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Abstract—The application of robotic platforms for precision
agriculture is gaining traction in modern research. However,
the demand for a complete fruit dataset is still not satisfied. In
this paper, we present fruity, a multi-modal fruit dataset with a
variety of use cases such as 6D-pose estimation, fruit detection,
fruit picking applications, etc. To the best of our knowledge,
this dataset is the first-ever multi-modal fruit dataset tailored
specifically for fruit 6D pose estimation in precision agriculture.
The dataset is collected over a range of multiple sensors
consisting of an RGB-D camera, thermal camera and an indoor
tracking camera for ground truth poses. Fruity features RGB
images, stereo depth images, thermal images, camera 6D-poses,
fruit 6D-poses and relative 6D-poses between the cameras and
fruits. The classes of the dataset are commonly harvested fruits
which include: apples, oranges, bananas, avocados and lemons.
It is also enriched with a clustered class to account for occlusion
scenario. The dataset is recorded over multiple trajectories
implemented with multiple platforms. The dataset alongside
the documentation and utility tools is publicly available at:
https://github.com/MahmoudYidi/Fruity.git.

I. INTRODUCTION

Precision agriculture is poised to be the solution of global
food shortage. Robotics in agriculture is often considered
to be a good form of precision agriculture. However, the
shortage of accurate and complete datasets is restricting the
exploitation of robots in agriculture. Detecting and estimating
6D-poses find application in object grasping, Virtual Reality
(VR), Augmented Reality (AR), and autonomous driving.
However, the availability of datasets has limited this applica-
tion in Agriculture. Having a single sensor for this purpose
introduces limitations that are associated with the sensing
mechanism. For example, RGB cameras are not usable for
complex computer vision applications in low illumination
scenarios [1], [2]. RGB Cameras are utilized for edge de-
tection, colour-based classifications [3] and 2D localization
[4]. However, using these images for 3D localization is a
challenging task [5], [6]. Understanding this compromise,
researchers complement the weakness of one sensor with the
strength of another thereby arriving at the concept of multi-
modal sensoring. Even though datasets are collected peculiar
to a given application, it is pertinent that they are collected

Fig. 1. Figure showing the modalities of our dataset (RGB, Depth and
Thermal) including the 6D Pose and the robotic manipulator used for
acquiring the dataset.

with completeness, accuracy, and richness to facilitate the
development and evaluation of newer innovations.

Over the years, many datasets have been collected for
autonomous driving [5], pedestrian detection [7] and odom-
etry [1]. However very few have been collected for fruit
detection and picking. In this paper, we propose Fruity: A
multi-modal dataset for fruit recognition and 6D-Pose Esti-
mation in precision agriculture. This dataset can be utilized
to facilitate and evaluate new innovative methods in fruit
picking, detection, and 3D localization. Fruity consists of 6
classes namely: apple, banana, orange, avocado, lemon, and
a fruit cluster class. The modalities of the dataset include
a thermal modality, RGB modality and a depth modality as
seen in Fig. 1. Each class of the dataset is accompanied by
6D poses of the fruits and the camera alongside the relative
poses between them. The dataset is acquired through different
trajectories on multiple platforms. A customised sensor rig
was designed and constructed to house the sensors while
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being mounted on the platforms. The data acquisition and
synchronization is possible through the Robotics Operating
System (ROS) framework [8] as shown in Fig. 2. The outputs
of the system are the RGB, depth, and thermal images. The
6D poses of the cameras and the targets are also obtained
from the system. These poses are also used to compute the
relative poses between the camera and the target. The major
contributions of this dataset can be summarised as follows:

• We present a multi-modal indoor fruit dataset that
encompasses data from modern sensors. This is the
first multi-modal fruit dataset that is tailored for 6D-
pose estimation in precision agriculture which finds
application in autonomous fruit-picking and harvesting.

• We have acquired the dataset over different trajectories
implemented on multiple platforms (manipulator and
UAV) to provide a variety of 6D poses to facilitate
effective training.

• We provide a toolkit to easily manage and utilize the
multi-modal dataset in form of plug-and-play codes as
well as providing documentation on how to easily use
this data.

