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ABSTRACT

Soon after coronal loop oscillations were observed by TRACE spacecraft for the first time in 1999, various theoretical models have
been put forward to explain the rapid damping of the oscillations of these intriguing objects. Coronal loop oscillations are often
interpreted as fast kink modes of a straight cylindrical magnetic flux tube with immovable edges modelling dense photospheric
plasma at the ends of the loop. Taking this model as a basis we use cold plasma approximation and consider the tube to be thin to
simplify the problem and be able to deal with it analytically. In its equilibrium state the tube is permeated by a homogeneous magnetic
field directed along the tube axis. We include the effect of stratification in our model supposing that plasma density varies along the
tube. There is also density inhomogeneity in the radial direction confined in a layer with thickness much smaller than the radius of
the tube. Considering the system of linearized MHD equations we study the dependence of the spectrum of tube oscillations and its
damping due to resonant absorption on the parameters of the unperturbed state. The implication of the obtained results on coronal
seismology is discussed.
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1. Introduction

TRACE spacecraft has observed transverse coronal loop oscil-
lations for several years (e.g., Aschwanden et al. 1999, 2002;
Nakariakov et al. 1999; Schrijver & Brown 2000; Schrijver et al.
2002). These oscillations were interpreted by Nakariakov et al.
(1999) as fast kink modes of magnetic flux tubes. The obser-
vations revealed that the transverse coronal loop oscillations
are very strongly damped with the oscillation period ranging
from 2.3 to 10.8 min and the oscillations decay time from 3.2 to
20.8 min. The rapid damping of the oscillations (within several
periods) has been a subject for a number of studies and differ-
ent mechanisms of damping were proposed (see. e.g., Roberts
2000; Ruderman 2005). At present the most reliable mechanism
of damping of transverse coronal loop oscillations is the energy
resonant absorption due to coupling between the global loop os-
cillation and the local Alfvén oscillations. To our knowledge
Hollweg & Yang (1988) were the first who suggested that the
coronal loop oscillations can damp very efficiently due to reso-
nant absorption. Goossens et al. (1992) thoroughly studied this
damping and, in particular, obtained an analytical expression for
the damping rate of the kink mode of a straight non-stratified
magnetic tube in the case when the density varies in the radial
direction only in a thin layer near the tube boundary.

The observation of damped transverse oscillations of coro-
nal magnetic loops strongly boosted studies of damping of mag-
netic tube oscillations due to resonant absorption. Ruderman &
Roberts (2002) analytically solved the initial value problem for
a straight unstratified magnetic tube under assumption that the
radial density variation occurs only in a thin layer of thickness l
near the tube boundary. They showed that, after the time of order
of a few periods of the tube oscillation a damped kink mode of
the tube is formed. After that this mode starts to damp with the

damping rate proportional to l/R � 1, where R is the tube radius.
They applied their theoretical results to the observational data re-
ported by Nakariakov et al. (1999), and found that the observed
damping rate corresponds to l/R ≈ 0.23. Recently Terradas et al.
(2006) solved the same problem as Ruderman & Roberts (2002)
numerically for arbitrary l/R. In particular, they found that a
damped kink mode of the tube is formed even faster than the
analytic theory predicts, usually within one or two periods of
oscillations.

Goossens et al. (2002) applied the expression for the reso-
nant damping rate to investigate the damped coronal loop oscil-
lations in a sample of 11 loops provided by Aschwanden et al.
(2002). They found that the ratio l/R corresponding to the ob-
served damping rates varies from 0.16 to 0.49. Hence, at least
for some events, l/R is not small at all. This observation in-
spired Van Doorsselaere et al. (2004a) to calculate the resonant
damping rate numerically for arbitrary l/R. They found that the
analytical expression gives a very good approximation of the
damping rate for l/R ≤ 0.4. However, for larger values of l/R
there is substantial difference between the analytical and numer-
ical results. When l/R takes its maximum value, l/R = 1, this
difference is equal to 25%. (Note that Van Doorsselaere et al.
(2004a) used the definition of the tube radius, R̃, different from
that used by Ruderman & Roberts (2002). The relation between
the two definitions is R̃ = R − l/2.) The results obtained by
Van Doorsselaere et al. (2004a), in particular, show that the ap-
proximation of small l/R works very well for 8 events out of
11 considered by Goossens et al. (2002), and reasonably well
for 3 remaining events.

Further progress in studying the damped transverse oscil-
lations of coronal loops is related to considering more com-
plicated models of the loops. Ruderman (2003) considered
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resonantly damped kink oscillations of a magnetic tube with the
elliptic cross-section. Van Doorsselaere et al. (2004b) studied the
damped oscillations of a thin magnetic tube of a semi-circular
shape to investigate the curvature effect.

Observations revealed that “All loop oscillations occur in
relatively high loops, with loop top heights exceeding approx-
imately 60 Mm and up to 150 Mm” (Schrijver et al. 2002).
Hence the loop heights are comparable with the density scale
height in the corona. This observation motivated Andries et al.
(2005a) to study the effect of stratification on the damped trans-
verse oscillations of coronal loops. In their study Andries et al.
modelled the loop as a straight magnetic tube with the density
varying both along the tube and in the radial direction, and as-
sumed l/R� 1. Then they used the regular perturbation method
with l/R as a small parameter. In the first order approximation
they calculated the (real) frequency of the tube kink oscillation,
and in the second order approximation they found the damping
rate due to resonant absorption. The frequencies of the funda-
mental mode and overtones are determined by the condition that
an infinite determinant with the elements nonlinearly dependent
on the frequencyω is equal to zero. To calculate ω Andries et al.
truncated the determinant thus obtaining a complicated nonlin-
ear transcendent equation for ω. Then they solved this equation
numerically, which was an involved numerical procedure.

The approach used by Andries et al. (2005a) works for ar-
bitrary ratio of the tube radius R to its half-length L. However
observations show that this ratio is small. Definitely R/L < 0.1,
with the typical values between 0.03 and 0.07. This implies
that R/L can be used as a small parameter, which substantially
simplifies the analysis. The aim of this paper is to develop the
asymptotic theory of damped kink oscillations of stratified mag-
netic loops valid for R/L� 1.

The paper is organized as follows. In the next section we de-
scribe main assumptions used in our model and derive equations
governing the plasma motion. In Sect. 3 we obtain the solution
of the governing equations in internal and external homogeneous
regions, where the plasma density varies in the longitudinal di-
rection but does not vary in the radial direction. In Sect. 4 we
discuss the two-dimensional extension of connection formulae
previously obtained for one-dimensional equilibria. In Sect. 5
we calculate the variations of the radial velocity and magnetic
pressure across the region where the density varies in the radial
direction. In Sect. 6 we match the solutions in the internal and
external regions, thus obtaining the Sturm-Liouville problem de-
termining the oscillation frequency, and the expression for the
damping rate. In Sect. 7 we calculate the frequencies and decre-
ments of the fundamental mode and first overtone for a particular
density distribution, and discuss the application of the obtained
results to coronal seismology. Section 8 contains the summary
and our conclusions.

2. Basic assumptions and governing equations

We model a solar coronal loop by a straight axisymmetric mag-
netic flux tube. Figure 1 shows the sketch of the equilibrium
state. In what follows we use cylindrical coordinates r, ϕ, z. The
tube length is 2L, and its radius R. The plasma density, ρ(r, z),
outside the tube (r > R) is equal to ρe(z). Inside the tube the
plasma density varies in the radial direction only in the annulus
R − l < r < R, so that ρ(r, z) = ρi(z) for r < R − l. Stratification
is assumed to be everywhere the same: ρe(z)/ρi(z) = χ < 1,
where χ is a constant. We assume that the dependence on r in
the annulus can be factored out and take ρ(z, r) = f (r)ρi(z) for
R − l < r < R. In what follows we will call this assumption the

Fig. 1. The sketch of the equilibrium state. The ends of the magnetic
tube are assumed to be frozen in a dense photospheric plasma.

assumption of uniform stratification. The density is assumed to
be continuous, so that f (R−l) = 1 and f (R) = χ. We also assume
that the density varies monotonically, so that f (r) is a monotoni-
cally decreasing function. The plasma is permeated by a uniform
magnetic field B directed along the tube axis, B = B ẑ, where ẑ
is the unit vector along the z-axis. The magnetic field lines are
anchored in the photosphere, so that the footpoints are subject to
the line-tying conditions.

