

City, University of London Institutional Repository

Citation: Tran, S. N. & Garcez, A. (2023). Neurosymbolic Reasoning and Learning with

Restricted Boltzmann Machines. Paper presented at the 37th AAAI Conference on Artificial
Intelligence, 7-14 Feb 2023, Washington, D.C., USA. doi: 10.1609/aaai.v37i5.25806

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/32972/

Link to published version: https://doi.org/10.1609/aaai.v37i5.25806

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1The University of Tasmania, Launceston, Tasmania, 7248, Australia

2City, University of London, Northampton Square, London, EC1V 0HB, UK

sn.tran@utas.edu.au, a.garcez@city.ac.uk

1

Neurosymbolic Reasoning and Learning with
Restricted Boltzmann Machines

Son N. Tran1, Artur d’Avila Garcez2

May 21, 2024

Abstract
Knowledge representation and reasoning in neural networks has been a long-

standing endeavour which has attracted much attention recently. The principled
integration of reasoning and learning in neural networks is a main objective of
the area of neurosymbolic Artificial Intelligence. In this paper, a neurosymbolic
system is introduced that can represent any propositional logic formula. A proof of
equivalence is presented showing that energy minimization in restricted Boltzmann
machines corresponds to logical reasoning. We demonstrate the application of our
approach empirically on logical reasoning and learning from data and knowledge.
Experimental results show that reasoning can be performed effectively for a class
of logical formulae. Learning from data and knowledge is also evaluated in com-
parison with learning of logic programs using neural networks. The results show
that our approach can improve on state-of-the-art neurosymbolic systems. The the-
orems and empirical results presented in this paper are expected to reignite the re-
search on the use of neural networks as massively-parallel models for logical rea-
soning and promote the principled integration of reasoning and learning in deep
networks.

Introduction
Increasing attention has been devoted in recent years to knowledge representation and
reasoning in neural networks. The principled integration of reasoning and learning in
neural networks is a main objective of the area of neurosymbolic Artificial Intelligence
(AI) [6]. In neurosymbolic AI, neural networks and symbolic AI are combined. Typi-
cally, an algorithm is provided to translate some form of symbolic knowledge represen-
tation into the architecture and initial set of parameters of a neural network. Ideally, a
theorem then shows that the neural network can be used as a massively-parallel model
of computation capable of reasoning about such knowledge. Finally, when trained with
data and knowledge, the network is expected to produce a better performance - either
a higher accuracy or faster learning - than when trained from data alone.

Symbolic knowledge may be provided to a neural network in the form of gen-
eral rules which are known in a given domain, or rules which are expected to be true
across domains when performing transfer learning. Over the years, many neurosym-
bolic approaches have used a form of knowledge representation based on if-then rules

2

[24, 9, 25, 8, 28, 14, 26]. Assuming Modus-Ponens1 as the only rule of inference, given
a logical formula of the form B ← A (read “B is true if A is true”), under the con-
vention that 1 represents true and 0 represents false, a neurosymbolic network would
infer that approximatelyB = 1 givenA = 1. This has two shortcomings. First, Modus-
Ponens alone may not capture the entire reasoning required by the application, e.g. the
use of Modus-Tollens2 may be needed. Second, other forms of knowledge may need to
be represented by the neural network, including with the use of negation (¬), conjunc-
tion (∧), disjunction (∨) and bi-conditional (↔), e.g. (¬A∨B)← (C ∧D), read “not
A or B holds true if C and D are true”, or A ↔ B, read “A is true if and only if B
is true”. Although an equivalence between propositional calculus and connectionist
networks has been shown in [16, 17], the translation and representation of knowledge
by such networks can become convoluted, making it difficult to integrate with modern
learning techniques.

In this paper, we introduce a method to translate logical formulae into simple 2-
layer neural networks. The networks, called Logical Boltzmann Machines (LBM),
work as a neurosymbolic system capable of (i) representing any formula in proposi-
tional logic, (ii) reasoning efficiently given such knowledge, (iii) learning from knowl-
edge and data. We introduce an algorithm to translate any set of propositional logic
formulae into a restricted Boltzmann machine (RBM) and we prove equivalence be-
tween the logical formulae and the energy-based connectionist model. In other words,
we prove soundness of the translation algorithm. Specifically, the connectionist model
(the RBM) is shown to assign minimum energy to the assignments of truth-values that
satisfy the formulae. This provides a new way of performing reasoning in symmetrical
neural networks by employing the network to search for the models of a logical theory,
i.e. search for the assignments of truth-values that map the logical formulae to true3.

