise 
measurements, as seen with the floating element sensor [16], or due to 
cost and complexity, as with MPS3 and image-based techniques [7]. 

Against this backdrop, Irwin [19] developed an omnidirectional 
surface wind sensor based on the sensing principle of the Preston tube. 
As illustrated in Fig. 1, this sensor features a simple configuration and 
can be used to measure low-frequency flow speed fluctuations (or local 
wall shear stress) at specific height hs within boundary layers. Its design 
comprises a cylindrical hole with diameter D on the wall surface; 
extending from the centre of this hole is a sensor tube with an outer 
diameter of d, slightly smaller than D. The static pressure difference is 
measured between the sensor tube within the boundary layer and the 
base hole at the wall surface. The protruding tube, perpendicular to the 
wall, allows for 360-degree coverage, making the sensor practically 
omnidirectional and eliminating the need for careful alignment with the 
flow direction. Furthermore, this sensor is also compact and inexpensive 
to manufacture, especially with recent 3D printing technology, enabling 
cost-efficient simultaneous measurement at hundreds of locations and 
capturing flow directions from all approaching angles possible. Since its 
development, this sensor has found extensive application in wind tunnel 
studies of pedestrian-level winds [20,21] and various environmental 
fluid dynamics studies investigating shear-stress partitioning for vege-
tation canopies [22,23], as well as snow drifting on flat roof [8]. In the 
first application, the required Reynolds number is typically in the order 
of 105, beyond which the flow regime around the built environment is 
considered to be insensitive to the Reynolds number [24]. Moreover, by 
calibrating the wind tunnel boundary-layer to replicate the character-
istics of the atmospheric boundary layer, numerous studies demonstrate 
the agreement between full-scale measurements and equivalent wind 
tunnel testing for pedestrian-level winds [25]. 

In terms of calibration, the conventional method involves placing 
this sensor within a turbulent boundary layer on a flat plate, followed by 
calibration across a range of flow speeds measured simultaneously by a 
nearby thermal anemometer at the sensor head level, hs [19]. Impor-
tantly, the calibration duration, T, must significantly exceed the time-
scale of the largest turbulence eddies present in the calibration flow 

[19]. This requirement ensures the near-wall turbulent boundary layer 
reaches internal equilibrium [26], allowing for the establishment of the 
wall law in the region below hs. Specifically, if the duration T is much 
longer than the ratio of hs to uτ (where uτ represents the skin friction 
velocity), then there is some basis to expect that the flat-plate calibration 
would remain valid even for low-frequency unsteady flows, such as 
those encountered in pedestrian wind studies [19]. Since its introduc-
tion, the above technique is widely recognised and used in wind tunnel 
studies focusing on pedestrian-level wind conditions. However, empir-
ical evidence suggests that this calibration method, alongside current 
physics-based calibration models [19], may not yield consistent mea-
surement accuracy when measuring the standard deviations of flow 
speeds in areas with low wind speeds and high turbulence [21]. This is 
especially evident in scaled-down wind tunnel urban models designed 
for studying building-induced turbulence at pedestrian levels. In this 
application, accurate measurement of turbulence intensity (TI) is crucial 
for assessing wind comfort at critical locations within urban models. 
Specifically, higher TI signifies increased variations in wind speed and 
direction, leading to gusty and erratic wind patterns that can cause wind 
discomfort, walking difficulties, and even safety issues [27]. To enhance 
sensor accuracy, potential improvements include sensor design, 
manufacturing quality, and calibration strategy. Among these, calibra-
tion strategy has attracted significant research attention, as it can 
enhance the accuracy of existing sensors independently of the sensor 
design specifics and quality. In this regard, the use of classic statistical 
regression techniques and physics-based models for calibrating skin 
friction sensors has been prevalent in the literature [7,13,28,29]. 
Meanwhile, recent efforts have been directed towards harnessing ma-
chine learning (ML) techniques and data-driven surrogate models to 
optimise the placement and design of shear stress sensors [30,31]. Such 
ML techniques offer capabilities for modelling nonlinear and intricate 
correlations in complex data, for accounting for noise and uncertainties, 
and for reducing the reliance on knowledge of the sensor’s underlying 
physics [32,33]. Still, ML models have not been leveraged systematically 
to improve the calibration of skin friction sensors. 

To this end, this study introduces a PGNN calibration approach 
aimed at improving the accuracy of the surface wind sensor in 
measuring mean wind speed and speed standard deviation in regions 
characterised by high TI. The approach linearly combines a physics- 
based model, derived by extending the Taylor series expansion of the 

Fig. 1. Typical low-speed surface wind sensors: (a) Section diagram (principle of functionality), (b) 3D rendered view, and (c) Photo of custom-made assembled 
sensor with 3D-printed plastic casing and brass tubing. 
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instantaneous wind speed at the sensor head level, with a data-driven 
adaptive general regression neural network [34]. The near-wall 
instantaneous wind speed at a specific height within the boundary 
layer is expressed as a function of the differential pressure, Δp, between 
that height and the wall, and the Taylor series is expanded with respect 
to Δp. This combination leverages the GRNN’s robustness against 
overfitting and noise, intrinsic feature selection capability, and inter-
operability [34,35,36]. The predictions from the two calibration models, 
namely the physics-based model and adaptive GRNN, are assigned 
weighting factors that add up to unity, which are incorporated as 
hyperparameters of the PGNN determined during model training. With 
the proposed PGNN-based approach, generic sensor calibration can be 
performed on an empty flat plate under idealised turbulent conditions 
and the calibrated sensor(s) may be used in any wind tunnel test spec-
imen, regardless of the presence of roughness elements. 

The remainder of the paper is structured as follows: in Section 2, the 
sensing principles and underlying physics of the surface wind sensors are 
reviewed, from which the physics-based calibration equations are 
derived. Attention is focused on demonstrating the derivation of the 
conventional sensor calibration equations proposed by Irwin [19] by 
neglecting higher-order statistical terms of the pressure difference, 
which compromises the sensor accuracy in turbulence characterisation. 
In Section 3 the proposed PGNN is introduced, discussing the under-
pinning theory, insights into its architecture and working principle. In 
Section 4, the experimental setups and measuring techniques used to 
generate training and testing datasets for the proposed PGNN are out-
lined. Section 5 reports results from a comprehensive assessment of the 
proposed calibration approach, and discusses input feature selection, 
model training, cross-validation with the physics-based calibration 
models and pure data-driven GRNNs, and prediction accuracy/gen-
eralisability of the model. Finally, the findings and limitations of the 
work are summarized in Section 6 and suggestions for future research 
directions are provided. 

2. Omnidirectional surface wind sensors 

2.1. Underlying physics 

Consider a turbulent boundary layer on a smooth flat surface. In the 
region close to the surface, the mean wind flow velocity u(y) obeys the 
following universal wall law [37] 

u(y)
uτ

= f1

(uτy
ν

)
, (1)  

at a distance y from the surface, where uτ is the skin friction velocity, ν is 
the kinematic viscosity of the fluid, and f1 is a universal function inde-
pendent of the local streamwise pressure gradient or flow acceleration. 
In Eq. (1) and henceforth, the overbar “-” is used to denote time- 
averaged quantities. Based on Eq. (1), it is possible to infer the mean 
value of flow velocity, u(y), from the skin friction velocity, uτ, which can 
be, in turn, measured by a skin friction meter such as the Preston tube. 
The latter device makes use of a Pitot tube with a diameter d resting on 
the surface and pointing towards the incoming flow, and utilises the 
difference between the total pressure, ptot, measured by the Pitot tube 
and the wall static pressure at a nearby location, ps, to calculate the local 
skin friction velocity, uτ, through the following relation [10] 

(ptot − ps)d2

4ρν2 = f2

(
u2

τ d2

4ν2

)

, (2)  

in which ρ is the density of fluid, and f2 is a universal function that can be 
established experimentally. 

