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We describe the bi-directed eyes of a mesopelagic teleost fish, Rhynchohyalus
natalensis, that possesses an extensive lateral diverticulum to each tubular

eye. Each diverticulum contains a mirror that focuses light from the ventro-

lateral visual field. This species can thereby visualize both downwelling

sunlight and bioluminescence over a wide field of view. Modelling shows that

the mirror is very likely to be capable of producing a bright, well focused

image. After Dolichopteryx longipes, this is only the second description of an

eye in a vertebrate having both reflective and refractive optics. Although super-

ficiallysimilar, the optics of the diverticulareyes of these two species of fish differ

in some important respects. Firstly, the reflective crystals in the D. longipes mirror

are derived from a tapetum within the retinal pigment epithelium, whereas in

R. natalensis they develop from the choroidal argentea. Secondly, in D. longipes
the angle of the reflective crystals varies depending on their position within

the mirror, forming a Fresnel-type reflector, but in R. natalensis the crystals are

orientated almost parallel to the mirror’s surface and image formation is depen-

dent on the gross morphology of the diverticular mirror. Two remarkably

different developmental solutions have thus evolved in these two closely related

species of opisthoproctid teleosts to extend the restricted visual field of a tubular

eye and provide a well-focused image with reflective optics.
1. Introduction
As daylight in the ocean is very directional, several mesopelagic fish have devel-

oped upward-facing tubular eyes, the dorsal parts of these each being filled with a

large spherical lens that produces a focused image on a well-developed main

retina that lines the base of the tube. A more rudimentary accessory retina,

which receives only unfocused lateral illumination, coats the medial wall of

each tube eye [1–6]. Although most tubular eyes of this type are orientated dor-

sally, in a few species they are rostrally directed. These latter species are thought,

however, to position their bodies in the water column such that the eyes usually

point towards the water surface.

High sensitivity, which is the primary prerequisite for the eye of an animal that

resides in the low light levels offered by the deep sea, requires a large pupil. Most

mesopelagic fish, however, are relatively small, making the possession of a large

eye, normally required for an enlarged pupil, problematic. Tubular eyes can there-

fore be regarded as the central portion of a normal spherical eye that has been

laterally reduced [4,7], allowing small animals to have eyes with relatively large

pupils. The binocular overlap afforded by such eyes will further increase

sensitivity [8] and may also provide a cue for determining object distance [1].
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Dorsally directed tubular eyes will maximize sensitivity to

downwelling daylight against which animals higher in the

water column will cast a silhouette. However, at many times

of day, and in deeper water, the dominant source of illumination

in the deep sea is not sunlight but bioluminescence [9–14],

which may provide illumination or light stimuli from any direc-

tion. As tubular eyes have a very restricted visual field (the main

retina typically receives illumination from less than 508 direc-

tly above the animal [15,16]), animals with such eyes will be

unaware of any sort of visual stimulus from the side or below.

At least one species (Macropinna microstoma) overcomes the

limited visual field of a dorsally directed tubular eye by using

extensive eye movements [17]. Other mesopelagic fish enlarge

the visual field of their tubular eyes by developing laterally

directed light-guiding optical specializations, such as the lens

pads of scopelarchids [2,3,6,18] and the optical folds of ever-

mannelids [4]. A few also extend their visual fields by having

outpockets of their eyes’ lateral walls that are lined with retina

[2–5,19,20]. Ventro-lateral illumination reaches these diverticula

through an unpigmented ‘window’, either directly or after

reflection from an argentea within the lateral wall of the tube eye.

Tubular eyes are found in several families of deep-sea tele-

ost [5] but extensions of their limited visual fields such as the

above are rare. Most of the devices for extending the visual

field of tubular eyes lack refractive surfaces and therefore

allow only unfocused light perception. Two species of opistho-

proctids, however, have evolved extensive diverticula that

almost certainly provide well-focused images. Bathylychnops
exilis has dorsally directed spherical eyes and ventrally directed

secondary eyes with scleral lenses [21]. Dolichopteryx longipes,

on the other hand, has dorsally directed tubular eyes as well

as extensive ventro-laterally directed diverticula which,

uniquely among vertebrates, produce focused images using

Fresnel-type mirrors [22].

