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Abstract
While the solvency analysis of immediate life annuity portfolios has been extensively
studied, the case of deferred annuities has received comparatively much less attention.
We assess the importance and effect of stochastic mortality models and interest rates
on the solvency analysis of a portfolio of deferred annuity contracts. Our analysis
considers three steps: first, the benchmark case where mortality rates and interest
rates are both deterministic; then, the case in which only mortality rates are stochastic
is explored; finally, the full model where both mortality rates and interest rates are
stochastic. The results demonstrate the model risk stemming from the uncertainty in
the mortality models and its impact on the evaluation of solvency margins for life
annuities. The role of the deferment period is thoroughly discussed and compared to
the case of immediate annuities.

Keywords Deferred annuities · Solvency · Reserves · Longevity risk · Interest rate
risk

1 Introduction

Annuity products play a significant role in protecting policyholders from longevity
risk, providing a minimum guaranteed income and reducing the risk of outliving
their retirement assets. Regulators therefore have a strong incentive to achieve a deep
understanding of the solvability of annuity portfolios and the impact of systematic
longevity risk. While immediate life annuities have been studied extensively, deferred
annuities products play an equally important role as they are commonly sold, being
relatively more affordable. The solvency of deferred annuities portfolios has not been
considered thoroughly in the literature, and this paper aims at filling this gap.
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Yaari (1965) demonstrates that a risk averse individual should convert all of his/her
assets to an immediate annuity due to the fact that people who die earlier subsidise
those who live longer. However, the evidence shows that retirees are reluctant to
convert retirement savings into annuities voluntarily.Many theories have been brought
forward to explain this so-called “annuity puzzle”. As a result of the discounting
effect and the possibility that annuitants may not survive the deferment period, a
deferred annuity is much cheaper than an immediate annuity with identical benefits
and therefore plays an important role in households’ portfolios. Wei-Yin and Scott
(2007) apply cumulative prospect theory to the analysis of annuities and demonstrate
that it can explain the low demand for immediate annuities purchased at retirement
and higher preference for deferred annuities. Chen et al. (2019) extend this analysis
and show that immediate annuities are not attractive for retirees at all ages due to
loss aversion and preferences for deferred annuities increase with the deferred period.
Moreover, Chen et al. (2020) demonstrate that a hyperbolic discountmodel can explain
the low demand of immediate annuities at retirement and greater attractiveness of
long-term deferred annuities.

In this paper we analyse the solvency capital of deferred annuities portfolios using
different assumptions and scenarios for longevity and investment risk. Hypotheses
about underlying mortality and interest rate dynamics play an important role in the
solvency assessment of life annuity contracts. By comparing the results for determin-
istic and stochastic mortality models we estimate the importance and effect of random
changes in the mortality for solvency analysis. The systematic risk component is anal-
ysed in Coppola et al. (2000), Coppola et al. (2002), Olivieri (2001), and Pitacco
(2004). Olivieri and Pitacco (2003) use a finite range of mortality scenarios and dif-
ferentiate between pooling and non-pooling risks. In contrast, De Waegenaere et al.
(2010) examine pension annuities in a generalized Lee-Carter model. The stochastic
Gompertz-model is used in Christiansen and Helwich (2008) both for temporary life
and pure endowment insurance. Bauer and Weber (2008) and Hari et al. (2008) cal-
culate VaR and expected shortfall for immediate life annuities using different static
hedging scenarios. Jarner and Møller (2015) consider a partial internal model for
longevity risk, focusing in particular on the role of the unsystematic element related
to the size of the portfolio. Gylys and Šiaulys (2019) compare, for a portfolio of term
assurances, the run-off and 1-year Value-at-Risk under a Lee-Carter model to the
results of the Solvency II standard formula

Several stochastic mortality models have been proposed in the literature, see Cairns
et al. (2009) for a review of some of the most commonly used ones. The choice of
a model requires significant judgement by the analyst and a change in the model
can significantly impact solvency margins and the best estimate reserves (Richards
and Currie 2009). Therefore, model risk is particularly important, and its assessment
requires the evaluation of many stochastic mortality framework.

We extend the solvency analysis approach of Olivieri and Pitacco (2003) to assess
solvency margins for deferred annuities for a range of deferment periods. Deferred
life annuities are policies providing life-long payments to the annuitants after a certain
period of time, conditional on survival. Therefore, exposure to longevity risk and
interest rate risk is an important factor due to the long term nature of the contract
and the possibly long duration of contribution and benefit payments. Therefore, we
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aim at contributing to the existing literature on deferred annuities by estimating the
combined effects of stochastic mortality and investment returns on the solvency of a
portfolio of deferred annuities. The results are then compared to those obtained under
a deterministic counterpart. Essentially, our analysis contains three risk scenarios:
the benchmark case where mortality rates and interest rates are both deterministic; a
second casewhere onlymortality rates are stochastic; a third casewheremortality rates
and interest rates are both stochastic. To isolate the effect of these risks, we disregard
expenses and inflation although these can be easily introduced in a simulation based
approach.

