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Abstract
For the life insurance industry and pension schemes, mortality projections are criti-
cal for accurately managing exposure to longevity risk in terms of both premium 
setting and reserving. Frailty has been identified as an important latent factor under-
pinning the evolution of mortality rates. It represents the comorbidities that drive the 
deterioration of the human body’s physiological capacity. In this paper, we propose 
a stochastic mortality model that incorporates the trend in frailty, and we analyse 
the gap between the actuarial evaluations of premiums and technical provisions cal-
culated under frailty-based and traditional stochastic mortality models. We observe 
that the frailty-based model leads to higher levels of uncertainty in estimates and 
projections (compared to a traditional stochastic mortality model), which is attrib-
uted to the explicit modelling of the comorbidities. This leads to proposing a poten-
tially important policy-oriented recommendation: the incorporation of frailty in 
mortality modelling would allow for the profiling of mortality according to the port-
folio in force for the insurer (or pension scheme), thereby mitigating the problem of 
adverse selection.
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Introduction

During recent decades, studies of ageing have revealed the incidence of factors that 
affect life span and cause the phenomenon of unhealthy ageing. The increasing inci-
dence of disability across age and time, together with the discovery of important 
ageing biomarkers, has highlighted the linkage between morbidity and mortality 
risks. Broadly speaking, by the mid-twentieth century, economically advanced coun-
tries have experienced an epidemiologic transition to chronic, degenerative non-
infectious diseases, with disability shifting towards middle adulthood (McKeown 
2009). The shifts in psychosocial, behavioural, dietary and societal influences on 
health in the last 30 years have been drivers behind the time trends in mortality rates 
and, hence, have impacted individual life spans.

Some epidemiological studies, in particular longitudinal studies, have considered 
the relationship between risk factors (like smoking, alcohol consumption, lack of 
exercise, diet or type of employment) and the outcome of mortality. In a longitudinal 
study, subjects are followed over time with continuous or repeated monitoring of 
risk factors, health outcomes or both. In particular, most longitudinal studies exam-
ine associations between exposure to risk factors, causes of disease and subsequent 
morbidity or mortality. They provide integrative quantitative analyses for studying 
the effects of demographic and socioeconomic characteristics on mortality rates and 
differentials in mortality rates. These longitudinal studies have stressed the effects of 
some factors, such as comorbidities, on the ageing-related changes developing in the 
human body and on subsequent mortality (see, for example, Olshansky et al. 1992; 
Fried et al. 2001).

In the actuarial and demographic literature, there has been a stream of research 
on the importance of frailty in understanding mortality and of allowing for frailty 
in the estimation of mortality rates, see Beard (1971), Vaupel et al. (1979), Butt and 
Haberman (2004), Su and Sherris (2012) and Xu et al. (2019). In this context, frailty 
is an unobserved factor, including all the sources affecting human mortality other 
than age. This unobserved covariate impacts mortality heterogeneity, which has a 
material effect on mortality outcomes and the interpretation of trends and, in par-
ticular, of longevity improvements (Vaupel et al. 1979).

We build on this existing literature by incorporating frailty in a stochastic mortal-
ity model and by allowing frailty to vary over time. We use this model to estimate 
premiums, technical provisions and risk measures for a range of standard insurance 
contracts in order to assess the impact of incorporating frailty in such models.

Using data from the English Longitudinal Study of Ageing (ELSA; see Banks 
et al. 2021), Carannante et al. (2023) analyse mortality trends in England and dem-
onstrate that the presence of comorbidities represents the main latent factor explain-
ing frailty trends (as noted above, in the actuarial literature, this is defined to be 
an unobserved factor including all the sources affecting human mortality other than 
age). In light of this result, Carannante et  al. (2023) develop and fit a family of 
frailty-based stochastic mortality models based on the seminal Lee–Carter model 
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(Lee and Carter 1992). They argue that this family could lead to more accurate mor-
tality projections, improving the ability of the life insurance industry and pension 
schemes to assess and manage exposure to longevity risk.