Here, we describe the diverticulum of another mesopela-

gic species of opisthoproctid, Rhynchohyalus natalensis, that

also uses a mirror to produce a focused image in its diverticu-

lar eye. This is only the second vertebrate described to use a

mirror in this way and it differs in some important respects

from the mirror observed in D. longipes. The eye of R. natalensis
has previously been described [3,19] but these authors

studied a post-larval specimen and outlined an ocular struc-

ture significantly different from that of the larger animal

described here.
2. Material and methods
A single R. natalensis (standard length 183 mm, figure 1a) was

caught in the Southern Tasman Sea Abyssal Basin (4186.20 S/

152821.80 E) between 800 and 1000 m depth. It was photographed

(figure 1) before fixation in 4% formalin in seawater and subsequent

preservation in 70% ethanol.

(a) Magnetic resonance imaging
The fish was removed from the storage medium and rehydrated by

immersion for 2 h in a series of reducing concentrations of ethanol

(steps in concentration: 50, 25 and 10%). After rehydration, the

fish was placed overnight in 0.1 M phosphate buffer saline (pH

7.4, 300 mOsm kg21) to which was added the magnetic resonance

imaging (MRI) contrast agent, 1% ionic Gd-DTPA (Magnevist,

Bayer, Germany), prior to MRI following a protocol developed for

zebrafish [23]. The sample was placed in an imaging tube containing

fomblin oil (perfluoropolyether, Ausimont, Morristown, NJ, USA)
to reduce artefacts caused by air–tissue boundaries and to prevent

dehydration. The tube was placed in a custom-built surface acoustic

wave coil (M2M Imaging, Brisbane, Australia). A 16.4 T magnet was

used combined with a 700 MHz wide-bore microimaging MRI

system (Bruker Biospin, Karlsruhe, Germany). The fish was

imaged at 50 mm isotropic resolution using a T2*-weighted three-

dimensional FLASH sequence with the following acquisition par-

ameters (modified from the protocol developed for zebrafish;

[23]): reception time (TR) and echo time (TE) pulses were 50 and

12 ms, respectively, eight averages. The total imaging time was

14 h. Images were analysed using OSIRIX (v. 4.1.2, Pixmeo,

Switzerland) image processing software.

(b) Histology
After MRI examination, the isolated eyes were postfixed in 2.5%

glutaraldehyde and 1% osmium tetroxide. After removal of the

lenses, the eyes were embedded in Epon, serially sectioned at

25 mm and mounted on plastic slides. Sections were photographed

on a Zeiss stereomicroscope and selected sections and areas were

re-sectioned at 1 mm or 80 nm. Some of the thick and semi-thin sec-

tions were stained with a mixture of methylene blue and Azur II.

In order to test the refractive properties of structures, unstained

sections were examined in a combination of dark-field and polar-

ized light illumination (see [22] for details). Light and electron

micrographs (Zeiss/LEO EM912) were recorded digitally.

(c) Modelling the geometric optics and image focusing
potential of the diverticular eye