In what follows we use the cold plasma approximation and
neglect the plasma pressure in comparison with the magnetic
pressure. We assume that R � L and consider oscillations with
the wavelength of order L. The only dissipative effect that we
take into account is the plasma viscosity. In accordance with
the classical Braginskii’s expression for the viscosity tensor in
a magnetized plasma (Braginskii 1965), under typical coronal
conditions, the shear viscosity is at least 10 orders of magnitude
smaller than the compressional viscosity. However, in the prob-
lem of coronal loop oscillations, dissipation is only important in
the Alfvén dissipative layer embracing an ideal resonant surface.
Ofman et al. (1994) and Erdélyi & Goossens (1995) showed that
in Alfvén dissipative layers only the shear viscosity is signifi-
cant, while all other terms in Braginskii’s expression for the vis-
cosity tensor can be neglected. In accordance with this fact we
write the viscous force in the momentum equation in a simplified
form ρν∇2u, where u is the velocity and ν the kinematic viscos-
ity. In the dissipative layer, there are large gradients in the radial
direction only. This observation enables us to use the approxima-
tion ∇2u ≈ ∂2u/∂r2. Then the system of linear MHD equations
for a cold plasma takes the form

∂u
∂t
=

1
ρ

(
B
µ0

∂br

∂z
− ∂P
∂r

)
+ ν
∂2u
∂r2
, (1)

∂w

∂t
=

1
ρ

(
B
µ0

∂bϕ
∂z
− 1

r
∂P
∂ϕ

)
+ ν
∂2w

∂r2
, (2)

∂br

∂t
= B
∂u
∂z
,
∂bϕ
∂t
= B
∂w

∂z
, (3)

∂P
∂t
= − B2

rµ0

(
∂(ru)
∂r
+
∂w

∂ϕ

)
, (4)
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1
r
∂(rbr)
∂r

+
1
r

∂bϕ
∂ϕ
+
∂bz

∂z
= 0. (5)

Here u = (u, w, 0) is the velocity, B = (br, bϕ, bz + B) the mag-
netic field, P = Bbz/µ0 the perturbation of the magnetic pres-
sure, and µ0 the magnetic permeability of free space. Since the
equilibrium quantities depend on r and z coordinates only, we
can Fourier-analyze the perturbed quantities with respect to ϕ
and t and take them proportional to exp(−iωt + imϕ), where m
(a positive integer) is the azimuthal wave number, and ω is the
frequency of oscillations. In what follows we consider the kink
mode of tube oscillations only and take m = 1.

Using Eqs. (3) to eliminate br and bϕ from Eqs. (1) and (2)
we obtain

∂2u
∂z2
+
ω2

V2
A

u − iνω

V2
A

∂2u
∂r2
= − iω

ρV2
A

∂P
∂r
, (6)

∂2w

∂z2
+
ω2

V2
A

w − iνω

V2
A

∂2w

∂r2
=
ω

rρV2
A

P, (7)

where VA(r, z) = B[µ0ρ(r, z)]−1/2 is the Alfvén speed.
The system of Eqs. (6) and (7) is not closed: there are three

variables, u, w and P, and only two equations, so that we need
one additional equation. It turns out that it is convenient to use
different equations outside and inside the inhomogeneous annu-
lus, R − l < r < R, to close the system (6) and (7). We start from
deriving the third equation that will be used outside the annu-
lus. When doing so we keep in mind that, outside the annulus,
ρ = ρ(z), and we can take ν = 0 since viscous effects are only
significant in the dissipative layer. Now we multiply Eq. (1) by
rρ and differentiate the result with respect to r. Then we multiply
Eq. (2) by ρ and differentiate the result with respect to ϕ. Adding
the obtained equations, using Eqs. (4) and (5), and recalling that
perturbations of all variables are proportional to exp (−iωt + iϕ),
we arrive at

∂2P
∂z2
+

1
r
∂

∂r

(
r
∂P
∂r

)
+

⎛⎜⎜⎜⎜⎝ω2

V2
A

− 1
r2

⎞⎟⎟⎟⎟⎠ P = 0. (8)

The reason why we do not use Eq. (8) and need another equation
in the annulus is the following. To derive the equation governing
the tube oscillations we need to calculate the variation of u and P
across the annulus. The variation of P is determined by Eq. (6).
To determine the variation of u we need an equation containing
the derivatives of u with respect to r on the left-hand side, and
not containing the derivatives with respect to r on the right-hand
side. Now we proceed to the derivation of such an equation. We
use Eq. (4) to express w in terms of u and P. Substituting the
result into Eq. (7) we obtain

∂3(ru)
∂r∂z2

+
ω2

V2
A

∂(ru)
∂r

− iνω

V2
A

∂3(ru)
∂r3

=
irω

ρV2
A

⎡⎢⎢⎢⎢⎣∂2P
∂z2
+

⎛⎜⎜⎜⎜⎝ω2

V2
A

− 1
r2

⎞⎟⎟⎟⎟⎠ P

⎤⎥⎥⎥⎥⎦ . (9)

When deriving Eq. (9), we have neglected terms proportional to
ν∂2P/∂r2. This can be done for the following reason. Viscosity
is only important in the dissipative layer where there are large
gradients of perturbations. However, we will see in what follows
that there are no large gradients of P in the dissipative layer.

To complete the formulation of the problem, we have to
specify the boundary conditions. At the ends of the tube the line-
tying conditions have to be satisfied:

u = w = 0 at z = ±L. (10)

It follows from Eqs. (4) and (10) that

P = 0 at z = ±L. (11)

Finally, we consider only non-leaky modes of the tube oscilla-
tions, so that all perturbations have to decay as r → ∞.

When the tube is not stratified in the longitudinal direction,
i.e. all the equilibrium quantities depend on r only, we Fourier-
analyze u, w and P and take them proportional to cos (πnz/2L)
with integer n (e.g., Ruderman & Roberts 2002), thus reducing
Eqs. (6)–(9) to ordinary differential equations. However it is not
possible when the loop is longitudinally stratified because in that
case the coefficients of Eqs. (6)–(9) depend both on r and z. To
overcome this difficulty we use generalized Fourier expansions
with respect to eigenfunctions of the following Sturm-Liouville
problem:

V2
A

d2W
dz2
= −λW, W(±L) = 0. (12)

The eigenvalues of this problem are real, and they constitute
a monotonically growing sequence {λn}, λn → ∞ as n → ∞
(e.g. Coddington & Levinson 1955). It is easy to show that all
the eigenvalues are positive. Any square integrable in the in-
terval [−L, L] function g(z) can be expanded in the generalized
Fourier series

g(z) =
∞∑

n=1

gnWn(z), (13)

where Wn(z) is an eigenfunction of the Sturm-Liouville prob-
lem (12) corresponding to the eigenvalue λn. Obviously, they
can be chosen to be real. The eigenfunctions satisfy the orthog-
onality condition∫ L

−L
V−2

A (z)Wn(z)Wm(z) dz = 0 for m � n. (14)

If g(z) has a continuous second derivative and satisfies the
boundary conditions g(±L) = 0, then the sum in (13) is uni-
formly convergent, and (13) can be differentiated twice (e.g.
Titchmarsh 1946; Naimark 1967). Note that, since VA and g
depend also on r, λn, Wn and gn depend on r as on a param-
eter. Since we assume that ρ(r, z) = f (r)ρi(z), we can rewrite
Eq. (12) as

V2
Ai

d2W
dz2
= −λ f (r)W, W(±L) = 0. (15)

Then it is obvious that Wn can be chosen to be independent of r,
while the dependence of λn on r is given by

λn(r) =
λn(R − l)

f (r)
· (16)

For convenience we also assume that Wn(z) is normalized by the
condition∫ L

−L
V−2

Ai (z)Wn(z)2 dz = 1, (17)

so that the Fourier coefficients are given by

gn =

∫ L

−L
V−2

Ai (z)g(z)Wn(z) dz. (18)
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3. Solutions in the homogeneous regions

In this section we obtain solutions for P and u in the homoge-
neous regions, where ρ depends on z only. These are the internal
region, determined by the inequality r < R − l, and the exter-
nal region, determined by the inequality r > R. In what follows
we use the approach applied by Dymova & Ruderman (2005)
to studying kink oscillations of stratified magnetic tubes homo-
geneous in the radial direction. In the homogeneous regions we
use Eq. (6) with the third term on the left-hand side equal to zero,
and Eq. (8). We start our analysis from the internal region. In this
region the characteristic scale in the r-direction is R, while the
characteristic scale in the z-direction is L. This implies that the
ratios of the first term and the term proportional to ω2 on the left-
hand side of Eq. (8) to the second term is of the order (R/L)2.
Since R/L � 1, the first term and the term proportional to ω2

can be neglected and Eq. (8) reduces to

r
∂

∂r

(
r
∂P
∂r

)
− P = 0. (19)

The solution of this equation regular at r = 0 is

P(r, z) = rAi(z), (20)

where Ai(z) is an arbitrary function satisfying Ai(±L) = 0.
Now we expand u and P in the generalized Fourier series of

the form (13). Substituting these expansions in Eq. (6) with the
third term on the left-hand side equal to zero, we obtain

un =
iωΦn

λn − ω2
, (21)

where Φn is the nth Fourier coefficient of function Φ(z) =
Ai(z)/ρi(z). Note that un is independent of r, so that u in the in-
ternal region is a function of z only.