In this paper, we consider the model with the best fitting and forecasting metrics 
from the family introduced by Carannante et  al. (2023), i.e. the Age-specific and 
Temporal Frailty Lee–Carter (from herein ATFLCA) model, and study the impact 
on standard actuarial evaluations in comparison with two traditional stochastic mor-
tality models: the standard Lee–Carter model with a single time factor (Lee and 
Carter 1992) and the Lee–Carter model with two time factors (Renshaw and Haber-
man 2003). The ATFLCA model embeds a frailty effect across time and by age and 
leads to estimates with higher levels of uncertainty due to the presence of comor-
bidities. We consider the effect of using these three different models on five standard 
contracts: pure endowment, immediate annuity, deferred annuity, term life insurance 
and whole life insurance. We observe that the frailty-based model (ATFLCA) leads 
to higher levels of uncertainty in actuarial estimates and projections, compared to 
standard Lee–Carter type models. This indicates the significance of model risk in 
this application. It also highlights the importance of the choice of mortality model 
for the purposes of measuring risk in life insurance and annuity portfolios and of 
assessing the corresponding regulatory capital requirements.

The remainder of the paper is structured as follows: the next section describes 
the mortality models; the third section presents some risk measures; the fourth sec-
tion illustrates the main empirical findings; and the final section provides concluding 
comments.

Model setup and problem formulation

One of the most popular and widely used mortality models is the Lee–Carter model 
(from here on, LCA), proposed by Lee and Carter (1992). The general formula 
describing the force of mortality mx,t is defined as follows:

respectively, denoting ax, bx, kt the general shape of mortality, and representing how 
mortality rates change over time in response to the time-varying kt . We follow Lee 
and Carter (1992) in using singular value decomposition (SVD) to fit the model and 
estimate the parameters. Its main desirable features, such as the statistical parsimony 
and the ease of implementation and interpretation, have stimulated several enhanced 
versions. For instance, in the Lee–Carter model with two temporal factors (from 
here on, LC2), Renshaw and Haberman (2003) investigate the feasibility of intro-
ducing a double bilinear predictor.

(1)yx,t = log
(
mx,t

)
= ax + bxkt + �x,t,

(2)yx,t = log
(
mx,t

)
= ax +

2∑
i=1

bi
x
ki
t
+ �x,t.
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We introduce the frailty-based Lee–Carter predictor, which can be expressed as 
in Eq. (3) (Carannante et al. 2023). The model is named Age-specific and Temporal 
Frailty Lee Carter (ATFLCA).

ax, bx, kt play the same role as in (2). The extra terms in Eq.  (3) are zt measuring 
the temporal trend of frailty and gx measuring the age-specific sensitivity of mortal-
ity rates to the trend in frailty. To estimate the model defined in Eq. (3), we define 
a matrix with appropriate frailty values as an input to the model. Let cix,j be the 
comorbidity score of an individual j with age x . Then, we define a comorbidity 
matrix at time t as the matrix in which the rows are the score for each individual 
at age x and the columns represent the comorbidity score by ages from 50 to the 
extreme age �

Since we consider panel data, we obtain a comorbidity matrix for each wave. This 
involves computing T  matrices CMt, t = 1,… , T  , to obtain an age-by-time matrix. 
Each CMt matrix is aggregated, summing by row, resulting in a series of column 
vectors representing the average age score for each time t . These vectors are then 
merged to obtain the final matrix, called CM . Parameters gx and zt are obtained using 
the SVD of the matrix, CM.

The input frailty matrix CM allows for the calculation of the time-varying vector 
zt as the average by age of the CM matrix for each t = 1,…T  , which can be sum-
marised in Eq. (5):

where �x represents the rows of CM , i.e. the time-varying frailty for each age from 
50 to �.

Mortality/longevity risk measures

In the previous section, we introduced an extension of the Lee–Carter model that 
includes a frailty component (ATFLCA) to help explain heterogeneity in mortality 
trends. Our aim is to measure how the choice of mortality model affects the estimate 
of the insurer’s obligations to policyholders for some traditional insurance products 
(i.e. without profit). To this end, some standard risk measures quantifying the mor-
tality and longevity risk should be introduced. In the following, we consider five dif-
ferent traditional life insurance contracts proposed in the market: pure endowment, 
immediate annuity, deferred annuity, whole life insurance and term life insurance. It 

(3)yx,t = log
(
mx,t

)
= ax + gxzt + bxkt + �xt

(4)CMt =

⎛
⎜⎜⎜⎝

ci50,1 ci50,2 … ci50,n
ci51,1 ci51.2 … ci51,n
⋮ ⋮ ⋱ ⋮

ci�,1 ci�,2 … ci�,n

⎞
⎟⎟⎟⎠
.