Based on the above principle, Irwin [19] extended Eq. (2) to relate 
the mean pressure difference, Δp, between two points of an object 
immersed in the wall-law region to uτ in the form of 

Δph2

ρν2 = f3

(
uτh
ν

)

, (3)  

where h is the height of the object (or the vertical distance between the 
two points), and f3 is a universal function, experimentally determined. 
Using Eq. (1), uτ can be eliminated from Eq. (3), with the result being the 
following formula between the measured Δp and the mean velocity at 
height h,u(h)

Δph2

ρν2 = f4

(
u(h)h

ν

)

, (4)  

where f4 is a universal function. 

2.2. Sensing principle and derivation of calibration equations 

Based on Eq. (4), once f4 is known, the object immersed within the 
turbulent boundary layer can be turned into a velocity meter by 
inverting Eq. (4) to infer u(h) from Δp, which, in the case of the surface 
wind sensor, is the mean value of the differential pressure between the 
two pressure inlets in Fig. 1 (a), i.e., Δp = pA − pB. Since the sensor in 
Fig. 1 is axisymmetric about a vertical axis normal to the wall surface, its 
calibration is the same for all azimuthal wind directions [19]. 

In light of Eq. (4), the following expression is provided by Irwin [19] 
to estimate the instantaneous wind speed at the sensor height hs, 
denoted as Q(hs), in terms of the non-dimensional differential pressure, 
Δph2

s /ρν2, for 104 < Δph2
s /ρν2 < 108 

Q(hs)hs

ν = 85+1.74

̅̅̅̅̅̅̅̅̅̅̅

Δph2
s

ρν2

√

, (5) 

Notably, the last equation distinguishes Q(hs) from u(h) used in Eq. 
(4): the former represents the mean flow speed measured by the surface 
wind sensor at hs, which cannot discern the flow direction, while u(h)
denotes the mean flow velocity in a consistent direction during sensor 
calibration. This distinction follows the conventions in Irwin [19] and 
Wu and Stathopoulos [21]. By noting that hs/ν and h2

s /ρν2 are constant 
quantities depending on the sensor’s geometry, Eq. (5) can be rewritten 
as 

Q(Δp) = A+B
̅̅̅̅̅̅
Δp

√
, (6)  

where A and B are two calibration coefficients which depend on the 
sensor design and dimensions. Compared to Eq. (4), the last equation 
establishes a means to relate the instantaneous differential pressure, Δp, 
and the instantaneous speed at the sensor head level, Q(hs) (see Fig. 1 
(a)). From Eq. (6), it is also possible to infer the long-term mean value 
and standard deviation of wind speed, denoted by QM and QSD, respec-
tively, from statistics of Δp. To this aim, the instantaneous speed Q in Eq. 
(6) is first expanded using Taylor series as 

Q(Δp) =
∑∞

n=0

Q(n)(Δp)
n!

(Δpʹ)n (7)  

where Δṕ  is the fluctuating component of the differential pressure (i.e., 
Δṕ = Δp − Δp), and Q(n)(Δp) represents the n-th order derivative of the 
function Q(Δp) = A+B

̅̅̅̅̅̅
Δp

√
with respect to Δρ evaluated at Δp = Δp. By 

time averaging both sides of Eq. (7) and noting that Δṕ = 0, the 
following formula is obtained for estimating the mean wind speed 

QM = α+ β

[ ̅̅̅̅̅̅

Δp
√

+
∑m

n=1
cn

(Δpʹ)n

n!(Δp)n− 1/2

]

, (8)  

where cn =
∏ n

k=1(3/2 − k). By subtracting Eq. (8) from Eq. (6), the 
fluctuating component of the wind speed, i.e., Q’=Q-QM, can be 
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expressed as 

Qʹ = β

[
̅̅̅̅̅̅
Δp

√
−

̅̅̅̅̅̅

Δp
√

−
∑m

n=1
cn

(Δpʹ)n

n!(Δp)n− 1/2

]

. (9) 

By expanding the first term in Eq. (9) using the Taylor series followed 
by further algebraic manipulation, the following formula is obtained for 
estimating the SD wind speed 

QSD = β

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
∑m

n=1
cn
(Δpʹ)n

− (Δpʹ)n

n!(Δp)n− 1/2

]2
√
√
√
√
√ . (10) 

As is demonstrated later in Section 5, Taylor series terms beyond the 
third order have negligible impact on the estimation of QM and QSD. 
Therefore, the previous expressions are truncated by setting m = 2 to 
yield two simplified formulae for estimating QM and QSD from Δp sta-
tistics, accounting for up to third order approximating terms, as 

QM = α+ β
[

p1 −
1
8
p2

]

, (11)  

and 

QSD =
β
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p3 −
1
2
p4 +

1
16

p5 −
1
16

p6

√

, (12)  

respectively, where 

p1 =

̅̅̅̅̅̅

Δp
√

, p2 =
(Δpʹ)2

̅̅̅̅̅̅̅̅̅̅̅̅

(Δp)3
√ , p3 =

(Δpʹ)2

Δp
, p4 =

(Δpʹ)3

(Δp)2 , p5 =
(Δpʹ)4

(Δp)3 , and p6

=

[
(Δpʹ)2

]2

(Δp)3 .

(13) 

Notably, Eqs. (11) and (12) provide physics-based estimators of the 
mean value and the standard deviation of wind velocity at the sensor 
head level which are used in subsequent sections for sensor calibration, 
termed henceforth as physics-based model calibration. Additionally, it is 
further noted that by discarding the three higher-order polynomial 
terms of Δρ’ in Eq.(13), namely p4, p5, and p6, from Eqs. (11) and (12), 
the following estimators for the mean value and the standard deviation 
of wind velocity are reached 

QM = α+ β
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
1 −

1
4
p3

√

, (14)  

and 

QSD =
β
2
̅̅̅̅̅
p3

√
, (15)  

respectively, which are those put forward in the original work of Irwin 
[19] for sensor calibration. Therefore, hereafter, Eqs. (14) and (15) are 
termed as Irwin calibration model. The latter has been widely adopted in 
the literature (e.g. [21]) for the purpose at hand and is currently the 
conventional model used for surface wind sensor calibration. 

3. Proposed physics-guided neural network (PGNN) sensor 
calibration approach 

In the preceding section, two different models are derived for 
inferring the mean value of wind speed, QM, and the standard deviation 
of wind speed, QSD, by utilising statistics of Δp measurements taken by 
typical surface wind sensors in Fig. 1. While the model in Eqs. (11) and 
(12) may be more accurate than Irwin’s conventional model in Eqs. (14) 
and (15) due to the consideration of additional terms in the expansion 
series in Eqs. (8) and (10), it is important to recognize that the model 

(Eqs. (11) and (12)) herein derived involves linear regression regardless 
of the number of Taylor expansion terms considered in Eqs. (8) and (10). 
Consequently, it cannot capture any potential nonlinear relationship 
between Δp statistics (a.k.a. input variables) and wind velocity mean 
and standard deviation (a.k.a. output variables). To address this limi-
tation, Eqs. (11) and (12) are herein augmented by two independent 
data-driven models, each one assuming the form of an adaptive GRNN 
[34]. This augmentation results in the creation of two physics-guided 
GRNNs, abbreviated as PGNNs, one for QM estimation and one for QSD 
estimation based on Δp statistics measured by the wind surface sensor. 
The proposed PGNNs share the same network architecture shown in 
Fig. 2, albeit with different input features and hyperparameters for QM 
estimation and for QSD estimation. Importantly, the proposed PGNN 
architecture incorporates a weighting factor of γ (0 ≤ γ ≤ 1) for the 
physics-based predictions obtained from Eqs. (11) and (12), and a 
weighting factor of (1 − γ) for the data-driven predictions generated by 
the adaptive GRNN, as illustrated in Fig. 2. For γ = 1 the PGNN simplifies 
to a purely physics-based linear regressor, while for γ = 0, the PGNN 
becomes a data-driven nonlinear regressor. 

