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Abstract

Determining the mode of tumour evolution is a fundamental question in cancer

biology. Knowledge of the evolutionary dynamics of tumours could lead to improved

diagnosis and treatment through the identification of key patterns in the data. In

this thesis, I present a multi-pronged approach to the study of tumour evolution

by further developing methods for the analysis of phylogenetic trees, investigating

how different measures of tree properties evolve with time, and narrowing down the

consideration of evolutionary models to those that are most relevant in colorectal

cancer.

A recently introduced tree balance index, J1, unlike prior definitions, permits

meaningful comparison of trees with arbitrary outdegree distributions and node

sizes, thus overcoming the shortcomings of conventional methods. I quantify the

accuracy of approximations to the expected values of J1 for two important null

models: the Yule process and the uniform model, and prove that, for the Yule

process, the approximation converges to the true expectation in the limit of large

trees. I further investigate the minima of J1 for certain important tree families.

These results help establish J1 as a universal, cross-disciplinary index of tree balance

that generalizes and supersedes prior approaches.

As balance is only one of several properties that can be used to characterise phy-

logenetic trees, I also investigate the evolution of other metrics used in the study of

phylogenies. By recapitulating the results of a previous study with a slightly altered

methodology, and by expanding the analysis to include a new, more comprehen-

sive set of tree indices, I discuss how these methods could be used to examine the

evolutionary dynamics of tumours.

Finally, I develop an agent-based model of colorectal cancer evolution which is

informed by multi-site DNA methylation data. I use this model to infer properties

of mutliple tumours and draw conclusions about the rate of tumour growth and

xxi



strength of selection acting on the tumour. I find that the model is able to reproduce

the observed data but not detailed enough to infer the strength of selection within

tumour glands.
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Chapter 1

Introduction

Cancer remains one of the most formidable challenges in the realm of health and

medicine, causing a quarter of all deaths in the UK (UK 2015). Despite advances

in cancer research, the survival rates for many cancers remain low, with the disease

being an increasing burden on healthcare systems (Institute 2020). The disease’s

heterogeneity, both within and between patients, is a major obstacle to effective

treatment. Understanding the underlying evolutionary processes driving this het-

erogeneity is crucial to developing new treatments and improving patient outcomes.

While having a comprehensive mathematical theory of cancer evolution may not

be feasible, concrete mathematical models can provide valuable insights into the

disease’s dynamics. To this end, I consider different approaches to modelling can-

cer evolution, which includes the use of phylogenetic trees and agent-based models.

Further, I employ methylation data to verify the accuracy of the models using Ap-

proximate Bayesian Computation (ABC).

Trees as a mathematical object have found use in a variety of fields, of which

biology is my main focus. However, I have found interesting links to methods in

computer science via information theory. In chapter 2, I expand upon three points.

First, I further establish J1 as a universal index of tree balance through connections

with data structures in computer science. Second, I derive upper bounds on the

error of the expected value approximations for the Yule process and the uniform

model. Finally, I investigate the minimal values of J1 in important special cases,

with special emphasis on the large tree limit.

In chapter 3, I employ the index J1, along with two other tree shape indices,

to test to what degree one can differentiate between different evolutionary regimes
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in cancer by only relying tree shape indices. These results are compared to a new,

more comprehensive system of tree shape indices (Noble & Verity 2023) which further

generalised the concepts of diversity, evenness and richness. These results lay the

groundwork for future analysis of cancer tree data.

In chapter 4, I introduce a tailor-made model for simulating a specific type of

molecular data, methylation arrays, obtained from multi-site sequencing of colorec-

tal cancer. I show that the model is able to recapitulate the patterns observed in

the data and that it can be used to infer the evolutionary history of the tumour. I

further explore how the model can be expanded for more general use due to its mod-

ular design. I also demonstrate an approximate Bayesian computation workflow for

inferring the parameters of the model from data, and discuss the choice of summary

statistics and the performance of the ABC algorithm.

In chapter 5, I verify the utility of the model on the example of colorectal cancer

methylation data. I discuss the results of the inference and compare the inferred

gland divergence trees to ones generated by the model. I further discuss the impli-

cations of the results for the understanding of colorectal cancer evolution and the

potential for future research.

1.1 Tumour evolution

1.1.1 Introduction

Cancer emergence and progression is an evolutionary process (Nowell 1976, Merlo

et al. 2006). This statement is now widely accepted, and the applications of quantita-

tive methods found in evolutionary biology in cancer research are numerous (Rockne

et al. 2019, Yin et al. 2019-10, Kourou et al. 2021). The, now well established, area

of mathematical oncology is informed by clinicians, computer scientists, mathemati-

cians of all flavours, and biologists alike (Bull & Byrne 2022), which has led to a

rapid development of more specific avenues of research spanning from the initiation

of the disease (Paterson et al. 2020) to the optimisation of therapy protocols (West

et al. 2023). This is a perfect reflection of the complexity of the disease itself, as

its rapid evolution, heterogeneity and constraints on how much information one can

obtain from a patient take the combined efforts of thousands of scientists. Mathe-

matics plays its own role in this effort, providing a common language through rigour

and methods development, and frameworks for the interpretation of data.
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1.1.2 Modes of evolution

Over the years, there have been a number of different definitions of what a mode of

evolution is. Initially, it was introduced as the term which covers the way or manner

in which a species evolves (Eiseley 1945). Depending on the piece of literature,

it could also refer to the model used in the study of a population’s evolutionary

trajectory (Yotoko et al. 2011), or the mechanism which drives the evolution such

as genetic drift (Glassman et al. 1996, Wolf & Koonin 2013). This ambiguity of

terminology is present in cancer research as well. In this thesis, I will use the term

mode of evolution as originally defined by (Eiseley 1945), and used by (Davis et al.

2017, Noble et al. 2022). That is, the way in which a tumour evolves (figure 1.1).

The specifics of tumour evolution are complex as, while deterministic equations

may capture the evolutionary dynamics of a cohort of tumours, the individual tu-

mour’s evolutionary history is stochastic (Werner et al. 2013). This only adds to the

issue of how the surrounding tissue (West et al. 2021) and the tumour’s own spatial

organisation will affect its progression (Noble et al. 2022, Li et al. 2023). Therefore,

existing models of tumour evolution have had to incorporate both general, large-scale

processes and sometimes molecular level events to be able to claim progress towards

personalised cancer care informed by quantitative models (Yin et al. 2019-10).

1.1.3 Mathematical models of tumour evolution

As mentioned earlier, the applications of mathematics in oncology are diverse. Thus,

my focus over the course of this PhD has been on modelling tumour evolution

and progression from its early stages up to and excluding treatment. This makes

the problem more of an exercise in populatin dynamics than strict oncology, as

underlying assumptions of such models tend to focus less on the microenvironment

impact and more on how mutations accumulate and spread in the tumour. A good

example of one such model is the Big Bang model of tumour growth (Sottoriva et al.

2015). Informed by multi-site sequencing, the authors’ hypothesis was that colorectal

cancer evolves neutrally after an initial period of rapid expansion and selection.

Much like how cosmic microwave background radiation is unevenly distributed across

the observable universe, they observed an asymmetrical distribution of mutations

across the tumour spheroid. This inspired a spatial branching process model based

on gland fission, with each tumour gland approximated to rapid fixation in the event
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Figure 1.1: Four different modes of tumour evolution represented by their Muller plots.
Picture adapted from (Davis et al. 2017) under a CC BY 4.0 license.

of a driver mutation, which showed good agreement with the data. A follow-up

paper (Williams et al. 2016) ignited a debate on neutral evolution in exponentially

growing tumours within the community (Tarabichi et al. 2018, McDonald et al. 2018,

Heide et al. 2018, Bozic et al. 2019). However, theoretical considerations of the two-

level model compared to the neutral model did, in fact, show that it is possible to

distinguish the two based on mutation frequency spectra (Tung & Durrett 2021).

This discussion is far from over, as there are still many questions around the mode

of evolution of most cancers.

One would be remiss, however, to only focus on models explicitly designed for
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cancer. The abstract nature of mathematical modelling has allowed for the transfer

of knowledge between fields, with models developed for other purposes being ap-

plicable in cancer. General models which are more easily tested on, for example,

bacterial populations (Fusco et al. 2016, Schreck et al. 2023) can be adapted to

cancer, as the basic principles of evolution are the same. But digging even deeper,

the underlying model of boundary growth dates back to the Eden model of crystal

growth (Eden 1961). Among similar examples are uses of the Fisher-Kolmogorov-

Petrovsky-Piscounov equation in ecology and its modifications for the study of the

spread of mutations in populations with a constant size (Houchmandzadeh & Val-

lade 2017) as well as growing populations (Wodarz & Komarova 2020). Further, the

use of phylogenetic trees and methods in cancer is an emerging field introduced in

the following section and expanded upon in chapters 2 and 3.

1.2 Trees and their applications

1.2.1 Introduction

In the most general sense, a tree is a connected graph with no cycles. In this thesis,

when a tree is mentioned, I refer to a rooted tree, as formally defined in section 2.2.1.

In brief, a tree is rooted if it has a special node called the root, from which all other

nodes are reachable. Trees have found use in a variety of fields, including computer

science, biology, and linguistics. In computer science, trees are used to represent

hierarchical data structures, such as file systems (Nievergelt 1974) or the structure

of a program’s syntax (Knuth 1968), an approach that computer scientists share with

linguists (Chomsky 1957). The concept of search trees, dating back to the mid 20th

century, revolutionised the field of computer science with applications in information

retrieval in the form of binary search trees and self-balancing trees (Nievergelt &

Reingold 1972, Knuth 1997). In evolutionary biology, one of the earliest appearances

of trees dates back to the 19th century, when Charles Darwin used them to represent

the evolutionary relationships between species. Phylogenetic trees have over time

become a key tool in analysing the lineages of species, viral mutations, and cancer

evolution. By investigating quantitative summaries of different properties of tree

shapes, one can gain insight into the underlying processes driving the evolution

of species (Mooers & Heard 1997) or cancer (Scott et al. 2018, Noble et al. 2022).

However, most of the inference work so far has been performed using methods which
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are not necessarily rooted in sound mathematical theory, but are rather based on

heuristics (O’Meara 2012). Specifically, measures of tree balance suffer from a lack

of a common framework, with at least 19 different metrics available in literature

(Fischer et al. 2021), and few of them being directly comparable. Also, due to

the divergent terminology and interest in the use of trees as a tool, there is scarce

literature on the transfer of knowledge between the fields of computer science and

biology, with certain results being rediscovered nigh on half a century later, as

discussed in section 2.2.2.

1.2.2 Quantifying tree balance

Intuitively, a balanced tree should be shaped symmetrically, with equal numbers of

nodes on each side of the root. A metric which dictates as much is, for example,

the Sackin index (Sackin 1972). However, only considering the shape of the tree

ignores the option of having a tree with arbitrarily sized nodes. In this context, a

balanced tree is one where the nodes are distributed evenly across the tree. This is

the basis of the Colless index, a popular measure of tree balance in biology (Colless

1982). However, the Colless index is limited to bifurcating trees, i.e. trees where

each non-terminal (internal) node has exactly two children. This was addressed

by a generalisation of the Colless index to multifurcating trees (Mir et al. 2018),

allowing for the analysis of tree shapes with more than two children per node. Yet,

none of the above indices distinguish between trees where nodes are allowed to have

different sizes. This means that conventional balance indices effectively throw away

information about the distribution of, for example, access frequencies to nodes in a

data storage system or the population size of subclones in a cancer cell population.