(5)zt =
1

� − 50

�∑
x=50

�x,
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should be noted that just considering pure endowment and term life insurance would 
be sufficient since, from their linear combination, it would be possible to construct 
the remaining contracts. The consideration of a wider set of products, however, 
allows us to give a more immediate representation of the effect in terms of expected 
values and risk measures of the adoption of different mortality models.

For each insurance product P , we denote by YP
t0

 the present value at policy issue 
of future payments and by �

[
YP
t0

|||q̃
]
 its expected value conditional on the stochastic 

vector q̃ of future death probabilities. For example, for the pure endowment ( PE ) we 
have

with 
n
p̃x probability to survive at age x + n for an insured aged x at policy issue 

( t = t0 ). For the sake of simplicity, we omit the time index in the following notation. 

We have p̃x,n =
n−1∏
h=0

p̃x+h and p̃x+h = 1 − q̃x+h , where q̃x+h is the 1-year death proba-

bility for an alive individual aged x + h at time t = t0 + h.
Similarly, for the term life insurance (TLI) we have

with 
h−1∕

q̃x+h 1-year death probability between age x + h and x + h + 1 , for a live 
insured aged x at time t = t0.

Straightforward expressions can be written for the other three insurance products, 
and these are not reported here for the sake of brevity.

For each product, the unconditional expected present value is given by

and the variance

Then, in order to measure the riskiness of each product under different assump-
tions about the evolution of mortality, we can determine the coefficient of variation:

which is sometimes called the ‘risk index’ (Pitacco et  al. 2009) and we can also 
determine some �-percentiles Q�

[
YP
t0

]
 with

(6)�

[
YPE
t0

|||q̃
]
= (1 + i)−n ⋅

n
p̃x

(7)�

[
YTLI
t0

|||q̃
]
=

n−1∑
h=0

(1 + i)−h+1 ⋅
h−1∕

q̃x+h

(8)�

[
YP
t0

]
= �

q

[
�

[
YP
t0

|||q̃
]]

(9)���

[
YP
t0

]
= ���

q

[
�

[
YP
t0

|||q̃
]]

(10)ℂ𝕍

[
YP
t0

]
=

√
𝕍𝕒𝕣

[
YP
t0

]

𝔼

[
YP
t0

] ,
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In order to have a more meaningful measure of risk, the �-percentiles can be 
expressed as a percentage increase per unit of expected value:

Numerical application

The first aim of the numerical application is to determine how the introduction of a 
frailty component in the Lee–Carter model could affect mortality trends and the vol-
atility of projected mortality rates by comparing the results obtained with those from 
the standard Lee–Carter model with a single time factor (LCA) (Lee and Carter 
1992) and those from the Lee–Carter model with two temporal factors (LC2) (Ren-
shaw and Haberman 2003). Specifically, the comparison with this second model 
could indicate the consequences of using a model, where the second term represents 
the observed frailty and is estimated independently of the mortality data.

Once we have highlighted the differences in trends and volatility in mortality 
projections, our second objective is to measure how they affect the expected values 
of the insurer’s obligations to policyholders for some traditional life insurance con-
tracts. In addition, we quantify the mortality and longevity risk for such products 
through some standard risk measures presented in the previous section and we high-
light how they vary with the mortality model adopted. The results will allow us to 
highlight the presence of model risk and show how the introduction of a frailty fac-
tor, which measures the heterogeneity of mortality, increases the volatility of death 
rates and consequently allows us to better measure the riskiness of the insurance 
portfolio.