In the external region the characteristic scales in the r and
z-direction are the same and equal to L, so that we cannot ne-
glect any terms on the left-hand side of (8). To make analytical
progress, we assume in what follows that the inhomogeneous
annulus is thin, i.e. l � R. Then we use the regular perturbation
method with l/R as a small parameter. We will see in what fol-
lows that the ratio of the imaginary part of ω to its real part is of
the order l/R, so that we can write ω = ωr + i(l/R)ωi, where ωr

and ωi are real and ωi ∼ ωr .
Let us now look for the solution to Eq. (8) in the form of

expansion P = P(0) + (l/R)P(1) + . . .. Then, in the zero order
approximation, we obtain

∂2P(0)

∂z2
+

1
r
∂

∂r

(
r
∂P(0)

∂r

)
+

⎛⎜⎜⎜⎜⎝ ω2
r

V2
Ae

− 1
r2

⎞⎟⎟⎟⎟⎠ P(0) = 0. (22)

We look for the solution to this equation in the form P(0)(r, z) =
F(0)(r)G(z). Separating the variables we obtain that F(0)(r) satis-
fies the equation

d2F(0)

dr2
+

1
r

dF(0)

dr
−
(
Λ2 +

1
r2

)
F(0) = 0, (23)

while G(z) is a solution of the Sturm-Liouville problem

d2G
dz2
+
ω2

r

V2
Ae

G = −Λ2G, G = 0 at z = ±L, (24)

where Λ2 is the separation constant. The eigenvalues of the
Sturm-Liouville problem (24) constitute a monotonically in-
creasing sequence {Λ2

n}, n = 1, 2, . . . , such that Λ2
n → ∞ as

n→ ∞ (e.g. Coddington & Levinson 1955). The eigenfunctions
Gn corresponding to the eigenvaluesΛ2

n constitute a complete set
of functions in the space of square integrable functions, so that
any such function can be expanded in a generalized Fourier se-
ries with respect to functions Gn, the series being convergent in
the quadratic mean. If a function has continuous second deriva-
tive and is equal to zero at z = ±L, then the corresponding
generalized Fourier series converges uniformly with respect to z
and can be differentiated twice (e.g. Titchmarsh 1946; Naimark
1967).

It is explained in Dymova & Ruderman (2005) that the case
Λ2

1 < 0 corresponds to a leaky mode. We assume a priori that
there are no leaky modes, so that Λ2

1 > 0. We will verify this
assumption after we find ω. Since the sequence {Λ2

n} is mono-
tonically increasing, the assumption Λ2

1 > 0 implies that Λ2
n > 0

for any n. Then Eq. (23) is the modified Bessel equation and,
with the accuracy up to a multiplicative constant, its solution de-
caying at infinity is F(r) = K1(Λnr), where K1 is the modified
Bessel function of the second kind (McDonald function). Then,
due to the expansion theorem (e.g. Titchmarsh 1946; Naimark
1967), the general solution of Eq. (22) is given by

P(0) =

∞∑
n=1

H(0)
n Gn(z)K1(Λnr), (25)

where H(0)
n are arbitrary constants.

In the first order approximation we obtain from Eq. (8)

∂2P(1)

∂z2
+

1
r
∂

∂r

(
r
∂P(1)

∂r

)
+

⎛⎜⎜⎜⎜⎝ ω2
r

V2
Ae

− 1
r2

⎞⎟⎟⎟⎟⎠ P(1) = −2iωrωi

V2
Ae

P(0). (26)

Let us now look for the solution to this equation in the form of
expansion

P(1) =

∞∑
n=1

F(1)
n Gn(z). (27)

Substituting (27) in (26), using (24) and (25), and taking into
account that Gn(z) are linearly independent functions, we obtain

d2F(1)
n

dr2
+

1
r

dF(1)
n

dr
−
(
Λ2

n +
1
r2

)
F(1)

n = −
2iωrωi

V2
Ae

H(0)
n K1(Λnr). (28)

The complimentary function of Eq. (28) is C1I1(Λnr) +
C2K1(Λnr), where I1(Λnr) is the modified Bessel function of
the first kind, and C1 and C2 are arbitrary constants. Using the
method of variation of constants and taking into account the
asymptotic relations (Abramowitz & Stegun 1964)

I1(x) ∼ ex

√
2πx
, K1(x) ∼

√
π

2x
e−x, (29)

valid for x → ∞, we obtain that the general solution of Eq. (28)
decaying at infinity is given by

F(1)
n (r) = H(1)

n K1(Λnr) +
2iωrωiH

(0)
n

V2
Ae

×
{

K1(Λnr)
∫ r

R
sI1(Λns)K1(Λns) ds

+ I1(Λnr)
∫ ∞

r
s [K1(Λns)]2 ds

}
· (30)

Here H(1)
n is an arbitrary constant.
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Let us calculate the approximate expressions for P(0) and P(1)

when r ∼ R. When doing so we use the formulae (Abramowitz
& Stegun 1964)

I1(x) = x/2 + O(x3), K1(x) = x−1 + O(x), (31)

valid for 0 < x � 1. The series (25) and (27) converges very fast,
so that P(0) and P(1) can be approximated by a few first terms
in (25) and (27) respectively. We will see in what follows that
ω/VAe ∼ L−1. Then it follows from (24) that, for moderate values
of n, Λn ∼ L−1. This implies that, for r ∼ R, Λnr ∼ R/L � 1.
Now, using the second equation in (31), we obtain from (25)

P(0) = r−1A(0)
e (z)

[
1 + O

(
(R/L)2

)]
,

A(0)
e (z) =

∞∑
n=1

(H(0)
n /Λn)Gn(z).

(32)

Using (31), we obtain for r ∼ R∫ r

R
sI1(Λns)K1(Λns) ds ≈ r2 − R2

4
· (33)

Since s [K1(Λns)]2 has a non-integrable singularity at s = 0 and
exponentially decays as s → ∞, the main contribution in the
integral

∫ ∞
r

s [K1(Λns)]2 ds comes from the vicinity of r when
r ∼ R. Then, taking R � r0 � L and using (31) we obtain∫ ∞

r
s [K1(Λns)]2 ds ≈

∫ r0

r

ds
Λ2

ns
= Λ−2

n ln
r0

r
· (34)

Now it follows from (31), (33) and (34) that the second term on
the right-hand side of (30) is approximately equal to

iωrωiH
(0)
n

ΛnV2
Ae

(
r2 − R2

2r
+ r ln

r0

r

)
∼ rH(0)

n

ΛnL2
∼ (R/L)H(0)

n

LΛn
(35)

for r ∼ R. When deriving this estimate we have used ωr/VAe ∼
ωi/VAe ∼ L−1 and ln(r0/r) ∼ 1. Then, using (27), (31), (32)
and (35), we obtain from (30)

P(1) = r−1A(1)
e (z)

[
1 + O

(
(R/L)2

)]
+ P̃(1), (36)

where

A(1)
e (z) =

∞∑
n=1

(H(1)
n /Λn)Gn(z), P̃(1) ∼ (R/L)2P(0). (37)

Using (32) and (36) and neglecting terms of the order (R/L)2 and
(l/R)2, we eventually arrive at

P = P(0) + (l/R)P(1) = r−1Ae(z),

Ae(z) = A(0)
e (z) + (l/R)A(1)

e (z).
(38)

We would like to emphasize that the obtained solution in the
external region is only valid under the assumption l � R. The
method of variable separation can be also used in the case of
arbitrary l. In that case we arrive at the same boundary value
problem (24) for function G(z), however with ω substituted for
ωr . Since ω is complex, Eq. (24) has complex coefficients, so
that we do not obtain the classical Sturm-Liouville problem. As
a result, to obtain a complete system of functions, we have to
take not only the eigenfunctions, but also the associate functions
(Naimark 1967), which makes the analysis much more involved.