In a recent paper (Lemant et al. 2022), Lemant and Noble proposed a new robust,

universal index, J1, for quantifying the balance of rooted trees with arbitrary node

degree (number of descendants) and size distributions, going beyond purely the tree

shape in measuring its balance. This index is based on Shannon entropy and favours

even distributions of node sizes within the tree. This means that not only leaves,

but internal nodes are allowed to have any size. This is especially relevant in the

case of cancer phylogenetic trees where extant subpopulations will not necessarily

be represented by the leaves in the tree. Using the alpha-gamma model (Chen et al.

2009) to generate many such random trees, I showed that J1 is robust, in the sense

that it is insensitive to small changes in node sizes and to the removal of small nodes
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(figure 1.2B, C). Noble and I further showed that this index unites and generalises

two of the most popular prior approaches to quantifying tree balance in biology, the

Colless index and the Sackin index. Applied to evolutionary trees, J1 outperforms

conventional tree balance indices as a summary statistic for comparing model output

to empirical data (Noble et al. 2022).

Given any tree shape index, an important task is to obtain its expected and

extreme values under standard tree-generating processes, which can then be used as

null-model reference points. In (Lemant et al. 2022), Noble and I obtained analytical

approximations to the expected values of J1 under two of the most popular tree-

generating processes in biology, the Yule process and the uniform model, and I tested

their accuracy numerically for trees with up to 128 leaves (figure 1.2A). In the same

study, Noble and I proved that caterpillar trees minimise J1 among bifurcating

trees but not when larger outdegrees are permitted. In chapter 2, I expand on these

results.

7



0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
number of leaves

J1

Caterpillar

Uniform

Yule

A

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
original rank

J1

original list_trees

1% threshold

B

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
original rank

no
rm

al
is

ed
 S

ac
ki

n'
s 

in
de

x

original list_trees

1% threshold

C

Figure 1.2: A Sample mean J1 values for trees generated under the Yule process and the
uniform model. Solid grey curves represent the approximate expected values, and the shaded
areas the 5th and 95th percentiles. Each point was averaged over 100 random trees generated
under the Yule or uniform models, and caterpillar tree J1 values were calculated exactly.
B J1 values for 100 random trees on 16 leaves using the alpha-gamma model, with α ∼
Unif(0, 1) and γ ∼ Unif(0, α). The values were calculated before and after applying a 1%
population threshold, i.e. removing all leaves with sizes smaller than 0.01 times the total
population.
C Normalised Sackin index values for the same trees as in B.
The Sackin index is much more sensitive to the removal of small nodes as its values change
drastically after the threshold is applied.
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1.3 Agent-based modelling in oncology

1.3.1 Introduction

Agent-based models (ABMs) are a class of computational models that simulate the

actions and interactions of individual agents within a system. These agents can

represent anything from cells in a tissue to animals in an ecosystem. ABMs are

particularly useful in cancer research, as they can capture the complex interactions

happening on the microscale in cancer. Spatial agent-based models (SABMs) are a

subclass of ABMs that incorporate spatial information into the simulations. This

is particularly useful for modelling solid tumours as it allows for the simulation of

things like the spatial heterogeneity of the tumour microenvironment and the ef-

fects of spatial constraints on tumour growth. A strength of ABMs is that they

can be as simple or as complex as the researcher needs them to be (Colyer et al.

2023). However, therein lies their weakness, as oversimplification of a model can

lead to rapid loss of its utility in capturing the behaviour of a complex system such

as cancer. On the other hand, a model that is too complex, and attempts to in-

clude everything from epigenetic mutations to the effects of the immune system on

the tumour, is likely too computationally expensive to be useful for modelling a

tumour of reasonable size. This is an organic demonstration of many a researcher’s

favourite saying all models are wrong, but some are useful, and some are more useful

than others. In parsing through the literature and developing a new model of my

own, I have also been influenced by an alternative wording of this, that is the best

model is its own worst enemy, by mathematical biologist Philip K. Maini (Maini

2023). My interpretation is that a good model should address the questions it was

designed to answer, but also open up new ones which require further investigation,

improvements, and research. For example, one can use the demon-warlock frame-

work (Bak et al. 2023) to simulate the evolution of a tumour in space and draw

conclusions on how spatial organisation will impact intratumour heterogeneity or

patient outcomes (Noble et al. 2020, 2022). However, the model does not address

the impact of the immune system, spatial heterogeneity in the microenvironment,

or the effects of therapy without further modifications. Alternatively, one may want

to include diffusion of nutrients and waste products in the model, or the effects of

hypoxia on the tumour cells. Tools that would be appropriate for such tasks are,

for example, HAL (Bravo et al. 2020) or PhysiCell (Ghaffarizadeh et al. 2018), but
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they are not ideal either as simulating a realistically-sized tumour with these models

is prohibitively expensive in terms of computational resources. Thus, my preferred

approach is to develop a purpose-made model which is informed by the literature

and the data, and which has ample room for future expansion and improvement.

1.3.2 The demon-warlock framework

In a recent paper (Bak et al. 2023), a new agent-based model for simulating the

evolution of a tumour in space was introduced. The model is designed to be ver-

satile and able to simulate a wide range of spatial configurations and evolutionary

properties of cancer. Spatially, the model is based on a 2D grid, where each grid cell

represents a deme, that is a spatially homogeneous population of cells. The model

distinguishes two types of mutations — drivers and passengers. Driver mutations

are usually associated with a selective advantage, be it in the form of increased pro-

liferation rate or increased migration rate. Passenger mutations, on the other hand,

are usually neutral but can also be deleterious or be used as a marker of cell lineages

resistant to therapy. Each cell in the model belongs to a genotype, a unique identifier

based on the cell’s mutations, and a driver genotype, which differentiates itself from

the genotype by not taking into account passenger mutations. Cell migrations in

the tumour have multiple modes, including cancer cells invasion of tissue and other

demes, and deme fission, the regime where a deme splits into two daughter demes

after reaching a certain size. The latter allows for the simulation of tumours with

a glandular structure, such as colorectal cancer. Events in the model are scheduled

according to the Gillespie algorithm, with the event hierarchy shown in figure 1.3.

As the model was written predominantly in plain C, it is highly efficient consid-

ering the complexity of the simulations it can run. An accompanying R package,

demonanalysis, is available for the analysis and visualisation of the model’s output,

e.g. figure 1.4.

Despite the model’s versatility, it is not without its limitations. In its current

form, it is not feasible to simulate tumours larger than a few million cells. This

leaves out the possibility of simulating realistically-sized glandular tumours which

can contain a few million glands containing thousands of cells each at the time of

diagnosis. Furthermore, as the main limitation of the model’s scalability is tied

to the inherent inefficiency of generating many random numbers in each iteration,

it is not well-suited to simulating neutral stochastic markers, such as fluctuating
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methylation clocks (Gabbutt et al. 2022) which rely on many independent events.

This is further discussed in section 4.1.2.

Choose
deme

Choose
cell type

Choose
event type

Choose 
event type

Choose 
genotype

normal cancer

Figure 1.3: Event hierarchy in the demon-warlock framework. The algorithm works on a
top-down basis, choosing first a deme, then a cell within the deme, and finally an event to
perform on the cell. Figure reproduced from (Bak et al. 2023) with the authors’ permission.
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Figure 1.4: Example output from demon, visualised using the demonanalysis package. a
Muller plot of clonal dynamics over time. Each colour represents a clone with a distinct
combination of driver mutations. b Final proportions and spatial plot of clones. c Fish plot of
clone populations over time using the same colours as in a. d Muller plot showing evolution
of tumour cell division rate. e Final spatial distribution of cell division rates. f Final spatial
distribution of the mean numbers of passender mutations per cell. g Final spatial distribution
of the number of tumour cells per gland.
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1.4 Likelihood-free inference

1.4.1 Introduction

To verify whether a model predicts behaviour of the observed system, a common

approach is comparing its output to measurements. The way this is done depends

on the complexity of the model and the data. Here we discuss the general framework

of likelihood-free inference, and more specifically the use of Approximate Bayesian

Computation (ABC).

Models based on differential equations can be compared to data using likelihood-

based methods. In the frequentist tradition, the likelihood function is used to es-

timate the parameters of the model under the assumption that there is a correct,

or “true” value of those parameters. An alternative approach is Bayesian statistics,

which uses random variables (θ) to represent the uncertainty in the parameters. The

distribution of these random variables before observing the data is called the prior

distribution (P (θ)). After performing measurements in the system and obtaining

data (D) which has an associated likelihood function (P (D|θ)), the prior distribu-

tion is update to the posterior distribution (P (θ|D)) using Bayes’ theorem (Bayes

& Price 1763):

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.1)

The likelihood function is thus a key component of Bayesian statistics, quan-

tifying the probability of observing the data given the parameters of the model.

However, its greatest asset is also its greatest weakness. Depending on the complex-

ity of the model and the data, the likelihood function can be difficult or impossible

to calculate analytically, or can be too computationally expensive to calculate nu-

merically. This is especially true for stochastic models, such as agent-based models,

where the likelihood function is often intractable.

In the case of intractable likelihoods, a common approach is to use likelihood-

free inference methods, designed to approximate the posterior distribution without

the need to calculate the likelihood function. These methods rely on the generation

of simulated data from the model, and the comparison of these simulations to the

observed data. Instead of calculating the likelihood function, these methods often

involve a process of simulation and rejection. A common drawback of likelihood-
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free inference methods is that they can be computationally expensive, as they often

require a large number of simulations to obtain a good approximation of the posterior

distribution. However, as the computational power of modern computers increases,

these methods are becoming more and more feasible for a wide range of models and

data.

1.4.2 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a likelihood-free inference method

that has gained popularity in the last three decades (Tavare et al. 1997, Sottoriva &

Tavaré 2010, Jagiella et al. 2017). The basic idea behind ABC is to approximate the

posterior distribution of the parameters of a model by comparing simulated data to

observed data.

In the most general form of ABC, the algorithm proceeds as follows:

1. Sample a set of parameters from the prior distribution, θ̂.

2. Simulate data from the model using the parameters.

3. Compare the simulated data (D̂) to the observed data (D) using a distance

function, d(D̂,D).

4. If the distance between the simulated and observed data is less than a certain

threshold ϵ, accept the parameters. Otherwise, reject them.

5. Repeat steps 1-4 until a sufficient number of accepted parameters have been

obtained.

The distance threshold must be strictly positive, and is often chosen to be a small

value. Alternatively, in the case of high-dimensional data, the distance function

can be replaced by a summary statistic, S, which is a function of the data, i.e.

d′(S(D̂), S(D)).

ABC does not come without its own set of challenges. As it relies on comparing

relevant features of the simulated data to the observed data, the choice of summary

statistic or distance metric is crucial, as it determines how the data is reduced before

the comparison. Fortunately, there are methods for reducing dimensionality of the

data which narrows in on its informative aspects (Blum et al. 2013). The choice

of the distance threshold is also important, as it determines the acceptance rate
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of the algorithm. Setting the threshold too high or too low can lead to biased or

inefficient estimates of the posterior distribution. However, this can be mitigated

by using a dynamic threshold, which is adapted during the course of the algorithm

(Prangle 2017). Finally, as the algorithm relies on repeated simulations of poten-

tially complex models. This can require a large amount of computational resources,

raising questions about the method’s scalability and practicality. An obvious way

to circumvent this is to use a model which is as lightweight as possible. Even in the

case of infinite compute available, one must be mindful of the fact that the more

complex the model, the more complex the inference problem, and the more complex

the inference problem, the more complex the model. This is a feedback loop which

can render both the model and subsequent analysis uninterpretable. Therefore, I

believe that the best practice as a mathematician and applied scientist is to abstract

the model enough to be able to draw conclusions from it, but not so much that it

becomes uninformative.