For the GRNN component, the regression of the response/output 
variable, Q (which can be either QM or QSD), on an input variable of 
dimensionality m, p∈ℝm (collecting certain statistical terms of Δp), can 
be viewed as the computation of the most probable (expected) value of Q 
for each measured p. This computation is based on a finite number of 
noisy measurements of p (using the surface wind sensor) taken by a 
pressure scanner, and the corresponding Q measured simultaneously 
with high accuracy (e.g. by a nearby thermal anemometer as will be 
discussed in the following section). To compute the expected value of Q 
for a given p, the following conditional probability is used 

E[Q|p] =
∫∞
− ∞ Qf(p,Q)dQ
∫∞
− ∞ f(p,Q)dQ

, (16)  

where f(p,Q) is the unknown joint probability density function (PDF) 
between the m-dimensional input vector p and the output Q. This PDF 
can be estimated from a sample of n measurements of p and Q using the 
Parzen-Rosenblatt density estimator [38,39,40] 

f̂ (p,Q) =
1

(2π)(m+1)/2∏m
j=1σjσ

⋅
1
n
∑n

i=1
exp

[

−
∑m

j=1

(p[j] − pi[j])
2

2σ2
j

]

⋅exp

[

−
(Q − Qi)

2

2σ2

]

(17) 

Importantly, this estimation method does not presuppose any spe-
cific form of the underlying PDF of the data, allowing for a wide variety 
of distributions to be estimated without the need to specify the form of 
the distribution a priori. It estimates the unknown PDF based on a 
sample of data points by averaging over kernel functions cantered at 
each measured data point [38,39,40]. In the last equation, p[j] denotes 
the j-th feature of the input variable p, pi[j] and Qi are the j-th input 
feature and output variable of measurement i, respectively, and σj and σ 
are the so-called bandwidths for input dimension j and output variable 
(i.e., the hyperparameters subject to search), respectively. By neglecting 
the cross-dependence between different input dimensions, the term 

D(p→pi) = −
∑m

j=1

(p[j] − pi[j])
2

2σ2
j

(18)  

in Eq. (17) can be viewed as a reduced Mahalanobis distance between 
the input vector p and the i-th training input pi, denoted by D(p→pi)

[36]. By substituting Eqs. (17) and (18) into Eq. (16) and performing 
algebraic manipulation, the following estimator of the conditional 
probability of Q given p is reached 

E[Q|p] ≈ Q̂(p) =
∑n

i=1Qiexp[D(p→pi) ]∑n
i=1exp[D(p→pi) ]

(19) 
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The last equation facilitates an interpretation of the estimator Q̂(p)
as a weighted average of all measured wind velocity values, Qi (i = 1,…, 
n), where each measured Qi is weighted exponentially according to the 
corresponding reduced Mahalanobis distance. Then, the adaptive GRNN 
model in the last equation can be used to estimate both QM and QSD by 
fitting it to the corresponding training dataset. To achieve this, Eq. (19) 

must be first modified so that for estimate j, i.e., Q̂
(
pj

)
, the estimate is 

based on inference from all other observations except the actual 
observed value at pj [35]. This is used to prevent an artificial minimi-

zation of the error as σ = [σ1,…,σm] approaches 0, i.e., lim
σ→0

Q̂
(
pj

)
− Qj =

0 At this point, Eq. (19) can be combined with models in Eqs. (11) and 
(12), to create two separate PGNNs as follows 

QPGNN
M (p1, p2, p̃M)

= γM

[
αM + βM

(
p1 −

p2

8

) ]
+ (1 − γM)

∑n
i=1QM,iexp

[
D
(
p̃M→p̃M,i

) ]

∑n
i=1exp

[
D
(
p̃M→p̃M,i

) ] ,
(20)  

and 

QPGNN
SD

(

p3, p4, p5, p6, p̃SD

)

= εSD + γSD

(
βSD

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p3 −
p4

2
+

p5

16
−

p6

16

√ )

+ (1

− γSD)

∑n
i=1QSD,iexp

[

p̃SD→p̃SD,i

]

∑n
i=1exp

[

p̃SD→p̃SD,i

] ,

(21)  

for predicting QM and QSD, respectively. In the last equation, ε represents 
a disturbance variable herein introduced to account for the residuals 
between the actual and measured values of QSD, γM and γSD ∈ [0,1] are 
the two hyperparameters that weight the relative importance of physics- 
based QM and QSD predictions in the PGNNs, respectively. Further, the 
input vectors pM and pSD in Eqs. (20) and (21) correspond to the input 
data utilised by the adaptive GRNNs for QM and QSD predictions, 
respectively. At this juncture, it is important to emphasise that in the 
proposed PGNN, pM and pSD may differ from those employed in Eqs. (11) 
and (12), potentially containing distinct sets of arbitrary statistical 

features of Δp (e.g., mean and SD, Δp and (Δṕ )2). These input features 
can be obtained through the intrinsic feature selection capability of the 

adaptive GRNN, as demonstrated in Section 5. Lastly, the symbol “~” 
over a variable in Eqs. (20) and (21) denotes z-score standardisation, 
which is employed to ensure that all input features (for the GRNN) have 
zero means and unity SDs. This standardisation enables faster GRNN 
training as well as ensures that the optimised bandwidths, σ, for 
different input features have comparable magnitudes [35]. The latter is 
crucial for feature selection, as elaborated in Section 5. 

4. Wind tunnel setups for experimental wind velocity data 
generation 

4.1. Wind tunnel facility description 

For the purposes of this study, two different wind tunnel setups are 
used, presented separately in the following two sub-sections: one for 
generating experimental data for wind sensor calibration (Section 4.2) 
and one for testing the accuracy of the measurements taken by the 
calibrated sensors (Section 4.3). Both setups make use of the industrial 
aerodynamics T7 wind tunnel at City, University of London [41], as 
shown in Fig. 3. This wind tunnel is of closed-return type with a working 
section of dimensions 9.0 m × 3.0 m × 1.5 m and the flow speed ranging 
from 4.3 m/s to 26.0 m/s. Existing boundary layer generation hardware 
can be used to create boundary layers representative of those over 
different terrains, such as open, suburban, and urban [41]. A full-width 
trip barrier is installed at the exit from the contraction as shown in Fig. 3 
(b), which is followed by a 5 m fetch where vortex generators and 
roughness elements can be installed if needed. The tunnel features a 
round turntable with 2.4 m of diameter where specimens are installed. 

4.2. Setup for obtaining sensor calibration data 

To generate a representative dataset for sensor calibration, the sur-
face wind sensor in Fig. 1 (c) is exposed to different calibration flows 
comprising a wide range of mean wind speeds and TIs. The sensor head, 
made from a brass tube with outer and inner diameters of 1.2 and 1.0 
mm respectively, protrudes from a 2.6 mm circular hole and extends 
3.75 mm above the sensor casing’s top surface. The calibration data is 
obtained by installing the sensor on a flat plate device as depicted in 
Fig. 4 (a). The latter device is placed at the centre of the T7 turntable in 
Fig. 3(b). The angle of the flat plate’s flap (see Fig. 4 (a)) is adjusted such 
that the stagnation point does not appear on the lower side the flat 
plate’s elliptical nose to avoid flow separation. Near the leading edge of 