In the experiments, we demonstrate the applications of our neurosymbolic system
in reasoning and learning. We show that knowledge-encoded networks (LBMs) can
find all satisfying assignments of a class of logical formulae by searching fewer than
0.75% of the possible (approximately 1 billion) assignments. We also show the ability
of LBMs at solving satisfiability (SAT) problem without the need for training data as
done in [19], although LBMs are not as efficient as long-standing, purpose-built sym-
bolic SAT solvers . When applied to benchmark data sets for neurosymbolic AI, logical
Boltzmann machines achieved in five out of seven data sets a higher test set accuracy
than a purely-symbolic learning system ALEPH [22], a neurosymbolic system based
on if-then rules CILP++ [9], and a standard RBM [21]. Finally, we show that LBM can
be deployed as a logical layer on top of convolutional neural networks. We compare
effectiveness with Deep Logic Nets [25], Compositional Neural Logic Programming
[26], and Logic Tensor Networks [20, 2] in a typical semantic image interpretation
task.

The contribution of this paper is twofold. The paper offers:

• A proof of equivalence between classical propositional logic and restricted

1If P implies Q and P is true then Q must also be true.
2If P implies Q and Q is false then P must also be false.
3We use the term model to refer to both a model of a logical theory and a neural network model. When

the intended meaning is not clear from the context, we shall use the term logic model.

3

Boltzmann machines, and

• A foundation and neurosymbolic system for statistical inference, learning and
logical reasoning.

Related Work
One of the earliest work on the integration of neural networks and symbolic knowledge
is known as KBANN (Knowledge-based Artificial Neural Network [24]), which en-
codes if-then rules into a hierarchical multilayer perceptron. In another early approach
[10], a single-hidden layer recurrent network is proposed to support logic programming
rules. An extension of that approach to work with first-order logic programs, called
CILP++ [9], uses the concept of propositionalisation from Inductive Logic Program-
ming (ILP), whereby first-order variables can be treated as propositional atoms in the
neural network. Also based on first-order logic programs, [8] propose a differentiable
ILP approach that can be implemented by neural networks, and [4] maps stochastic
logic programs into a differentiable function also trainable by neural networks. These
are all supervised learning approaches.

Early work in neurosymbolic AI has also shown a correspondence between propo-
sitional logic and symmetrical neural networks [16], in particular Hopfield networks,
which nevertheless did not scale well with the number of variables and whose training
regimen was inefficient. Variants of this work have been proposed, based on Conjunc-
tive Normal Form, to solve the satisfiability problem using Boltzmann machines and
higher-order Boltzmann machines [11, 5] . Among unsupervised learning approaches,
Penalty Logic [17] was the first to integrate nonmonotonic logic into symmetrical neu-
ral networks. However, these approaches require the use of higher-order connectionist
networks, which can be difficult to construct 4 and inefficient to train. More recently,
several attempts have been made to extract and encode symbolic knowledge into RBMs
trained with the more efficient Contrastive Divergence algorithm [15, 25]. Such ap-
proaches explored the structural similarity between symmetric networks and logical
rules using bi-conditional implication, but do not enjoy soundness results. By contrast,
and similarly to Penalty Logic, the approach introduced in this paper is based on a proof
of equivalence between the logic formulae and the symmetric networks; differently
from Penalty Logic, it does not require the use of higher-order networks. Alongside
the above approaches, which translate symbolic representations into neural networks,
there are hybrid approaches that combine neural networks and symbolic AI systems as
communicating modules of a neurosymbolic system. These include DeepProbLog [14]
and Logic Tensor Networks (LTN) [20].

Knowledge Representation in RBMs
Our approach is based on classical propositional logic, thus including all five connec-
tives {←,¬,∧,∨,↔} and satisfying both Modus-Ponens and Modus-Tollens. Let us

4Building such higher-order networks requires transforming the energy function into a quadratic form by
adding hidden variables that are not present in the original logic formulae.

4

return to the simple B ← A example used earlier. Given B ← A as knowledge, if neu-
ron A is assigned value 1 in the corresponding neurosymbolic network, we expect the
network to converge to a state where neuron B has value approximately 1. If B is as-
signed value 0, we expect the network to converge to a state where A is approximately
0. If A is assigned 0, B should converge to approximately 0.5, since in the classical
interpretation of logical implication, B ← A is equivalent to ¬A ∨ B, i.e. B ← A is
true if A is false regardless of the truth-value of B. Finally, if B is assigned 1 then A
should converge to approximately 0.5, for the same reason.

An RBM [21] is a two-layer neural network with bidirectional (symmetric) con-
nections, which is characterised by an energy function E (x,h) = −

∑
i,j wijxihj −∑

i aixi−
∑

j bjhj , where ai and bj are the biases of input unit xi and hidden unit hj ,
respectively, and wij is the connection weight between xi and hj . This RBM repre-
sents a joint probability distribution p(x,h) = 1

Z e
−E(x,h), where Z =

∑
xh e

−E(x,h)

is the partition function, x = {xi} is the set of visible units, and h = {hj} is the set of
hidden units of the RBM.

In propositional logic, any well-formed formula (WFF) φ can be mapped onto Dis-
junctive Normal Form (DNF), i.e. disjunctions (∨) of conjunctions (∧), as follows:

φ ≡
∨
j

(
∧

t∈STj

xt ∧
∧

k∈SKj

¬xk)

where (
∧

t∈STj
xt∧

∧
k∈SKj

¬xk) is called a conjunctive clause with the propositional
variables xi divided into positive literals xt and negative literals ¬xk, e.g. x1∧x2∧¬x3
(read “x1 and x2 and not x3”).