In chapter 4, I introduce a simplified model of colorectal cancer gland fission and

the accompanying ABC workflow. I discuss the choice of summary statistics and

the performance of the ABC algorithm, and subsequently demonstrate the model’s

utility in inferring the evolutionary history of a tumour from methylation data in

chapter 5.

1.5 Fluctuating methylation clocks

The concept of the molecular clock is commonplace in molecular evolutionary biol-

ogy. It is based on the idea that the rate of evolution of a particular gene or set

of genes is constant over time, and can be used to estimate the time of divergence

between species or the time of a particular event in the evolutionary history of a

species. The most famous example of a molecular clock is the mitochondrial DNA

clock, which is used to estimate the time of divergence between species (Hasegawa

et al. 1985). The key principle behind molecular clocks is that closely related species

or individual will have more similar sequences than distantly related ones. This also

translates to individual cells in cancer. The issue with using molecular clocks in

cancer is that “slowly ticking” molecular clocks, i.e. ones with a low mutation rate,

are not informative enough on the timescale of cancer evolution, limiting their util-

ity to cell lineages which diverged too far in the past, with recent events remaining
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undetectable. On the other hand, “fast ticking” molecular clocks can reveal re-

cent evolutionary events but also have their own limitations, such as independent

mutations in the same site (Kuipers et al. 2017).

Recently, a new type of molecular clock has been proposed, the fluctuating

methylation clock, based on the observation that the methylation status of certain

CpG sites in the genome is heritable but fluctuates stochastically over time (Gabbutt

et al. 2022, 2023). A CpG site is a cytosine nucleotide followed by a guanine nu-

cleotide in the linear sequence of bases along its 5’ → 3’ direction, and is a common

site of methylation in the genome. As citosine and guanine are complementary, each

CpG site in the 5’ → 3’ direction has a corresponding pair in the 3’ → 5’ direction.

This means that each CpG pair can be in one of three states: both methylated (ho-

mozygously methylated), both unmethylated (homozygously unmethylated), or one

methylated and the other unmethylated (heterozygously methylated). Depending

on tissue type, the fluctuating CpG (fCpG) sites can number somewhere between

1000 and 2000, which means each cell has a potentially unique barcode in its fCpG

array. As the array is not constant, with methylations and demethylations of fCpG

sites happening over the course of cell divisions, the authors of the two papers cov-

ering fCpGs so far have been able to reconstruct the evolutionary history of healthy

colonic crypts and lymphoid malignancies with high accuracy. This is a promising

development, as sequencing methylation arrays is a cheaper method than genome

sequencing, but may offer finer temporal resolution. In chapter 5, I investigate

whether multi-site methylation array sequencing can be used to reconstruct clonal

dynamics of colorectal cancer.

1.6 Aims

1.6.1 Hypotheses

1. The J1 index can be used, in conjunction with other tree shape indices, to

differentiate between evolutionary modes in cancer.

2. SABMs recapitulate molecular data observed in solid tumours (or sth like that)

3. These methods are useful for inferring the evolutionary history of colorectal

cancer based on multi-site methylation array sequencing.
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1.6.2 Aims

1. Calculate or approximate important properties of the J1 index, such as its

expected value under standard tree-generating processes.

(a) Contextualise J1 within the broader field of tree shape indices in biology

and computer science.

(b) Investigate extreme and expected values of J1 under standard tree-generating

processes.

2. Determine the utility of sets of tree shape indices for differentiating between

evolutionary modes in cancer.

(a) Recapitulate the classification of evolutionary modes in cancer using a

set of three tree shape indices.

(b) Extend the discussion to a more interpretable and general system of tree

shape indices.

3. Extend the fluctuating methylation clock model to multi-site sequencing of

solid tumours on the example of colorectal cancer.

(a) Develop an agent-based model for simulating the evolutionary dynamics

of colorectal adenocarcinoma.

(b) Develop an ABC workflow for inferring the evolutionary parameters of the

model, specifically the gland fission rate, methylation and demethylation

rates, driver mutation rate, selective advantage, and the effective number

of lineages per tumour gland.

(c) Apply the model to colorectal cancer data and compare the inferred phy-

logenies to the trees generated by the model.
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Chapter 2

Expected and extreme values of

universal tree balance index J1

2.1 Introduction

Broadly speaking, the balance of a tree is the extent to which its terminal nodes

(leaves) are evenly distributed among its branches. Despite the abundance of metrics

of tree balance (Fischer et al. 2021), universal indices are hard to come by. This

limits practical applications of tree balance indices.

Following the J1 index paper (Lemant et al. 2022), where a universal index

was proposed, shown to be robust to the removal of small nodes and to outperform

conventional tree balance indices as a summary statistic for comparing model output

to empirical data, I examined several important properties of J1. Given any new

tree shape index, the expected value under standard tree-generating processes and

the extreme values need to be known for the index to be useful in practice. In

figure 1.2A, I showed the sample mean of J1 up to 128 leaves under the Yule and

uniform models, which appears to be close to the inverse Sackin index expression

derived by Noble in (Lemant et al. 2022). Additionally, as a consequence of this

relationship, the caterpillar trees minimises J1 for bifurcating trees. However, I

showed in (Lemant et al. 2022) that the caterpillar topology does not minimise J1

for multifurcating trees by providing a couterexample on 6 leaves.

In this chapter, I will further show the universality of J1 by identifying fun-

damental connections to classical results in computer science, related to Huffman

coding and self-balancing tree data structures. I will also derive upper bounds on
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the error of the expected value approximations for the Yule process and uniform

model. For the Yule process, I show that the approximation rapidly converges to

the true expected value in the large tree limit. Finally, I will investigate the minimal

values of J1 in important special cases, obtaining a counter-intuitive result in the

large tree limit.

In addition to furthering the understanding of the universality of Shannon entropy-

based tree balance indices, the results of this chapter are essential for establishing

the index J1 as one of the most useful metrics for tree shape analysis by providing a

solid theoretical foundation of its properties and behaviour. This in turn allows for

more accurate and robust comparisons of trees generated by models and empirical

data, and thus new insights into the underlying evolutionary processes.

2.2 Prerequisites

2.2.1 Preliminary definitions from systematic biology

Definition 2.2.1 (Rooted tree). A rooted tree T is a connected acyclic graph

with node set V (T ) and edge (or branch) set E(T ), in which one node is designated

the root. Parent-child and ancestor-descendant relationships in a rooted tree are

assigned along paths directed away from the root.

Definition 2.2.2 (Node size and tree magnitude, Lemant et al. (2022)). We assign

to every node a non-negative size. The magnitude of a tree T , denoted S(T ), is

then the sum of its node sizes.

Definition 2.2.3. (Leafy tree, Lemant et al. (2022)) A leafy tree is one with only

zero-sized internal nodes.

Definition 2.2.4. (Node depth) As we will consider only trees with uniform edge

lengths, we define the depth of a node as the number of edges in the shortest path

from that node to the root.

Definition 2.2.5 (Sackin index, Sackin (1972)). The Sackin index of rooted tree

T is the sum of its leaf depths:

IS(T ) =
∑

l∈L(T )

ν(l), (2.1)

20



where L(T ) is the set of all leaves (terminal nodes) of T , and ν(l) is the depth of

leaf l.

Definition 2.2.6 (Generalised Sackin index, Lemant et al. (2022)). The Sackin

index can be generalised to account for arbitrary node sizes:

IS,gen(T ) =
∑

i∈V (T )

S∗
i , (2.2)

where V (T ) is the set of all internal nodes (non-leaves), and S∗
i is the magnitude of

the subtree rooted at node i, excluding i. If T is a leafy tree in which all leaves have

unit size then IS,gen(T ) = IS(T ).

Definition 2.2.7 (Robust balance index, Lemant et al. (2022)). The robust balance

index J1 of tree T is

J1(T ) =
1

IS,gen(T )

∑
i∈Ṽ (T )

S∗
i

∑
j∈C(i)

W 1
ij , (2.3)

where Ṽ (T ) the set of all internal nodes whose descendants are not all of zero size,

C(i) is the set of children of node i, and W 1
ij is the node balance score, defined as

the normalised Shannon entropy of the daughter subtree magnitudes:

W 1
ij =


− Sj

S∗
i
logd+(i)

Sj

S∗
i
, for d+(i) > 1

0, otherwise,

(2.4)

where Si is the magnitude of the subtree rooted at node i, including i, and d+(i) is

the outdegree of i.

Definition 2.2.8 (Binary tree and bifurcating tree). A binary tree is a rooted

tree in which no node has more than 2 children. A bifurcating tree (or full binary

tree) is a rooted tree in which each internal node has exactly 2 children.

Definition 2.2.9 (Cherry). A tree consisting of only a root and two leaves is a

cherry.

Definition 2.2.10 (Caterpillar tree). A caterpillar tree is a bifurcating tree in

which every internal node except one has exactly one child leaf.

Definition 2.2.11 (Fully symmetric tree). If, for every internal node i, the subtrees
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rooted at the children of i all contain the same number of leaves then the tree is

fully symmetric.

2.2.2 Preliminary definitions from computer science

Definition 2.2.12 (Root balance and tree balance scores, Nievergelt et al. (1972)).

The root balance score of a bifurcating leafy subtree Ti rooted at i and containing

at least three nodes is

ρ(Ti) =
min(Si1 , Si2)

Si
∈
[
0, 12
]
, (2.5)

where Si is the magnitude of Ti, and Si1 and Si1 are the magnitudes of the subtrees

rooted at the children of i. The balance score of a bifurcating leafy tree T is then

defined as

β(T ) = min
(
ρ(Ti)i∈V (T )

)
. (2.6)

For any given leaf count, the balance score is minimal for the caterpillar tree and

maximal for the fully symmetric bifurcating tree.

Definition 2.2.13 (Total and weighted path lengths, Nievergelt et al. (1972)). In

computer science, the Sackin index is better known as the total path length. Let

T be a rooted tree in which each node i is assigned a weight (or access frequency)

wi. Then the weighted path length of T is

|T | =
∑

i∈V (T )

wiν(i). (2.7)

2.3 Results

2.3.1 J1 unites and generalises prior notions of tree balance

In computer science, tree balance is effectively a binary property: a tree is consid-

ered balanced if its weighted path length is sufficiently small, given its leaf count

(Nievergelt & Reingold 1972). In biology, where comparisons between trees are more

relevant, researchers instead use a normalised form of the Sackin index or various

other indices to assign balance values on a continuum (Colless 1982, Shao & Sokal

1990, Mir et al. 2013, 2018, Fischer et al. 2021). I will show that J1 uniquely con-

nects these two historically separate notions of tree balance. Let us note first that

the weighted path length is equivalent to the generalised Sackin index:
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|T | =
∑

i∈V (T )

αiν(i) =
∑

i∈V (T )

S∗
i = IS,gen(T ). (2.8)

Consider then the following proposition.

Proposition 2.3.1 (Lemant et al. (2022)). Let T be a leafy tree with d+(i) = m > 1

for all internal nodes i. Then

J1(T ) =
Hm(T )S(T )

IS,gen(T )
, (2.9)

where Hm(T ) is the Shannon entropy (base m) of the proportional leaf sizes.