We observe that the risk of random fluctuations in mortality decreases with increas-
ing cohort size because fluctuations are smoothed in large homogeneous portfolios.
Our results show the importance of systematic risk in comparison to the risk of random
fluctuations. Moreover, the paper outlines the relevance of model risk and deferment
period in the estimation of solvency margins.

The structure of this paper is as follows: Sect. 2 describes the general model for
calculation of solvency margins. In Sect. 3 we review the approach of Olivieri and
Pitacco (2003) and our adjustment to deferred annuities of the CMI reduction factor
based approach, see CMI (2016). Section4 discusses different stochastic mortality
models and calculation of solvency margins for these models with deterministic inter-
est rates, while Sect. 5 extends the previous analysis to the case of stochastic interest
rates. Section6 concludes the paper.

2 General model for solvencymargins

We consider a portfolio of N0 identical deferred life annuities-due with payments
starting at d ≥ 0 and continuing as long as the insured is alive. Without loss of
generality, we can assume that payments will in any case stop after n = ω − x0 years,
where x0 is the common initial age of the insureds and ω denotes the biological age
limit. A single premium P is paid at contract inception, so that the insurer’s premium
income at time 0 is N0P . Insureds are assumed to be homogeneous, so their residual
lifetimes can be taken to be identically distributed.

Let Nt denote the random number of individuals alive at time t (that is at age x0+t),
so the random number of deaths in the time interval [t, t +1) is Dt = Nt − Nt+1. The
portfolio reserve at time t = 0, . . . , n is denoted by Vt and given by

Vt = NtVt ,

where Vt is the time t individual reserve, calculated according to a given basis. For
simplicity, in the following it will be assumed that the reserve and premium basis
coincide, so that in particular V0 = P .

The random portfolio fund at time t = 0, . . . , n is denoted by Zt and given by the
following relations:

Z0 = N0P + C (1)

Zt = Zt−1(1 + It ) − Rt , t = 1, 2, . . . , n, (2)
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where It is the (possibly random) rate of return earned by the fund over the period
[t − 1, t), C is the initial capital and Rt is the portfolio’s annuity outflow at time t ,
defined by

Rt =
{
0 t < d

Nt R t ≥ d
,

where R is the annuity instalment.1 In practice, the initial capital C can be partially
financed by an additional premium loading.2

The quantity Zt −Vt is called free portfolio fund at time t . Inspired by the different
possible solvency criteria set out in Olivieri and Pitacco (2003), we focus on the
minimum amount of initial capital necessary for the free portfolio fund to be positive
at a given horizon, with a given confidence level. More precisely, the solvency margin
or risk-based capital RBC3 is the minimum initial capital C , required at time 0 on top
of the premium income, guaranteeing the condition

Pr {ZT − VT ≥ 0} ≥ 1 − ε, (3)

where ε is the ruin probability. This correspond to a Value-at-Risk calculation at level
1 − ε for the free portfolio fund at the target horizon. Since the premium and reserve
basis agree, the initial free fund and the solvency margin coincide:

Z0 − V0 = Z0 − N0P = C = RBC.

The relative solvency margin RBC% = RBC
V0

gives the required solvency capital as a
percentage of the initial reserve/premium income.

While the Value-at-Risk has been widely employed in the financial and insurance
industry, its use has been frequently challenged and some alternative measures have
been proposed, see McNeil et al. (2015). In particular, the expected shortfall (ES) has
found consistent use in the financial sector. The expected shortfall is a coherent risk
measure, meaning that if several portfolios are combined, the total expected shortfall
decreases, hence reflecting the benefit of diversification. Further, the ES is more con-
servative than the Value-at-Risk, when calculated with the same ruin probability. In the
context of this paper, the expected shortfall is calculated, for a given ruin probability
ε, as

ES = E[ZT − VT |ZT − VT ≤ RBC].
1 In practice, there will be variability of the annuity instalments across the portfolio. This heterogeneity
will result in higher capital requirements than those that will be calculated in the following sections. In
Clemente et al. (2022) a model to quantify demographic risk over an annual time horizon, allowing for the
variability of the sum assured and consistent with Solvency II, is proposed.
2 The inclusion of a safety loading in the premium calculation, combined with a best estimate basis for
the reserves, would have the effect of shifting capital requirements for all the mortality models considered
eventually in Sects. 3 and 4.
3 In the rest of the paper we use the term solvency margin not to be confused with the solvency capital
requirement (SCR), which, in the context of Solvency II, refers to a 1 year horizon capital requirement.
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Similarly, the expected shortfall can be expressed in percentage of the initial
reserve/premium income as ES% = ES

V0
.