Fig. 2. Figure showing the overview of the dataset acquisition pipeline
featuring RGB-Camera, Thermal Camera and Tracking system to record
data simultaneously via ROS

II. RELATED WORK

We will discuss works related to the following:

A. Fruit Datasets

The most used fruit dataset for classification problems is
the Fruits 360 [9]. The dataset consists of 90,483 RGB im-
ages of different varieties of fruits. A Logitech C920 camera
was used to capture the fruits on a white background. Even
though the dataset is rich in terms of the fruit variety, the
dataset fails to capture multiple modalities thereby restricting
the dataset to only classification and detection problems.
Hence, 6D-pose estimation is not possible using this dataset.
Additionally, images are of size 100 × 100 thereby making
it difficult to utilize the data for very detailed classification

problems. Additional modality becomes a necessity since the
RGB camera can not provide the optimal dataset for all the
listed applications. More works in this regard were carried
out on RGB-D setups [10]–[13] while others exploited the
combination of RGB with Near Infrared (NIR) images [14],
[15]. Even though these works have added an additional
modality, the problem of 3D fruit localization of the detected
fruit still persists since the 6D poses of the camera and fruits
are not readily provided as ground truths. Moreover, they
focus on a single fruit as a class hence reducing the diversity
of these data.

B. 6D Pose Datasets

The LineMOD Dataset [16] is a well-known dataset for
6D pose estimation. It consists of RGB-D images and poses
of 15 objects. The OCCLUSION dataset [17] has properties
like the former but also accounts for testing 6D poses of
occluded objects. Another dataset with similar property is the
T-LESS Dataset [18]. This dataset is accompanied with 3D
card models. YCB-Video Dataset [19], a popular dataset for
6D pose estimation consists of household objects displayed
in short videos. Other 6D pose estimation datasets are also
proposed [20]–[22]. Although these datasets are tailored for
6D-pose estimation, none of them is targeted towards 6D-
pose estimation of fruits to facilitate fruit picking application
in precision agriculture.

C. Other Multi-Modal Datasets

The KITTI dataset [23] is a popular multi-modal dataset
having data from lidar, stereo and IMU sensors. Due to
the richness of this dataset, it has facilitated the emergence
of state-of-art methods for 3D-object detection. The H3D
dataset [24] is another multi-modal dataset where objects
are annotated from multiple views as opposed to KITTI.
Other significant multi-modal dataset have been proposed
over the years [25]–[29]. However, majority of the dataset
are proposed for autonomous driving and can barely find
application in fruit detection, fruit 6D-pose estimation and
fruit-picking.

D. Platforms

In terms of platform, majority of the indoor multi-modal
datasets are acquired with handheld methods [30], [31]. This
does not account for more dynamic and rich poses.

III. EXPERIMENTAL SETUP

To collect data on moving platforms, it becomes necessary
to house the sensors on a befitting sensor rig to allow
seamless data acquisition. We designed a CAD model of
a sensor rig peculiar to our application. The sensor rig is
capable of carrying all the required cameras (RGB-D and
thermal) as seen in Fig. 3. It also has reflective markers
onboard to allow for tracking and retrieval of its ground
truth 6D pose. The sensors used for the data capture include
an Intel RealSense D435i stereo camera, a FLIR vue pro
thermal camera and an optitrack tracking system. All the Intel



Fig. 3. Sensor Rig design drawing and CAD model

RealSense camera settings were used as default as assigned
by ROS. The Thermal camera was used with the grayscale
filter and all other parameter used as default. The outputs of
these sensors are summarized in Table I. The stereo camera
provides the RGB image and the depth image. The thermal
camera provides the thermal information of the fruit and the
tracking cameras are used to provide the 6D positions and
orientations of the camera and the fruit which is taken as the
center of mass of the camera rig.

Robotics Operating System (ROS) is used for the sensor
interfacing. For a consistent dataset, we require all the data
to be synchronous and in real-time. We implemented this
by collecting all the data from the sensors simultaneously as
rostopics. Fig. 4 shows the interfacing of the sensors. The
RGB-D camera is connected to the workstation and accessed
through the realsense camera package. This packages collects
the RGB and the depth data which are then published as
rostopics. The data is then subscribed and synchronized
before outputting both images. The same pipeline applies for
the thermal camera but in this case using a thermal camera
package. The tracking cameras are hosted on another PC
running the optitrack software. The 6D poses are collected
through a client package over wireless communication.

The platforms used for the dataset collection are the sawyer
manipulator from Rethink Robotics, and a customized UAV
shown in Fig. 5. The camera rig is also held at hand to
collect more data otherwise difficult to obtain from both
platforms. This enriches the data with various forms of
moving thereby constituting more dynamic relative poses
between the cameras and the fruit.