Fig. 2. Architecture of the proposed physics-guided neural network for enhancing the measurement accuracy of surface wind sensors.  
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the flat plate, two tripping wires are placed to allow for the growth of a 
second boundary layer on the flat plate as shown in Fig. 4 (a). To give the 
incoming flow different “background” TIs, six different trip barrier set-
tings, namely, I. no barrier, II. rectangular (low), III. rectangular (high), 
IV. battlemented, V. castellated (low), and VI. castellated (high), are 
installed, one at a time, as shown in Fig. 5, on the upstream shortly after 
the contraction of the wind tunnel without vortex generators and 
roughness elements. By adjusting the inflow velocity and switching 
between different trip barriers, a wide range of mean wind speeds and 
TIs can be generated locally on the flat plate’s top surface for the cali-
bration purpose. The corresponding (normalised) mean wind speed and 
TI profiles at the sensor location on the flat plate are measured by a hot- 
wire probe from 1 mm above the top surface of the flat plate up to 50 mm 
and plotted in Fig. 6 (a) and (b), respectively. For comparison, the mean 
speed and TI profiles measured in an empty tunnel without a trip barrier 
and any tripping wires on the flat plate are also plotted in Fig. 6 as the 
baseline case. As seen, as the barrier setting changes from I to VI, the TIs 
at the sensor head level (i.e., at hs = 3.75 mm) increases steadily, from 

3.5 % in the baseline case to 31.3 % in the high castellated barrier case. 
To calibrate the sensor, it is necessary to measure the flow velocity at 

the sensor head location, u(hs), and the differential pressure at the 
sensor’s location between the sensor head and wall surface levels, pA-pB 
(see Fig. 1 (a)), simultaneously. To achieve this, a 1-axis hot-wire probe 
is positioned next to the surface wind sensor being calibrated, as illus-
trated in Fig. 4 (b), with a spanwise distance of 6.0 mm (approximately 
five times the sensor head’s diameter) to minimise interference effects 
between the two probes, following the recommendation by Wu and 
Stathopoulos [21]. The hot-wire is oriented horizontally, a decision 
informed by the observation that, within the log-law region, wind speed 
across the hot-wire length typically varies under 10 % when it is ori-
ented vertically [19]. Thus, the horizontal orientation is preferred here 
because the wind velocity vector on the flat plate predominantly consists 
of a single component along the wind direction. This orientation sim-
plifies the alignment of the hot wire’s height to the sensor head and 
enhances the spatial correlation in the vertical direction between the 
hot-wire and wind sensor measurements. The two pressure outlets of the 

Fig. 3. (a) Side view of the industrial T7 wind tunnel at City, University of London, (b) 3D view of the wind tunnel’s test section, (c) flat-plate test setup for sensor 
calibration, and (d) benchmark urban model setup for sensor testing. 

Fig. 4. (a) Flat-plate test setup, and (b) simultaneous differential pressure measurement using an surface wind sensor (being calibrated) and velocity measurement 
using an adjacent hot-wire probe for the calibration of the surface wind sensor. 
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surface wind sensor (see Fig. 1) are connected to a 64-channel pressure 
scanner (with a pressure range of − 0.5 to + 0.5 kPa and accuracy of ±
0.5 Pa, see [42]) to acquire the instantaneous differential pressure, while 
the instantaneous wind speed at the sensor head level is measured by a 
miniature constant temperature anemometer (CTA) [43], both at the 
same sampling frequency of 100 Hz. This sampling frequency is 
informed by the 50 Hz low-pass filtering frequency applied to both hot- 
wire and wind sensor data in [19]. This filtering frequency establishes 
the Nyquist rate in the current study, necessitating a minimum sampling 
frequency of 100 Hz to ensure accurate and comparable data collection. 
Moreover, it was observed in [19] that the sensor data generally aligns 
well with the hot-wire data, especially in high-speed regions, albeit with 
a minor phase lag attributed to the long tubing system [19]. However, 
this minor latency in the sensor’s response time is inconsequential for 
the current study, as herein proposed calibration approach directly 
translates the long-term statistical properties of the differential pressure, 
Δp, into the mean and standard deviation of wind speeds. Here, “long 
term” refers to a duration sufficient to establish a stable mean and 

standard deviation. For each of the six barrier settings studied, the 
inflow velocity is adjusted 10 times, resulting in a range of freestream 
velocities at 30 cm above the flat plate’s top surface between 3.4 to 9.5 
m/s with a rough increment of 0.7 m/s. For barrier setting I, the mea-
surement process is repeated for a higher freestream velocity range from 
6.4 to 12.1 m/s at 10 equally spaced steps. For the above 6 barrier 
settings and 10 speed variations, the wind speed SDs and TIs measured 
by the CTA at the sensor head location are plotted against the measured 
mean wind speed at the same location in Fig. 7 (a) and (b), respectively, 
giving a total number of 70 data points (note that for setting I, there are 
20 data points). 

4.3. Setup for obtaining sensor accuracy assessment data 

In order to create an extensive dataset for testing the proposed PGNN 
calibration approach, a total of 30 surface wind sensors, identical to the 
one illustrated in Fig. 1(c), are placed on the ground level of a bench-
mark urban model introduced by the Architectural Institute of Japan 

Fig. 5. Six barrier settings for simulating different mean wind speed and TI profiles on the flat plate in Fig. 3 (a): (a) No barrier, (b) Rectangular (low setting), (c) 
Rectangular (high setting), (d) Battlemented, (e) Castellated (low setting), and (f) Castellated (high setting). 

Fig. 6. (a) Normalised mean wind speed and (b) TI profiles on the flat plate in Fig. 3 (a), generated using the trip barrier settings in Fig. 5.  

Z. Wang et al.                                                                                                                                                                                                                                   



Measurement 234 (2024) 114812

8

(AIJ), known as the AIJ case D. The model consists of a single high-rise 
block measuring 100 m in height, surrounded by simplified low-rise 
blocks that are 40 m by 40 m by 10 m, all at a scale of 1/400, as 
shown in Fig. 8(a). The urban model is installed on the turntable of the 
T7 wind tunnel depicted in Fig. 3(b), and the locations of the 30 probes 
are indicated by blue circles in Fig. 8(b). The probes are distributed on 
an orthogonal grid, with uniform streamwise and spanwise spacings of 
2.5 cm. The inflow velocity at the end of the tunnel’s contraction (refer 
to Fig. 3) is adjusted to ensure the mean flow velocity at the central 
building height (hCB = 0.25 m) aligns with the 6.65 m/s speed used by 
AIJ in their initial test. The mean wind speed and TI profiles are 
measured 30 cm upstream from the first row of the low-rise blocks and 
plotted in Fig. 9(a) and (b), respectively. In Fig. 9(a), the mean wind 
speed profile is normalised to 1 at 300 mm rather than at the central 
building height. The plot reveals a nonzero streamwise velocity gradient 
at 300 mm, indicative of boundary layer growth, which reaches a 
thickness of approximately 800 mm above the tunnel floor. These pro-
files are generated using the castellated barrier with the high setting (i. 
e., setting VI from the previous section), without any additional modi-
fiers of the boundary layer, such as vortex generators or roughness el-
ements. The obtained profiles are comparable to those reported by AIJ in 
the initial test. 

The 30 surface wind sensors are connected to the 64-channel 

pressure scanner [42] to acquire the differential pressure signal from 
each sensor at a sampling frequency of 100 Hz. To measure the instan-
taneous velocity at specific sensor locations, a miniature hot-wire probe 
with right-angled prongs is placed adjacent to the surface wind sensor 
being tested, at a transverse distance of 3.0 mm, as illustrated in Fig. 10 
(a). The hot-wire probe is adjusted such that its cylindrical sensing wire 
is perpendicular to the tunnel floor, with the centre of the sensing wire 
aligned with the sensor head at hs = 3.75 mm. This arrangement ensures 
that the horizontal velocity component of the flow at the sensor head 
location is always perpendicular to the sensing wire, under which con-
dition the hot-wire probe’s response is mostly insensitive to the hori-
zontal flow direction. The use of the right-angled hot-wire probe takes 
advantage of the fact that, in assessing pedestrian level winds, the hor-
izontal velocity component is generally more crucial than the vertical 
component, which in the case of a right-angled hot-wire probe is parallel 
to the sensing wire and has limited effect on the effective cooling ve-
locity experienced by the wire, except in areas with strong 
downdraughts. 