In general, we assume that there are two sources of mortality uncertainty, one due
to process risk, stemming from the individual times of death and eliminable through
pooling, and another one due to the systematic risk linked to the uncertainty in future
death rates. Therefore, we model the evolution of the number of survivors through

Dt |Nt , qx0+t,t ∼ Bin(Nt , qx0+t ), t = 0, . . . , ω − x0,

where qy,t is the one-year death probability for an insured aged y prevailing at time
t . These probabilities are drawn from a (possibly stochastic) best estimate mortality
model used for the calculation of solvency margins. Implicit in the above assumption
is that insured lifetimes are independent and identically distributed conditional on
knowledge of the future death probabilities.

We analyse portfolios of identical immediate annuities, with annual instalment of
R = 100, paid to policyholders with initial age x0 = 65. Different deferment periods
d = 0, 5, 10, 20, 30, the case d = 0 being that of immediate annuities as in Olivieri
and Pitacco (2003), and of solvency horizons T = 5, 10, n, where n = ω − x0, are
considered. When T = n is used, a run-off perspective is adopted where solvency is
analysed after the cohort of annuitants has become extinct and the free portfolio fund
is given by the fund, as the reserve is then 0. Unless otherwise specified, the probability
of ruin is set at ε = 0.025 and the initial portfolio sizes N0 = 10h, 2 ≤ h ≤ 5 are
used. The constant annual interest rate used for the calculation of the premium and
the reserves is i = 0.03, while the corresponding life table, together with the best
estimate mortality model for the solvency margin calculation, will be specified in the
next Section.

We calculate absolute and relative solvency margins (the latter reported simply as
‘solvencymargin’ in the y-axis label in Figures 1, 2, 3, 4, 5) for immediate and deferred
annuities portfolios under different sets of assumptions. Section3 considers the case
of best estimate mortality rates drawn from a finite set of scenarios, as in Olivieri and
Pitacco (2003). Section4 extends the analysis to a range of full stochastic mortality
models. In these Sections the return earned by the fund is deterministic and supposed
to coincide with the technical rate used for premium and reserves, It = 0.03 for all t .
This assumption is then dropped in Sect. 5.

3 Solvencymargins under scenario basedmortality projections

In this section we introduce a simplified scenario-based model used to project future
mortality rates and the implications for solvency margins. As in Olivieri and Pitacco
(2003), a finite set of scenarios—that is life tables—is considered, together with a
subjective “degree of belief” assigned to each one of them. We choose three sets
of projected mortality rates, denoted by q[low], q[avg] and q[high] corresponding to
a small, medium and high mortality scenario, respectively. When a full degree of
belief is attached to q[avg], the special case of a deterministic approach, where only
process risk is considered, is retrieved. We choose q[low], q[avg] and q[high] using the
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Fig. 1 Relative solvency margins (RBC%) for different stochastic mortality models and associated 95%
confidence intervals, 5 years deferment period and T = n

mortality projection model developed by the IFoA’s CMI (CMI 2016), as follows. We
consider England andWales males data obtained from the HumanMortality Database
(HMD 2020), containing age-specific numbers of deaths and exposures for the period
1965−2011 and ages 0−100, calculate the corresponding death rates and use quadratic
interpolation to close each life table and obtain death rates for the ages 101 − 120 as
well. We then calculate annual mortality improvement rates by single year of age4

for the period 1965–2011 and observe that the maximum, average and minimum
levels of such improvement rates, across all ages, have been 4.16%, 2.34% and 0.16%
respectively.5 Noting that current mortality trends (since 2011) imply that mortality
improvement rates in the future are likely to be lower, seeMurphy and Grundy (2022),
we apply a 20% decrease to the maximum mortality improvement rate. This figure is
subjective and acknowledges that, in this scenario, future improvement rates will be
higher than experienced in the last decade but still not as high as pre 2010. Finally,
the maximum, average and minimum level of improvement rates are used as input
for the CMI model to obtain the projected q[low], q[avg] and q[high], respectively. We
assign weights ρ[low] = 0.2, ρ[avg] = 0.6 and ρ[high] = 0.2 to the three scenarios.
The single premium and the reserves are calculated according to the (deterministic)
scenario q[avg]. The choice of the weights is completely subjective and reflects the