Definition 1. Let sφ(x) ∈ {0, 1} denote the truth-value of a WFF φ given an as-
signment of truth-values x to the literals of φ, where truth-value true is mapped to 1
and truth-value false is mapped to 0. Let E (x,h) denote the energy function of an
energy-based neural networkN with visible units x and hidden units h. φ is said to be
equivalent toN if and only if there exists a function ψ, for any assignment x, such that
sφ(x) = ψ(E (x,h)).

This definition of equivalence is similar to that of Penalty Logic [17], whereby all
assignments of truth-value satisfying a WFF φ are mapped to global minima of the
energy function of network N . In our case, by construction, assignments that do not
satisfy the WFF will be mapped to maxima of the energy function.

Definition 2. A strict DNF (SDNF) is a DNF with at most one conjunctive clause that
maps to true for any assignment of truth-values x. A full DNF is a DNF where each
propositional variable must appear at least once in every conjunctive clause.

Lemma 1. Any SDNF φ ≡
∨

j(
∧

t∈STj
xt ∧

∧
k∈SKj

¬xk) can be mapped onto an
energy function:

E (x) = −
∑
j

(
∏

t∈STj

xt
∏

k∈SKj

(1− xk))

where STj
(resp. SKj

) is the set of Tj (resp. Kj) indices of the positive (resp. negative)
literals in φ.

5

Proof. Each conjunctive clause
∧

t∈STj
xt ∧

∧
k∈SKj

¬xk in φ can be represented by∏
t∈STj

xt
∏

k∈SKj
(1−xk) which maps to 1 if and only if xt = 1 (i.e. true) and xk =

0 (i.e. false) for all t ∈ STj
and k ∈ SKj

. Since φ is a SDNF, it is true if and only if
one conjunctive clause is true. Then, the sum

∑
j(
∏

t∈STj
xt

∏
k∈SKj

(1 − xk)) = 1

if and only if the assignment of truth-values to xt, xk is a logical model of φ. Hence,
the neural network with energy function E = −

∑
j(
∏

t∈STj
xt

∏
k∈SKj

(1 − xk)) is

such that sφ(x) = −E (x).

Theorem 1. Any SDNF φ ≡
∨

j(
∧

t∈STj
xt ∧

∧
k∈SKj

¬xk) can be mapped onto an
equivalent RBM with energy:

E (x,h) = −
∑
j

hj(
∑

t∈STj

xt −
∑

k∈SKj

xk − |STj |+ ϵ) (1)

where 0 < ϵ < 1, STj
and SKj

are, respectively, the sets of indices of the positive and
negative literals in each conjunctive clause j of the SDNF, and |STj

| is the number of
positive literals in conjunctive clause j.

Proof. We have seen in Lemma 1 that any SDNF φ can be mapped onto energy
function E = −

∑
j

∏
t∈STj

xt
∏

k∈SKj
(1 − xk). For each expression ẽj(x) =

−
∏

t∈STj
xt

∏
k∈SKj

(1−xk), we define an energy expression associated with hidden

unit hj as ej(x, hj) = −hj(
∑

t∈STj
xt−

∑
k∈SKj

xk−|STj
|+ ϵ). The term ej(x, hj)

is minimized with value −ϵ when hj = 1, written minhj (ej(x, hj)) = −ϵ. This is be-
cause−(

∑
t∈STj

xt−
∑

k∈SKj
xk−|STj

|+ ϵ) = −ϵ if and only if xt = 1 and xk = 0

for all t ∈ STj and k ∈ SKj . Otherwise, −(
∑

t xt∈STj
−
∑

k∈SKj
xk− |STj |+ ϵ) > 0

and minhj
(ej(x, hj)) = 0 with hj = 0. By repeating this process for each ẽj(x)

we obtain that any SDNF φ is equivalent to an RBM with the energy function
E (x,h) = −

∑
j hj(

∑
t∈STj

xt −
∑

k∈SKj
xk − |STj | + ϵ) such that sφ(x) =

− 1
ϵminhE (x,h).

Knowledge Representation Capacity
We now show that any formulae in propositional logic can be encoded in RBMs by
translation into SDNF.

Clausal Form. A clause (or disjunctive clause) is one of the most popular forms
of knowledge representation used in AI. Horn clauses (or if-then rules in implication
form) have at most one negated literal. Any statement in propositional logic can be
transformed into clausal form by using the rules of equivalence. A set of statements
can be transformed into an equivalent set of clauses. Consider a clause:

φ ≡
∨

t∈ST

¬xt ∨
∨

k∈SK

xk (2)

which can be rearranged as φ ≡ φ′ ∨ x′, where φ′ is a disjunctive clause obtained by
removing x′ from φ. x′ can be either ¬xt or xk for any t ∈ ST and k ∈ SK . We have

6

that:
φ ≡ (¬φ′ ∧ x′) ∨ φ′ (3)

because (¬φ′∧x′)∨φ′ ≡ (φ′∨¬φ′)∧ (φ′∨x′) ≡ True∧ (φ′∨x′). By De Morgan’s
law (¬(a ∨ b) ≡ ¬a ∧ ¬b; ¬(a ∧ b) ≡ ¬a ∨ ¬b), one can always convert ¬φ′ (and
therefore ¬φ′ ∧ x′) into a conjunctive clause.