A photomicrograph of a midline dorsoventral section of the ocular

diverticulum was digitized using IMAGEJ v. 1.46 64 bit for Mac OSX

[24] to delineate tissue layers comprising the sclera, retinal outer

limiting membrane (OLM) and the diverticular mirror lateral sur-

face. These digitized data were used to create a MATLAB v. R2012b

(MathWorks, MA, USA) model of the diverticulum in which the

fate of rays entering the eye’s ventral cornea was traced in two

dimensions (i.e. in the plane of the section). The model’s premises

included: the diverticulum’s function is to focus light from distant

point sources onto the OLM; all of the OLM and mirror surface is

used in image formation; the axial orientations of the rod outer seg-

ments (ROSs) converge at a point outside and lateral to the eye; the

eye has a primary axis, rays entering at this angle being focused at

the centre of the OLM; and ROSs have an acceptance angle beyond

which incident rays are fully rejected. The acceptance angle was cal-

culated to be +19.958 using ROS and extracellular fluid refractive

indices of 1.4106 and 1.335, respectively, from the data of Sidman

[25], as used previously in similar exercises by Kaplan [26], and

the equations given by Enoch [27]. The mirror’s surface topography

was modelled in three ways: using the digitized surface data

smoothed with an eighth-order polynomial; as a best-fitting arc

of a circle; and as a best-fitting parabolic section. As in our previous

publication [22], some ocular dimensional parameters, such as

ROS axial convergence point and the angles of putative guanine

plates in the diverticular mirror, were allowed to iterate to provide

a solution that maximized OLM irradiance and minimized defocus

of rays originating from given points in space.

(d) Modelling the physical optics and reflectivity of the
crystal stack

The thickness values used for the crystal layers and cytoplasm gaps

are summarized in the results and correspond to a disordered ‘chao-

tic’ stack structure. Using this histological information from the

mirror of the ocular diverticulum, it is possible to estimate the spec-

tral, angular and polarization properties of the reflectivity of this

class of crystal stack by using the optical transfer matrix methods

(developed by Jordan et al. [28]) for physically analogous reflectors
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Figure 1. Gross morphology of the eyes of R. natalensis. (a) Lateral view of specimen shortly after capture; (b) dorsal view of head showing the spherical lenses of the
dorsally directed tubular eyes; (c) ventral view of the head showing the silvery lateral walls and the dark cornea of the diverticulum—the red arrows indicate a medial
notch in the diverticular cornea, enlarging the visual field caudo-medially; (d ) lateral view of the right eye—note the reflection of the flashlight (blue arrow) from the
diverticular mirror located inside the eye and observed at the time of collection; (e) MRI section of the right half of the head showing the tubular eye including the lens and
the lensless diverticulum; ( f ) 25 mm thick resin-embedded histological section of the eye with the lens removed. In (d,e) the margins of the ventro-laterally facing
diverticular cornea are indicated by arrows.
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in fish skin. This method incorporates the high birefringence of bio-

genic guanine crystals [29,30], which we model as uniaxial with

refractive indices of 1.83 perpendicular to the stacking direction

and 1.46 parallel to the direction of stacking. The cytoplasm gaps

are assumed to have a refractive index of 1.33 [28,30,31]. In order

to account for the optical response of the bulk structure, the reflection

spectra were ensemble averaged over a set of 1000 random stack con-

figurations [28,31]. Implicit in this approach is the assumption that

the average structure is homogeneous throughout the mirror.
3. Results
(a) Gross morphology of the eye
The eye of R. natalensis, like that of other opisthoproctids, con-

sists of both a tubular portion and a lateral diverticulum. The
dorsally directed tube eyes are most apparent in dorsal view

(figure 1b), while the cornea of the diverticulum can be seen

when viewed from the side or from below (figure 1c,d). The

scleral walls of the eye are lined internally by a choroidal argen-

tea and therefore appear silvery (figure 1d). The eye, like that of

some other opisthoproctids, lies within a wide, dome-like

dermal transparent capsule.

The organization of the extraocular muscles in Rhynchohya-
lus is similar to that in mobile eyes of M. microstoma [17]

suggesting that Rhynchohalyus too may be capable of extensive

eye movements (electronic supplementary material, figure S1).

The diverticulum, rostro-lateral to the tube eye, is readily

apparent in photographs (figure 1d ), MRI scans (figure 1e;

electronic supplementary material, figure S6) and histological

section (figure 1f ). It runs down the entire length of the
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Figure 2. Fine structure of the diverticular cornea and retinae of R. natalensis. (a) Lateral diverticular retina; (b) diverticular cornea; (c) 25 mm thick resin-embedded
histological section of the entire eye after removal of the tube eye lens; (d ) dorsal termination of the tube eye medial accessory retina; (e) ventral termination of the
diverticular retina; note the dorsally directed reflection of the reduced choroid tissue layer, over the photoreceptive retinal surface (indicated by blue arrows) and
the similar reflection of the retina, reduced to a simple ciliary epithelium (indicated by black arrows); ( f ) main retina of the tube eye; and (g) accessory retina in the
medial wall of the tubular eye.
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tubular eye exceeding its ventral margin by several milli-

metres (maximum height: 23.7 mm; maximum width:

10 mm). The lateral wall of the diverticulum is relatively

flat and lined by an argentea, except for an oval transparent

area (‘cornea’; maximum diameter: 11.5 mm) facing approxi-

mately 458 ventro-laterally. Seen from the ventral side, this

cornea has a conspicuous notch medially that would admit

light not only from directly ventral but possibly even from

the contralateral side (figure 1c). Apart from the epithelial

outer lining, the transparent cornea is composed of dense

fibro-collagenous tissue and/or irregular plates of hyaline

cartilage (figure 2b).

(b) Retinal fine structure
The main retina of the R. natalensis tube eye is approximately

250 mm thick and includes four layers of rods each between 25

and 30 mm long and about 3 mm in diameter (average: 3.23+
0.58 mm s.d., n ¼ 20); it has no obvious specialization such as

an area of increased photoreceptor density (figure 2f ). The

thin retinal pigment epithelium contains numerous melano-

somes and sparsely distributed tapetal crystals. This main

retina extends about 2 mm up the medial walls of the tubular

eye, where there is a sharp transition to the accessory retina

which shows the normal layers of a retina but at a substantially

reduced total thickness (100–150 mm) and includes one or two
rows of short (15 mm) ROSs (figure 2g). Interestingly, towards

the dorsal margin of the accessory retina there is a region,

about 5 mm wide, where rod thickness and density is increased,

with one or two additional rod layers (figure 2d). On the lateral

side of the tubular eye, and especially lining the septum separ-

ating the diverticulum from the main eye, the accessory retina

is reduced to a simple ciliary epithelium lacking photoreceptors

orother retinal cells. In the diverticulum, the retina, which is little

different to that of the main retina in the tube eye, is restricted to

the flat lateral wall (figure 2a).

(c) Structure of the medial diverticular mirror
The lateral diverticular retina of R. natalensis cannot be illumi-

nated directly (except possibly, and to only a minor extent, via

the medial notch in the cornea) and photoreceptors in the diver-

ticular retinacan essentially only be illuminated by light reflected

from the medial wall of the diverticulum. In D. longipes, with a

similarly positioned diverticular retina, indirect illumination

and a focused image is achieved via a highly reflective medially

positioned mirror [22]. It seems likely a similar adaptation is

present in R. natalensis, which also has a mirror inside the diver-

ticulum eye that was observed in the fresh specimen and can be

seen through the cornea (figure 1d).

The central component of the septum dividing the tubu-

lar portion of the eye from the diverticulum is a choroidally
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Figure 3. Fine structure of the R. natalensis diverticulm. (a) Lateral wall of the diverticulm showing the epidermis (e), outer sclera (scl), the choroidal argentea
(arg), the pigmented (chor) and vascular (cap) layers of the choroid and the retina including the pigment epithelium (rpe) and rod outer segments (ros); (b) 25 mm
thick resin-embedded histological section of the entire diverticulum. (c) Septum dividing the diverticulum from the main tube eye consisting of a reflective inner
layer derived from the lateral argentea (arg), a central layer continuous with the pigmented (chor) and vascular (cap) layers of the lateral choroid and the ciliary
epithelium (cil ep) of the accessory retina of the tube eye; (d ) higher magnification light micrograph of the presumed reflective layer on the surface of the medial
diverticular wall; n, nucleus of a fibrocyte or iridocyte; (e) electron micrograph of the same layer. The double-headed arrows indicate the ‘ghosts’, i.e. empty
intracellular spaces that presumably contained guanine crystals, which have been lost during prolonged storage of the tissue in fixative.
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derived layer (see below) containing capillaries of varying

diameter, numerous melanocytes and loose fibro-collagenous

tissue, lined on both sides by a prominent basal membrane of

which the one facing the ciliary epithelium of the tubular eye

corresponds to Bruch’s membrane (figure 3c). Lining the

diverticular face of the septum are elongated cells containing

three to four layers of thin and empty ‘ghost-like’ spaces.