4 The improvement rate for a given age x and period (t, t + 1) is given by
qx,t−qx,t+1

qx,t
, where qx,t is the

one year death rate for age x prevailing at time t . See Richards et al. (2006), Baxter (2007) and Haberman
and Renshaw (2012), also for possible alternative definitions of the improvement rates.
5 In this calculation, negative mortality improvement rates have been excluded.
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Fig. 2 Relative solvency margins (RBC%) for different stochastic mortality models, deferment periods and
T = n

Fig. 3 Relative solvency margins RBC% and corresponding 95% confidence intervals for the M7 and Plat
models, Vasicek interest rate model with σ = 0.05, d = 5 and T = n

possible belief of an end user who attach most confidence to the average scenario, but
feels that deviations from it resulting into higher or lower death trajectories are likely.
Clearly, the numerical examples of this section are strongly dependent on the choice
of the weight for each scenario.

The solvencymargins using the deterministicmortalitymodel are reported in Tables
1, 2, 3 for different initial portfolio sizes, solvency horizons and ruin probabilities. The
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Fig. 4 Relative solvency margins RBC% and corresponding 95% confidence intervals for the M7 and Plat
models, Vasicek interest rate model with σ = 0.1, d = 5 and T = n

Fig. 5 Relative solvency margins RBC% and corresponding 95% confidence intervals for the M7 and Plat
models, Vasicek interest rate model with σ = 0.2, d = 5 and T = n

Table 1 Absolute (in £1000) and relative solvency margins for immediate (d = 0) and 5 years deferred
(d = 5) annuities under the deterministic mortality model, for different solvency horizons and initial
portfolio sizes

Immediate annuities Deferred annuities

T = n T = 5 T = n T = 5

N0 RBC RBC% (%) RBC RBC% (%) RBC RBC% (%) RBC RBC%(%)

102 10.3 7.47 6.3 4.55 9.6 10.21 4.9 5.24

103 33.0 2.39 21.3 1.54 30.7 3.26 17.4 1.84

104 106.5 0.77 69.1 0.50 98.9 1.05 56.8 0.60

105 334.1 0.24 21.8 0.16 31.0 0.33 18.0 0.19

106 1054.6 0.08 69.8 0.05 98.2 0.10 57.8 0.06
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Table 2 Relative solvency margin (RBC%) for 5 years deferred annuities under the deterministic mortality
model, for different solvency horizons, ruin probabilities and initial portfolio sizes

T = n T = 5

N0 ε = 0.01(%) ε = 0.025(%) ε = 0.05(%) ε = 0.01(%) ε = 0.025(%) ε = 0.05(%)

102 12.12 10.21 8.61 6.34 5.24 5.11

103 3.85 3.26 2.74 2.17 1.84 1.62

104 1.24 1.05 0.88 0.71 0.60 0.51

105 0.39 0.33 0.28 0.23 0.19 0.16

106 0.12 0.10 0.09 0.07 0.06 0.05

Table 3 Relative solvency margin (RBC%) for immediate and deferred annuities under the deterministic
mortality model, for different solvency horizons and initial portfolio sizes

N0 = 100 N0 = 10000 N0 = 1000000

d T = n(%) T = 10(%) T = 5(%) T = n(%) T = 10(%) T = 5(%) T=n(%) T = 10 (%) T = 5(%)