By applying Eq. (3) repeatedly, each time we can eliminate a variable out of a
disjunctive clause by moving it into a new conjunctive clause. The disjunctive clause φ
holds true if and only if either the disjunctive clause φ′ holds true or the conjunctive
clause (¬φ′ ∧ x′) holds true. The SDNF of the clause in Eq. (2) is:∨

j∈ST∪SK

(
∧

t∈ST \j

xt ∧
∧

k∈SK\j

¬xk ∧ x′j) (4)

where S\j denotes a set S from which j has been removed. x′j ≡ ¬xj if j ∈ ST .
Otherwise, x′j ≡ xj . This SDNF only has |ST |+ |SK | clauses, making the translation
efficient.

Disjunctive Normal Form (DNF). Any formula φ can be converted into DNF. If
φ is not SDNF then by definition there is a group of conjunctive clauses in φ which
map to true when φ is satisfied. This group of conjunctive clauses can always be
converted into SDNF by extending Eq. (3) to each conjunctive clause, i.e. replacing x′

by a conjunction φ′′. Therefore, any WFF can be converted into SDNF. For example:

(a ∧ b) ∨ (a ∧ c) ≡ (¬(a ∧ b)︸ ︷︷ ︸
¬φ′

∧ (a ∧ c)︸ ︷︷ ︸
φ′′

) ∨ (a ∧ b)︸ ︷︷ ︸
φ′

Conjunctive Normal Form (CNF). Every WFF can be converted into CNF. A CNF is
a conjunction of disjunctive clauses:

φCNF ≡
M∧

m=1

(
∨

t∈Sm
T

¬xt ∨
∨

k∈Sm
K

xk) (5)

We now discuss the transformation of CNFs into restricted Boltzmann machines. We
apply the transformation steps in Eq. (4) to each conjunctive clause in the CNF. The
result is a conjunction of M SDNFs.

φCNF ≡
M∧

m=1

(
∨

j∈Sm
T ∪Sm

K

(
∧

t∈Sm
T \j

xt ∧
∧

k∈Sm
K \j

¬xk ∧ x′j)) (6)

This transformation increases the space complexity from O(M × N) to O(M ×
N2)), where M is the number of disjunctive clauses and N is the number of variables.
This is not much of a problem for current computer systems, especially since inference
with RBMs can be performed in parallel.

7

Although the formula in Eq. (6) is not in SDNF form (it is a conjunction of SDNFs),
equivalence between the CNF and the RBM continues to hold. Let:

sφ =

{
1 when − 1

ϵminhE(x,h) =M

0 otherwise
(7)

The CNF is satisfied if and only if all M SDNFs are satisfied. Under such circum-
stances, minhE(x,h) = −Mϵ, otherwise minhE(x,h) = −M ′ϵ where M ′ < M .
In the Reasoning as Lowering Free Energy section, we consolidate this result by
introducing the concept of confidence value.

Reasoning in LBMs
We have seen how LBMs are constructed by mapping propositional logic formulae
onto RBMs. In this section, we discuss inference in LBMs.

Reasoning as Sampling
There is a direct relationship between inference in LBMs and logical satisfiability, as
follows.

Proposition 1. Let N be an LBM constructed from a formula φ. Let A be a set of
indices of variables that have been assigned to either true or false (we use xA to
denote the set {xα|α ∈ A}). Let B be a set of indices of variables that have not been
assigned a truth-value (we use xB to denote {xβ |β ∈ B}). Performing Gibbs sampling
onN given xA is equivalent to searching for an assignment of truth-values for xB that
satisfies φ.

Proof. (sketch) Theorem 1 showed that the truth-value of φ is inversely proportional
to an LBM’s rank function, that is: sφ(xB,xA) ∝ −minhE (xB,xA,h). Therefore, a
value of xB that minimises the energy function also maximises the truth value, because:

x∗
B = argmin

xB

(min
h

E (xB,xA,h)) = argmax
xB

(sφ(xB,xA))

We can use an iterative process to search for truth-values x∗
B by minimising an LBM’s

energy function. This can be done by using gradient descent to update the values of
h and then xB one at a time (similarly to the Contrastive Divergence algorithm) to
minimise E (xB,xA,h) while keeping the other variables (xA) fixed. The alternating
updates are repeated until convergence. In the case of Gibbs sampling, given the as-
signed variables xA, the process starts with a random initialisation of xB, and proceeds
to infer values for the hidden units hj and then the unassigned variables xβ in the visible
layer of the LBM, using the conditional distributions hj ∼ p(hj |x) and xβ ∼ p(xβ |h),
respectively, where x = {xA,xB}. These distributions are monotonic functions of the
negative energy’s gradient over h and xB. Therefore, performing Gibbs sampling on
those functions can be seen as moving towards a local minimum that is equivalent to
an assignment of truth-values that satisfies formula φ.