Data description

In order to compare the three models considered, we use two sources of data: the 
Human Mortality Database, which is used to compute the exposures to risk and 
the mortality rates and then used to estimate the parameters in the LCA, LC2 and 
ATFLCA models, and the English Longitudinal Study on Ageing (ELSA), which 
is used to estimate the frailty parameter zt in the ATFLCA model (as described in 
Carannante et al. 2023).

Specifically, from the Human Mortality Database, we have extracted data on 
death rates and Exposures-to-Risk (by single year of age) for the England & Wales 
total population, for ages 50–90 and for the years 2003–2019.

The choice to use the total population rather than the population differentiated by 
gender was for regulatory reasons.

(11)Q𝛼

[
YP
t0

]
= inf

{
y ≥ 0|ℙ

[
YP
t0
≤ y

]
> 𝛼

}
.

(12)
Q�

[
YP
t0

]

�

[
YP
t0

] − 1
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Regulatory and supervisory bodies, actuarial associations, industry associations 
and providers of insurance products are often required to use mortality tables for 
particular valuations. For instance, unisex mortality assumptions are used to calcu-
late retirement incomes in many jurisdictions by replacing separate life expectancy 
tables for men and women. The uniform tables change actuarial calculations for 
many life insurance policies, federal and private pension payouts, and most other 
estimates used to predict average life spans. For example, in 1978, the U.S. Supreme 
Court first prohibited gender-based divisions in insurance in the City of Los Angeles 
case. In 1983, the courts banned gender-based insurance distinctions for tax-deferred 
annuities and deferred compensation plans in Arizona.

The analysis of gender equalisation is relevant to the European context as well. 
According to the EU Gender Directive, insurance companies are obliged to charge 
the same premium to policyholders of different genders in order to achieve the uni-
sex fairness principle. There appears to be some academic literature addressing the 
unisex insurance (pricing) practice, as in our research. There is some literature that 
also investigates the implications of the adoption of the uniform fairness principle 
on some actuarial evaluations, such as the Solvency Capital Requirement (Chen 
et al. 2018).

The ELSA dataset is obtained by harmonising multi-faceted longitudinal sur-
veys to study health, economic position and quality of life among persons aged over 
50 and households (Banks et al. 2021). ELSA builds the sample through two-stage 
sampling, with the postal code as the first-stage unit and households as the second-
stage unit. Households are selected through stratified sampling, and their weights 
refer to the age and gender structure of the last available census data, e.g. 2001 for 
the first wave. These proportions define the probabilities of selecting families from 
which individuals are chosen for interviews. The use of stratified sampling allows 
for obtaining a sample that proportionally reflects the age and gender structure pre-
sent in the English population of individuals aged over 50.

There are currently nine waves available, from 2002 to 2019, composed of indi-
viduals aged 50 and over, interviewed every 2 years until their deaths, with new 
individuals introduced at each wave to preserve the age structure of the sample. 
Including all the individuals who have taken part in at least one wave of the survey, 
we obtain a dataset of 19,802 respondents.

Estimation of model parameters and forecasting

Figure 1 shows the parameter estimates for the LCA model. The age profiles of ax 
and bx show the usual form that has been observed in the literature, while kt strongly 
decreases until 2010 then shows a slowdown. This latter result can be linked to 
the slowdown in mortality improvement rates in the period 2011–2017, which has 
recently been studied in the literature (see Djeundje et al. 2022). This paper analysed 
longevity trends for 21 industrialised countries, noting that the slowdown from 2011 
is a common feature, although with some differences between men and women.

Djeundje et al. (2022) show that the U.K. has one of the greatest slowdowns 
among these 21 countries. They analyse the average annual rates of improvement 
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in mortality by country and gender over different periods, noting that in the 
period 2011–2017, the gap for the U.K. between the observed rate of mortality 
improvements and that projected based on data from 2001 to 2010 is among the 
highest, with four countries showing a higher gap for the female population (Ger-
many, Spain, Italy and Greece) and two countries with a higher gap for the male 
population (Germany and Taiwan).

Among the possible causes are the worsening trends in morbidity attributable 
to diabetes and obesity, the heterogeneity of mortality between socioeconomic 
groups, a rise in mortality due to heart disease or age-related diseases such as 
dementia and Alzheimer’s, as well as cohort effects (Leon et al. 2019; Office for 
National Statistics 2018; Raleigh 2019).