0 7.47 6.02 4.55 0.77 0.64 0.50 0.08 0.06 0.05

5 10.21 7.95 5.24 1.05 0.83 0.60 0.10 0.08 0.06

10 13.60 8.88 5.24 1.39 0.96 0.60 0.14 0.10 0.06

20 18.22 8.88 5.24 1.84 0.96 0.60 0.18 0.10 0.06

30 39.54 8.88 5.24 3.81 0.96 0.60 0.38 0.10 0.06

solvency capital obviously increases with the target solvency horizon, reflecting the
higher uncertainty in fund results. As far as the size of the portfolio is concerned, Table
1 shows the extent of the pooling effect on the required margin. Recall that, using a
deterministic mortality model, the insurance company is only exposed to diversifiable
risk, which stems from an insufficiently large cohort. It can be observed that the
relative solvency margins RBC% are higher for the deferred annuity portfolios than
the corresponding values for the immediate annuities, whereas the absolute solvency
marginsRBCare lower.Clearly, in any state of theworld there are less benefit payments
over the target period in the case of deferred annuities. Therefore, lower reserves are
required to be held. However, the relative solvency margin RBC% is higher due to
the comparatively greater uncertainty associated with the postponed beginning of the
benefit payments. Table 2 investigates the dependence of the solvency margin on
the ruin probability, showing the extra capital necessary to satisfy a more stringent
solvency criterion. While small portfolios are extremely penalized, the relative capital
rapidly stabilize as the size of the portfolio grows to a reasonable size. Finally, Table
3 expands on Table 1 and demonstrates the dependence of the solvency margin on
the deferment period. As hinted at before, a higher relative solvency margin is needed
when the deferment period is extended. However, RBC% is unchanged when the target
solvency horizon precedes the annuity payout phase, that is d ≥ T . This is intuitive,
considering that there are no annuity cash flows before solvency is checked, therefore
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Table 4 Relative solvency margins (RBC%) for immediate and deferred annuities under the scenario based
stochastic mortality model, for different solvency horizons and initial portfolio sizes

N0 = 100 N0 = 10000 N0 = 1000000

d T = n (%) T = 10(%) T = 5(%) T = n(%) T = 10(%) T = 5 (%) T = n(%) T = 10(%) T = 5(%)

0 8.56 6.51 4.75 4.04 2.69 1.53 3.65 2.37 1.29

5 11.78 8.58 5.24 5.56 3.57 1.86 5.03 3.16 1.57

10 15.72 10.12 5.24 7.31 4.13 1.86 6.61 3.66 1.57

20 21.66 10.12 5.24 8.99 4.13 1.86 8.04 3.66 1.57

30 41.70 10.12 5.24 12.74 4.13 1.86 10.61 3.66 1.57

at contract inception the company needs to hold the same relative solvency margin in
order to be solvent.

By using a deterministic life table as amodel for best estimate futuremortality rates,
the insurance company essentially assumes that demographic risk can be diversified
away completely by pooling a large number of similar individuals. To include non-
pooling risk affecting each individual’s mortality in the same manner, a stochastic
mortality model is needed.

Table 4 reports relative solvency margins for different combinations of portfolio
sizes, solvency target horizons anddeferment periods. The required capital now reflects
both systematic (longevity) and diversifiable risk, and a comparison with Table 3
provides an insight on the relevance of these components as a function of the deferment
period. It can be seen how the contribution of non pooling risk exacerbates as the
portfolio size increases, and this effect compounds with the length of the deferment
period. In relative terms, the insurer is better off with a smaller portfolio size. Also,
the effect of systematic risk is sensibly lower when a run-off perspective is adopted,
as solvency is assessed when the cohort of insured is extinct.

4 Solvencymargins under fully stochastic mortality models

The scenario based stochastic mortality model in Sect. 3 is “static” as, one of the
scenarios is drawn, the corresponding mortality table is used for all future rates.
Therefore, there is no allowance for a dynamic evolution of future mortality rates,
in particular for changes in mortality trend over time. Also, results depend on the
choice of scenario weights, which is inevitably subjective. This section considers a
set of stochastic mortality projection models which are fitted on past data and used
to generate future patterns of mortality rates. These models are essentially capable of
generating infinitely many mortality scenarios. Further, the degree of subjectivity is
limited to the model specification and its forecasting component. Nonetheless each
model has its specific features and assumptions, and will generate different solvency
capital requirements. The results in this section are also useful in order to understand
the model risk implicit in such an exercise, therefore providing an invaluable yardstick
for the range of solvency capital required to an insurance company.
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Consistently with the choice made in Sect. 2, the number of deaths at age x
and calendar year t in the general population is considered to follow a Binomial
distribution:

Dxt ∼ Bin(E0
xt , qx,t )

where qx,t is the one year death rate for age x prevailing at time t and E0
x,t is the

population matching initial exposed to risk. Following Villegas et al. (2018), the death
rates are modelled through

log
qx,t

1 − qx,t
= ηxt ,

where ηxt is the predictor which is then characterized by a given combination of age
and time specific terms and/or cohort terms. For the purpose of this paper we use six
representative models having distinct features such as the presence of a cohort term,
the number of time indices and age modulating terms and whether age is treated as
a quantitative or categorical variable. The models and corresponding equations are
listed below.

• Lee–Carter (LC) model, see Lee and Carter (1992):

ηxt = αx + β(1)
x k(1)

t .

• Renshaw–Haberman (RH) model, see Renshaw and Haberman (2006) and Haber-
man and Renshaw (2011), which generalises the LC model by incorporating a
cohort effect:

ηxt = αx + β(1)
x k(1)

t + γt−x .