Owing to their similarity to the reflective argentea on the lat-

eral wall of the diverticulum (figure 3a), we are confident that

the empty spaces correspond to reflective crystals, probably

guanine (by reference to other silvery reflective tissues in tel-

eosts), that have dissolved during the long interval between

fixation and preparation for histology. A similar effect can

be seen by the silvery appearance of the freshly caught

specimen disappearing in the preserved specimen. Using

dark-field illumination and polarized light, one or two thin

lines of residual reflecting particles are observed (electronic

supplementary material, figure S2). The crystal ghosts are

separated by leaflets of cytoplasm, both of which were

measured (see below). Their orientation is always parallel to

the basal membrane of the septum (figure 3c–e; electronic

supplementary material, S5). The space between the pre-

sumed guanine crystals and the basal lamina, separating
the epithelial structures from the vitreal cavity of the diverti-

culum, appears artificially swollen with loosely arranged

fibrous material and scattered melanosomes.

(d) Origin of the diverticular mirror
To understand the origin of the reflective crystals in the medial

wall of the diverticulum, it is necessary to examine the lateral

wall of the diverticulum, which consists of the following

well-developed layers (starting internally): the retina, a choroid

consisting of an inner vascular layer, a layer of melano-

cytes and a well-developed argentea, covered externally by a

cartilagenous sclera (figure 3a). At the ventral margin of the

diverticular retina next to the cornea, the diverticular retina

ends abruptly (figure 2e) and includes a short region resem-

bling the proliferation zone that forms the retinal margin in

‘normal’ hemispheric eyes. At the ventral retinal margin, the

retinal pigment epithelium and retina are reduced to a thin

bilayered sheet, corresponding to a ciliary epithlium, that

wraps around this region and continues dorsally over the sur-

face of the retina. It is accompanied by a thin second layer of

fibrocytes and connective tissue corresponding to the choroid.

These layers cover the retina proper on its vitreal surface and

run dorsally (figure 2e; electronic supplementary material, S3).
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Figure 4. Ray tracing and the performance of the diverticular mirror as a focusing device. Light rays entering the ventral cornea of the diverticular eye from a distant
point source are reflected from the lateral surface of the mirror and brought to a focus at the OLM of the diverticular retina. The thickness of the bundle of rays
brought to focus is determined by the acceptance angle of the ROSs. In this example of the results of the iterative two-dimensional ray-tracing model, ROS axes
diverge from a point (indicated by a small circle at the left of the figures) located some 16 mm lateral to the eye, the primary axis of the eye is 218.38 in the
ventro-lateral visual field (indicated by the heavy line entering the eye via the ventral cornea) and mirror plate angles are allowed to vary from the mirror surface
tangent. Well-focused images are formed for point sources located at four angles, ranging in steps of 108 from 200 to 2308 (inclusive) from the horizontal, shown in
subfigures (a – d ), respectively. Reflective plate angles required for this precision of focusing range +58 about a mean of þ58 from the surface tangent, which is
less than we are able to resolve from the available tissue samples.
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Further dorsally, the diverticular retina thins and conti-

nues as ciliary epithelium (electronic supplementary material,

figure S4). The inner epithelia derived from the retina and chor-

oid, however, reflex ventrally and form the inner surface of the

diverticular septum. On reaching the septum, the inner chor-

oidal layer once more expresses the argentea, thereby forming

the diverticular mirror. Medial to this, choroidally derived mel-

aoncytes and vasculature, together with the ciliary epithelium,

form part of the septum separating the diverticulum from the

tube eye.