8

(a) (c=1) (b) (c=5) (c) (c=10) (d) (c=15)

Figure 1: Linear correlation between satisfiability of a CNF and minimization of the
free energy function for various confidence values c. Minimum energy and free energy
values converge with an increasing value of c.

Since the energy function of the LBM and the satisfiability of the formula are in-
versely proportional, each step of Gibbs sampling to reduce the energy should intu-
itively generate a sample that is closer to satisfying the formula.

Reasoning as Lowering Free Energy
While the energy function of a LBM is intractable, its free-energy function can be
computed analytically as: F=

∑
j(− log(1+exp(c

∑
i wijxi+ bj))). The free energy

term − log(1 + exp(c
∑

i wijxi + bj)) is a negative softplus function scaled by a non-
negative value c called confidence value. It returns a negative output for a positive input
and a close-to-zero output for a negative input. The value of c can be adjusted to make
the function smooth.

Each free energy term is associated with a conjunctive clause in the SDNF through
the weighted sum

∑
i wijxi + bj . Therefore, if a truth-value assignment of x does not

satisfy the formula, all energy terms will be close to zero. Otherwise, one free energy
term will be − log(1 + exp(cϵ)), for a choice of 0 < ϵ < 1 obtained from Theorem
1. Thus, the more likely a truth assignment is to satisfy the formula, the lower the free
energy. Formally:

sφ(x) = −
1

cϵ
minhE(x,h) = lim

c→∞
− 1

cϵ
F(x) (8)

As an example, Figure 1 shows the values of the energy functions for a CNF with
55 disjunctive clauses. The CNF is satisfied if and only if all 55 clauses are satisfied.
As can be seen, the relationship is linear. The strong correlation between the free-
energy function and the energy function of LBMs can increase its reasoning capability
in practice. Since it is tractable, one can employ the free energy to infer logical variables
deterministically.

9

Experimental Results

Reasoning
In this experiment we apply LBM to effectively search for satisfying truth assignments
of variables in large formulae. Let us define a class of formulae:

φ ≡
M∧
i=1

xi ∧ (

M+N∨
j=M+1

xj) (9)

A formula in this class consists of 2M+N possible truth assignments of the vari-
ables, with 2N − 1 of them mapping the formula to true (call this the satisfying set).
Converting to SDNF as done before but now for the class of formulae, we obtain:

φ ≡
M+N∨
j=M+1

(

M∧
i=1

xi ∧
M+N∧
j′=j+1

¬xj′ ∧ xj) (10)

Applying Theorem 1 to construct an LBM from φ, we use Gibbs sampling to infer
the truth values of all variables. A sample is accepted as a satisfying assignment if
its free energy is lower than or equal to − log(1 + exp(cϵ) with c = 5, ϵ = 0.5. We
evaluate the coverage and accuracy of accepted samples. Coverage is measured as the
proportion of the satisfying set that is accepted. In this experiment, this is the number
of satisfying assignments in the set of accepted samples divided by 2N − 1. Accuracy
is measured as the percentage of accepted samples that satisfy the formula.

Figure 2: Percentage coverage as sampling progresses with different values for M and
N averaged over 100 runs.

Figure 3: Time taken by LBM to collect all satisfying assignments compared with the
size of the search space.

10

We test different values ofM ∈ {20, 25, 30} andN ∈ {3, 4, 5, 6, 7, 8, 9, 10}. LBM
achieves 100% accuracy in all cases, meaning that all accepted samples do satisfy the
formula. Figure 2 shows the coverage as Gibbs sampling progresses (after each time
that a number of samples is collected). Four cases are considered: M=20 and N=5,
M=20 and N=10, M=25 and N=10, M=30 and N=10.

(a) c=0.1 (b) c=0.5 (c) c=1 (d) c=5

Figure 4: Free energy function with different confidence values.

In each case, we run the sampling process 100 times and report the average results
with standard deviations. The number of samples needed to achieve 100% coverage
is much lower than the number of possible assignments (2M+N). For example, when
M=20, N=10, all satisfying assignments are found after ∼ 7.5 million samples are
collected, whereas the number of possible assignments is∼ 1 billion, producing a ratio
of sample size to the search space size of just 0.75%. The ratio for M=30, N=10 is even
lower at 0.37% w.r.t. ∼ 1012 possible assignments. As far as we know, this is the first
study of reasoning in neurosymbolic systems to produce results with such low ratios.

Figure 3 shows the time needed to collect all satisfying assignments for different
N in {3, 4, 5, 6, 7, 8, 9, 10} with M = 20. LBM only needs around 10 seconds for
N <= 8, ∼ 25 seconds for N = 9, and ∼ 68 seconds for N = 10. The curve grows
exponentially, similarly to the search space size, but at a much lower scale.