4. Connection formulae

The concept of connection formulae was first introduced by
Sakirai et al. (1991), and then further developed by Goossens
et al. (1995, see also Goossens & Ruderman 1995). The concept
of connection formulae can be described as follows. As we have
already stated, in weakly dissipative plasmas dissipation is only
important in a thin dissipative layer embracing the ideal resonant
surface. Outside this layer the ideal MHD equations can be used.
Inside the dissipative layer all equilibrium quantities can be ap-
proximated by the first terms of Taylor expansions near the res-
onant position. As a result the linear dissipative MHD equations
are simplified to the form that can be solved analytically. Using
the analytical solution we can obtain the connection formulae,
which are the expressions for the jumps of the normal velocity
component and the total pressure perturbation across the dissi-
pative layer. After that we can consider the dissipative layer as
a surface of discontinuity, solve the linear ideal MHD equations
at the two sides of the dissipative layer, and then use the connec-
tion formula to connect the solutions across the discontinuity.
This approach is similar to the use of the Rankine-Hugoniot re-
lations at shocks for studying the motions of ideal compressible
fluids.

The original connection formulae were derived for one-
dimensional equilibria, where, in cylindrical geometry, all equi-
librium quantities vary in the radial direction only. However, the
generalization for stratified magnetic tubes is straightforward. In
this section we briefly describe this generalization.

The plasma motion in the annulus R − l < r < R is de-
scribed by Eqs. (6), (7) and (9). Let us introduce the functions
U = ∂(ru)/∂r andΨ = P/ρ, and expand u, U, P andΨ in the gen-
eralized Fourier series similar to (13). The characteristic scale of
variation of the equilibrium quantities in the radial direction is
equal to l, while the characteristic scale for perturbations in a
dissipative layer is much smaller than l. Then, recalling that Wn

is independent of r, we obtain the following expressions

∂2u
∂r2
=

∞∑
n=1

Wn
d2un

dr2
,
∂2U
∂r2
=

∞∑
n=1

Wn
d2Un

dr2
,

1
ρ

∂P
∂r
≈ ∂Ψ
∂r
=

∞∑
n=1

Wn
dΨn

dr
·

(39)

Substituting the expansions for u, U, P andΨ in Eqs. (6) and (9),
and using Eqs. (12) and (39), we obtain

(ω2 − λn)un − iνω
d2un

dr2
= −iω

dΨn

dr
, (40)

(ω2 − λn)Un − iνω
d2Un

dr2
=

irω

ρV2
A

(ω2 − λn)Pn − iω
r
Ψn, (41)

where n = 1, 2, . . . The nth term in the expansion of u (and
also U) in the generalized Fourier series is resonant only if there
is rn such that λn(rn) = ω2

r , where ωr is the real part of ω. In that
case the equation r = rn defines the ideal resonant surface, and
the dissipative layer embraces this surface. The thickness of the
dissipative layer is much smaller than l, which enables us to use
the approximation

ω2
r − λn(r) = ∆n(r − rn), ∆n = − dλn

dr

∣∣∣∣∣
r=rn

· (42)

The characteristic scale of variation of perturbations in the dissi-
pative layer is defined by the balance of the two terms on the left
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hand side of Eqs. (40) or (41). When ω is real, we immediately
obtain that this characteristic scale is equal to ld = (νl/ωr)1/3,
and the thickness of the dissipative layer is of the order ld. It is
obvious that these estimates remain valid also when ω is com-
plex, ω = ωr − iγ, if the decrement γ satisfies the estimate
γ � ld|∆n|/ωr ∼ (ld/l)ωr. This estimate is valid only if l/R � ld/l.
However, for typical conditions in the solar corona l/R 
 ld/l.
In that case γ ∼ (l/R)ωr for a non-stratified magnetic tube (e.g.
Ruderman & Roberts 2002), and we will see in what follows that
this estimate remains valid for a stratified tube. Ruderman et al.
(1995) showed that the characteristic scale of variation of per-
turbations in the dissipative layer does not exceed ld even when
l/R 
 ld/l. However, in this case the thickness of the dissipa-
tive layer is of the order l2/R. Since we assume that l � R, the
thickness of the dissipative layer is still much smaller than l.

Continuing our analysis we notice that, taking the thickness
of the dissipative layer to be of the order l2/R, we obtain that the
ratio of the first term on the right-hand side of Eq. (41) to the
second term is of the order ω2

r lR/V2
A. Taking into account that

ωr ∼ VA/L, we obtain that this ratio is of the order lR/L2 � 1.
Hence we can neglect the first term on the right-hand side of
Eq. (41) in comparison to the second one. Since the character-
istic scale of perturbation variation in the dissipative layer is of
order ld, it is convenient to introduce the new stretching variable
σ = (r − rn)/ld in the dissipative layer. Then, using Eq. (42), we
rewrite Eqs. (40) and (41) in the approximate form:

dΨn

dσ
=
∆nl2d
ωr

(
ω2

r

l∆n

d2un

dσ2
+ iσun +

2ωrγ

∆nld
un

)
, (43)

d2Un

dσ2
+

(
il∆nσ

ω2
r
+

2γl
ωrld

)
Un =

lΨn

Rωrld
· (44)

When deriving these equations we have used the approximation
r ≈ R, and the approximation ω ≈ ωr everywhere except the
coefficients at the first terms on the left-hand sides, where we
have used ω2 ≈ ω2

r − 2iωrγ.
It follows from Eq. (44) and the estimate γ ∼ (l/R)ωr that

Un ∼ (lωr)−1Ψn. Using this estimate and the relation Un ≈
R dun/dr, we obtain

dun

dσ
∼ ld Ψn

ωrlR
· (45)

Since the variation of σ in the dissipative layer is of the order
l2/Rld, Eq. (45) implies that the variation of un is of the or-
der l(ωrR2)−1Ψn. On the other hand, it follows from Eqs. (20)
and (21) that un ∼ (ωrR)−1Ψn at r = R − l. Since (ωrR)−1 

l(ωrR2)−1, we can use the estimate un ∼ (ωrR)−1Ψn in the dis-
sipative layer. Now, taking into account that the largest term in
the brackets on the right-hand side of Eq. (43) is the last one, we
obtain the estimate

dΨn

dσ
∼ ldl

R2
Ψn. (46)

This equation implies that the variation of Ψn across the dissi-
pative layers is of the order (l/R)3|Ψn| � |Ψn|. Hence, we can
neglect this variation and consider Ψn as a constant inside the
dissipative layer. Then it follows that we can neglect the varia-
tion ofΨ and P across the dissipative layer. Introducing the jump
of function f (σ) across the dissipative layer as

[ f ] = lim
σ→∞{ f (σ) − f (−σ)}, (47)

we, in particular, obtain

[P] = 0. (48)

This is the first connection formula. It is well-known in the the-
ory of resonant waves in one-dimensional equilibria and has a
very simple physical meaning. Since the dissipative layer is thin,
its inertia is very small and the pressure has to be in balance at
the two sides of this layer.

Since Un = d(run)/dr, we can consider equation (44) as an
equation for run. Then, with Ψn constant, this equation coin-
cides, with the accuracy up to the notation, with Eq. (8) of Tirry
& Goossens (1996). Using the results obtained by these authors
we can immediately write down its solution:

un =
iωrΨn(rn)

R2∆n
G(τ) + const., (49)

where

G(τ) =
∫ ∞

0

exp (ixτ sgn (∆n) + Λx) − 1
x

e−x3/3 dx,

τ = σ

∣∣∣∣∣∣ l∆n

ω2
r

∣∣∣∣∣∣
1/3

, Λ = 2γ

(
ω2

r

ν∆2
n

)1/3

·
(50)

It is straightforward to obtain limτ→∞{G(τ) − G(−τ)} =
πi sgn (∆n). Then it follows that the jump of un across the dis-
sipative layer is given by

[un] = −πωrΨn(rn)
R2|∆n| · (51)

This is the second connection formula. We do not rewrite this
formula in terms of u because, in what follows, we use only the
expressions for jumps of the Fourier components of u.

5. Variation of velocity and magnetic pressure
across the annulus

In this section we use the connection formulae to calculate the
variation of the magnetic pressure and the normal component
of the velocity across the annulus. These variations are equal to
δP = P(R, z)−P(R−l, z) and δu = u(R, z)−u(R−l, z) respectively.