As in Section 4.2, simultaneous measurement of local ground level 
velocity (by the right-angled hot-wire probe) and differential pressure 
(by an adjacent surface wind sensor) is necessary to maximise spatial 
and temporal correlations between the two measurements. To achieve 
this, the hot-wire probe is moved around the AIJ case D model to 

Fig. 7. Mean wind speeds vs. (a) Wind speed standard deviations, and (b) turbulence intensities at the pedestrian level, generated using the trip barrier settings 
in Fig. 5. 

Fig. 8. (a) AIJ case D urban model setup on the turntable of the T7 wind tunnel in Fig. 3, and (b) locations of 32 surface wind sensors around the central building of 
the AIJ case D model and 9 probe locations chosen for surface wind sensor testing. 

Z. Wang et al.                                                                                                                                                                                                                                   



Measurement 234 (2024) 114812

9

different surface wind sensor locations, and measurements of simulta-
neous ground level velocity and differential pressure are taken one at a 
time. Depending on the measurement location and the wind direction, 
the hot-wire probe’s orientation is adjusted so that its prongs are always 
positioned downstream of the local mean velocity field near the surface 
wind sensor, as demonstrated in Fig. 10 (b). The latter velocity field is 
established numerically for the considered three wind directions using 
Reynolds-Averaged Navier Stokes (RANS) simulations of the AIJ case D 
benchmark model, using a validated digital twin of the T7 wind tunnel 
with realistic/measured inflow boundary conditions. This probe orien-
tation ensures that the aerodynamic perturbations created by the 
probe’s prongs are minimised. 

To evaluate the effectiveness of the proposed calibration method, 
simultaneous measurements are taken at 9 specific probe locations as 
labelled in Fig. 8(b). These measurements are carried out for three 
different wind directions, 0◦, 22.5◦, and 45◦ as depicted in Fig. 8(a), at 
each probe location and for four distinct mean flow velocities at the 
central building heights, Um(hCB) = 4.95, 6.65, 8.35, and 10.05 m/s. In 
total, 108 measurement pairs are taken from 9 probe locations, 3 wind 
directions, and 4 mean flow velocities. This approach covers a wide 
range of testing flow conditions and includes low-velocity and high- 
turbulence regions in the AIJ case D model, such as locations 7, 16, 
and 18 (see Fig. 8(b)). 

5. Accuracy assessment of sensor calibration 

5.1. Influence of Taylor series terms in the physics-based calibration 
model 

In this section two different calibration approaches are examined 
utilising the experimental data described in Sections 4.2 and 4.3 for 
calibration and testing purposes, respectively. The first approach applies 
the calibration equations, i.e., Eqs. (14) and (15), proposed by Irwin 
[19], while the second approach utilises Eqs. (11) and (12) proposed by 
the current study. The purpose of this comparison is to evaluate the 
influence of certain higher-order polynomial terms of the fluctuating 
component of the differential pressure, Δp’, on the sensor accuracy. For 
simplicity, the experimental data from the flat-plate setup with different 
barrier settings detailed in Section 4.2 will be referred to as the training 
set hereafter, while the data from the benchmark urban model of AIJ 
case D with various wind directions and mean inflow speeds will be 
referred to as the testing set. In the next section, the potential of coupling 
the proposed physics-based models, specifically Eqs. (11) and (12), with 
a data-driven GRNN (as detailed in Section 3) will be further explored to 
enhance sensor accuracy in capturing building-induced turbulence. 

Starting with the Irwin’s calibration models, Eqs. (14) and (15) are 
fitted to the training sets of mean wind speeds and speed SDs as shown in 
Fig. 11 (a) and (b), respectively. For this purpose, Eq. (15) is augmented 
with an artificial disturbance variable, similar to the treatment of Eq. 
(21). As seen in Fig. 11 (a), the fitted calibration model, Eq. (14), can 

Fig. 9. (a) Normalised mean wind speed and (b) TI profiles measured at the windward edge of the turntable of T7 wind tunnel and generated using the castellated 
barrier (high setting) in Fig. 5(f) for Irwin probes testing. 

Fig. 10. Illustration of the alignment of a right-angled hot-wire probe near the surface wind sensor to be tested based on the local mean flow direction (informed by 
CFD simulation) at the pedestrian-level height in (a) 3D view and (b) plan view. 
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well capture the linear relationship between the input and response 
variables in the testing set of the mean wind speed QM, i.e., xo and QM 

(where xo =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
1 − 1/4p3

√

), with a mean absolute percentage error 
(MAPE) of 13.2. Here, MAPE is defined as MAPE =

1/n
∑n

i=1|(Ai − Fi)/Fi |, with Ai and Fi representing the actual and fore-
cast values, respectively. However, the same is not true for the speed SD, 
QSD, as demonstrated in Fig. 11 (b). The Irwin calibration model, Eq. 
(15), can only approximate QSD in the training set but not well predict 
QSD in the testing set. For most of the data points in the testing set, using 
Eq. (15) results in significantly higher readings of QSD and TI at the 
pedestrian level, an issue that has been previously flagged in the liter-
ature [21]. 

Turning attention to the approach proposed by the current study, 
fitting the revised model, Eq. (12), to the training set can lead to much 
more accurate predictions of QSD for the testing set, as shown by the 
significant reduction of MAPE from 92.3 % in Fig. 11 (b) to 11.9 % in 
Fig. 11 (d). Therefore, if the time-averaged terms of all three higher- 
order polynomials of Δp’ from the truncated Taylor expansion in Eq. 
(12) are kept for calibration, a sensor calibrated under idealised turbu-
lent flows on a flat plate is capable of accurately predicting QSD in an 
urban model where building-induced turbulence exists. While this is a 
significant improvement, it is worth noting that using the revised cali-
bration model for QM (Eq. (11)) only leads to a minor improvement in 
the measurement accuracy for the testing set. Indeed, by cross- 
comparing Fig. 11 (a) and (c), it can be seen that MAPE is only 
reduced slightly from 13.2 % to 11.7 %. It is worth noting that the 
training sets for both QM and QSD shown in Fig. 11 are generated using 
the same flat-plate setup but with different barrier settings as detailed in 
Section 4.2. However, an interesting observation can be made from 
Fig. 11: regardless of the calibration model used, all the training data 
points appear to form a straight line between the response variables (QM 

or QSD) and the corresponding input variables. This finding suggests that 
the sensor can be effectively calibrated under a single turbulent flow 
condition with varying mean flow speeds. Thus, there is no need to 
manipulate the TI levels during the sensor calibration process. 

At this juncture, it is necessary to reflect that Eqs. (14) and (15) 
proposed by Irwin [19] are based on two assumptions: first, only the first 
3 terms in the Taylor expansion are considered; and second, the time- 
averaged, higher-order polynomials of Δp’ (than the order of 2, also 
see p4, p5, and p6 in Eq. (13)) are neglected, due to their relatively small 
contributions to QM and QSD on a flat surface. Nevertheless, as demon-
strated here, in the cases where there are building models causing high 
TI at hs, the mean and SD values of the differential pressure (represented 

as Δp and 
̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δṕ )2
√

) can reach comparable magnitudes. As a result, the 
effects of these high-order polynomials can no longer be neglected for 
the calibration of the sensor. Under this condition, the second simplifi-
cation above can cause higher turbulence/QSD “readings” from the 
surface wind sensor, which is consistent with the finding by Wu and 
Stathopoulos [21]. The herein reported results evidence that the over-
prediction of QSD is due to neglecting the three higher-degree poly-
nomials of Δp’ in Eq. (13), rather than truncating the higher-order 
Taylor expansion terms above the 3rd order as has been conjectured by 
Wu and Stathopoulos [21]. 