(e) Modelling of the geometric optics and image
focusing of the diverticular eye

The ray-tracing model was relatively insensitive to the exact

mirror surface (polynomial, arc or parabola) considered, but

a significant improvement in eye performance was obtained

when the angles of the plates of the mirror were allowed to

diverge slightly from being exactly parallel to the mirror’s sur-

face. A series of tracings, for rays entering from different distant

points in the latero-ventral visual field, and in which plate

angles in the mirror diverge from surface tangents by +58
about a mean of þ58, is shown in figure 4.
( f ) Modelling of the physical optics and the reflectivity
of the crystal stack

Histological examination of the diverticular mirror showed

that, typically, it comprised three to four leaflets of crystals

separated by layers of cytoplasm each about 0.11 mm

(+0.03 mm s.d., n ¼ 25) in thickness, the average thickness

of the putative guanine crystals being 0.41 mm (+0.08 mm

s.d., n ¼ 25), with an average length of 3.27 mm (+1.02 mm

s.d., n ¼ 25). The thickness of the crystals is considerably

greater than is required for an ideal narrowband quarter-

wave multilayer ‘stack’ that is tuned to optical wavelengths.

This would require a crystal thickness of approximately

0.04–0.09 mm [32]. Instead, the high variation in crystal

thickness suggests that the crystal stack could function as

a broadband ‘chaotic’ reflector (albeit with a low number

of layers). Crystal reflectors of this type are found in the skin of

the largehead hairtail Trichiurus lepturus and the silver scabbard-

fish Lepidopus caudatus [31] as well as in the iridophores of the

common carp Cyprinus carpio [33].

Figure 5a shows the predicted angular and polarization

dependence of the reflectivity of a crystal stack with four crystal

layers at a wavelength of 475 nm (which represents ‘blue’ light
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Figure 5. Reflectivity of the diverticular mirror. Angular and polarization
dependence of the reflectivity of the diverticular mirror at 475 nm. The
dotted black line is for s-polarized light, the dashed light grey line is for
p-polarized light and the solid black line is the mean reflectivity averaged
over both polarization components. (b) Spectral dependence of the mean
reflectivity of the diverticular mirror (averaged over both polarization com-
ponents). The solid dark grey line is for normal incidence, the dotted
black line is for 458 and the dashed light grey line is for 608. The plots
(a,b) illustrate the angular and spectral insensitivity of the mean reflectivity
that is predicted from the transfer matrix model of the crystal stack.
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typical of that in the deep sea, whether from sunlight or biolu-

minescence [12]). As rod photoreceptors are essentially

insensitive to the polarization of light entering them end-on,

it is the mean reflectivity (averaged over both polarization

components) that is relevant to the information content of the

convergent rays. The predicted mean reflectivity is angularly

insensitive over the range 0–658, where it is approximately

30%. Figure 5b shows the spectral dependence of the mean

reflectivity over wavelengths 350–750 nm. The predicted

mean reflectivity is also spectrally insensitive over the range

of angles of incidence at which it is angularly insensitive,

with values typically in the range 25–35%. The predicted

reflectivity spectra in figure 5b are similar in bandwidth to

‘chaotic’ fish skin multilayer structures [28,31,33], but with

lower absolute reflectivity owing to the low number of layers

in the structure. The reflectivity for a crystal stack with three

crystal layers produces qualitatively similar angular and spec-

trally insensitive behaviour, but the reflectivity is lower and

typically in the range 20–25%. As has been shown elsewhere

[31], the reflectivity that is associated with disordered chaotic

reflectors of the type found in Rhynchohyalus is relatively insen-

sitive to the exact details of the multilayer stack dimensions. If

layer thicknesses disorder were greater than our estimates,

broadband reflexion in the visible wavelength regime would

still result, with a decrease in percentage reflectivity; if disorder

were less, we would see an accompanying decrease in the

reflexion bandwidth and an increase in percentage reflectivity.