We start from calculating δP. The characteristic scale of vari-
ation of perturbations in the z-direction is L. The characteris-
tic scales of variation of perturbations in the r-direction in the
internal homogeneous region (r < R − l) and in the annulus
(R− l < r < R) are R and l respectively. Using these facts and the
estimate VA/ω ∼ L, we obtain from Eq. (9) the estimates for δu
and for u in the internal homogeneous region,

δu ∼ lL2ωrP

ρR2V2
A

, u ∼ L2ωrP

ρRV2
A

· (52)

The first of these estimates implies that, in the annulus, u(r) =
ū[1 + O(l/R)], where ū = u(R − l). Then it follows from Eq. (6)
with the third term on the left-hand side equal to zero, and
Eq. (52) that

∂P
∂r
=

iρV2
A

ω

⎛⎜⎜⎜⎜⎝∂2ū
∂z2
+
ω2

V2
A

ū

⎞⎟⎟⎟⎟⎠ [1 + O(l/R)]. (53)

Using Eqs. (12), (20) and (21) we reduce Eq. (53) to

∂P
∂r
= Ai(z)[1 + O(l/R)]. (54)



M. V. Dymova and M. S. Ruderman: Damped oscillations of stratified coronal loop 1065

Then, with the aid of the connection formula (48), we obtain
from this equation

δP = lAi(z)[1 + O(l/R)]. (55)

Substituting the expansion of u in the generalized Fourier series
in Eq. (9), neglecting the first and second terms in the square
brackets on the right-hand side of this equation in comparison
with the third one, and recalling that the term on the left-hand
side proportional to ν is only important in dissipative layers, we
obtain

(λn − ω2)
d(run)

dr
=

iω
r
Ψn. (56)

It follows from Eq. (52) that δu ∼ (l/R)u. Since our calculations
are only extended to the first order with respect to the small pa-
rameter l/R, we can retain only the main order terms when cal-
culating δu. In particular, we can take ω ≈ ωr and r ≈ R in
Eq. (56). Let us denote the half-thickness of the dissipative layer
as ε. Then we obtain from Eq. (56)

un =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
un(R − l) +

iωr

R2

∫ r

R−l

Ψn(r′) dr′

λn(r′) − ω2
r
, r < rn − ε,

un(R) − iωr

R2

∫ R

r

Ψn(r′) dr′

λn(r′) − ω2
r
, r > rn + ε.

Using this equation to calculate un(rn + ε)−un(rn − ε) and taking
ε → +0 yields

[un] = δun − iω0

R2
P
∫ R

R−l

Ψn(r) dr
λn(r) − ω2

r
,

where P indicates the principal Cauchy part of an integral.
Comparing this expression with Eq. (51) we eventually arrive
at

δun = −πωrΨn(rn)
R2|∆n| +

iωr

R2
P
∫ R

R−l

Ψn(r) dr

λn(r) − ω2
r
· (57)

This expression was obtained under the assumption that the nth
term is resonant. If it is not resonant, then there is no dissipative
layer for this term and [un] = 0. In addition, there is no singu-
larity in the integrand in the expression for δun. As a result this
expression is simplified to

δun =
iωr

R2

∫ R

R−l

Ψn(r) dr
λn(r) − ω2

r
· (58)

The variation of u across the annulus is given by δu(z) =∑∞
n=1 δunWn(z).

6. Matching solutions

In this section we use the results obtained in the previous section
to match the solutions in the internal and external homogeneous
regions derived in Sect. 3. As a result we arrive at the equation
determining the real part of ω and the expression for its imagi-
nary part.

First we match the pressure perturbation recalling that P(R)−
P(R − l) = δP. Using Eqs. (20), (38) and (55), and neglecting
terms of the order (l/R)2, we immediately obtain that Ai(z) and
Ae(z) can be expressed in terms of one unknown function A(z) as

Ai(z) = R−1A(z), Ae(z) = RA(z). (59)

Now, with the aid of Eqs. (20) and (59) we rewrite Eq. (6) in the
internal homogeneous region as

d2ui

dz2
+
ω2

V2
Ai

ui = − iωA

ρiV2
AiR
· (60)

Note that all the quantities in this equation are functions of z
only. Substituting P = (R/r)A(z) in Eq. (6) and taking r → R+ 0
we obtain equation valid at r = R,

d2ue

∂z2
+
ω2

V2
Ae

ue =
iωA

ρeV2
AeR
, (61)

where ue = u(R). Using the relation ue = ui + δu we rewrite this
equation as

d2ui

dz2
+
ω2

V2
Ae

ui =
iωA

ρeV2
AeR
− d2δu

dz2
− ω

2

V2
Ae

δu. (62)

Subtracting Eq. (60) from Eq. (62) yields

ui =
1

ω2(ρi − ρe)

(
ρV2

A
d2δu
dz2
+ ρeω

2δu − 2iω
R

A

)
. (63)

When deriving this equation we have used the fact that ρV2
A =

const. Now we multiply Eqs. (60) and (62) by V2
Ai and V2

Ae re-
spectively and subtract the first one from the second. As a result
we obtain

d2ui

dz2
=

1
ρi − ρe

⎛⎜⎜⎜⎜⎝ iω(ρi + ρe)

ρV2
AR

A − ρi
d2δu
dz2
− ρeω

2

V2
Ai

δu

⎞⎟⎟⎟⎟⎠ . (64)

Differentiating twice Eq. (63) with respect to z and comparing
the result with Eq. (64) we eventually arrive at

d2Q
dz2
+
ω2

C2
k

Q = − iωR
2

⎧⎪⎪⎨⎪⎪⎩ d2

dz2

⎛⎜⎜⎜⎜⎝ ρV2
A

ω2(ρi − ρe)
d2δu
dz2
+
ρeδu
ρi − ρe

⎞⎟⎟⎟⎟⎠
+

1
ρi − ρe

⎛⎜⎜⎜⎜⎝ρi
d2δu
dz2
+
ρeω

2

V2
Ai

δu

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, (65)

where

Q =
A

ρi − ρe
, C2

k =
2B2

µ0(ρi + ρe)
=

2V2
Ai

1 + χ
· (66)

Since we assume that ρ(r, z) = f (r)ρi(z), it follows that Ck =
VA(rc), where rc is determined by

f (rc) =
1 + χ

2
· (67)

Equation (65) is the main equation of this paper. It contains all
the information about the oscillation frequencies and decrements
as well as eigenfunctions. We solve this equation by means of the
regular perturbation method using expansions with respect to the
small parameter l/R,

Q = Q0 + (l/R)Q1 + . . . , ω = ω0 + (l/R)ω1 + . . . . (68)
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6.1. Zero order approximation

Using Eq. (52) it is easy to show that the ratio of the right-hand
side of Eq. (65) to its left-hand side is of the order l/R. Then,
substituting the expansions (68) in Eq. (65), retaining terms of
the zero order only, and recalling the boundary conditions (11),
we obtain that Q0 and ω0 are determined by the Sturm-Liouville
problem

C2
k

d2Q0

dz2
= −ω2

0Q0, Q0(±L) = 0. (69)

This result coincides with one obtained by Dymova & Ruderman
(2005) for a magnetic tube with the sharp boundary. It is not sur-
prising at all because in the zero order approximation we neglect
terms of the order l/R, which is equivalent to neglecting the ef-
fect of the transitional layer R − l < r < R.

It is interesting to note that, with the accuracy up to no-
tation, the Sturm-Liouville problem (69) is the same as the
Sturm-Liouville problem (12), so that everything written about
the problem (12) is also valid for the problem (69). In particu-
lar, all the eigenvalues of the problem (69) are positive. Since
Ck = VA(rc), it follows from Eqs. (16) and (66) that the nth
eigenvalue of the problem (69), ω2

0n, is given by

ω2
0n =

λn(R − l)
f (rc)

, (70)

and we can take Q0n = qWn, where Q0n is the eigenfunction
corresponding to the eigenvalue ω2

0n, and q is an arbitrary non-
zero constant with the dimension m7/2 s3, which is introduced to
have the correct dimension m2 s−2 for Q.

Now we are in a position to prove the a priori assumption
made in Sect. 3 that Λ2

1 > 0. Let us take ωr = ω0n in Eq. (24).
Since ω2

0n is the eigenvalue of the Sturm-Liouville problem (12)
with the corresponding eigenfunction qWn when r = rc, we can
use Eq. (12) to express ω2

0n in terms of Wn,

ω2
0n = −

C2
k

Wn

d2Wn

dz2
· (71)

Substituting this expression in Eq. (24) and using the relation
C2

k/V
2
Ae = χ/ fc, where fc = f (rc), we rewrite Eq. (24) as

Wn
d2G1

dz2
−G1

χ

fc

d2Wn

dz2
= −Λ2

1G1Wn, (72)

where G1 is the eigenfunction corresponding to the eigen-
value Λ2

1. Dividing by Wn and multiplying by G1 we can easily
reduce this equation to

(
1 − χ

fc

)
G1

d2G1

dz2
+
χG1

fcWn

d
dz

[
W2

n
d
dz

(
G1

Wn

)]
= −Λ2

1G2
1. (73)

The next step is to integrate this identity over the interval [−L, L]
and use the integration by parts and the conditions G1(±L) =
Wn(±L) = 0. However, when doing so we encounter one com-
plication. If we consider not the fundamental mode (n > 1) then
Wn has (simple) zeros inside the interval (−L, L), and one of the
integrals that we obtain is improper. In what follows we consider
the case n = 2, so that W2 has exactly one zero, z1, in the interval
(−L, L). The generalization for the case n > 2 is obvious.