• Age-period-cohort (APC) model, which is a special case of the RH model when
β

(1)
x = 1:

ηxt = αx + k(1)
t + γt−x .

• CBD model, see Cairns et al. (2006), with two age-period terms and pre-specified
age-modulating parameters:

ηxt = k(1)
t + (x − x̄)k(2)

t ,

where x̄ is the average age in the data set.
• M7 model, see Cairns et al. (2009), which expands the CBD model by adding a
quadratic term and a cohort effects:

ηxt = k(1)
t + (x − x̄)k(2)

t + ((x − x̄)2 − σ̂ 2
x )k(3)

t + γt−x ,

where σ̂ 2
x is the average value of (x − x̄)2.
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Table 5 The stochastic mortality
models considered in the paper
classified according to the
number of time factors, the
presence of a cohort term,
whether the age terms are
categorical (c) or quantitative (q)
and if they can be used to fit the
entire age range

Model Time factors Cohort Age term Age range

LC 1 — c �
RH 1 � c �
APC 1 � c �
CBD 2 — q —

M7 3 � q —

Plat 3 � c/q �

• Plat model, see Plat (2009), in which features of the LC and CBD models are
combined:

ηxt = αx + k(1)
t + (x − x̄)k(2)

t + (x − x̄)+k(3)
t + γt−x ,

where z+ = max{0, z}.
Some of the models listed above have been presented under slightly different

assumptions - for instance the number of deaths is frequentlymodelled using a Poisson
distribution rather than Binomial. Also, several alternative models could be employed,
but the structures considered here are a representative sample as they include some key
features, see Table 5 for a summary and Villegas et al. (2018) for a general approach
to the construction, calibration and projection of stochastic mortality models.

Once models are estimated with maximum likelihood, the time indices and cohort
term are fitted and projected into the future so that simulation of future mortality rates
can be obtained. Consistently with the prevailing literature, see Villegas et al. (2018),
the time indexes are projected using a multivariate random walk with drift while the
cohort term, when present, is modelled as an ARIMA(1,1,0), independently of the
time indexes.

Figure1 shows relative solvencymargins,with associated 95%confidence intervals,
for the 6 stochastic mortality models and different portfolio sizes. It can be seen
that solvency margins decrease with the portfolio size, converging to an asymptotic
value reflecting the non-pooling effect of longevity risk. Table 6 presents the relative
required margins for all the models, different portfolio sizes and deferment periods
when T = n. For each combination of contract parameters, it can be seen how the
required capital varies through the range of models, exemplifying the model risk. For
a longer deferment period, the range of required capital remains wide regardless of the
portfolio size. This is expanded in Fig. 2, where relative solvency margins are plotted
against the deferment period, showing how model risk widens with d. It can be seen
that models M7 and CBD imply higher solvency margins, whereas the LC model has
consistently the lowest values.

Tables 7, 8, 9, 10, 11 and 12 provide relative solvency margins and expected short-
falls for different target solvency horizons and deferment periods for LC, RH, APC,
CBD, M7 and Plat, respectively. For each model, the solvency margin increases with
the target horizon due to the greater uncertainty. For a given choice of contract param-
eters, there is a remarkable spread between the results obtained in Sect. 3 with the
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Table 6 Relative solvency margins RBC% for different mortality models and deferred period when T = n

d = 0

N0 LC (%) APC (%) RH (%) Plat (%) CBD (%) M7 (%)

102 9.79 11.92 12.45 11.34 12.25 12.84

103 5.59 7.88 8.64 7.89 8.77 9.40

104 4.93 7.34 8.13 7.44 8.34 8.97

105 4.86 7.27 8.08 7.39 8.29 8.91

106 4.86 7.27 8.08 7.39 8.29 8.91

d = 5

N0 LC (%) APC (%) RH (%) Plat (%) CBD (%) M7 (%)

102 9.79 16.39 12.45 16.14 17.31 18.16

103 7.95 11.06 11.95 11.52 12.67 13.57

104 7.09 10.36 11.31 10.92 12.11 13.00

105 7.00 10.28 11.24 10.86 12.05 12.93

106 7.00 10.27 11.25 10.85 12.05 12.92

d = 10

N0 LC (%) APC (%) RH (%) Plat (%) CBD (%) M7 (%)

102 18.84 22.44 22.77 23.57 25.06 26.25

103 11.42 15.72 16.72 17.70 19.19 20.46

104 10.35 14.86 15.97 16.97 18.50 19.78

105 10.24 14.77 15.90 16.89 18.43 19.68

106 10.24 14.76 15.91 16.88 18.43 19.68

Table 7 RBC% and ES% for different deferred periods and time horizons for LC model