The latter scenario would, however, be unlikely to result in the
ideal narrowband reflexion that is associated with quarter-

wave stacks as the estimates of the layer thicknesses are far

from the required periodicity.
4. Discussion
Although some invertebrates use mirrors to form images

[34–36], to our knowledge reflective optics have only been

described in one vertebrate species [22]. This report is therefore

only the second description of a mirror being used to focus

light in any vertebrate. It is perhaps surprising that mirrors

are not more widely used as image-forming devices in ver-

tebrates as reflective tapeta and argentea are readily available

to form the basis of an image-forming reflector. Mirrors

would seem to offer some advantages over lenses for forming

images particularly because they do not suffer from aberrations

to the same degree as thick lenses. In addition, accommodation

is relatively easily achieved by small displacement of the mirror

away from the retina to focus on closer objects [22], but we lack

direct observation of the insertion of the necessary muscles in

R. natalensis.

There has been a previous description of the R. natalensis
eye [19] that differs significantly to what we report here. How-

ever, the specimen previously examined was a much smaller,

post-larval, individual. It possessed a much smaller and sim-

pler diverticulum than the one described here, which was

similar to that described in some other mesopelagic fish

[2,3,5]. It seems likely that this represents an earlier ontogenetic

stage of the larger and more complex adult diverticulum

described here.

Although the reflective diverticula of D. longipes [22] and

R. natalensis appear similar, they differ in important respects.

In D. longipes, the angle of the reflective plates varies consider-

ably with position in the mirror, forming a Fresnel-type

reflector in which reflective plates are far from being parallel

to the mirror’s surface. In R. natalensis, however, the gross geo-

metry of the diverticular eye dictates that the reflective plates

should lie almost parallel to the mirror’s surface for a well-

focused image to be obtained, although some small divergence

from the surface tangent, unresolvable in our specimen, is pre-

dicted by our two-dimensional ray-tracing models. Naturally,

three-dimensional ray tracing would provide a more definitive

understanding of the focusing potential of the diverticular

mirror but this will require access to tissue in better condition,

both in terms of gross morphology and in terms of reflective

plate histology. In the interim, two-dimensional ray tracing of

a midline section of the diverticular eye (a region where we

have most confidence of the structure’s anatomy) demonstrates

that rays in a vertical plane originating from a point source in

the latero-ventral visual field can be brought to a good focus.

This conclusion, a priori, is not a forgone conclusion and

shows that the medial wall of the diverticulum is potentially

capable of image formation by reflection, based largely on its

shape and distance from the retina, with image quality being

further enhanced by very small angular departures of the

reflective plate angle from being parallel to the mirror’s surface.

In addition, despite having relatively few crystal layers, the

predicted spectral and angular insensitivity of the reflectivity

of the disordered crystal stack is suggestive that the structure

preserves spatial information when focusing rays upon the

ROSs. Most strikingly, in D. longipes, the mirror originates

from the retinal pigment epithelium, whereas in R. natalensis
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it derives from the choroidal argentea. This major ontogene-

tic difference suggests differing evolutionary origins of the

diverticular reflectors in the two species, despite their close

phylogenetic affinity and the ultimately convergent function

and adaptive value of the diverticular mirrors.

The apparent complexity and seeming perfection of the

conventional vertebrate eye has sometimes been taken as evi-

dence against the very idea of evolution although, in truth,

the eye is far from perfect and no more complex than most

other organs. In fact, as Darwin himself realized [37], the exist-

ence of a variety of eyes with different degrees of complexity,

from a simple light-sensitive cell to a fully developed eye, pro-

vides one of the best examples of how complex organs might

evolve in a surprisingly limited number of generations [38].

Nonetheless, more complex bipartite eyes using both reflec-

tive and refractive optics, such as those described here for

R. natalensis and previously for D. longipes [22], remain unusual

and require explanation in evolutionary terms. Several mem-

bers of the Opisthoproctidae have ocular diverticula, ranging

from simple small outpockets in Winteria sp. and Opisthoproctus
sp. [2,3,5] to the complex type described here for R. natalensis
and elsewhere for D. longipes [22] or to the scleral lens con-

taining diverticulum of B. exilis [21]. This family of teleosts

thus presents a highly unusual taxon, exhibiting diverse and
unique ocular morphologies that extend the characteristics

and capabilities of more common tubular eyes. Further under-

standing of the value of these adaptations will depend on a

combination of detailed anatomical examination and math-

ematical modelling of ocular performance, combined with

knowledge of the group’s evolutionary history derived from

molecular genetics.
All animal handling was performed under the University of Queens-
land ethics approval no. SNG/080/09/ARC.
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