With specific reference to the U.K., the observations are consistent with the 
hypothesis that the austerity measures introduced after the 2008 financial crisis 
and excess winter deaths in 2014–2015 have adversely affected mortality trends. 
Both austerity and the excess winter deaths could have reinforced the adverse 
trends in obesity, diabetes, circulatory disease-related deaths and dementia deaths 
(Hiam et al. 2017a, b).

Figure 2 shows the estimated parameters for the LC2 model.
As Fig. 2 shows, both k(1)t  and k(2)t  are characterised by decreasing trends until 

2010, and then a slowdown is observed in k(2)t  starting from 2010 and a change of 
trend in k(1)t  is observed from 2015. Observing the shape of b(1)

x
 and b(2)

x
 , we note 

that the second time factor has a greater impact at ages over 70 years, while the 
first factor has a greater influence on ages under 70 years.

Figure 3 shows the estimated parameters for the ATFLCA model.
The frailty factor zt (based on ELSA data) decreases over time, and both bx and 

gx show a parabolic shape with maxima at around 70 years. kt decreases in the 
early years, then shows an uneven trend. The evolution of the estimated values of 
kt is a consequence of the observed zt trend, which decreases in an irregular way. 
We note that, in the ATFLCA model, mortality is driven by frailty and kt acts as 
a correction to explain the component of the mortality trend that is not explained 
by frailty.

We remark that, in all of the models considered, the ax parameters are the same 
as they represent the average of log-specific mortality rates and do not depend on 
frailty.

Fig. 1   Estimates of the parameters for the standard Lee–Carter model (LCA)
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The forecasts of the three models are obtained assuming that all of the time 
indices follow a random walk with drift (ARIMA (0,1,0)), as for kt in the standard 
Lee–Carter model.

The ARIMA parameter estimates are shown in Table 1.

Fig. 2   Estimates of the parameters for the two time factor Lee–Carter model (LC2)

Fig. 3   Estimates of the parameters for the age-specific and temporal frailty Lee–Carter model (ATFLCA)
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We can observe that the LCA kt and the LC2 k(2)t  show similar drift and volatility 
values. The ATFCA kt has a slightly lower drift than the LCA kt , but almost three 
times the volatility. Also, zt appears to be characterised by a high volatility relative 
to its drift value.

Figure 4 shows the forecasts of the models for 40 years ahead.
In order to quantify the differences between the forecasts from the three models, 

we compare the forecasted life expectancy in 2021 for a person aged 50 (cohort born 
in 1971) with the forecasts provided by the Office for National Statistics (ONS). 
Table 2 shows the results.

Table 2 shows that the LCA and LC2 models give similar results with respect to 
the ONS projections, while the ATFLCA forecasts of life expectancy are greater by 
more than 2 years. This result represents the ATFLCA model’s ability to capture 
longevity risk in terms of excess life expectancy, which could have actuarial impli-
cations in terms of capital provision and premium calculations.

Table 1   ARIMA parameter 
estimates for the LCA, LC2 and 
ATFLCA models

Model Time index ARIMA Drift Sigma

LCA kt (0, 1, 0) − 1.4675 1.2502
LC2 kt

(1) (0, 1, 0) − 0.1917 0.2695
kt

(2) (0, 1, 0) − 1.2723 0.9222
ATFLCA zt (0, 1, 0) − 0.0048 0.0244

kt (0, 1, 0) − 0.9026 3.6014

Fig. 4   40-year model forecasts of England & Wales log death rates by age for the LCA, LC2 and 
ATFLCA models
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In Fig.  5, fan charts of death probabilities at ages 60, 70 and 80 are reported. 
Shades in the fans represent prediction intervals at the 50%, 80% and 95% levels. 
With reference to the comparison between the LCA model and the LC2 model, we 
observe that the first model is characterised by a slightly greater uncertainty at ages 
60 and 80 and the second model by a slightly greater uncertainty at age 70, but the 
differences are relatively minor e.g. the 80% confidence interval of the death prob-
ability at age 70 in the last projected year (2059) is (0.005740–0.008474, with an 
absolute difference between the highest and the lowest value of 0.002734) for the 