IV. DATASET COLLECTION

The images and 6D poses of the fruits are collected
in a sequential manner in the form of trajectories. The
platforms equipped with the required sensors are subjected

Fig. 4. ROS workflow with Node 1,2 and 3 representing the camera packages
of our sensors. Respective data are published in form of ROS topics which
are the utilised in a script to synchronise and save the data

Fig. 5. Figure showing the platforms used to implement the trajectories for
data acquisition. The Robotic Manipulator and UAV platforms are equipped
with an RGB-D and thermal camera which are housed in the sensor rig

to a trajectory. This gives us a rich dataset with a variety of
poses as there are many different relative poses between the
cameras and the fruits along each trajectory. The trajectories
are determined by the cameras’ Field Of View (FOV), and
the freedom of the platforms’ joints. A definitive trajectory
is likely to have frames with no objects in sight which will
not only confuse the network to be trained but also add
more frivolous volume to the dataset. Thus, the trajectories
are intuitively implemented to cater for these limitations.
Frames were captured at 30Hz along the trajectory while
simultaneously recording the relative 6D pose. The 6D pose
P is represented as follows:

P = [Xt, Yt, Zt, Xq, Yq, Zq,Wq]
T (1)



TABLE I
SENSOR SPECIFICATIONS, TYPES AND OUTPUTS

Sensor Type Output
1 × RGBD Camera Intel realSense D435i stereo camera 30Hz 8bit 640×480 RGB image

30Hz 16bit 640×480 depth image
1 × Thermal Camera FLIR Vue Pro thermal camera 30Hz 16bit 640×480 thermal image
6 × Tracking Camera Optitrack motion tracking system 3-dimensional position

3-dimensional orientation

where Xt, Yt, Zt are the 3D-translation in X,Y, Z while
Xq, Yq, Zq,Wq are the quaternions.

A. Collection on Manipulator

We used a Sawyer robotic manipulator for the collection.
It has 7 degree of freedom with a payload capacity of up to
4kg. The 3D-printed sensor rig carrying the camera setup was
mounted as an end-effector to the manipulator. The trajecto-
ries were created as waypoints on the Intera software [32].
The trajectories were such that the FOV and the manipulator
restraints were not impacted. A total of 5 trajectories were
conducted with the manipulator. Fig. 6 shows the trajectories
and the 3D-translation profile in X,Y, Z direction of the
manipulator. Fig. 7 shows the quaternions of the trajectories.

Fig. 6. Figure showing the 3D-translation [Xt, Yt, Zt] in X,Y, Z direction
of the manipulator’s trajectories. Each trajectory is represented by a coloured
line

B. Collection on UAV

For more dynamic and rich poses, we used a UAV to
collect data from more distinct poses. The sensor rig was
transferred to a UAV equipped with an onboard processing
unit. The UAV was manually controlled to perform trajec-
tories such that the target fruit remains in the FOV of our
sensors. A total of 4 trajectories were conducted. Fig 8
shows the UAV’s 3D-translation in X,Y, Z direction withe
quaternion shown in Fig 9.

C. Collection on Handheld Rig

The sensor rig was handheld to implement trajectories that
are rather not possible on both the manipulator and the UAV
to provide more coverage and multiple poses. The trajectories
were implemented by randomly moving through a space to
cover the maximum possible area without influencing the

Fig. 7. Figure showing the quaternion profile [Xq , Yq , Zq ,Wq ] of the
manipulator’s trajectories. Each trajectory is represented by a coloured line

Fig. 8. Figure showing the 3D-translation [Xt, Yt, Zt] in X,Y, Z direction
of the UAV’s trajectories. Each trajectory is represented by a coloured line

FOV. A total of 6 trajectories were conducted. As seen in
Fig 10 and Fig. 11, more area was covered thereby providing
more 6D-pose.

V. DATASET

A total of 33,195 images were collected which are dis-
tributed across the 3 modalities (RGB, depth, and thermal).
The camera 6D-pose, fruit 6D-pose, and the relative 6D-pose
between the camera and the fruit were also acquired. 15
distinct trajectories were implemented on 3 platforms to offer
a variety of poses and images. Fig 12 shows the distribution
of the dataset. The apple class has a total of 1869 images
for each modality while the avocado class has 1900 for each
modality. The banana, lemon, orange and cluster classes have