Towards LBM as a SAT Solver
Boolean satisfiability is a long standing challenge in computer science. While sym-
bolic SAT solvers are considerably more effective, solving SAT problems is still a chal-
lenge for connectionist networks. Early attempts have modified Boltzmann machines
by adding configurations to the energy function. Compared to their dense, higher-order
structure, LBM is much simpler. Recent deep learning methods used data generated
from SAT-solvers to train classification models [19, 27]. LBM is different in that it
only needs to convert the SAT problems into the RBMs without grounding samples for
training.

Formulae in SAT problems are represented in CNF. As discussed earlier, CNF can
be encoded into LBM where the number of satisfied clauses will be proportional to the
minimised energy and also to the free-energy. Therefore, we solve a SAT problem by
searching for a minimum of the free-energy function, thus converting the SAT problem
into a continuous optimisation problem. Instead of searching in a Boolean space for
x ∈ {0, 1} to minimise the free energy function, we search in a continuous space for θ

11

where x = σ(θ) = 1/(1+exp(−θ)). In the following example, we show the landscape
of the LBM for a SAT problem with 2 variables ((¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨
x2)). Figure 4 shows the free-energy function for different values of θs (x1 = σ(θ1),
x2 = σ(θ2)). When both θ1 and θ2 are more negative (x1, x2 ∼ 0), the function is
approaching its minimum. This is also a satisfying assignment of the CNF. For all the
free-energy functions (Figures 4a, 4b, 4c, 4d), a smaller c would make the landscape
smoother but it also narrows the gap between local minima and global minima. Higher
values for c would raise the boundaries between the optimal areas, making the global
optima search harder.

We use random SAT [1] as a case study and employ off-the-shelf methods from
the optimisation library in SciPy (https://scipy.org/). Among all the available methods,
dual annealing and differential evolution can solve SAT problems with up to ∼200
variables using LBM. Although this is much inferior to symbolic SAT solvers, it is
worth noting that LBM does not have any prior knowledge about the particular SAT
problem. As future work, inference using LBM can be improved significantly by inte-
grating backtracking tactics from symbolic solvers with the differentiable optimisation
in LBM.

Learning from Data and Knowledge
We now evaluate LBM at learning the same Inductive Logic Programming (ILP) bench-
mark tasks used by neurosymbolic system CILP++ [9] in comparison with ILP state-
of-the-art system Aleph [22]. As mentioned earlier, the systems Aleph, CILP++ and
a fully-connected standard RBM were chosen as the natural symbolic, neurosymbolic
and neural system, respectively, for comparison. An initial LBM is constructed from
the clauses provided as background knowledge. This process creates one hidden neu-
ron per clause. Further hidden neurons are added using random weights for training
and validation from data. Satisfying assignments can be selected from each clause as
a training or validation example, for instance given clause y ← x1 ∧ ¬x2, assignment
y = true, x1 = true, x2 = false is converted into vector [x1, x2, y] = (1, 0, 1) for
training. Both the LBM and the standard RBM are trained discriminatively using the
conditional distribution p(y|x) for inference [13]. In both cases, all network weights
are free parameters for learning, with some weights having been initialized by the back-
ground knowledge in the case of the LBM, such that the background knowledge can be
revised given data.

We carry out experiments on 7 data sets with available data and background knowl-
edge (BK): Mutagenesis (examples of molecules tested for mutagenicity and BK pro-
vided in the form of rules describing relationships between atom bonds) [23], KRK
(King-Rook versus King chess endgame with examples provided by the coordinates of
the pieces on the board and BK in the form of row and column differences) [3], UW-
CSE (Entity-Relationship diagram with data about students, courses taken, professors,
etc. and BK describing the relational structure) [18], and the Alzheimer’s benchmark:
Amine, Acetyl, Memory and Toxic (a set of examples for each of four properties of
a drug design for Alzheimer’s disease with BK describing bonds between the chem-
ical structures) [12]. With the clauses converted into their equivalent set of preferred
models, i.e. vectors, and combined with the available data, for Mutagenesis and KRK,

12

2.5% of the data is used to build the initial LBM. For the larger data sets UW-CSE and
Alzheimer’s, 10% of the data is used as BK. The remaining data are used for training
and validation based on 10-fold cross validation for each data set, except for UW-CSE
which uses 5 folds (for the sake of comparison). Results are shown in Table 1. It can
be seen that LBM has the best performance in 5 out of 7 data sets. Some of the results
of the LBM and RBM are comparable when the BK can be learned from the examples,
as in the case of the Alzheimer’s amine data set. Aleph is better than all other models
in the alz-acetyl data set. This task probably relies more heavily on the correctness of
the BK than the data.