5.2. Training, feature selection, and validation of the PGNN calibration 
models 

In this section, two independent PGNNs (see Section 3) are trained 
and validated to predict QM and QSD using the experimental data from 
the flat plate test discussed in Section 4.2. To achieve this, the following 
optimization problem is formulated 

Fig. 11. Linear regression of the Irwin’s models (upper row) and revised physics-based models (lower row) to the training dataset in Section 4.2 for mean wind speed 
(left column) and speed standard deviation (right column) predictions for the testing dataset in Section 4.3. 
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x* = min
x

[
∑n

i=1

⃒
⃒QPGNN(pi,x) − Qi

⃒
⃒

Qi

]

subject to xmin⩽x⩽xmax, (22)  

to determine the hyperparameters of the proposed PGNNs. This 
formulation gathers the learnable parameters in vector x , with the 
boundaries set by xmin and xmax. The chosen loss function to minimise is 
the MAPE of all n predictions, which provides an intuitive interpretation 
in terms of relative error. For QM prediction, x is defined as [γM, αM, βM, 
σM1,.., σMm] (see Eq. (20)), while for QSD, x is defined as [γSD, εSD, βSD, 
σSD1,.., σSDl] (see Eq. (21)). In both cases, the lower bounds for all entries 
in x are set to 0. The upper search ranges for x are unbounded, except for 
the first entry (the weighting factor γ), which is bounded by 1.0. The 
optimal value of x is denoted as x* in Eq. (22) and is found by mini-
mising the loss function (MAPE) until the change in the function’s value 
between two successive iterative steps becomes smaller than the speci-
fied tolerance of 1E-04. 

To solve the optimization problem in Eq.(22), the computation of 
QPGNN(pi,x) (i = 1, …, n) is performed using Eqs. (20) and (21) for QM 
and QSD estimates, respectively. Since the above optimisation problem is 
non-convex, the hyperparameters of the PGNNs are determined using a 
cascade optimisation process. This process begins with initial training 
using the Augmented Lagrangian Genetic Algorithm (ALGA) [44], fol-
lowed by subsequent training using the Interior-Point Method (IPM) 
[45]. As a stochastic global optimisation algorithm, the use of ALGA 
reduces the risk of the training process getting trapped in local minima, 
while the subsequent use of the gradient-based IPM helps eliminate 
near-optimal solutions. 

Before training the PGNNs, feature selection is performed for the 
GRNN component of the corresponding PGNN (see Fig. 2) to reduce the 
model’s complexity and improve its interpretability and general-
isability. To achieve this, the initial input vectors, after z-score stand-
ardisation, used by the adaptive GRNNs are defined in the following two 
equations 

p̃M =

[

p̃1, p̃2, p̃7, p̃8

]

and p̃SD =

[

p̃3, p̃4, p̃5, p̃6, p̃7, p̃8

]

(23)  

for QM and QSD predictions, respectively. In the last equation, ̃p1 to ̃p6 are 
defined in Eq.(21), while ̃p7 and ̃p8 denote the standardised mean and SD 
of Δp, respectively. In this setting, the first two and four entries of ̃pM and 
p̃SD correspond to the physics-based input features derived from Eqs. 
(11) and (12) respectively, which are coming from the Taylor expansion 
of instantaneous Q(Δp). Conversely, the last two entries of p̃M and p̃SD 
represent two added statistical features of Δp(t) and do not contain any 
prior domain knowledge from the physics-based models. Upon optimi-
sation, the input features in the last equation are automatically ranked 
by their relative importance, determined by their corresponding band-
widths σ. In the adaptive GRNN, an input feature with a small optimised 
σ will have a greater impact on the calculation of the reduced Mahala-
nobis distance, while a feature with a relatively large optimised σ will 
have a minimal or even negligible impact. This intrinsic property of the 
adaptive GRNN enables automated feature selection by discarding fea-
tures with comparatively large σ values. The selection of input features 

involves eliminating all the features from the standardised p̃M and p̃SD 
whose σ exceeds a given threshold. Table 1 provides a statistical sum-
mary of the input features in Eq. (23) in the full dataset, which includes 
both the training and testing sets from Sections 4.2 and 4.3. 

At this point, two separate GRNN models are trained using the 
respective full training set in Section 4.1, by minimising the loss function 
defined in Eq. (22). Each model is trained using the same cascade 
optimisation approach and the same dataset for 400 times, which are 
sufficiently large enough for statistical convergence of optimised σ. 
Fig. 12 (a) and (b) depict the median and mean values of the optimised σ 
for 4 features in ̃pM and 6 features in ̃pSD, respectively. As seen in Fig. 12 
(a), the most important features for QM approximation (using the 
adaptive GRNN) are the same two Taylor expansion terms employed in 
Eq. (11). This is because the median and mean values of their optimised 
σ are much smaller than those of the two added features, namely Δp and 
̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δpʹ)2
√

. For QSD approximation, it is clear in Fig. 12 (b) that there are 
three input features, two from the Taylor expansion in Eq. (12) and one 

added feature 
̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δṕ )2
√

, that hold greater importance compared to the 
remaining three features. 

To this end, the selected input features for the proposed PGNNs in 
Eqs. (19) and (20) for QM and QSD measurements, pPGNN

M and pPGNN
SD , are 

presented below, reflecting the elimination of the input features with 
comparatively large σ value as demonstrated in Fig. 12. 

pPGNN
M =

[

p1, p2, p̃7, p̃8

]

and pPGNN
SD =

[

p3, p4, p5, p6, p̃3, p̃4, p̃8

]

(24) 

In this setting, the proposed PGNNs in Eq. (20) for QM measurement 
incorporates 4 input features in total, including two Taylor expansion- 
based ones from Eq. (11) for the physics-based model, as well as two 
standardised features in Eq. (24) for the adaptive GRNN. On the other 
hand, the PGNN in Eq. (21) for QSD measurement utilises 7 input fea-
tures in total, consisting of four Taylor expansion-based ones from Eq. 
(12) for the physics-based model and three standardised features in Eq. 
(24) for the adaptive GRNN. 

To validate the proposed PGNN, a “cross-validation” is employed, 
involving three different predictive models: the physics-based predictive 
model (Eqs. (11) or (12)), the pure adaptive GRNN (Eq. (19)), and the 
proposed PGNN (Eqs. (20) or (21)). These three models are trained on 
the same dataset generated from the flat-plate experiment detailed in 
Section 4.2. For validation purposes, a standard 5-fold cross-validation 
method is implemented to randomly split the available training data 
(70 in total) into 4 training folds and 1 validation fold of equal sizes. The 
calibration coefficients of the physics-based models are determined 
using linear regression, while the adaptive GRNNs and PGNNs are 
trained using the cascade optimisation process discussed previously. 
Conveniently, the pure data-driven GRNN model can be retrieved from 
the corresponding PGNN by setting the corresponding weighting coef-
ficient γ in Figs. 2 to 0. In this setting, each model undergoes five rounds 
of training and validation. The averaged performance metrics resulted 
from these trainings and validations are summarised in Table 2, which 
includes the min and max PE, MAPE, and coefficient of determination 

Table 1 
Statistical description of different input features of the full dataset including the range, mean, median, standard deviation (SD), and coefficient of variation (COV) 
values.   

Input feature Unit Range Mean Median SD COV 

From Taylor expansions (for physics-based models in Eqs. (11) and (12)) p1 
̅̅̅
P

√ [0.392, 5.407]  2.241  2.112  0.998  0.445 
p2 [0.053, 5.747]  1.631  1.032  1.499  0.919 
p3 Pa [0.097, 23.106]  3.855  2.037  4.765  1.236 
p4 [-0.002, 41.952]  6.380  1.592  8.613  1.350 
p5 [0.008, 159.158]  18.504  4.422  25.486  1.377 
p6 [0.003, 33.025]  4.895  1.065  6.830  1.395 

Added 
(for GRNNs in Eq. (19)) 

p7 Pa [0.154, 29.241]  6.013  4.462  5.170  0.860 
p8 

̅̅̅
P

√ [0.269, 21.236]  4.103  2.669  4.104  1.000  
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(denoted R2) for both QM and QSD estimates. Further, these performance 
metrics are evaluated separately across the training, validation, and full 
datasets. 