Table 2   Forecasts for cohort life expectancy at age 50 for the cohort born in 1971: comparison of the 
model forecasts with the ONS projection

LCA LC2 ATFLCA ONS projection

Life expectancy at age 50 (cohort 1971) 36.71 36.75 38.16 35.85

Fig. 5   40-year model forecasts of England & Wales log death rates by time for ages 60, 70 and 80 for the 
LC, LC2 and ATFLCA models
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LCA model and (0.005520–0.009012, with an absolute difference between the high-
est and the lowest value of 0.003492) for the LC2 model. In other words, there is a 
28% increase in the difference between the highest and the lowest value of the 80% 
confidence interval of the death probability predicted for 2059.

We also observe that projections with the ATFLCA model are characterised by 
much higher volatility. In particular, it should be noted that the uncertainty associ-
ated with the projections obtained with the ATFLCA model is greater than that of 
the other two models for all the ages considered. e.g. the 80% confidence interval 
of the death probability at age 70 in the last projected year is (0.003402–0.014201) 
and the absolute difference between the highest and the lowest value is 0.010799 
with the ATFLCA model. This means that the difference between the highest and 
the lowest value of the 80% confidence interval of the death probability predicted 
for 2059 of the ATFLCA model increases by 295% compared to the LCA model 
and 209% compared to the LC2 model. This increase in uncertainty of projected 
death probabilities, even compared to the LC2 model, is a direct consequence of 
the greater variability of the frailty term ( gxzt ), which allows us to capture the het-
erogeneity of mortality in the ATFLCA model, compared to the b2

x
k2
t
 term in the 

LC2 model. The frailty term is indeed associated with a highly variable zt process 
(see Fig. 3) compared to the k2

t
 process in the LC2 model (see Fig. 2). Furthermore, 

the parameter gx measuring the sensitivity of the model to variations in zt takes on 
higher values than b2

x
 in the LC2 model.

Therefore, we can conclude that it is the introduction of the frailty factor that 
increases uncertainty, not the inclusion of a second time factor, as in the LC2 model.

Actuarial implications

Once we have estimated the parameters of the models, we analyse how the differ-
ences in the forecasted mortality probabilities affect actuarial valuations for five 
insurance products (pure endowment, immediate annuity, deferred annuity, whole 
life insurance and term life insurance), and we show how the measures of mortality 
and longevity risk presented in the previous section change when applying a model 
with frailty compared to a standard mortality model.

We follow a cohort approach. Specifically, considering that the buyers of different 
life insurance contracts typically have different initial ages (e.g. 40 for life insur-
ance and 65 for annuities), we concentrate our analysis on the cohort born in 1971 
(aged 50 at the time of policy issue t0 = 2021 ) for pure endowment, deferred annu-
ity, whole life insurance and term life insurance, and on the cohort born in 1956 
(aged 65 at the time of policy issue) for the immediate annuity. We do not consider 
the cohort born more recently for the first four products due to the scarcity of ELSA 
data for ages lower than 50. 50.00 simulations of the projected death probabilities 
are performed for each mortality model to determine the �-percentiles.

Table 3 shows the characteristics of the five insurance products being considered.
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In order to concentrate on mortality/longevity systematic risk, we disregard idi-
osyncratic risk.1 The effect of heterogeneity in insured sums is disregarded as well, 
and the annuity income or the insured sum is assumed to be equal to 1 monetary unit 
for all the insurance products.

The results for the policies with survival-linked benefits are reported in Table 4. 
As expected, they confirm the higher expected present values (Eq.  8) for pure 
endowment and annuities when the probabilities obtained with the ATFLCA model 
are used. The differences between the two versions of the Lee–Carter model are neg-
ligible. These calculations allow us to measure the impact on the single premium of 
adopting a technical basis that is constructed using a mortality model that includes a 
frailty factor. The difference in single premium exceeds 5% for the deferred annuity.