Aleph CILP++ RBM LBM
Mutagenesis 80.85

±10.5
91.70
±5.84

95.55
±1.36

96.28
±1.21

KRK 99.60
±0.51

98.42
±1.26

99.70
±0.11

99.80
±0.09

UW-CSE 84.91
±7.32

70.01
±2.2

89.14
±0.46

89.43
±0.42

alz-amine 78.71
±5.25

78.99
±4.46

79.13
±1.14

78.25
±1.07

alz-acetyl 69.46
±3.6

65.47
±2.43

62.93
±0.31

66.82
±0.28

alz-memory 68.57
±5.7

60.44
±4.11

68.54
±0.97

71.84
±0.88

alz-toxic 80.50
±3.98

81.73
±4.68

82.71
±1.18

84.95
±1.04

Table 1: Cross-validation performance of LBM against purely-symbolic system Aleph,
neurosymbolic system CILP++ and a standard RBM on 7 benchmark data sets for
neurosymbolic AI. We run cross-validation on RBM and LBM 100 times and report
the average results with 95% confidence interval.

Integration of Learning and Reasoning
Finally, we integrate LBM as a logical layer on top of deep networks applied to a
semantic image interpretation task: to predict the relations between objects and their
parts in images. Our knowledge base consists of symbolic facts such as “an object type
is part of another object type”, e.g. pt(“screen”, “tvmonitor”) (a tv screen is part (pt)
of a tv monitor), and a formula for the part-of relation (po):
(po(X1, X2)↔ pt(T1, T2))← type(X1, T1) ∧ type(X2, T2)

where X1, X2 are real-valued variables representing visual features of objects, and T1,
T2 are symbolic variables representing object types. Predicate type is true when a
visual object is of a given type. Predicate pt is true when a type is part of another type.
Predicate po states that an object is part of another object. The intended meaning of the
formula is that “if object 1 has type 1 and object 2 has type 2 then the part-of relation
between the two objects is the same as the relation between the two object types”.

We characterise the predicates as functions from a set element to a truth value. In
particular, we use faster RCNN to extract features from object images, from which we
build two Neural Network Regressors (NNR) N type and N po as functions for type
and po respectively, as done in [7]. We use an auto-encoderN pt for the symbolic facts
as a function for pt, as done in [26]. We replace the predicates in the above formula by
corresponding propositions with values true/false obtained from the functions, and

13

apply Eq. (3) to convert the formula to SDNF:
(ppo ↔ ppt)← (pt1 ∧ pt2) ≡ (ppo ∧ ppt ∧ pt1 ∧ pt2)

∨ (¬ppo ∧ ¬ppt ∧ pt1 ∧ pt2) ∨ (¬pt1 ∧ pt2) ∨ ¬pt2

where ppo = N po(X1, X2), ppt = N pt(T1, T2), pt1 = N type(X1, T1), pt2 =
N type(X2, T2). From this SDNF, we build a LBM as the logical layer on top of the
neural networks. By using LBM we take advantage of its reasoning capability during
learning by backpropagating inferred knowledge to update the functions. In particular,
we train the entire system by minimising the following cost function:

||Npo
(x1, x2) − LBM(p

po|K(x1, x2)||22+

||[N type
(x1, t1),N type

(x2, t2)] − LBM(p
t1 , p

t2 |K(x1, x2))||22

where x1, x2,K(x1, x2) are drawn from the training data. K(x1, x2) is the knowl-
edge involving x1, x2, i.e. the types of x1, x2, and whether x1 is part of x2. We use
LBM(ppo|K(x1, x2)) and LBM(pt1 ,pt2 |K(x1, x2)) to denote the application of LBM
to infer ppo and the pair [pt1 ,pt2], respectively. The first optimisation term above lever-
ages Modus-Ponens reasoning from the LBM to infer ppo and update N po. For exam-
ple, given x1 = , x2 = , and assume we do not know if x1 is part of x2, but if
we draw from the data and knowledge base that K(x1, x2) = {type(x1, “screen”) ≡
true, type(x2, “tvmonitor”) ≡ true} then the LBM can infer that ppo is true (because
“screen” is part of “tvmonitor”) and update N po. Similarly, the second term leverages
Modus-Tollens to use the type of objects for updating N type.

We compare this LBM-based model with three neurosymbolic systems, including
DLN [25], LTN [7, 2] and CNLP [26]. The data set for this experiment is the same
as in [7] with the exception of the above formula for po. The Area Under the Curve
(AUC) results in Table 2 show the effectiveness of the LBM-based model with higher
performance in the prediction of the part-of relation as a result of the end-to-end learn-
ing and reasoning. For the object type prediction, the RBM-based model is comparable
to CNLP and better than DLN and LTN.

Object type (AUC) Part-of (AUC)
DLN 0.791± 0.032 0.605± 0.024
CNLP 0.816± 0.004 0.644± 0.015
LTN 0.800 0.598

LBM-based model 0.828± 0.002 0.645± 0.027

Table 2: AUC for semantic image interpretation.