It can be observed from Table 2 that all three models perform 
generally well for approximating and predicting QM on the full and 
validation datasets, with their QM estimates all falling within the ± 16 % 
error bound. Still, the adaptive GRNN exhibits a slightly wider error 
bound for the training and validation datasets compared to the physics- 
based model and PGNN. Similar trends are also observed for QSD esti-
mates, albeit with increased MAPEs and widened error bounds across all 
models in general. Nevertheless, the adaptive GRNN shows much wider 
error bounds for all three types of datasets, with its min and max PEs 

doubling from [-15.7 %, +19.0 %] for QM estimates to [-37.4 %, 41.9 %] 
for QSD estimates. Among the three models, the proposed PGNN 
consistently outperforms the other two for both QM and QSD predictions 
across the three datasets. However, the application of it does not result 
in significant improvements in the measurement accuracy of the surface 
wind sensors compared to the physics-based model, despite requiring 
slightly more training effort. 

Finally, it is important to note that the proposed PGNN is found to be 
highly robust to overfitting. This is largely attributed to its use of limited 
number of DOFs, specifically 5 DOFs ([γM, αM, βM, σM1, σM2]) for QM 
predictions and 7 DOFs ([γSD, εSD, βSD, σSD1, σSD2, σSD3]) for QSD pre-
dictions. Consequently, the size of the training set is an order of 

Fig. 12. Median and mean values of the optimised σ for input features in Eq. (23) using the adaptive GRNN for (a) mean wind speed and (b) speed standard deviation 
approximations. The values are obtained by retraining the adaptive GRNN using the full training set 400 times. 

Fig. 13. Target vs. predicted mean wind speeds (upper row) and speed standard deviations (lower row) with a ± 20 % error bound (shown as the grey area) by 
Irwin’s predictive models (left column), revised physics-based model (middle column), and physics-guided GRNN (right column). 
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magnitude larger than the number of hyperparameters, rendering the 
issue of overfitting generally negligible. Conversely, the concern of 
underfitting is also of minimal significance in the proposed PGNNs, 
which is attributed to the additional DOFs introduced through the 
weighting operation and the utilisation of unique bandwidths for each 
input feature in the adaptive GRNN. 

5.3. Prediction accuracy of PGNN calibration model 

In this section, the PGNNs trained in last section are applied to 
predict the pedestrian-level mean wind speeds and speed SDs at 9 
selected locations in the AIJ case D benchmark urban model as indicated 
in Fig. 8(b). The aim is to assess the generalisation performance of the 
proposed PGNN calibration approach for evaluating urban pedestrian- 
level winds in comparison to Irwin’s calibration models and physics- 

Fig. 14. Taylor diagrams of the three different predictive models in Fig. 12 for mean wind speed (upper row) and speed standard deviation (lower row) approxi-
mations/predictions considering the training (left column) and testing (right column) datasets. 

Fig. 15. Histograms of percentage errors of all (a) mean wind speed and (b) speed standard deviation predictions by the proposed physics-guided general regression 
neural network considering the testing dataset. 
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based models that utilise higher-order polynomials of Δp’. As a remark, 
the training and validation datasets used in the analysis stem from the 
flat-plate experiment outlined in Section 4.2, devoid of any building 
models. The current section demonstrates that employing the proposed 
PGNN, trained on the flat-plate dataset, yields significant improvements 
in the prediction accuracy of surface wind sensors concerning MAPE, 
error bound, and root mean square error (RMSE) in the presence of 
building-induced turbulence. Cross-validated PGNNs are iteratively 
trained 400 times using the entire training set and the cascade optimi-
sation method. The final PGNN models are constructed by averaging 
optimal hyperparameters derived from these iterations. These models 
are then applied to the testing dataset derived from the AIJ case D model 
to showcase their extrapolation capabilities in the following section. In 
this regard, Fig. 13 displays the measured/target versus predicted mean 
wind speeds and speed SDs from three models: simplified Irwin’s models 
in Eqs. (14) and (15), herein derived models in Eqs. (11) and (12), and 
proposed PGNNs in Eqs. (20) and (21). The pure adaptive GRNN from 
the last section is excluded due to its inferior performance (in terms of 
error bounds for QSD) compared to the other two models. Specifically, 

the upper and lower rows of Fig. 13 are for mean wind speed and speed 
SD, QM and QSD, respectively, and the three columns of Fig. 13 from left 
to right are for simplified models in Eqs. (14) and (15), the physics-based 
models in Eqs. (11) and (12), and PGNNs, respectively. Each subplot 
includes MAPE as well as min and max PE of all predictions in the lower 
right corners, while the optimised calibration coefficients for the 
physics-based predictive models and hyperparameters for the PGNNs 
are displayed in the upper left corners. It can be observed from the upper 
row of Fig. 13 that all three models predict QM well with a MAPE less 
than 14 %. In addition, the MAPE value gradually decreases from 13.2 % 
for Irwin’s model to 11.7 % for the physics-based model and finally to 
8.9 % only for the proposed PGNN. Meanwhile, the error bound is seen 
to steadily narrow as well. Furthermore, most of the data points of the 
three models are within the ± 20 % error bound shaded in grey, and the 
number of outliers outside the shaded region keeps reducing as the 
predictive model advances to the proposed PGNN. In summary, all three 
models provide accurate predictions of mean wind speeds with a small 
scatter, and the proposed PGNN offers the best prediction performance. 

Focusing on the lower row for QSD prediction, Fig. 13 (d) 

Fig. 16. Absolute percentage errors of mean wind speed (left column) and speed standard deviation (right column) predictions by the three predictive models in 
Fig. 13 at three critical locations around the central building model for wind direction of 0◦ and two inflow speeds at the central building height. 

Table 2 
Performance metrics of three different models.  

Output Model Training set 
(approximation)  

Validation set 
(generalisation)  

Full set 
(approximation) 

min/ 
max PE 

MAPE R2 min/ 
max PE 

MAPE R2 min/ 
max PE 

MAPE R2 

Mean, QM Physics 
Eq. (11) 

− 10.4/ 
+15.3 %  

3.4 %  0.973  − 13.5 %/ 
+15.3 %  

3.9 %  0.971  − 13.9 %/ 
+15.2 %  

3.5 %  0.975 

GRNN 
Eq. (19) 

− 14.9/ 
+15.5 %  

3.6 %  0.978  − 15.7 %/ 
+19.0 %  

3.7 %  0.971  − 12.4 %/ 
+13.81 %  

3.6 %  0.977 

PGNN 
Eq. (20) 

− 13.4 %/ 
+15.0 %  

3.2 %  0.984  − 13.7 %/ 
+15.6 %  

3.3 %  0.981  − 13.0 %/ 
+14.7 %  

3.1 %  0.982 

Standard deviation, QSD Physics 
Eq. (12) 

− 14.1 %/ 
+23.0 %  

6.3 %  0.959  − 15.7 %/ 
+21.6 %  

8.2 %  0.952  − 15.3 %/ 
+16.0 %  

6.4 %  0.958 

GRNN 
Eq. (19) 

− 30.6 %/ 
+33.6 %  

6.6 %  0.920  − 37.4 %/ 
+41.9 %  

7.1 %  0.915  − 26.5 %/ 
+28.3 %  

5.7 %  0.940 

PGNN 
Eq. (21) 