Corollary 2.3.1. We can rewrite equation (2.9) for bifurcating trees as

J1(T ) =
H2(T )S(T )

|T |
. (2.10)

Hence, for any given set of leaf sizes, minimising the weighted path length is equiv-

alent to maximising J1.

Theorem 2.3.1 (Section 5 of Nievergelt et al. (1972)). Let T be a bifurcating leafy

tree with balance score βT . Then the total path length |T | satisfies the inequality

|T | ≤ S(T ) log2 S(T ) +H2(T )

H2(βT )
. (2.11)

If the node sizes sum to unity then this simplifies to

|T | ≤ H2(T )

H2(βT )
. (2.12)

A special case of this theorem is considered as Theorem 2 in Wong & Nievergelt

(1973): If the tree has n leaves, all of size 1 then

|T | ≤ n log n

H(βT )
. (2.13)

The proof of this theorem defines the average entropy of a general tree T , corrected

for typo in original paper, as

H̄(T ) =
1

|T |
∑

k∈Ṽ (T )

∑
j∈C(k)

nj log2
nk

nj
, (2.14)
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which is identical to the definition of J1, equation (2.3), up to the base of the

logarithm in the expression for the entropy of internal node k.

Remark 2.3.1. We can trivially expand the definition of the balance score to m-

furcating trees, by considering all m descendants of internal nodes in the root balance

score. The root balance score of subtree Tj rooted in node j of m-furcating leafy

tree T can be defined as

ρm(Tj) =
min(Sj1 , . . . , Sjm)

Sj
, (2.15)

where j1, . . . , jm ∈ C(i) are the children of node j. By extension, we define

βm(T ) = min(ρm(Ti)i∈V (T )), (2.16)

the balance score of m-furcating leafy tree T .

Corollary 2.3.2. There is a lower bound on J1 for an m-furcating leafy tree T on n

leaves, with balance score βT , and it equals

J1
lower =

Hm(T )S(T )

|T |upper
=

n logm n

(Hm(β⃗T ))−1n logm n
= Hm(β⃗T ). (2.17)

where β⃗T = (S1,min, . . . , Sm,min) is the vector of magnitudes of subtrees rooted in

the children of the node with the smallest root balance score.

The connections between J1 and measures of tree balance and entropy in com-

puter science show that these properties are universally important. However, the

similarities may well end at this point, as evolutionary biologists and computer sci-

entists use these measures for different purposes and take their research in opposite

directions directions, for example inferring evolutionary processes which produced

the tree shape (Mooers & Heard 1997) versus shaping the tree to optimise data

storage and retrieval (Nagaraj 1997).

2.3.2 J1 is maximised by Huffman coding

Definition 2.3.1 (Binary search tree). A binary search tree (or BST) Tn over

n entries (w.l.g. numbers) x1, . . . , xn is a labelled binary tree, each of whose nodes

have been labelled with a distinct number chosen from x1, . . . , xn such that for each

node N , all nodes in the left subtree of N have a smaller xi as their label than xN ,
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and all nodes in the right subtree of N have a larger number as their label than

node N (e.g. figure 2.1).

6

4 9

52

3

13

11

Figure 2.1: A simple example of a binary search tree over the set of labels S =
{2, 3, 4, 5, 6, 9, 11, 13}.

Remark 2.3.2. Each node i in a binary search tree can have an associated non-

negative number called access frequency (or weight, size, probability) wi.

To construct an optimal binary search tree, that is one with a minimal weighted

path length, we can use Huffman coding.

Definition 2.3.2 (Huffman coding, Huffman (1952)). Let A = (α1, . . . , αn) be a

tuple of non-negative numbers. To construct an optimal binary tree on n leaves

with sizes given by A we choose the two smallest ones, w.l.g. α1 and α2, and

join them in a cherry, so that their parent node has size α1 + α2. We now have

A′ = (α1 + α2, α3, . . . , αn) as our set of n − 1 nodes. By repeating this procedure

until we have only one node left, an optimal binary search tree is obtained.

Proposition 2.3.2. The Huffman method maximises J1 on bifurcating trees for a

given set of node sizes.

Proof. By corollary 2.3.2, the Huffman method maximises J1 as it minimises the

weighted path length.

As Huffman coding is an optimisation algorithm, J1 can be used to measure how

close a tree constructed using a given set of node sizes is to the maximally balanced
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binary tree on the same set. This means we can quantify how close an alternative

algorithm which runs in a faster time complexity, such as arithmetic coding (Pasco

1977), gets to the optimal solution.

2.3.3 Expected value of J1 under simple evolutionary processes

For applications in evolutionary biology, an important property of balance indices is

their expected value under an evolutionary process. This quantity helps us compare

the trees generated under a null model to the observed data, and is a valuable part

of inferring the underlying evolutionary properties. Two of the simplest, and most

widely studied, processes of tree generation are the uniform model (Rosen 1978)

and the Yule model (Yule 1925), which generate bifurcating trees and are useful null

models in evolutionary biology. The Yule model, also known as the pure birth or

coalescent model, is used when considering speciation rates and patterns (Aldous

2001, Steel & McKenzie 2001). The uniform model is used as a null model for

comparing neutral evolutionary patterns against ones which include more complex

biological mechanisms (Mooers & Heard 1997, McKenzie & Steel 2000). While in

section 2.2.2 I discussed the static calculation of a balance index for a given tree,

I am also interested in how balanced binary search trees generated under some

stochastic process are. The Yule model is also useful for these considerations as it

is connected to the BST martingale, a statistical tool used to analyze and predict

the behavior of binary search trees, via L1 convergence (Chauvin & Rouault 2004).

From here, one can extend the discussion to AVL (Adelson-Velsky-Landis) and red-

black trees (Knuth 1997) in a similar way to more complex evolutionary processes as

self-balancing trees will by definition have higher expected values of J1 than those

generated under the Yule process.

The expected value of a few indices, and even some higher moments in certain

cases, are known for both Yule and uniform models (Mir et al. 2013, M. Coronado

et al. 2020, Goh et al. 2022). Among these is the Sackin index, which is particularly

useful for our purposes.

Definition 2.3.3 (Yule model, Yule (1925)). Consider a bifurcating tree T on n

leaves. To obtain the probability of generating T under the Yule model, start with

a single node and replace it with a cherry. Then, at each step, choose one leaf

uniformly at random and replace it with a cherry, until the tree has n leaves (figure
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2.2A). The sum of probabilities of generating T in all possible ways is the probability

of generating T under the Yule model.

Definition 2.3.4 (Uniform model, Rosen (1978)). Under the uniform model of

tree generation, every bifurcating tree on n leaves has an equal probability of being

generated, which is equal to n
(
2n−2
n−1

)−1
(figure 2.2B).

Remark 2.3.3. We only consider leafy trees with equal leaf sizes generated by the

processes in definitions 2.3.3 and 2.3.4.

Remark 2.3.4. We calculated the exact values of the expectation of J1 under both

the Yule and uniform models semi-manually by creating all possible (n + 1)-leaf

trees given a set of n-leaf trees, eliminating duplicates and assigning appropriate

probabilities in the Yule case, and thus computing the exact value of the expectation.

The process is inefficient for large trees, and we limited our search to n ≤ 11, the

exact and approximate expected values for which are found in table 2.1.

1

1/2

1/2

1/3
1/3

1/3

1/3

1/3

1/3

Yule: 23
Uniform: 4× 1

5

Yule: 13
Uniform: 15

A B

Figure 2.2: Comparison of probabilities for generation of trees on 4 leaves under the Yule and
uniform models. A: Arrows show generation under the Yule model. Each of the trees shown
on 4 leaves has the same probability under the uniform model. B: Comparison of probabilities
of tree topologies on 4 leaves under the Yule and uniform models.

Under the Yule model, the expected value of the Sackin index for trees on n

leaves is

En
Y (IS) = 2n

n∑
i=2

1

i
, (2.18)

as shown in Kirkpatrick & Slatkin (1993). Equation (2.9) implies then that the
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expected value of J1 for a tree on n leaves is

En
Y (J

1) = En
Y (

n log2 n

IS
) = n log2 nEn

Y (1/IS), (2.19)

where En
Y (1/IS) is the harmonic mean of the Sackin index. The harmonic mean

under the Yule process is not a standard result in literature, nor have I been able

to obtain a closed-form solution for this problem so far. It is possible, however, to

compare the harmonic and arithmetic means of IS by considering the Jensen gap

J (f,X) = E[f(X)]− f(E[X]), (2.20)

with f(x) = 1/x.

Theorem 2.3.2 (Liao & Berg (2017)). Let X be a one-dimensional random variable

with mean µ, and P (X ∈ (a, b)) = 1, where ∞ ≤ a < b ≤ ∞. If f(x) is a twice

differentiable function on (a, b), and

h(x; ν) =
f(x)− f(ν)

(x− ν)2
− f ′(ν)

x− ν
, (2.21)

then

inf
x∈(a,b)

{h(x;µ)}Var(X) ≤ E[f(X)]− f(E[X]) ≤ sup
x∈(a,b)

{h(x;µ)}Var(X). (2.22)

Proposition 2.3.3. Let EY (J
1) and EU (J

1) be expectation values of J1 under the

Yule and uniform models respectively. Then:

(i) EY (J
1) → n log2 n

EY (IS)
,

(ii) EU (J
1)− n log2 n

EU (IS)
is bounded from both sides,

as n → ∞.

Proof. (i) Let µY be the expected value of the Sackin index under the Yule process

for trees on n leaves, and f(x) = 1
x . By theorem 2.3.2

h(x;µY ) =
f(x)− f(µY )

(x− µY )2
− f ′(µY )

x− µY
=

1

xµ2
Y

. (2.23)
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We can then substitute this into the inequality given in the theorem

n log2 n
(n−1)(n+2)

2 µ2
Y

VarY (IS) ≤ E[J1]− n log2 n

E[IS ]
≤ n log2 n

µ2
Y n log2 n

VarY (IS), (2.24)

where the supremum and infimum of h(x, µ) are substituted with extremal values

of the Sackin index on bifurcating trees (Fischer 2021). The expectation of the

Sackin index under the Yule process is given in equation (2.28), and its variance is

calculated as (Cardona et al. 2012)

VarY (IS) = 7n2 − 4n2
n∑

i=1

1

i2
− 2n

n∑
i=1

1

i
− n. (2.25)

Substituting these expressions into equation (2.24), we find limits

n log2 n
(n−1)(n+2)

2 µ2
Y

VarY (IS)
n→∞∼

log n
(
7n2 − 4n2

∑n
i=2

1
i2
− 2n

∑n
i=2

1
i − n

)
4n3

(∑n
i=2

1
i

)2
∼ log n

n
→ 0

for the lower bound on the gap, and

n log2 n

µ2
Y n log2 n

VarY (IS) =
7n2 − 4n2

∑n
i=2

1
i2
− 2n

∑n
i=2

1
i − n

4n2
(∑n

i=2
1
i

)2
n→∞∼ 1(∑n

i=2
1
i

)2 → 0

for the upper bound on the gap. The upper bound reaches a maximum at n = 13

and is approximately 0.008, while the lower bound reaches a maximum at n = 8 and

is approximately 0.005.