Let us take small ε > 0 and integrate (73) over the interval
[−L, L] with the interval [z1 − ε, z1 + ε] removed. Then, using
integration by parts we obtain

Λ2
1

(∫ z1−ε

−L
+

∫ L

z1+ε

)
G2

1 dz =

(
1 − χ

fc

) (∫ z1−ε

−L
+

∫ L

z1+ε

) (
dG1

dz

)2

dz

+
χ

fc

(∫ z1−ε

−L
+

∫ L

z1+ε

)
W2

2

[
d
dz

(
G1

W2

)]2

dz

− G1
dG1

dz

∣∣∣∣∣z1+ε

z1−ε
− χ

fc
G1W2

d
dz

(
G1

W2

)∣∣∣∣∣∣
z1+ε

z1−ε
. (74)

The expansion of W2 in the Taylor series in the vicinity of z1 is
W2 = w1(z−z1)+ . . ., where w1 is a constant. Using the condition
that the second term on the left-hand side of Eq. (73) is regular,
we can easily show that the corresponding expansion for G1 is
G1 = g0 + g2(z− z1)2 + . . ., where g0 and g2 are constants. Using
this expansion to calculate the last term on the right-hand side of
Eq. (74), we obtain that this term is equal to 2χg2

0(ε fc)−1 +O(ε).
Using this result and noticing that the third term on the right-
hand side of Eq. (74) is of the order ε, we rewrite Eq. (73) as

Λ2
1

∫ L

−L
G2

1 dz =

(
1 − χ

fc

) ∫ L

−L

(
dG1

dz

)2

dz +
2χg2

0

ε fc

+
χ

fc

(∫ z1−ε

−L
+

∫ L

z1+ε

)
W2

2

[
d
dz

(
G1

W2

)]2

dz + O(ε). (75)

Recalling that 0 < χ < fc, we can see that, choosing ε small
enough we always can make the right-hand side of Eq. (75) pos-
itive, which implies that Λ2

1 > 0 and there are no leaky modes.

6.2. First order approximation

In the first order approximation we collect terms of the order l/R
in equation (65). As a result we obtain

d2Q1

dz2
+
ω2

0

C2
k

Q1 = − iω0R2

2l

⎧⎪⎪⎨⎪⎪⎩ d2

dz2

⎛⎜⎜⎜⎜⎝ ρV2
A

ω2
0(ρi − ρe)

d2δu
dz2
+
ρeδu
ρi − ρe

⎞⎟⎟⎟⎟⎠
+

1
ρi − ρe

⎛⎜⎜⎜⎜⎝ρi
d2δu
dz2
+
ρeω

2
0

V2
Ai

δu

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ − 2ω0ω1

C2
k

Q0, (76)

Multiplying this equation by Q0, integrating by parts, us-
ing Eq. (69), the boundary conditions Q0(±L) = Q1(±L) =
δu(±L) = 0, and the boundary condition d2δu/dz2(±L) = 0 that
follows from Eqs. (6), (10) and (11), yields

ω1

∫ L

−L
C−2

k Q2
0 dz = − iR2

4l

∫ L

−L

Q0

ρi − ρe

{ ⎛⎜⎜⎜⎜⎝ρi −
ρV2

A

C2
k

⎞⎟⎟⎟⎟⎠ d2δu
dz2

+ω2
0

⎛⎜⎜⎜⎜⎝ ρe

V2
Ai

− ρe

C2
k

⎞⎟⎟⎟⎟⎠ δu
}

dz. (77)

Now, using the relation ρe/ρi = χ, Eqs. (66) and (69), and inte-
grating by parts, we simplify Eq. (77) to

ω1

∫ L

−L
V−2

Ai Q2
0 dz =

iω2
0R2(1 − χ)
8l(1 + χ)

∫ L

−L
V−2

Ai Q0δu dz. (78)

Let us consider the nth mode of the tube oscillations, so that
ω0 = ω0n. Then Q0 = qWn. Since V2

A = V2
Ai/ f (r), we can substi-

tute V2
Ai for V2

A in Eq. (14). Then, substituting the expansion of
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δu in the generalized Fourier series of the form (13) in Eq. (78)
and using Eqs. (14) and (17), we rewrite Eq. (78) as

ω1n =
iω0R2(1 − χ)

8ql(1 + χ)
δun. (79)

In accordance with Eqs. (16) and (70), λn(rc) = ω2
0, so that

rn = rc, δun is a resonant term in the expansion of δu in the gen-
eralized Fourier series, and we have to use the expression (57)
for δun.

The real part of ω1 gives only small unimportant correction
to ω0, so that in what follows we disregard it and take ωr = ω0.
On the other hand, the imaginary part of ω1 is very important
because it determines the damping rate of oscillations due to
resonant absorption, γ = −(l/R)�(ω1), where � indicates the
imaginary part of a quantity. Hence, in what follows we concen-
trate on calculating the imaginary part of ω1.

We start calculation of the decrement of the nth mode, γn,
from evaluating Ψn(rc). In accordance with Eq. (18)

Ψn(rc) =
∫ L

−L

P(rc, z)Wn(z)

ρ(rc, z)V2
Ai(z)

dz. (80)

Using Eqs. (20) and (59) and neglecting terms of the order l/R,
we obtain P(rc, z) = A(z). Then, with the aid of Eq. (66), we
finally arrive at

P(rc, z) = Q0(ρi − ρe) = q(1 − χ)ρi(z)Wn(z).

Using Eq. (67) yields

ρ(rc, z)= f (rc)ρi(z)= 1
2 (1 + χ) ρi(z).

Substituting these expressions for P(rc, z) and ρ(rc, z) in Eq. (80)
and using the normalization condition (17) we eventually obtain

Ψn(rc) = 2q
1 − χ
1 + χ

· (81)

Now, using Eqs. (57), (79) and (81), we arrive at the expression
for the decrement of the nth mode,

γn = −
πω3

0n(1 − χ)2

4R|∆n|(1 + χ)2
· (82)

It is worth noting that, although there could be not one but a few
resonant terms in the expansion of u in the generalized Fourier
series, due to orthogonality condition (14) only the nth term con-
tributes in γn. It is also interesting that the expression (82) ex-
actly coincides with the expression for the decrement obtained
by Ruderman & Roberts (2002) (see their Eq. (56)) if we notice
that in the latter ρA =

1
2 (ρi + ρe).

Using the relation rn = rc, and Eqs. (16) and (70) we obtain
∆n = ω

2
0n f ′(rc)/ f (rc), where the prime indicates the derivative

with respect to r. Substituting this expression in Eq. (82), we
rewrite it as

γn

ω0n
= − π(1 − χ)

2 f (rc)
4R(1 + χ)2 f ′(rc)

· (83)

Since f ′(rc)/ f (rc) ∼ 1/l, γn/ω0n ∼ l/R as it should be.

7. Application to coronal loop oscillations

In this section we consider the application of theoretical results
obtained in the previous sections to the coronal loop oscillations.
Andries et al. (2005a) concluded on the bases of their numerical

0-L L

r

ra

f

Fig. 2. The density profile inside the loop, ρi(z). The solid line shows
the density profile given by Eq. (84). The dashed and dotted lines show
the sinusoidal density profile used by Andries et al. (2005a), and the
density profile in a semicircular loop respectively.

study that the loop oscillation frequency and damping rate are
mainly determined by the total mass of the plasma in the loop
and the ratio of the densities at the loop apex and at the foot
points, ρa/ρf , while the dependence on a particular density dis-
tribution inside the loop is weak. Although Andries et al. made
their conclusion on the basis of a very restricted set of calcu-
lations, their statement looks quite realistic. If we accept this
statement, then we can choose ρi(z) more or less arbitrarily only
imposing the conditions that this function is everywhere convex,
i.e. its second derivative is positive, and ρi(−L) = ρi(L). In what
follows we will choose function ρi(z) such that we can obtain
analytical expressions for the eigenvalues and eigenfunctions of
the Sturm-Liouville problem (69). One possible choice is

ρi(z) =
ρa{

1 − (1 − κ)(z/L)2
}2 , (84)

where ρa = ρi(0), ρf = ρi(±L), and κ = (ρa/ρf)1/2. The density
profile given by Eq. (84) is shown in Fig. 2 by the solid line.
The dashed line shows the density profile used by Andries et al.
(2005a), ρi(z) = ρf [1 − (1 − κ2) cos (πz/2L)]. The dotted line
shows the density profile in a semicircular loop embedded in
an isothermal atmosphere, ρi(z) = ρf exp [2 ln κ cos (πz/2L)]. We
see that the difference between the three profiles is not very large.
Hence, we can hope that the eigenvalues and eigenfunctions of
the Sturm-Liouville problem (69) are approximately the same
for all three density profiles with the same value of κ and the
same plasma total mass inside the loop.