T = 5 T = 10 T = n

d RBC%(%) ES% (%) RBC% (%) ES% (%) RBC% (%) ES%(%)

0 0.82 0.93 1.85 2.09 4.86 5.55

5 1.04 1.18 2.56 2.90 7.00 7.99

10 1.04 1.18 3.08 3.49 10.24 11.70

20 1.04 1.18 3.08 3.49 22.41 25.78

30 1.04 1.18 3.08 3.49 49.04 57.44

deterministic and scenario mortality model and the results in the present section.
These differences also vary depending on deferment period and target horizon. The
tables display both the RBC and the expected shortfall (ES%), as the latter provides
information about the extent of the loss when the free fund is negative at the target
horizon. When the smallest target horizon is considered, i.e. T = 5, the results for
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Table 8 RBC% and ES% for different deferred periods and time horizons for RH model

T = 5 T = 10 T = n

d RBC% (%) ES% (%) RBC% (%) ES% (%) RBC% (%) ES% (%)

0 1.02 1.16 2.12 2.40 8.08 9.27

5 1.24 1.40 2.80 3.17 11.25 12.91

10 1.24 1.40 3.24 3.67 15.91 18.25

20 1.24 1.40 3.24 3.67 33.26 38.35

30 1.24 1.40 3.24 3.67 77.18 90.36

Table 9 RBC% and ES% for different deferred periods and time horizons for APC model

T = 5 T = 10 T = n

d RBC% (%) ES% (%) RBC% (%) ES% (%) RBC% (%) ES% (%)

0 1.01 1.14 2.14 2.42 7.27 8.35

5 1.24 1.41 2.88 3.26 10.27 11.79

10 1.24 1.41 3.38 3.83 14.76 16.96

20 1.24 1.41 3.38 3.83 31.99 36.97

30 1.24 1.41 3.38 3.83 76.62 90.03

Table 10 RBC% and ES% for different deferred periods and time horizons for CBD model

T = 5 T = 10 T = n

d RBC% (%) ES% (%) RBC% (%) ES% (%) Var ES% (%)

0 0.64 0.73 1.60 1.81 8.29 9.63

5 0.81 0.93 2.23 2.53 12.05 14.00

10 0.81 0.93 2.73 3.09 18.43 21.43

20 0.81 0.93 2.73 3.09 51.71 60.67

30 0.81 0.93 2.73 3.09 215.80 264.13

Table 11 RBC% and ES% for different deferred periods and time horizons for the M7 model

T = 5 T = 10 T = n

d RBC% (%) ES% (%) RBC% (%) ES% (%) RBC% (%) ES% (%)

0 0.85 0.96 1.88 2.13 8.91 10.4

5 1.06 1.20 2.59 2.93 12.92 15.03

10 1.06 1.20 3.12 3.52 19.68 22.92

20 1.06 1.20 3.12 3.52 55.45 65.22

30 1.06 1.20 3.12 3.52 255.67 314.91
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Table 12 RBC% and ES% for different deferred periods and time horizons for the Plat model

T = 5 T = 10 T = n

d RBC% (%) ES% (%) RBC% (%) ES% (%) RBC% (%) ES% (%)

0 0.61 0.73 1.50 1.76 7.39 8.74

5 0.78 0.93 2.12 2.48 10.85 12.84

10 0.78 0.93 2.61 3.05 16.88 19.96

20 0.78 0.93 2.61 3.05 49.76 59.24

30 0.78 0.93 2.61 3.05 225.18 281.33

the RH and APC models are quite similar and higher than those for the other models,
with the CBD and Plat models attaining the lowest values. Conversely, the Plat model
has one of the highest required capital when a run-off perspective is adopted, that is
T = n. The LC model has the smallest gap between the T = 5 and T = n cases.
The choice of model often involves significant judgement by the analyst and, as we
can see, a change in model can lead to material changes in solvency margins. The M7
model produces the largest solvency margins under both the VaR and ES. As such, it
is the most conservative model and therefore it is of particular interest for regulators
and supervisory authorities.

Summarizing the results, it seems that the most important model feature driving
differences in solvency margins across the different dimensions is the model com-
plexity as captured by the number of time factors with a second order effect due to
the presence of the cohort term. The LC model, the simplest of all models considered,
seems to consistently produce overly optimistic capital requirements for any portfo-
lio size or deferment period. Next in rank are the RH and APC models. The former
extends the LC with the inclusion of the cohort term, while the latter simplifies the
RH model by constraining the age modulating parameter to a constant. The solvency
margins are higher than those implied by the LC with narrow differences between the
two models. It should be noted here that the cohort term need not be simulated as, for
the case considered of 65 years old pensioners in 2011, it is known. Finally, models
with more than one time factor produce conservative capital requirements across all
portfolio sizes and deferment period. Clearly, the driving force is the greater uncer-
tainty stemming from the presence of two stochastic ingredients, further increasing
with the simulation horizon. The hybrid Plat model seems to be a partial exception,
as results are comparable to those of the – apparently simpler – CBD model.