(ii) Let µU be the expected value of the Sackin’s index under the uniform model for

trees on n leaves, and f(x) = 1
x . By theorem 2.3.2

h(x;µU ) =
f(x)− f(µU )

(x− µU )2
− f ′(µU )

x− µU
=

1

xµ2
U

. (2.26)

We can then substitute this into the inequality given in the theorem as in

n log2 n
(n−1)(n+2)

2 µ2
U

VarU (IS) ≤ E[J1]− n log2 n

E[IS ]
≤ n log2 n

µ2
Un log2 n

VarU (IS), (2.27)

analogously to (2.24). The expectation of Sackin’s index under the uniform model
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is given by (Cardona et al. 2012)

EU (IS) =
4n−1n!(n− 1)!

(2n− 2)!
− n, (2.28)

and its variance is

VarU (IS) = n
10n2 − 3n− 1

3
− (n+ 1)(n+ 2)

2

(2n− 2)!!

(2n− 3)!!
−n2

(
(2n− 2)!!

(2n− 3)!!

)2

. (2.29)

For the limit n → ∞ we can use Stirling’s approximation

n!
n→∞∼

√
2πn

(n
e

)n
(2.30)

n!!
n→∞∼


√
πn
(
n
e

)n/2
, n even,

√
2n
(
n
e

)n/2
, n odd,

(2.31)

to obtain asymptotic behaviour of the expected value and variance of IS under the

uniform model. The expectation reduces to

EU (IS)
n→∞∼

4n−1
√
2πn

(
n
e

)n√
2π(n− 1)

(
n−1
e

)n−1√
2π(2n− 2)

(
2n−2

e

)2n−2 − n

∼
√
πnnn

e(n− 1)n−1
− n

∼
√
π exp

[
(n+

1

2
) log n− (n− 1) log(n− 1)

]
− n

∼
√
πn

3
2 − n

and the variance

VarU (IS)
n→∞∼ 10

3
n3 − n2 − 1

3
n− n2 + 3n+ 2

2

√
π(2n− 2)

(
2n−2

e

n−1
)

√
2(2n− 3)

(
2n−3

e

n−1/2
)

− n2

 √
π(2n− 2)

(
2n−2

e

n−1
)

√
2(2n− 3)

(
2n−3

e

n−1/2
)
2

∼10

3
n3 − n2 − 1

3
n− n2 + 3n+ 2

2

√
eπ

2
exp

[
(n− 1) log

2n− 2

2n− 3
+

1

2
log(2n− 3)

]
− n2 exp [log(2n− 3)]

∼4

3
n3 + 2n2 − 1

3
n− n

5
2 + 3n

3
2 + 2n

1
2

2

√
eπ.

30



31



Figure 2.3: Top row: True values of E(J1) for up to 10 leaves were calculated manually, and
the approximations up to 128 leaves were calculated as n log2 n/E(IS). A — uniform model,
B — Yule model.
Bottom row: The Jensen gap of E(J1) calculated for trees up to 128 leaves under the uniform
model (C), and the Yule model (D). The size of the gap is calculated as the difference between
the true and approximate expected value, with the gaps for 2 and 3 leaves equal to zero as
there is only one possible bifurcating tree shape for each of those values. Refer to table 2.1
for numerical values of the gap size for the first several values of n. The red crosses in A and
B represent sample mean J1 values for 100000 trees generated under the uniform model and
Yule process, and the difference between the approximate gap size and the sample mean, with
standard error represented by error bars, in C and D.
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Figure 2.4: Extended figure 2.3C — uniform process. The convergence of the upper bound to
4
3
π is much slower than the convergence of the lower bound to 0, and the maximum it reaches

over the plotted range is 0.0604 for n = 128000. The red crosses, as in figure 2.3, suggest
convergence of the gap size.
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Figure 2.5: Higher variance in the uniform model leads to a non-zero upper bound on the
Jensen gap. Shown are frequencies of J1 values on 10-leaf trees generated under the Yule and
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the approximate value calculated as n log2 n
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The lower bound of EU (J
1) − n log2 n

EU (IS)
goes to 0 as logn

n , while the upper bound

tends to 4
3π for n → ∞. This is a consequence of high variance in the uniform

model (figure 2.5), as each tree on n leaves is selected with equal probability while

the number of trees on n grows exponentially with n, the number of leaves. While

I cannot prove analytically that the size of the Jensen gap in this case tends to

0, I can generate random trees using the uniform model and compare the sample

mean to the approximation using the expected value of the Sackin index. In figure

2.3, I show behaviour of the Jensen gap and its bounds for J1 under the Yule and

uniform models. The red crosses in figures 2.3C and 2.4 indicate that the gap size

does converge for n → ∞. Therefore, I propose the following conjecture:

Conjecture 2.3.1. For trees generated under the uniform model on n → ∞ leaves,

the following holds

EU (J
1) → n log2 n

EU (IS)
. (2.32)

n n log2 n/EY (J
1) EY (IS) n log2 n/EU (J

1) EU (IS)

2 2 2 2 2

3 5 5 5 5

4 216/25 26/3 360/41 44/5

5 728/57 77/6 3822/289 93/7

6 1162800/67217 87/5 18.25643 386/21

7 199806750/9017743 223/10 23.81979 793/33

8 27.29901 962/35 29.87282 12952/429

9 32.68993 4609/140 36.38201 26333/715

10 38.30246 4861/126 43.31989 106762/2431

11 44.11464 55991/1260 n/a n/a

Table 2.1: Comparison of exact and approximate expected values of J1 and IS under the
Yule and uniform models.

2.3.4 Analytic properties of the J1 index

The index J1 is normalised in a way which makes comparison of its values on trees of

different sizes valid (Lemant et al. 2022). As J1 was defined to take into account node

sizes, it can take any value between 0 and 1 for any given tree topology (figure 2.6).

Furthermore, since J1 is defined to be 0 on linear trees, finding its minimal value on

a given number of nodes is trivial. In this section I investigate extremal values on

trees where I impose restrictions to both topology and node size distributions, i.e.

consider only leafy trees with out-degree of each internal node greater than 1.
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Figure 2.6: By including the node-balance function W 1 in J1, we allow for the possibility of
perfectly balanced caterpillars (left) and less balanced fully symmetric trees (right) based on
the node size distribution in the tree. The leaf sizes in these two trees are identical, with a
ratio 4 : 2 : 1 : 1 from largest to smallest.

2.3.5 Properties of J1 on different tree families

For most balance indices in use in evolutionary biology, the least balanced tree for

a given number of leaves n is the binary caterpillar tree. I have previously derived

a general expression for leafy trees of this topology (Lemant et al. 2022)

J1(TC) =
2n log2 n

(n− 1)(n+ 2)
. (2.33)

Most balance indices in literature define the caterpillar topology as the least bal-

anced one (Fischer et al. 2021). Intuitively, this makes sense as balance is often

associated with symmetry, and the caterpillar is the most asymmetric bifurcating

tree. However, in the context of the J1 index, tree topology is just one of a few

factors which contribute to the balance score of a tree, especially since the index

does not limit the space of trees to bifurcating ones. Also important to consider are

node sizes and, more specifically, how the population is split across different subtrees

in the tree of interest. Let us consider a slightly altered caterpillar topology.

Definition 2.3.5. Let TB be a leafy tree on n leaves. Let every internal node of TB

except for the most distant one from the root have out-degree 2 such that one of its
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Figure 2.7: If we limit our search to leafy trees with equal leaf sizes, the least balanced tree
on a given number of leaves is not necessarily the caterpillar. Pictured are the caterpillar trees
on 6 and 9 leaves, as well as minimally balanced brooms for 6 and 9 leaves, with corresponding
J1 values.

descendants is a leaf, and the other an internal node. Further, let the internal node

most distant from the root have out-degree k. Then we call tree TB a broom tree.

We call the leaves attached to the internal node with the highest out-degree the

broom head, and the remaining leaves are attached to the handle.

A general expression of J1 for this family of trees is then derived.

Proposition 2.3.4. The value of J1 for a broom tree TB on n leaves, of which k

in the broom head is

J1(TB) =
2 (n log2 n− k log2 k + k)

(n+ k)(n− k + 1)
. (2.34)
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Proof.

J1(TB) =
1∑n
l=k l

∑
i∈Ṽ

S∗
i

∑
j∈C(i)

W 1
ij
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i∈Ṽ

S∗
i

∑
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Sj

S∗
i

logd+(i)

Sj

S∗
i
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log2
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i∈Ṽ
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log2
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(
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(
i− 1

i
log2

i

i− 1
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1

i
log2 i

)
+ k

)

=
2
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(
n∑
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(
(i− 1) log2

i

i− 1
+ log2 i

)
+ k

)

=
2
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log2
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=
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(
log2

nn

kk
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)
=

2

(n+ k)(n− k + 1)
(n log2 n− k log2 k + k)

The result of proposition 2.3.4 is directly generalisable in the following way.

Proposition 2.3.5. For a broom tree TBq on n leaves, of which k in the broom

head, such that the sizes of leaves in the head sum to q ∈ R, and the leaves in the

handle all of equal size 1, the value of J1 is

J1(TBq) =
1

(n− k + 1)(q + (n− k)/2)

×

(
q logk q −

(
k∑

i=1

li logk li

)
+ (q + n− k) log2(q + n− k)− q log2 q

)
,

(2.35)

where l1, . . . , lk are the leaf sizes which add up to q.

In figure 2.7 I show that the caterpillar is not the minimally balanced leafy tree
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for a few tree sizes. To take it a step further, consider the following proposition.

Proposition 2.3.6. For leafy trees on n leaves and no linear parts, the caterpillar

minimises J1 iff n < 5.

Proof. Let J1
B(n, k) denote the value of J1 on a broom tree with n leaves, of which

k in the broom head. Then

J1
B(n, 2) =

2n log2 n

(n+ 2)(n− 1)
, (2.36)

J1
B(n, 3) =

2

(n+ 3)(n− 2)
(n log2 n− 3 log2 3 + 3). (2.37)

Consider the case when J1
B(n, 2) < J1

B(n, 3). Plugging in equations (2.36) and (2.37),

we can rearrange the inequality to find

8n log2 n− 6(n2 + n− 2) log2 3 + 6(n2 + n− 2) > 0, (2.38)

which changes sign at 0, 0.667, 1 and 4.168. Setting the first derivative of this ex-

pression to zero

8 log2 n+
8

log 2
− (12n+ 6) log2 3 + 12n+ 6 = 0

we find solutions around n = 0.822 and n = 2.888, the latter of which signifies a

local maximum. Therefore, as n can only take positive integer values, valid solutions

for which the caterpillar is less balanced than the broom with 3 leaves in the broom

head according to the index J1 are 3 and 4, with the k = 3 broom being less balanced

otherwise.

This proposition gives us a threshold for the number of leaves at which the

caterpillar is no longer the minimally balanced tree for the given number of leaves,

which sets J1 apart from conventional balance indices (figure 2.8A). However, I am

yet to prove the following statement.

Conjecture 2.3.2. For leafy trees on n leaves and no linear parts, the tree that

minimises J1 belongs to the broom family.

2.3.6 Behaviour as n → ∞
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I have derived general behaviour of J1 on broom and caterpillar trees for a given

number of leaves n, showing that caterpillar trees are not necessarily minimally

balanced for a given number of leaves. If we let n → ∞, the value of J1 for the

caterpillar from equation (2.33) will behave like

lim
n→∞

J1(TC) =
2 log2 n

n
. (2.39)

As J1 is not limited to trees with equal leaf sizes, there is a threshold we can impose

on the broom tree beyond which the caterpillar is less balanced.

Proposition 2.3.7. Let TB(n) be a broom tree on n leaves such that the leaves on

the handle and head have sizes f and fp respectively, and TC(n) be a caterpillar tree

on n leaves of equal sizes f . Then

J1(TB) > J1(TC) iff p <
1

2
, (2.40)

as n → ∞.