TABLE II
COMPARISON WITH OTHER FRUIT DATASETS

Dataset Platform Class > 1 RGB Depth Thermal 6D-Pose GT

Fruit 360 [9] ✗ ✓ ✓ ✗ ✗ ✗

Sa et al. [14] ✗ ✓ ✓ ✗ ✗ ✗

Kuang et al. [33] ✗ ✓ ✓ ✗ ✗ ✗

Tu et al. [12] ✗ ✗ ✓ ✓ ✗ ✗

Gene et al [15] ✗ ✗ ✓ ✓ ✗ ✗

Wang et. al [11] ✗ ✗ ✓ ✓ ✗ ✗

Tian et. al [13] ✗ ✗ ✓ ✓ ✗ ✗

lehnert et. al [10] Manipulator ✗ ✓ ✓ ✗ ✗

Ours UAV/Manipulator ✓ ✓ ✓ ✓ ✓

Fig. 9. Figure showing the quaternion profile [Xq , Yq , Zq ,Wq ] of the
UAV’s trajectories. Each trajectory is represented by a coloured line

Fig. 10. Figure showing the 3D-translation [Xt, Yt, Zt] in X,Y, Z direction
of the handheld trajectories. Each trajectory is represented by a coloured line

1805, 1788, 1719, and 1984 images respectively for each
modality. Each of the captured images is accompanied with
6D pose of the cameras, fruit, and the relative pose between
them.

We compared our dataset with other fruit related
work/dataset available in Table II. The dataset were compared
based on modalities, classes, the platform used for dataset
acquisition and 6D pose Ground Truth (GT). Our dataset
proves to be a more complete dataset for fruit recognition
and 6D-pose estimation.

The qualitative result of the dataset is shown in Fig 13

Fig. 11. Figure showing the quaternion profile [Xq , Yq , Zq ,Wq ] of the
handheld trajectories. Each trajectory is represented by a coloured line

for each modality captured at different 6D-poses. The depth
and thermal image are displayed in different colormaps to
provide visual distinction between the modalities. However,
the original images in the dataset are in grayscale as in most
conventional datasets.

Fig. 12. Figure showing the distribution of the dataset, each colour represent
a modality in the dataset



Fig. 13. Examples of Multi-Modal our dataset -top row from RGB-cameras, middle row from depth cameras and bottom row from thermal cameras The
sensor rig was utilised to capture the individual fruit classes at different 6D-poses.

VI. CONCLUSION

This paper presents the Fruity dataset. The dataset is
acquired with a stereo camera, thermal camera, and tracking
camera to provide more modalities of the target (fruits).
We collected the dataset on different platforms in multiple
trajectories to provide a variety of 6D poses to enrich the
dataset. The multiple modalities can enhance the performance
of neural networks in the detection and 6D pose estimation
of fruits which can be applied to fruit picking. Owing to
the increase in demand for robotics in agriculture, we aim
to provide the first fruit-based 6D pose estimation dataset
to facilitate the use of artificial intelligence in precision
agriculture. Our near future plan is to enrich the dataset
with more fruit classes and also provide more scenarios such
as outdoor, fruits on tree, leaves-occluded frames and more
dynamic trajectories.

REFERENCES

[1] Peize Li, Kaiwen Cai, Muhamad Risqi U Saputra, Zhuangzhuang Dai,
and Chris Xiaoxuan Lu. Odombeyondvision: An indoor multi-modal
multi-platform odometry dataset beyond the visible spectrum. arXiv
preprint arXiv:2206.01589, 2022.

[2] Oualid Araar, Nabil Aouf, and Jose Luis Vallejo Dietz. Power
pylon detection and monocular depth estimation from inspection uavs.
Industrial Robot: An International Journal, 42(3):200–213, 2015.

[3] Mahmoud Abdulsalam and Nabil Aouf. Deep weed detector/classifier
network for precision agriculture. In 2020 28th Mediterranean Con-
ference on Control and Automation (MED), pages 1087–1092. IEEE,
2020.

[4] Mahmoud Abdulsalam, Kenan Ahiska, and Nabil Aouf. A novel
uav-integrated deep network detection and relative position estimation
approach for weeds. Proceedings of the Institution of Mechan-
ical Engineers, Part G: Journal of Aerospace Engineering, page
09544100221150284, 2023.

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom. nuscenes: A multimodal dataset for autonomous
driving. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[6] Duarte Rondao and Nabil Aouf. Multi-view monocular pose estimation
for spacecraft relative navigation. In 2018 AIAA Guidance, Navigation,
and Control Conference, page 2100, 2018.

[7] Peishan Cong, Xinge Zhu, Feng Qiao, Yiming Ren, Xidong Peng,
Yuenan Hou, Lan Xu, Ruigang Yang, Dinesh Manocha, and Yuexin
Ma. Stcrowd: A multimodal dataset for pedestrian perception in
crowded scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19608–19617, 2022.

[8] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.
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