5 Stochastic interest rates

This section compounds on the previous ones and adds stochastic returns to the fund
dynamics, investigating the effects on capital requirements of this additional uncer-
tainty layer. We use the Vasicek model, see Vasicek (1977), to generate simulations of
the short interest rate. It is assumed that the short rate rt , the unique source of interest
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Table 13 Parameters for
simulations of interest rates for
Vasicek model

Parameter Value

r0 0.03

a 0.3

γ 0.03

σ 0.05, 0.1, 0.2

rate risk in this model, follows the dynamics

drt = a(γ − rt )dt + σdWt ,

where Wt is a standard Wiener process and a, γ and σ are positive constants rep-
resenting the speed of mean reversion, the long term mean and the volatility of the
short rate, respectively. The random return of the portfolio fund, see (2), is given by
It = ert−1 − 1, the latter expression implicitly assuming that the short rate remains
constant over [t − 1, t). The parameters for the Vasicek model are given in Table 13.
These parameters were chosen so that they reflect adequate stochastic fluctuations
from the rate of return used in the previous sections and match the overall perfor-
mance of assets, resulting from both market behaviour and the investment strategy of
an insurance company. We also consider alternative values for the volatility σ . As for
the mortality model, we only consider theM7 and Plat model as these were generating
the largest solvency requirements in the previous section.

Figures 3, 4, 5 plot the relative solvency requirements with associated 95% con-
fidence intervals, with or without stochastic interest rates for the three volatility
scenarios, respectively. The greater severity of solvency margins is due to the fact
that assets, cumulating at a random rate, are compared with the reserve, calculated
according to a deterministic financial hypotheses which could be significantly dif-
ferent from the actual investment performance. The solvency margins in M7 model
combined with Vasicek model are higher and the corresponding confidence intervals
are wider than in Plat model.

Further, the confidence intervals for both M7 and Plat models in case of stochastic
interest rates are much wider than those when interest rates are deterministic. While
confidence intervals narrow down with the portfolio size, the asymptotic width reflect
the overall systematic interest rate and mortality risk. The effect of stochastic interest
rates on the overall width of confidence intervals in comparison with those in Sect. 4
is significant due to the non-pooling nature of interest rate risk. Moreover, it can
be remarked that with greater interest rate volatility the solvency margins and their
confidence intervals also increase reflecting higher levels of uncertainty.

6 Conclusions

Solvency requirements for deferred annuities have been analysed and compared to
those of immediate annuities. Particular focus has been placed on the longevity risk.
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This has been incorporated to the analysis using different deterministic and stochastic
models, particularly the family of generalized age-period-cohort stochastic mortal-
ity models. Several numerical examples illustrate solvency requirements produced
by these different approaches to longevity risk. The results demonstrate the dramatic
importance of themortalitymodels on evaluation of solvencymargins for life annuities
and the fact that model risk is a prevalent issue when forecasting solvency margins.
Another focus of this paper is the deferment period and its effect on solvency require-
ments. The margins increase with longer deferment periods which is caused by the
extra longevity risk and the greater uncertainty about numbers of future survivors.
Section5 explores the impact of stochastic interest rates on solvency margins and
corresponding confidence intervals.

The analysis could be extended, by considering some realistic features such as level
premiums, return of premium guarantees in case of premature death and guaranteed
annuity during the payout phase. Each one, or combinations, of such provisions will
affect the solvency margin in a way that may not be easily anticipated.

While the paper has focused most of its attention on model risk, with all models
calibrated on the same fixed sample, another dimensionworth exploringwould involve
the dependence of results on the fitting period. It is well known, see for instance Cairns
et al. (2011); Basellini et al. (2023), that mortality forecasts can be highly sensitive to
the length of historical data employed in the estimation process. In turn, simulations
and solvency margins may also be affected. Two routes seems viable in that respect.
One may engage in a careful examination of available models, seeking for the most
appropriate compromise between forecasting accuracy and robustness with respect
to the fitting period. Alternatively, a fully fledged model averaging approach where
a range of mortality models, trained over different periods, are combined through a
weighing process to produce robust results, see for instance Benchimol et al. (2016)
and Shang (2012).
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