Conclusion and Future Work
We introduced an approach and neurosymbolic system for reasoning with knowledge
in energy-based neural networks. We showed equivalence between propositional logic
and RBMs. The findings led to a system, named Logical Boltzmann Machines, inte-
grating learning and reasoning in neural networks with improved performance. Future
work will focus on scaling up applications to SAT and end-to-end learning and reason-
ing. Extensions include the use of probabilistic programming with weighted clauses in
comparison with our confidence values in probabilistic learning tasks.

14

References
[1] S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An

unsupervised differentiable approach. In ICLR, 2019.

[2] S. Badreddine, A. d’Avila Garcez, L. Serafini, and M. Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

[3] M. Bain and S. Muggleton. Machine intelligence 13. chapter Learning Optimal
Chess Strategies, pages 291–309. Oxford University Press, Inc., New York, NY,
USA, 1995.

[4] W. W. Cohen, F. Yang, and K. Mazaitis. Tensorlog: Deep learning meets proba-
bilistic dbs. CoRR, abs/1707.05390, 2017.

[5] A. d’Anjou, M. Graña, F. J. Torrealdea, and M. C. Hernandez. Solving sat-
isfiability via boltzmann machines. IEEE Trans. Pattern Anal. Mach. Intell.,
15(5):514–521, may 1993.

[6] A. d’Avila Garcez and L. C. Lamb. Neurosymbolic ai: The 3rd wave, 2020.

[7] I. Donadello, L. Serafini, and A. S. d’Avila Garcez. Logic tensor networks for
semantic image interpretation. In IJCAI-17, pages 1596–1602, 2017.

[8] R. Evans and E. Grefenstette. Learning explanatory rules from noisy data. JAIR,
61:1–64, 2018.

[9] M. França, G. Zaverucha, and A. Garcez. Fast relational learning using bot-
tom clause propositionalization with artificial neural networks. Mach. Learning,
94(1):81–104, 2014.

[10] A. Garcez, K. Broda, and D. Gabbay. Symbolic knowledge extraction from
trained neural networks: A sound approach. Artif. Intel., 125(1–2):155–207, 2001.

[11] C. Hernandez, F. Albizuri, A. DAnjou, M. Graña, and F. Torrealdea. Efficient
solution of max-sat and sat via higher order boltzmann. Revista Investigación
Operacional, 22, 01 2001.

[12] R. D. King, M. J. E. Sternberg, and A. Srinivasan. Relating chemical activity to
structure: An examination of ilp successes. New Generation Computing, 13(3),
Dec 1995.

[13] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. Learning algorithms for
the classification restricted boltzmann machine. J. Mach. Learn. Res., 13(1):643–
669, Mar. 2012.

[14] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt. Deep-
problog: Neural probabilistic logic programming. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, pages 3749–3759. Curran Asso-
ciates, Inc., 2018.

15

[15] L. d. Penning, A. d. Garcez, L. Lamb, and J.-J. Meyer. A neural-symbolic cogni-
tive agent for online learning and reasoning. In IJCAI, pages 1653–1658, 2011.

[16] G. Pinkas. Symmetric neural networks and propositional logic satisfiability. Neu-
ral Comput., 3(2):282–291, June 1991.

[17] G. Pinkas. Reasoning, nonmonotonicity and learning in connectionist networks
that capture propositional knowledge. Artif. Intell., 77(2):203–247, 1995.

[18] M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1-
2):107–136, Feb. 2006.

[19] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a
SAT solver from single-bit supervision. In International Conference on Learning
Representations, 2019.

[20] L. Serafini and A. S. d’Avila Garcez. Learning and reasoning with logic tensor
networks. In AI*IA, pages 334–348, 2016.

[21] P. Smolensky. Constituent structure and explanation in an integrated connection-
ist/symbolic cognitive architecture. In Connectionism: Debates on Psychological
Explanation. 1995.

[22] A. Srinivasan. The aleph manual. http://www.cs.ox.ac.uk/activities/machlearn/
Aleph/aleph.html, 2007. Accessed: 2021-01-23.

[23] A. Srinivasan, S. H. Muggleton, R. King, and M. Sternberg. Mutagenesis: Ilp
experiments in a non-determinate biological domain. In Proceedings of the 4th
International Workshop on Inductive Logic Programming, volume 237 of GMD-
Studien, pages 217–232, 1994.

[24] G. Towell and J. Shavlik. Knowledge-based artificial neural networks. Artif.
Intel., 70:119–165, 1994.

[25] S. Tran and A. Garcez. Deep logic networks: Inserting and extracting knowledge
from deep belief networks. IEEE T. Neur. Net. Learning Syst., (29):246–258,
2018.

[26] S. N. Tran. Compositional neural logic programming. In Z.-H. Zhou, editor,
Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 3059–3066. International Joint Conferences on Artificial
Intelligence Organization, 8 2021. Main Track.

[27] P. Wang, P. L. Donti, B. Wilder, and J. Z. Kolter. Satnet: Bridging deep learn-
ing and logical reasoning using a differentiable satisfiability solver. CoRR,
abs/1905.12149, 2019.

[28] F. Yang, Z. Yang, and W. W. Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 2319–2328. Curran Associates, Inc., 2017.

16