Proof of proposition 2.3.7. Let n → ∞. The the value of J1 for the caterpillar tree

tends to

J1(TC) =
2 log2 n

n
,

and for the broom tree with equally sized leaves of size p in the broom head

J1(TB,p) =
2

n(1− r)(1 + r(2p− 1))
[(r(p− 1) + 1) log2 n(r(p− 1) + 1)− rp log2 nrp] .

We can evaluate the difference between these expressions:

J1(TC)− J1(TB,p) ∼(1− r)(1 + r(2p− 1)) log2 n+ rp log2 nrp

− (r(p− 1) + 1) log2 n(r(p− 1) + 1)

∼((1− r)(1 + r(2p− 1))− (r(p− 1) + 1) + rp) log2 n+ o(log2 n).

The difference is dominated by the term containing log2 n which is always positive.

The term in the brackets preceding it can be negative, however:

(1− r)(1 + r(2p− 1))− r(p− 1) + 1 + rp = r(1− r)(2p− 1).
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As r = k/n, with k the number of leaves in the broom head, it is always positive.

Thus, the expression is negative only when 2p − 1 < 0 or p < 1
2
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Figure 2.9: Values of J1 on trees of different sizes calculated using equation (2.34) for different
values of r = k/n. The dashed lines are at values of r which minimise J1.

For broom trees, the behaviour is a little more complicated and, perhaps, counter-

intuitive (figure 2.9). Consider the following.

Proposition 2.3.8. Let TB(n) be the set of all leafy broom trees with equal leaf sizes

on n leaves, r = k
n where k is the number of leaves in the broom head for a given

tree, and ropt the value of r which minimises J1 for a given n. Then ropt → 1 as

n → ∞.

Proof. Let r = k/n and J1
B(n, r) the value of J1 for a broom tree on n leaves, of

which k in the head. Then

J1 n→∞
=

2

n(1− r)(r + 1)
((r + 1) log2 n(r + 1)− r log2 nr) (2.41)

which is minimised for r → 1.

The proposition says that most leaves on a minimally balanced broom tree will

be concentrated in the head, with comparatively few on the handle, resembling a
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star tree more closely than a caterpillar tree. However, one must take into account

how imbalanced the nodes above the broom head are, since one of their subtrees

contains most of the tree’s leaves, whereas the other is a single leaf. For practical

purposes, the difference between the J1 values of the minimally balanced broom and

the caterpillar for the number of leaves n → ∞ is small and decreases rapidly as n

grows (figure 2.8B, 2.8C).

Finding the true value of k which minimises J1(TB) analytically is difficult.

The derivative with respect to k of equation (2.34) yields a transcendental equation

which is not analytically solvable. I also cannot analytically determine whether

broom trees minimise J1 for a given number of leaves. However, I have exhaustively

checked whether the broom minimises J1 up to 12 leaves — which it does. Beyond

that, the number of possible trees grows too rapidly for a similar verification to be

computationally feasible without an efficient tree generating algorithm for trees with

arbitrary node degree distributions.

2.4 Discussion

The aim of this chapter was to explore deeper analytic properties of the universal

balance index J1 and carve its place in the broader context of tree balance by

extending past results and uncovering new connections.

In the chapter I focussed on trees with uniform branch lengths, as J1 was not

defined with defined branch lengths under consideration. A further generalisation of

metric describing tree properties is therefore the logical next step (Noble & Verity

2023).

I calculated an approximate expectation of J1 under the most common null

models used in evolutionary biology. Having a good approximation for the expected

value of J1 is a crucial result in the development of this index, as it allows us to

employ it in the analysis of evolutionary processes on phylogenetic trees. The next

step in this direction would be to obtain a closed-form solution for the expectation

of J1, as well as its variance.

Finally, I only touched upon directly obtainable relationships without considering

different real-world use cases of the index and the implications of equation (2.9). This

is another avenue of future research as there may exist a relationship between the

way indices vary with time and the underlying evolutionary process growing the
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associated tree.
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Chapter 3

Tracking modes of cancer

evolution in silico via tree

shape indices

3.1 Introduction

A trajectory is a path described by any object (or indeed point) in some space

according to some parameter, usually time. Intuitively then, an evolutionary tra-

jectory refers to the changes that a lineage or population undergoes over time —

the series of genetic, morphological, and behavioral transformations that occur as

organisms evolve and diversify. I am interested in the evolutionary trajectory of

cancers but reliably obtaining time-series data is, at the time of writing, not feasible

at a larger scale. This stems from multiple issues. Firstly, at time of diagnosis, solid

tumours have likely already been growing for long enough to reach a size visible in

standard medical imaging (Patrone et al. 2011). This means that even initial data

obtained in the clinic represents a relatively late stage in the cancer’s evolutionary

history most of the time. Secondly, solid tumours are just that — clumps of cells

organised in some way in space — meaning that taking a sample from one point

in the tumour is not necessarily representative of the rest of the cell population.

Finally, a biopsy is an invasive procedure which can cause considerable discomfort

to patients, depending on where the tumour is situated. Therefore, having a rea-

sonable estimate of a tumours evolutionary trajectory based on the data that is

available at time of sequencing would allow for a more informed treatment strategy.
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This begs the question — how can we distinguish between different ways tumours

evolve? Is it necessary to wade through sequences of genetic data to do so or is it

possible to abstract the key properties of a tumour’s evolutionary trajectory into a

few numerical summaries?

In this chapter, I will examine the utility of two different sets of tree shape indices

for tracking the evolution of tumours on the example of agent-based simulations. By

comparing the trajectories of these indices over time and with respect to each other,

I aim to determine whether different modes of tumour evolution indeed occupy

distinct regions of the index space. As this is a novel approach to condensing the

information contained in cancer phylogenetic trees, inspired by (Noble et al. 2022),

it raises the question of how much data is needed to reliably reproduce the results

in the lab or even in the clinic.

3.2 Preliminaries

3.2.1 Why even bother with indices?

Before introducing the sets of indices used to analyse properties of trees, let us

consider a simpler question — is it possible map the set of all possible trees to

the set of real numbers? For this purpose I had to decide how to define the set

of trees. The number of nodes in a tree is a natural number, n ∈ N, as is the

number of possible tree topologies for a given n. We denote with T (n) the set of

enumerated tree topologies (Nakano 2016). Each node then has a corresponding

size, giving us an n-tuple of real numbers (α1, . . . , αn) ∈ Rn, and each edge (branch)

has a corresponding length or (li, . . . , l(n−1)) ∈ R(n−1). This means we would need

a family of maps

fn : A(n)× Rn × Rn−1 → R. (3.1)

It would be easy to construct a mapping which would allow us to “enumerate”

each possible tree with a real number. The problem with this approach, however,

is that it would not be very informative. The real numbers are not ordered in any

way that would allow us to meaningfully compare trees. The lack of interpretability

would render any application of such a mapping useless. This is where tree shape

indices come in as a way to summarise key properties of a tree in a way that is both
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interpretable and mathematically sound.

3.2.2 A 3-dimensional index space — trees with uniform branch

lengths

Shannon diversity

Shannon entropy is a fundamental concept in information theory, that quantifies the

uncertainty or randomness of a system (Shannon 1948). By considering a system

where diversity represents the variety of elements, such as intra-tumour heterogene-

ity, we can define the Shannon diversity as the exponential of the Shannon entropy,

1D = exp
[
1H
]
= exp

[
−

N∑
i=1

pi log pi

]
, (3.2)

where N is the total number of categories (or elements, species, etc.), and pi

the frequency of category i. The Shannon diversity was chosen because of the

nice property that it is maximised and equal to the number of categories when all

categories are equally represented, and minimised when only one category is present.

Previous work on a similar topic (Noble et al. 2022) was based on the Simpson index

(Simpson 1949). However, the Shannon index was chosen for this work because it

is more sensitive to changes in the frequencies of subclones, better interpretability,

and the fact that the J1 index is based on the Shannon entropy.

Mean number of drivers per cell — distance from the root

Each speciation event in phylogenetics or driver mutation in cancer evolution is as-

sociated with a change in the corresponding tree’s topology. To capture the average

number of these events, I use the mean number of drivers per cell. This is defined

as the average of distances from all nodes to the root (with the root distance from

itself defined as 1) weighted by the frequencies of the subclones,

n =
N∑
i=1

piν(i), (3.3)

where ν(i) is the root distance of node i.
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Balance index

As discussed in chapter 2, the balance index J1 is a weighted average of the evenness

of the population distribution within a tree. We use it as the third index in this

space.

3.2.3 A general set of indices — any rooted tree

Expanding upon the 3-dimensional space defined above, a new comprehensive set of

interpretable robust indices based on Hill numbers was introduced recently (Noble

& Verity 2023). The authors expanded and improved upon the existing quantifiers

of tree shape properties by deriving methods for trees with arbitrary node size, node

degree, and branch length distributions. The methods for calculating all of the

indices are included as part of an R package (Verity 2023).

Each generalised index has three components, depending on which part of the

tree it is applied — the longitudinal mean, node-wise mean, star mean.

Richness — 0D

Richness in the context of phylogenetics is simply the number of extant species,

i.e. the number of tips in a phylogenetic tree. The generalised richness’s three

components are:

1. 0DL — the average number of branches across the tree;

2. 0DN — the average effective outdegree, ignoring branch sizes;

3. 0DS — the effective number of non-root nodes.

Diversity — qD, q > 0

The generalised diversity index represents an extension of the Shannon diversity

index. Its three components are:

1. qDL — the effective number of maximally distant nodes (leaves);

2. qDN — the average effective outdegree, accounting for branch sizes, i.e. bushi-

ness;

3. qDS — the effective numbering of branches, accounting for branch sizes.
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Evenness — qJ , q > 0

Finally, the extension of the robust universal balance index J1, this set of indices

generalises tree balance in the following way:

1. qJL — evenness of branch sizes across the tree, or tree symmetry for leafy and

ultrametric trees;

2. qJN — tree balance, or evenness of the node size distribution;

3. qJS — evenness of all branch sizes.

3.3 Tree resolution

I rejected the idea of simply mapping trees to real numbers due to the lack of inter-

pretability. Tree shape indices are nominally better, as they summarise properties

of a tree, but they may have limitations in the form of a lack of resolution for certain

types of trees.

Starting simple, we examine leafy trees with all leaves of equal size in the 3-

dimensional index space. The first thing to note is that the Shannon diversity will

simply equal the number of leaves in the tree. This already takes away a degree of

freedom. The next thing to consider is the value of J1. If we limit our search, for

now, to perfectly balanced trees, we are left with symmetric trees on a fixed number

of leaves N . To make the final index equal between two trees, they need to have

equal average depths of their leaves. As we are only looking at perfectly symmetric

trees, that means that the average depth will be exactly equal to the individual leaf

depths. We can then show the following

Proposition 3.3.1. Let T be a symmetric leafy tree on N leaves with equal leaf

sizes. If the canonical factorisation of N is

N =

k∏
i=1

αli
i , (3.4)

then there are (∑k
i=1 li

)
!∏k

i=1 li!
(3.5)

distinct trees with the same values of J1, 1D, and n, including T .
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Proof. First, the values of indices J1 and D for a symmetric leafy tree with N

equally-sized leaves are

J1 = 1,

D = N,

n = 1 +
k∑

i=1

li.