We also have to give the expression for function f (r) to spec-
ify the radial dependence of the density. We choose the same ra-
dial density dependence as in Ruderman & Roberts (2002) and
Andries et al. (2005a) and take

f (r) =
1
2

{
1 + χ − (1 − χ) sin

π(2r + l − 2R)
2l

}
· (85)

With the equilibrium density profile given by (84) Eq. (69) takes
the form

d2Q0

dz2
+

µ0ρaω
2
0(1 + χ)

2B2
{
1 − (1 − κ)(z/L)2

}2 Q0 = 0. (86)
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Fig. 3. The solid and dashed lines show the dependences on κ of the di-
mensionless fundamental mode,Ωe

n, and first overtone,Ωo
n, respectively.

The dotted line shows the dependence of the ratio of frequencies of the
first overtone and fundamental mode, ωo

01/ω
e
01, on κ.

The general solution of this equation is (see Polyanin & Zaitsev
2003)

Q0 =
√

1 − (1 − κ)(z/L)2 (C1 cos ξ +C2 sin ξ), (87)

where

ξ = α ln
L + z

√
1 − κ

L − z
√

1 − κ , α
2 =

⎛⎜⎜⎜⎜⎝µ0ρaω
2
0L2(1 + χ)

8B2(1 − κ) − 1
4

⎞⎟⎟⎟⎟⎠ , (88)

and C1 and C2 are arbitrary constants. The boundary conditions
Q0(±L) = 0 are satisfied when either C2 = 0 and cos ξ0 = 0,
or C1 = 0 and sin ξ0 = 0, where ξ0 = ξ(L). The first condition
corresponds to even modes, and the second to odd modes. Then
we obtain that the frequencies of the even modes are given by

(ωe
0n)2 =

πB2R2
√

1 − κ
µ0 ML(1 + χ)

⎛⎜⎜⎜⎜⎝2
√

1 − κ
κ

+ ln
1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠
×
⎧⎪⎪⎨⎪⎪⎩π2(2n − 1)2

⎛⎜⎜⎜⎜⎝ln 1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠−2

+ 1

⎫⎪⎪⎬⎪⎪⎭ , n = 1, 2, . . . , (89)

while the frequencies of the odd modes are given by

(ωo
0n)2 =

πB2R2
√

1 − κ
µ0 ML(1 + χ)

⎛⎜⎜⎜⎜⎝2
√

1 − κ
κ

+ ln
1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠
×
⎧⎪⎪⎨⎪⎪⎩4π2n2

⎛⎜⎜⎜⎜⎝ln 1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠−2

+ 1

⎫⎪⎪⎬⎪⎪⎭ , n = 1, 2, . . . , (90)

where M is the total mass of the plasma inside the loop,

M = πR2Lρa

⎛⎜⎜⎜⎜⎝1
κ
+

1

2
√

1 − κ ln
1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠ + O(l/R). (91)

The frequencies of the fundamental mode and the first over-
tone are given by Eqs. (89) and (90) with n = 1 respectively.
It is straightforward to show that, if κ → 1 (the limit of a
non-stratified loop), then Eqs. (89) and (90) give the famil-
iar expression for the frequencies of the even modes, ωe

0n =

πCk(2n − 1)/2L, and the odd modes, ωi
0n = πCkn/L. In Fig. 3

the dependences of the dimensionless frequencies

Ωe,o
n =

ωe,o
0n

BR

√
µ0ML(1 + χ)

4π

for the fundamental mode and the first overtone are shown. The
ratio of frequencies of the first overtone and fundamental mode
is given by

ωo
01

ωe
01

=

⎧⎪⎪⎨⎪⎪⎩4π2 +

⎛⎜⎜⎜⎜⎝ln 1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠2⎫⎪⎪⎬⎪⎪⎭
1/2

×
⎧⎪⎪⎨⎪⎪⎩π2 +

⎛⎜⎜⎜⎜⎝ln 1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠2⎫⎪⎪⎬⎪⎪⎭
−1/2

. (92)

The dependence of this quantity on κ is shown in Fig. 3.
Using Eqs. (67) and (85), we obtain rc = R + l/2 and

f ′(rc)/ f (rc) = l(1 + χ)/(1 − χ). Substituting this expression in
Eq. (83), we rewrite it as

γn

ω0n
= − πl(1 − χ)

4R(1 + χ)
· (93)

With the accuracy up to the notation, this expression is exactly
the same as one obtained by Ruderman & Roberts (2002) for a
non-stratified loop with the radial density dependence given by
Eq. (85).

We see that the ratio of the damping rate to the oscillation
frequency is independent of stratification. The same result was
obtained numerically by Andries et al. (2005a). Since this re-
sult also follows from a more general expression (83), we con-
clude that it is valid for any radial and longitudinal dependence
of the density. The only essential assumption that this result is
based on is the assumption of uniform stratification. Of course,
this assumption is only an approximation. In real loops strati-
fications inside the loop and in the surrounding plasma should
be different, mainly because the plasma inside the loop is hotter
than the surrounding plasma. However, we believe that this de-
viation from the uniform stratification is not very strong, so that
the conclusion that the ratio of the damping rate to the oscilla-
tion frequency is independent of stratification remains approxi-
mately valid. Then we can claim that observations of damping
of the loop oscillation can provide a very important information
about the radial dependence of the density, however they can-
not be used to make any conclusions about the density variation
along the loops.

To compare our results with those obtained by Andries et al.
(2005a) we also solved the Sturm-Liouville problem (69) for
the sinusoidal density profile used by Andries et al. In that case
the solution of Eq. (69) can be expressed in terms of Mathieu
functions. Using this solution we then found the dependence of
the fundamental mode frequency on κ numerically. Although it
was difficult to retrieve accurately the numerical values from the
graphical dependence of the fundamental mode frequency on the
stratification parameter given by Andries et al., we can guaranty
that the difference between our results and the results obtained
by Andries et al. does not exceed a couple of percents. This com-
parison enabled us to claim that our asymptotic solution is very
accurate.

One of important reasons for studying coronal loop oscilla-
tions is that they can be used for coronal seismology first sug-
gested by Uchida (1970) and Roberts et al. (1984). Nakariakov
& Ofman (2001) used observational data on the periods of loop
oscillations to estimate the magnetic field in loops (see also
Nakariakov 2001). Ruderman & Roberts (2002) and Goossens
et al. (2002) used the observed damping rate to make conclu-
sions about the density variation in the radial direction. Recently
Verwichte et al. (2004) reported simultaneous observation of the
fundamental mode and the first overtone in two coronal loops.
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For interpretation of these observations Andries et al.
(2005b) used the numerical method described in Andries et al.
(2005a) to calculate the ratio of frequencies of the fundamental
mode and the first overtone of a semi-circular coronal loop in an
isothermal atmosphere. They plotted this ratio as a function of
the ratio of the loop radius, 2L/π in our notation, to the atmo-
spheric scale H (note that in Andries et al. 2005b the loop length
is equal to L, and not to 2L as in our paper). If we assume that
a loop with the density stratification given by Eq. (84) is in an
isothermal atmosphere, then its shape deviates from a half-circle.
Therefore, it is convenient to consider the ratio of the apex point
height, za, to H. For a half-circular loop za = 2L/π. The ratio
za/H is related to our parameter κ by za/H = −2 ln κ. Andries
et al. obtained that the ratio of the frequencies is a monotoni-
cally decreasing function of za/H, which agrees very well with
our results. We found that the difference between the ratio of
frequencies found in our paper and in Andries et al. monotoni-
cally grows with za/H. The height of typical coronal loops does
not exceed 2H. For a loop with the height 2H the ratio obtained
by Andries et al. is 1.67, while our expression (92) gives 1.74.
Hence, for za/H ≤ 2, the difference between the two ratios of
frequencies, one found in our paper and the other obtained by
Andries et al., does not exceed 4%. Only for extremely high
coronal loops with the apex point at four scale heights the differ-
ence between our result and the result obtained by Andries et al.
is fairly large, about 12%.