More interesting is the wide difference in terms of risk measures. The stand-
ard deviation of the present value (Eq. 9) in t = 0 of the five contracts considered 
increases between 2.5 and 3 times in the ATFLCA model in comparison with the 
standard LCA model. This increase is the consequence of the high volatility that 
characterises the forecasted death probabilities with the ATFLCA model. The 
extent of the increase is also in line with the earlier observations on the projections 
reported in Fig. 5. The increase in the standard deviation is proportionally reflected 
in the risk index (Eq. 10), which is more than double when we adopt the ATFLCA 
model compared to the other two models. The percentage increase of the 99% per-
centile of the present value of future payments with respect to the expected present 
value (Eq. 12) for the immediate annuity is 5.50% in the LCA case and 13.59% in 
the ATFLCA case, with an increase of 147.15%. The increased variability of the 
probability of death projected with the ATFLCA model implies, of course, a higher 
risk associated with insurance products, as measured by the coefficient of variation 
or by the quantiles of the (random) present values. The implications for an insurance 
company are given by the need to adopt adequate risk management policies; these 
include higher security loadings, strengthened risk transfer strategies and increased 
solvency capital requirements. Adopting a model that does not represent the actual 

Table 3   Key characteristics of the five life insurance products being considered

Pure endowment Immediate annuity Deferred annuity Whole life Term life

Cohort 1971 1956 1971 1971 1971
Initial age 50 65 50 50 50
Deferment period (m) – – 15 – –
Policy duration (n) 20 Whole life Whole life Whole life 20
Annuity rate or 

Insured sum (b)
1 1 1 1 1

Annual interest rate (i) 2% 2% 2% 2% 2%

1  For an analysis of the idiosyncratic and trend components within demographic risk, see Pitacco et al. 
(2009) and Clemente et al. (2022).
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riskiness of insurance contracts could lead to insufficient premiums, reserves or cap-
ital allocations.

It is interesting to note that the different levels of uncertainty observed at ages 
60, 70 and 80 for the two models, LCA and LC2 (see Fig.  5 with fan charts and 
the following comments), are also reflected in the percentile values (Eq.  11): the 
LC2 model produces lower values for the pure endowment and higher values for the 
immediate and deferred annuities.

The results for policies with death-linked benefits are reported in Table 5. They 
confirm, with the opposite sign, the impact of the ATFLCA model on expected pre-
sent values (Eq. 8). The difference (relative to the LCA model) is − 7.18% for term 
life insurance.

Also, for these insurance products, the risk index (Eq. 10) is more than double 
when we adopt the ATFLCA model compared to the other two models. The per-
centage increase of the 99% percentile of the present value of future payments with 
respect to the expected value (Eq. 12) for term life insurance is 15.62% in the LCA 
case and 78.36% in the ATFLCA case, with an increase of 401.69%. In this case, the 
impact on solvency capital requirements of adopting a mortality model that includes 
a frailty factor would be even higher than it would have been for policies with sur-
vival-linked benefits.

Adverse selection

In actuarial evaluations, the mortality projections based on aggregate popula-
tion could be misleading due to the large heterogeneity in mortality. However, this 
highlights that, in the population, there are different risk profiles, potentially lead-
ing to adverse selection. Actually, the empirical evidence on the impact of adverse 
selection is not convincing (Fenger 2009), especially in some businesses such as 
life insurance and long-term care (Tausch et al. 2014). Nevertheless, the literature 
agrees on the absence of ambiguity about the signals of adverse selection in the 
health insurance and annuity markets (for instance see Walliser 2000), where the 
insurance company may have less information about longevity expectations than the 
potential purchasers of insurance or annuities. Consistent with the presence of asym-
metric information, some authors find evidence of annuitant adverse selection with 
respect to the time profile of annuity payouts as well as whether the annuity may 
make any payments to the annuitant’s estate (Finkelstein and Poterba 2004). Accord-
ing to Rothschild (2009), the annuity market shows classic adverse selection and 
‘speculative selection’, whereby individuals and institutions “took advantage of an 
odd feature of the act and purchased annuities contingent on the lives of others”. 
Nonetheless, some literature argues that individuals with higher mortality would 
demand little insurance (Hosseini 2015), pointing out the modest welfare-improving 
role of the social security system as the provider of mandatory annuities.