The result is then a simple combinatorial problem of placing n− 1 balls (αi’s) into

n− 1 bins, with each αi repeated li times. Therefore, the number of distinct trees is(∑k
i=1 li

)
!∏k

i=1 li!
. (3.6)

This case may be interesting mathematically, but is not too relevant for practical

purposes as it is highly unlikely that sequencing data would yield a perfectly sym-

metric leafy tree. As the space of trees is so large, there is little point in performing

a grid search, especially when arbitrary node sizes are considered. In testing, there

have been no cases of trees with the same values of indices, but different topologies.

This is a good sign, as it means that the indices are able to distinguish between dif-

ferent trees. However, the question remains whether there is a set of indices which

can differentiate between any two trees.

3.4 Computational methods

3.4.1 Agent-based modelling framework - warlock/demon

There is no shortage of agent-based models of tumour evolution (Colyer et al. 2023),

and the can range from purpose-built complex frameworks to more stripped-down

and abstract ones. Since each model should be “as simple as possible but no sim-

pler”, the appropriate framework for our purposes must satisfy certain requirements

— flexibility, efficiency, and reproducibility. The first requirement is deceptively

specific. As the main inspiration behind this work stems from cancer evolution, I

wanted the simulations to have parameters for controlling aspects of the cell pop-

ulation’s physical properties which would in turn imply a different way in which it
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evolves. This would, for example, include spatial arrangement of cells, mutation

rates, migration rates, and selective advantage. Furthermore, while the goal is to

simulate large populations of cells, I also need a large number of simulations over

which more general deterministic properties can be deduced. Stochastic effects could

make vastly different evolutionary modes look more similar than expected in theory.

Finally, reproducibility allows us to share parameters of our models for verification

by peers, and possible further investigation.

The agent-based modelling framework I decided to use is warlock (Bak et al.

2023), a snakemake wrapper written for demon (Noble 2020). It satisfies the require-

ments above, with a few associated comments. Firstly, it is a flexible agent-based

model of tumour evolution as it does have parameters which control for spatial ar-

rangement, mutation rates and selective advantage, as well as migration. While it

is able to simulate spatial structure, demon covers at most two spatial dimensions.

This is not an issue since we approximate the cell population to undergo stochastic

isotropic growth, that is the tumour has equal probability of expanding in all di-

rections in space. This implies approximate spherical symmetry of simulated solid

tumours, which allows us to effectively consider the two-dimensional simulation as a

cross-section of a tumour spheroid. In terms of efficiency, demon was written mainly

in C++, and conceptualised so that instead of tracking individual cells, it simulates

unique cell genotypes on a two-dimensional grid comprised of demes, or well-mixed

patches of cells. The procedure for simulation cell events is based on the Gillespie

algorithm (Gillespie 1977), and follows the steps of selecting a deme, then cell type,

event type, and finally cell genotype. This approach sacrifices micro-scale interac-

tions between cells to benefit efficiency and the feasibility of mathematical analysis

of the model using, for example, diffusion approximations. Finally, all associated

code is free and open source (Noble 2020, Manojlović 2023a, Verity 2023), which al-

lows reproducibility using identical parameters and random seeds. Parameter values

for different batches can be found in appendix A. Each batch of simulations, that

is a distinct set of parameters, was run over 50 replicates distinguished by random

seeds. Plots including individual and average trajectories are included in appendix

A.
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3.4.2 Spatial configurations

The simulations were run for four different spatial configurations of tumour evo-

lution. Due to the difference in parameters, the aim was to have each run reach

the target final population of 106 cells in between 500 and 1000 cell cycle events or

generations. The spatial configurations were as follows:

• Gland fission — the first tumour cell forms the first deme which, once it

reaches a certain size (carrying capacity), splits into two daughter demes. This

process continues until the final population is reached.

• Invasive glandular — the first tumour cell forms the first deme but, as

contrasted with gland fission, the daughter demes are formed by individual

cells migrating away from the parent deme, rather than fission. This process

continues until the final population is reached.

• Non-spatial — no spatial structure is imposed on the tumour, and cells are

well-mixed. This is the simplest spatial model.

• Boundary growth — the simulation tracks individual cells in space, but cells

are only allowed to divide if they are not fully surrounded by other cells.

3.5 Results

Index Description Range

n(T ) Mean number of drivers per cell — effective tree depth [1, N ]

D(T ) Shannon diversity — effective number of types [1, N ]

J1(T ) Balance index — node distribution in the tree [0, 1]
qDL(T ) effective number of leaves [1, N ]
qDN (T ) average effective node outdegree [1, N ]
qDS(T ) effective number of branches, accounting for branch sizes [1, N ]
qJL(T ) evenness of branch sizes [0, 1]
qJN (T ) evenness of node size distribution [0, 1]
qJS(T ) evenness of all branch sizes [0, 1]

Table 3.1: Summary of indices used in this section. N is the number of nodes in tree T .

3.5.1 Trajectories in 3-dimensional index space

As shown in (Noble et al. 2022), using three indices to track the evolutionary trajec-

tory of a tumour can be quite informative. Depending on the choice of parameters,
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the chosen spatial configurations occupy distinct sections of the index space (such

as figure 3.1). This is a good sign, in the “reasonable” parts of parameter space.

However, the question here would be — what are “reasonable” parameters? The

answer to this is not straightforward, as it not only depends on the type of tumour

and its clonal structure, but also varies between patients even within the same type

of cancer. For example, high mutation rates even with low selective advantage could

lead to a tumour expected to follow a roughly branching trajectory to resemble neu-

tral growth (figure 3.2). While I used a different diversity metric from (Noble et al.

2022), the results are consistent with their findindgs. The trajectories in figures 3.1

and 3.2, while averaged over 50 replicates each, still have a considerable amount

of noise. This is due to the stochastic nature of the model, with the same set of

parameters leading to evolutionary trajectories which can differ at certain points in

time (figure 3.3).
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Figure 3.1: The average trajectories in 3-dimensional index space for four different spatial
configurations of tumour progression (gland fission, invasive glandular, non-spatial, and bound-
ary growth) are distinct and their final states (circles) lie in separate regions of index space.
This example is averaged over 50 replicates for each trajectory. Parameters: mutation rate
µ = 10−5, selective advantage s = 0.1.
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Figure 3.2: The average trajectories for a slightly different set of parameters from figure 3.1.
The trajectories and final states are still distinct, with the final states lying in separate regions
of index space. Parameter values: mutation rate µ = 10−4, selective advantage s = 0.05.
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Invasive glandular

Gland fission

Non-spatial

Boundary growth

Figure 3.3: Individual replicates’ trajectories for the parameters used in figure 3.1. While
the shapes of individual trajectories are similar, as expected, there is still a lot of variation
in the time at which the tumour reaches the final population size, leading to noisy average
trajectories.

56



3.5.2 Trajectories in the new index space

As the 3-dimensional index space does not distinguish between topologically identical

trees with different branch lengths, I decided to re-run the analysis on the same set

of simulations using a recently introduced system of indices (Noble & Verity 2023).

Using an early version of the R package for calculating the indices (Verity 2023), I was

able to construct the average trajectories in this new larger index space. However,

bigger is not always better, and there are some redundancies in the new set of

indices. For example, in all cases, the longitudinal and node evenness indices were

highly correlated across runs (figure 3.4). Furthermore, the richness indices were

also correlated with the diversity indices, which is not surprising as the diversity

indices are a generalisation of the richness indices. I will narrow down the the set of

indices to just the diversity indices and one of the evenness indices in this section,

with the full set of trajectories included in appendix A.
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A

B

C

Figure 3.4: Trajectories of different evenness indices encode almost identical information.
Shown above are evenness trajectories for different spatial configurations and sets of parameters
averaged over 50 replicates each. Mutation rate (µ) and selective advantage (s) values:
A — µ = 10−5, s = 0.1; B — µ = 10−4, s = 0.05; C — µ = 10−6, s = 0.2.
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During the analysis, I found that patterns observed in the new index space are

similar to those of the old set of indices. Spatial configurations tended to separate

into their own sections of the index space, with overlap present depending on the

choice of parameters. This is not surprising, as the new set of indices is a generalised

version of the old one. The main difference between the new and old trajectories is

the amount of noise present in the new set, even when the outputs are averaged over

multiple runs. This is likely due, in part, to the inclusion of branch lengths in the

new set of indices, which may vary greatly between runs. The trajectories for the

same data sets as above are shown in figures 3.5 and 3.6. An example of trajectories

of each individual replicate is shown in figure 3.7, with other spatial configurations’

figures included in appendix A. The reason for the noise in the new set of indices is

the same as in the old, as the same data was used in the analysis — there is a lot of

variation in the time at which the tumour reaches the final population size.
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Figure 3.5: Introducing more dimensions to the index space does not change the broad
conclusions of the analysis. The average trajectories are distinct between spatial configurations,
with the final states lying in separate regions of index space. Parameters: mutation rate
µ = 10−5, selective advantage s = 0.1.
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Figure 3.6: Changing the key parameters in the new index space has a similar effect to the
old one. The trajectories and final states are still distinct, with the final states lying in separate
regions of index space. Parameters: mutation rate µ = 10−4, selective advantage s = 0.05.
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Figure 3.7: Individual replicates’ index trajectories of invasive glandular expansion for the
parameters used in figure 3.5. As before, there is a lot of variation in the time at which the
tumour reaches the final population size, leading to noisy average trajectories.
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3.6 Discussion

In this chapter I examined two sets of tree shape indices for tracking the mode of tu-

mour evolution on the example of agent-based simulations. The results suggest that

the indices are able to distinguish between different modes of evolution depending on

parameter choice, but that further work is needed to establish ranges of parameter

values which are useful. While a moderate mutation rate and weak selection seem

to be a good starting point, applying the indices to real data should be the next step

in order to validate the approach. Furthermore, the new set of indices introduced

in (Noble & Verity 2023) is more informative due to its inclusion of branch lengths,

but also contains some redundancy as pairs of indices can display high correlation

across runs. This redundancy may not necessarily be present in all individual sim-

ulations, but averaging even a few dozen runs shows that pairs of indices encode

similar information. However, in individual runs, this behaviour is not always the

case. For this reason, further work is needed to develop mathematically sound meth-

ods for the comparison of individually simulated trajectories. This would allow for

data analysis focussed on what could be called “typical” behaviour, rather than the

average of a large number of replicates, which would further take advantage of the

stochastic nature of the model. This would also address the stochasticity resulting

from individual runs, as I propose developing

The new index set is, as the name suggests, new, and there are still some technical

wrinkles to iron out. Namely, large trees with many nodes and branches can take a

long time to calculate, as the indices from the set are more complex than the old ones.

Additionally, there is a precision issue which arises when some of the smallest nodes

are included in the tree. This is easily resolved by employing a similar approach

as in 1.2, which effectively simulates sampling error. Finally, the R package itself

does not directly support the data structure used in the modelling workflow. The

conversion, which was purpose-written for this work, may also contribute to the

aforementioned technical difficulties. Standardising the data types in a future study

would improve the efficiency of the analysis, and possibly reduce the amount of noise

between simulated time points.

The main contribution of this chapter is the exploration of different sets of in-

dices, not just over time, but in relation to each other. The first time a similar

approach was used was in (Noble et al. 2022), and here I expanded the analysis to
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a new set of indices. Additionally, in the context of the new index set, I was able

to expand the discussion to include larger trees than previously analysed with the

indices (Noble & Verity 2023). This is important as the typical cancer phylogeny

may not have thousands of nodes, but there are other applications of large trees

which could benefit from this method. Recently, there has been work considering

a similar approach for the classification of evolutionary processes in biogeography,

which further supports the utility of the indices (Freitas et al. 2024). Personally,

I am most interested in how this approach would fare when applied to time series

data of real cancer cell populations. Unfortunately, such data is rare and difficult,

but not impossible (Salehi et al. 2021), to generate.