However, the dependence of ωo
01/ω

e
01 on κ is relatively

weak. This implies that small variations in ωo
01/ω

e
01 can result

in large variations in κ. For example, for the values reported
by Verwichte et al. (2004), which are ωo

01/ω
e
01 = 1.81 and

za = 70 Mm, and ωo
01/ω

e
01 = 1.64 and za = 73 Mm, the half-

circle model used by Andries et al. (2005b) gives H = 65 Mm
and H = 36 Mm, while our model gives H = 50 Mm and
H = 24 Mm. We see that the method of determining the atmo-
spheric scale height using observations of ωo

01/ω
e
01 and the loop

height suggested by Andries et al. (2005b) is very sensitive to
the stratification law.

8. Summary and conclusions

In this paper we have studied transverse oscillations of coronal
magnetic loops. We have used the cold plasma approximation,
and modelled a loop by a straight magnetic tube with the ends
of the magnetic field lines frozen in a dense immovable photo-
sphere. The plasma density varies both along the tube and in the
radial direction, the latter variation being confined in a thin an-
nulus near the tube boundary. In addition, we made an assump-
tion of homogeneous stratification, which means that the ratio of
densities inside and outside the tube is constant, and the radial
dependence of the density in the annulus can be factored out.

In our analysis we have used two small parameters: the ratio
of the tube radius to the half-length of the tube, R/L, and the
ratio of the thickness of the annulus to the tube radius, l/R. The
accuracy of our calculations with respect to the first parameter
is up to terms of the order R/L. Hence, we only neglected terms
of the order (R/L)2. Since, for typical coronal loops, (R/L)2 �
10−3, the accuracy of our calculations with respect to the first
parameter is very high. This conclusion is also supported by the
comparison with the numerical solution presented by Andries
et al. (2005a).

We have shown that, in the zero order approximation with
respect to l/R, the real part of the oscillation frequency is an
eigenvalue of the Sturm-Liouville problem (69). In the first
order approximation with respect to l/R, we calculated the

decrement (see Eqs. (82) and (83)). The ratio of the decrement
and the oscillation frequency is of the order l/R. It is interest-
ing to note that the expression for the decrement is exactly the
same as in the case of a non-stratified loop, which is a direct con-
sequence of the assumption of homogeneous stratification. This
implies that the ratio of the decrement and frequency of the loop
oscillation is independent of stratification. Previously this result
was obtained numerically by Andries et al. (2005a).

For typical coronal loops l/R can be as large as 0.6. In ad-
dition, we calculated the frequency and decrement of the tube
oscillation only in the lowest order approximation with respect
to l/R. This implies that the accuracy of our results with respect
to the parameter l/R is not very high. However, the comparison
with the numerical results obtained by Van Doorsselaere et al.
(2004a) for non-stratified loops show that the accuracy of our
calculations with respect to l/R is quite good for l/R ≤ 0.4, and
it still remains fairly good for 0.4 < l/R ≤ 0.6. Hence, our results
are accurate enough at least for non-stratified loops. We hope
that this conclusion remains valid for stratified loops, although
only the comparison with a numerical solution can confirm this
assumption.

To apply our results to coronal loop oscillations we have con-
sidered a particular stratification when the Sturm-Liouville prob-
lem (69) can be solved analytically. This stratification is only
slightly different from that in a semicircular loop in an isother-
mal atmosphere. We calculated the frequencies of the fundamen-
tal mode and overtones as functions of the total mass of plasma
inside the loop, M, the density contrast outside and inside the
loop, χ, and the square root from the ratio of densities at the
loop apex point and at foot points, κ. The dependence of any fre-
quency on M and χ is very simple: it is inversely proportional to√

M(1 + χ). The dependences of frequencies of the fundamental
mode, ωe

01, and first overtone,ωo
01, on κ are shown in Fig. 3. The

ratio of this two frequencies is a function of κ only, which once
again coincides with the result numerically obtained by Andries
et al. (2005a).

Andries et al. (2005a) calculatedωo
01/ω

e
01 as a function of the

ratio of the loop hight za to the scale hight H, which, for a semi-
circular loop in an isothermal atmosphere, is given by 2L/πH.
The relation between za/H and κ is za/H = − ln κ. We compared
our result with the result obtained by Andries et al. For not very
high loops with za/H ≤ 2 we obtained that the difference be-
tween the two results does not exceed 4%. This result is not very
surprising because, in accordance with Fig. 2, the stratification
law used in our paper does not differ very much from one used
by Andries et al. Further investigation is need to find out how
strongly the dependence of ωo

01/ω
e
01 on the ratio of densities at

the apex point and the foot points is affected by the variation of
the stratification law.

Andries et al. (2005b) used the dependence of ωo
01/ω

e
01 on

za/H for a half-circle loop to calculate the atmospheric scale
height on the basis of two simultaneous observations of the fun-
damental mode and first overtone reported by Verwichte et al.
(2004), and obtained H = 65 Mm in the first case, and H =
36 Mm in the second case. We repeated their calculations us-
ing the stratification law (84), and obtained H = 50 Mm and
H = 24 Mm. On the basis of these results we conclude that the
method of determining the scale height suggested by Andries
et al. (2005b) is very sensitive to the stratification law.

Although the model of a stratified coronal loop used by
Andries et al. (2005a) and in this paper is a serious step in the di-
rection of realistic description of coronal loop oscillations, more
complicated models should be developed in the future. One of
the effects missed in the model of a stratified coronal loop is
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the loop curvature. However, on the basis of the results obtained
by Van Doorsselaere et al. (2004b) we do not expect that the
account of this effect will sufficiently alter the frequencies and
decrements of the loop oscillations.

The second effect worth considering is a non-circular loop
cross-section. Ruderman (2003) showed that, for a non-stratified
loop with an elliptical cross-section, there are two fundamen-
tal modes with different frequencies. There is almost no doubt
that the same is true for a stratified loop with an elliptical cross-
section.

The third effect that may turn out to be very important is the
magnetic field twist inside the loop. Since a strong twist can even
destabilize the loop, we can anticipate that a substantial twist that
is still below the instability threshold may significantly alter the
frequencies of the loop oscillations.

Finally, the effect of nonlinearity comes into play. Very of-
ten the observed displacement of the loop axis exceeds its ra-
dius. Andries et al. (2005a) argued that “as for the oscillations
of a string, the fact that the displacement is much larger than
the thickness of the loop/string need not be in disagreement with
the assumption of linearity.” We can hardly agree with this state-
ment. There is a very big difference between a string and a thin
magnetic tube.

The linear theory of a string and a tube is the same, which
is clearly seen from Eq. (69). However the nonlinear behaviour
of the string is completely different from that of the tube. The
phase speed of transverse waves in the string is much smaller
than phase speed of sound waves that can propagate in the ma-
terial the string is made of. This implies that we can consider
the string as incompressible when studying its transverse oscil-
lations, and assume that its cross-section does not change. Then
we immediately arrive at the conclusion that the linear descrip-
tion of string transverse oscillations is valid as soon as its dis-
placement is much smaller than the wavelength.

In contrast to the string, in general, we cannot neglect the
change of the magnetic tube cross-section when studying the
tube transverse oscillations. This change of the tube cross-
section manifests as the excitation of flute modes. In the long
wavelength approximation the phase speeds of all flute modes
are the same as the phase speed of the kink mode. In this
paper we considered only the kink mode. However Dymova &
Ruderman (2005) considered also the flute modes in a stratified
magnetic tube with a sharp boundary. It follows from their
analysis that the phase speeds of all flute modes are the same as
the phase speed of the kink mode even when the stratification
is taken into account. As a result, we can expect that there
is resonant nonlinear interaction between the kink mode and
the flute modes. Ruderman (1992) studied this problem for a
thin homogeneous magnetic tube with a sharp boundary in an
incompressible plasma and showed that this resonant interaction
does occur. The efficiency of this interaction is characterized by
a dimensionless parameter ε, which is the ratio of the maximum
displacement of the tube axis and the tube radius. The nonlinear
effects become important after the time of the order ε−1 times
the wave period. There is no reason to expect that this estimate

is different for a stratified tube in a cold plasma. Then we can
state that the nonlinear effects can be neglected only if ε−1 times
the wave period is larger than the damping time. Since the ratio
of the damping time to the wave period is of the order l/R, we
can write this criterion in the form ε < l/R. When ε � 1 (and
oscillations with such a large amplitude are often observed), then
the full nonlinear description of the oscillating loop is needed.
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