In any event, the heterogeneity in frailty and mortality that implies heterogeneity 
in life expectancy at each age (Hosseini 2015) should be included in the actuarial 
estimations, in order to evaluate the specificity of the portfolio in force. Our frailty-
based mortality model that embeds an endogenous frailty component leads to a sort 
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of inward mitigation of the bias involved by the heterogeneity (Vaupel et al. 1979). 
The omission of a relevant explanatory variable such as frailty from a mortality 
model could mean biassed and inconsistent estimators. The bias could lead to pro-
jections that do not reflect the underlying mortality trend. In order to avoid the spec-
ification error that typically occurs when a model is misspecified in terms of the 
choice of variables, we try to include the main covariates related to the individual, 
which influence, determine and modify the pattern of the mortality. The endogenous 
frailty component in our mortality model allows the insurer to use a more complete 
information set by intrinsically mitigating the information asymmetry and inefficien-
cies that cause adverse selection. In the following, we propose an adverse selection 
indicator based on the variability of the present value of an actuarial contract. Let us 
denote YP

t0
  the variability that depends on the estimated model. Knowing that the 

ATFLCA model is an extension of the LCA model, including a frailty component, 
we can decompose the deviance of YP

t0
 estimated with the ATFLCA model into the 

deviance attributed to the LCA model and an additive deviance linked to the frailty 
component.

In this way, it is possible to quantify the contribution provided by the inclusion of 
a frailty component in the model ATFLCA in terms of the variability of future pay-
ments for each insurance contract with the following index.

In Table  6, we provide some practical examples of the calculation of adverse 
selection based on the AS indicator for the standard insurance policies that we have 
previously introduced.

Concluding remarks

For governments, regulatory institutions and the life insurance industry, the accu-
racy of mortality projections has significant financial implications. The literature 
shows the importance of embedding frailty in mortality models and the resulting 
forecasts in order to avoid significant bias in actuarial and demographic evaluations 

(13)DEV
(
YP
t0,ATFLCA

)
= DEV

(
YP
t0,LCA

)
+ DEV

(
YP
t0,frailty

)
.

(14)AS = 1 −
DEV

(
YP
t0,LCA

)

DEV
(
YP
t0,ATFLCA

) .

Table 6   Key adverse selection indicator computed on the main actuarial contracts

Pure endowment Immediate annu-
ity

Deferred annuity Whole life insur-
ance

Term life insurance

AS 0.190 0.926 0.929 0.922 0.934
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(Vaupel et al. 1979). Based on an analysis of the English Longitudinal Study of Age-
ing, we recognise the presence of comorbidities as an important variable determin-
ing the presence of frailty (Carannante et al. 2023).

In this paper, we compare the effects on the actuarial evaluations of the tradi-
tional stochastic mortality models such as LCA and LC2 and a frailty-based stochas-
tic model in the Lee–Carter family. In particular, we focus on the ATFLCA model, 
where the frailty effect is decomposed across time and by age.

We highlight the differences in trends and volatility in mortality projections, and 
we measure how they affect the expected values of the insurer’s obligations to poli-
cyholders for some standard insurance products. In addition, we quantify the mortal-
ity and longevity risk for such products through some standard risk measures, and 
we undertake a sensitivity test to measure how the risk measures vary by changing 
the mortality model adopted. The results show that the coefficient of variation of the 
present value of future payments (Eq. 10) is more than double for life-linked benefit 
policies and almost triple for death-linked benefit policies. The greater impact of 
the use of the ATFLCA model on death-linked benefit policies is confirmed by the 
results in terms of α-percentiles (Eq. 11).

Our findings quantify the importance of model risk and also point out how the 
introduction of a frailty factor, which measures the heterogeneity of mortality, 
increases the volatility of death rates and consequently allows us to better measure 
the riskiness of an insurance portfolio.

The main limitation of the study is the estimation of zt . We are aware that any 
data source for measuring zt affects its value. For this reason, a possible future devel-
opment of the research is replicating the model estimation using other data sources, 
e.g. clinical data. This could be a way to assess the robustness of the method with 
respect to the data source.
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