− 14.9 %/ 
+15.2 %  

6.3 %  0.961  − 18.1 %/ 
+17.5 %  

6.4 %  0.960  − 17.0 %/ 
+16.1 %  

5.8 %  0.963  
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demonstrates that the Irwin’s calibration model results in significant 
overestimates of QSD, with PE and MAPE reaching as high as 184.8 % 
and 92.3 %, respectively. As discussed previously, this is due to the 
omission of the three higher-order terms of Δp’ in Eq. (13). Indeed, as 
seen in Fig. 13(e), including these additional terms in the model, Eq. 
(12), significantly improves the accuracy of QSD measurements, with the 
maximum PE reduced from 184.8 % to 40.8 % and MAPE from 92.3 % to 
11.9 %. Also, the majority of QSD predictions are now within the ± 20 % 
error bound. Finally, the proposed PGNN provides even better consis-
tency between the target and predicted QSD values, as illustrated in 
Fig. 13 (f), with MAPE reduced to 9.8 % and the min/max PE to − 31.4 % 
and 23.8 %, respectively. Again, most of the QSD estimates by PGNN are 
within ± 20 % error bound, with a few exceptions occurring for QSD <

1.5 m/s. 
To provide a more thorough analysis, all four calibration models, 

namely the Irwin’s model, physics-based model, adaptive GRNN, and 
proposed PGNN, are further examined using Taylor diagrams [46] as 
depicted in Fig. 14. The upper row of subplots illustrates QM approxi-
mations for the training set (left) and predictions for the testing set 
(right), while the lower row displays QSD. These diagrams show the 
correlation coefficient and SD of the approximations/predictions for 
each model, with the RMSE of the approximations/predictions repre-
sented by the distance from the observed point to the corresponding 
model symbol. In this setting, the observation point on the x-axis rep-
resents a perfect prediction, with zero RMSE and unit correlation coef-
ficient, with the corresponding SD. Therefore, the location of each model 
symbol in the diagram indicates how closely the predictions by a model 
match the actual observations. Fig. 14 reveals that both QM and QSD, 
predicted by the physics-based models, GRNNs, and PGNNs, show 
strong correlation (over 0.95 for the training dataset and over 0.90 for 
the testing dataset). Additionally, these three models exhibit similar SDs 
as the observations, as measured by the radial distance between the 
centre of each circular section and the model symbol. However, the 
Irwin’s model performs poorly in predicting QSD, as demonstrated in 
Fig. 14 (d), with a correlation coefficient of just above 0.7, in contrast to 
the other three models which have correlation coefficients above 0.9. 
Furthermore, the proposed PGNN model consistently outperforms the 
other three models in terms of the considered model performance met-
rics for both QM and QSD predictions, confirming the trends observed in 
the lower row of subplots in Fig. 13, albeit now using different metrics. 

In Fig. 15, the histogram shows the distribution of PEs for QM pre-
dictions, with a mean value (denoted by μPE) of 1.1 %, SD (denoted by 
σPE) of 10.0 %, and median value (denoted by MPE) of − 0.2 %. The 
histogram exhibits a bell-shaped curve reminiscent of a Gaussian dis-
tribution with symmetrical error bounds about the centre, though with a 
narrowed “neck” region. This indicates that most of the QM predictions 
by the PGNN are concentrated in the centre with small PEs, implying a 
higher level of measurement accuracy. On the other hand, Fig. 14(b) 
shows the histogram for QSD predictions with μPE = 2.5 %, σPE = 11.70 
%, and MPE = 0.8 %. The histogram for QSD predictions shows a 
Gaussian-like distribution, but with a slightly wider spread compared to 
the QM predictions, indicating a lower level of accuracy for QSD mea-
surement (compared to QM measurement). Overall, the histograms show 
that the PGNNs’ predictions by the proposed PGNN are unbiased for 
both QM and QSD measurements. 

Finally, the accuracy of the surface wind sensor calibrated using the 
proposed PGNN is evaluated using wind direction 0◦ and two inflow 
velocities (at the central building height), UM(0.25 m) = 4.95 and 10.05 
m/s, at three critical locations around the central building model (probe 
locations 7, 15, and 18) in Fig. 16. Specifically, Fig. 16 (a) and (c) show 
the absolute PEs for QM measurements by the three calibration models in 
Fig. 13 for the low- and high-speed settings (i.e., 4.95 and 10.05 m/s), 
respectively, while Fig. 16 (b) and (d) show the same for QSD. These 
locations, which cover the front, side, and wake regions of the central 
building model, are demonstrated in Fig. 16 (a). As seen in Fig. 16 (a) 
and (c), the surface wind sensor calibrated using the proposed PGNN can 

predict QM more accurately than the Irwin’s model and physics-based 
model for both speed settings in the front and side regions, with abso-
lute PEs of less than 10 %. However, in the wake region, the absolute PEs 
of the predictions by all three models are comparable and increase to 20 
%. Regarding Fig. 16 (b) and (d), all three models generally predict QSD 
well with absolute PEs of less than 20 % for both speed settings, except 
for Irwin’s model, which significantly overpredicts the speed SD by 100 
% in front of the building model. 

6. Concluding remarks 

Skin friction sensors play a crucial role in measuring the frictional 
stress resulting from fluid flow over solid surfaces, providing both 
qualitative and quantitative insights into airflow near solid bodies 
within boundary layers. Among these sensors, the surface wind sensor 
developed by Irwin [19] has found widespread adoption in wind tunnel 
experiments, particularly those focusing on urban and environmental 
aerodynamics. However, when calibrated using the current physics- 
based method, the accuracy of this sensor in measuring flow speed 
fluctuations in regions with low flow velocity and high turbulence has 
been a subject of concern. This study has addressed this limitation by 
introducing a physics-guided neural network (PGNN) calibration 
approach aimed at improving the accuracy of this sensor for measuring 
low-frequency speed fluctuations in the above condition. The proposed 
method integrates a refined physics-based model derived from Irwin’s 
original calibration equations with a data-driven adaptive general 
regression neural network (GRNN). The results demonstrate significant 
improvements in measuring both mean wind speed (QM) and speed 
standard deviation (QSD). To assess the effectiveness of the proposed 
calibration model, different experimental setups were established in the 
Industrial T7 wind tunnel facility at City, University of London, gener-
ating independent datasets for training and assessing the prediction 
accuracy of the proposed model, separately. The calibration of the 
sensor was conducted on an empty flat plate under a variety of tripped 
turbulent boundary layer flows, while the accuracy of the sensor (cali-
brated using the proposed approach) was assessed at multiple critical 
locations within a 1:400 benchmark urban model. 

The experimental results clearly demonstrate the superiority of the 
proposed PGNN calibration strategy over Irwin’s original approach in 
accurately measuring both TI and mean wind speed, while maintaining 
strong robustness to overfitting due to the limited model complexity and 
number of hyperparameters involved. This advancement significantly 
enhances the understanding of utilising the law of the wall and data- 
driven model for the calibration of the sensor in three key aspects. 
First, it is found that using the first three Taylor expansion terms during 
the derivation of the physics-based calibration equations is sufficient for 
measuring both QM and QSD. For increased measurement accuracy, it is 
recommended to use Eqs. (11) and (12) proposed in this study for sensor 
calibration. Second, as long as no higher-order terms of Δp’ are 
neglected, the sensor calibration can be performed on an empty flat 
plate under idealised turbulent flow conditions with uniform roughness. 
This finding significantly simplifies the sensor calibration process, as the 
sensor can be calibrated under a single flow condition with varying 
mean flow speeds and subsequently used to measure non-idealised tur-
bulent flows induced by roughness elements with sharp edges. Finally, 
the hybrid calibration approach, incorporating the physics-based model 
and adaptive GRNN, was shown to outperform each individual model 
(used independently) in terms of both approximation and generalisation 
performance. To ensure optimal performance of the proposed calibra-
tion model, the complementary weighting factors for the two constitu-
ent models were treated as hyperparameters during training. For QM and 
QSD measurements, the optimal weightings for the physics-based pre-
dictions were determined to be 0.508 and 0.844, respectively. 

Overall, this study provides valuable insights into enhancing the 
accuracy of surface wind sensors and paves the way for more reliable 
flow speed measurements in wind tunnel experiments, ultimately 
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contributing to the development of safer and more comfortable urban 
environments. 
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