Having focussed on numerical summaries of the ABM outputs, I also believe

that there may be a way to heuristically derive approximate general properties of a

tumour’s evolutionary trajectory. This could be done by deriving equations for the

simplest evolutionary trajectories, such as progressive selective sweeps which follow

a cycloid in the n,D-plane in the 3-dimensional index space. Additionally, as my

main focus in this chapter has been the generation, processing, and visualisation

of synthetic cancer data, there is a good scope for the application of more novel

statistical learning methods to the data, such as evolutionary simulation (Herald

et al. 2022), or deep learning
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Chapter 4

Agent-based model of

fluctuating methylation arrays

in growing fragmented cancer

cell populations

4.1 Introduction

In chapter 3, I used a general spatial agent-based model to investigate broad evo-

lutionary patterns as related to spatial organisation. While the model was capable

of simulating the dynamics of tumour growth, its utility is limited by the computa-

tional cost of simulating a large number of cells. This means that using the model’s

outputs in comparison to or to draw inference from real data is not feasible, as real

tumours have billions of cells.

There are a few ways to address this issue. For example, rather than simulating

all clones in a tumour, one could take the approach of (Sottoriva et al. 2015) and

use demes (tumour glands) as the principal agent of our simulation. This would

allow for a realistically-sized tumour to be generated as the number of glands would

be around the right order of magnitude. A problem with this approach is that it

loses resolution since a gland’s population is assumed to be clonal, undergoing rapid

fixation in the case of an emerging mutant. If one wanted to study evolutionary

dynamics on a finer scale it would be necessary to at least simulate the dynamics of

cell lineages, if not individual cells, as performed earlier.
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The first effort to model clonal dynamics of cells based on fluctuating methylation

clocks (FMCs) was made in (Gabbutt et al. 2022). Working with colon and small

intestine samples, the authors found that somatic cell birth and death dynamics are

measurable based on the FMCs, and began transferring this knowledge to the context

of cancer. In (Gabbutt et al. 2023), the authors employ a stochastic model for an

expanding cell population to model the behaviour of fluctuating CpG sites in blood

cancers. The model is capable of simulating the dynamics and the corresponding

fluctuating methylation arrays of lymphoid malignancies at scale. However, this

model is not spatially explicit, which is a feature that has to be distinguished between

different glands in a solid tumour. In this chapter, I present a purpose-written

agent-based model, methdemon, which reduces the computational cost of simulating a

tumour’s growth and models the fluctuating methylation arrays in colorectal cancer.

4.1.1 Fluctuating methylation arrays

As mathematicians new to biology quickly learn, perfectly clean data containing

detailed information about the population structure of a tumour is non-existent. In

fact, most data is noisy and at best measures a decent proxy for the properties which

can be described by a mathematical model. Therefore, one learns very quickly to

adapt their thinking when working with biological data. Specifically, when it comes

to cancer, a compromise has to be made between resolution and scale. Where single-

cell data can provide a detailed view of the mutations accumulated in the genome,

it is not feasible to obtain it for a whole tumour. On the other hand, bulk data gives

a high-level view of the tumour’s population structure, but a lot of the details get

lost in the process.

However, DNA sequencing is not the only way to obtain information about a

tumour’s population structure. Early work with methylation arrays in colorectal

cancer has shown potential for inferring the ancestry and age of a tumour (Hong

et al. 2010, Siegmund et al. 2011). In a way the genome shows more mutations

in older populations, methylation arrays will also be more diverse as time goes on.

Current techniques allow for the sequencing of some 850, 000 CpG sites which, while

a small fraction of the genome, is still enough to proide valuable insight into the

underlying dynamics of the cell population. Initial studies on methylation as a

tracker of evolution made use of the whole array (Siegmund et al. 2008, Sottoriva

& Tavaré 2010). However, more recent work has shown that just a small subset of
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CpG sites is enough to infer the evolutionary dynamics of a cell population (Gabbutt

et al. 2022, 2023). This is the set of fluctuating CpG (fCpG) loci, which is also the

topics of chapter 5.

As fCpG loci seem to be a neutral marker of cell population dynamics, I will

define the following set of assumptions for modelling their behaviour:

(i) Each cell has a corresponding fCpG array inherited from its parent

cell.

(ii) Upon cell division, each methylated fCpG site has an independent

and equal probability of being demethylated, and vice-versa.

(iii) The rates of methylation and demethylation do not change over time.

These assumptions are based on the findings of (Gabbutt et al. 2022, 2023).

4.1.2 A comment on using existing models

As discussed in section 1.3, it is preferable to use established frameworks and mod-

els for simulating tumour growth and evolution. Therefore, with the assumptions

outlined in the previous section, my initial approach was to employ a general agent-

based model with small modifications, to simulate the behaviour of fCpG loci in

cancer. The first model I considered was demon, with which I had already worked in

chapter 3, as its light weight and reasonable wall times (total execution time) had

shown promise. A naive approach to simulating methylation arrays is to use the

model’s passenger mutations as a proxy for epigenetic changes. This way, the model

could be run as usual with modified passenger mutation rates, and methylation ar-

rays could be assigned to the cells post-hoc. The main issue with this approach

is memory management, as the output files tend to be large and thus difficult to

handle in the post-processing steps. This meant that applying any sort of inference

workflow would take a long time, making the approach impractical. This stands for

other SABMs as well, due to the amount of data produced when simulating a whole

tumour’s growth.
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4.2 An ABM of fluctuating methylation arrays in can-

cer

To tackle the issue of models generating too much unused data, I wrote a new ABM,

methdemon, capable of simulating a growing cell population and their corresponding

fCpG arrays. The model can be run as a well-mixed population expansion, or in a

1D spatial setting, with the latter being relevant in the case of multi-site sequencing

of a tumour spheroid. The model is written in C++, with an emphasis on execution

time and dynamic memory management.

4.2.1 Model structure

Inspired by the demon model, event scheduling happens according to the Gillespie

algorithm, with a deme being chosen first, followed by a cell within that deme.

Events are then chosen based on the sum of rates in the tumour, between cell birth,

cell death, and deme fission. Upon cell division, both the parent and daughter cells

have the same probability of acquiring a driver mutation, and each cell’s fCpG array

is updated according to the rules outlined in the previous section. A list of relevant

model parameters is given in table 4.1, with source code and examples available in

the model’s github repository (Manojlović 2023b). Consider a tumour consisting

Parameter Description Units

deme carrying capacity The maximum number
of cells in a gland

cell

init migration rate The probability of a
gland undergoing fission

cell−1(cell division)−1

mu driver birth The probability of a cell
acquiring a driver muta-
tion

cell−1(cell division)−1

s driver birth The selective advantage
of a mutant cell

n/a

meth rate The probability of an
unmethylated fCpG site
changing state

(cell div)−1(fCpG site)−1

demeth rate The probability of a
methylated fCpG site
changing state

(cell div)−1(fCpG site)−1

Table 4.1: Parameters used in the methdemon model.

of N demes at the end of growth. Each deme, during growth, has a probability

p of undergoing fission, and the final mean number of fissions per deme is log2N .

68



Further, the expected number of descendant demes of deme i is given by

Ni

N
=

(2pt)i

i!
e−2pt, (4.1)

i.e. the Poisson distribution with mean 2pt, as derived in (Kharlamov 1969). This

condition governs how fissions are handled in the model. As a real tumour can consist

of millions of glands, the model narrows the focus to the subset of demes sequenced at

the end of growth. Fissions which produce untracked demes, untracked fissions from

here, are the main way of accumulating fission events in a deme. Each untracked fis-

sion simply discards half of the deme’s population, stochastically rounded. Tracked

fissions are implemented by assigning a probability to each fission event of being

tracked (figure 4.1), equal to

ϕ =
p

E[fissions per deme]/2
. (4.2)

By using this discrete uniform distribution, I ensure that the expected number

of fissions before a tracked fission event in a deme is about half of the mean total

number of fissions. Were the individual probabilities equal to 1/E[fissions per deme],

the expected number of fission events before a tracked fission would be equal to

E[fissions per deme]. This would, on average, lead to a lot of simulations with the

mean number of fissions considerably above the target value. Ignoring untracked

fissions, this is equivalent to having a fission rate of p × ϕ. Untracked fissions are

important, however, not just for the purpose of tracking the mean number of fission

events, but also for population dynamics of the demes. Depending on the deme

carrying capacity, that is the maximum number of cells in a deme, and mutation

and epimutation rates, a fission can impact the population structure of a deme in

different ways. Let K be the carrying capacity of a deme, µ the driver mutation rate,

γ the epimutation rate, and L the number of fCpG sites per cell (assuming equal

methylation and demethylation rates for simplicity). Upon fission, the population

of the deme is divided into two, and there need to be K/2 cell division events before

the deme is back to its carrying capacity. The expected number of mutations is then

simply K/2×µ, and the expected number of epimutations is K/2×γ×L. Depending

on the rates, these numbers can be quite different. Realistically, the number of driver

mutations during repopulation of a deme is likely negligible. While epimutations are

69



Figure 4.1: A toy example of how fissions are handled in the model. The red branches
represent tracked fissions, and the grey branches are hypothetical untracked fissions occurring
under a regular branching process.

more probable, fCpG arrays are inherited with a high degree of fidelity, and the fCpG

distribution in a deme post-fission will resemble the state just before. When a deme

is at carrying capacity, its dynamics are equivalent to a Moran process, meaning the

probability of neutral fixation for a mutant population of m in a deme of carrying

capacity K is equal to m/K, ignoring fissions. However, as cells grow into empty

space post-fission until carrying capcity is reached, fissions increase the probability

of neutral fixation at smaller deme sizes as they will offset some of the effects of

genetic drift which is more pronounced at smaller population sizes.

4.2.2 Stopping conditions

When simulating the whole tumour, imposing a stopping condition based on the

total cell population is one of the most straightforward ways to end the simulation.
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However, as this model is focussed on a subset of relevant cells, I decided on a few

different options for stopping conditions. If the model is run in the non-spatial set-

ting, the simulation can be terminated after a maximum number of cells is reached.

In the spatial setting, more concretely in the case of deme fission, the main indicator

of a tumour’s growth is the mean number of fissions per deme. This condition is

based on the assumption that a tumour’s progression by fission is equivalent to a

birth-only branching process, similar to the model of (Sottoriva et al. 2015). The

model also has the option of simulating steady-state turnover of cells in the simu-

lated demes after the initial growth phase. This is an approximation of a saturation

growth regime, as real tumours are not expected to grow indefinitely.

4.2.3 Sensitivity analysis

To check whether the model’s behaviour is consistent with the expectations, I wrote

a snakemake workflow to test many combinations of the parameters from table 4.1.

The code is available at the github repository for the workflow, walter (Manojlović

2024). A summary of the results is shown in figures 4.2, and 4.3, 4.4, and 4.5.

Further details are included in the appendix.

Carrying capacity

By carrying capacity, I mean the maximum number of cells with proliferative po-

tential in a gland. This is effectively equivalent to the maximum number of lineages

allowed in the gland. A more likely situation is that some of the simulated cells

are closely related. The could be considered as cancer stem, i.e. cells with infinite

proliferative potential which maintain the population of a cancer gland. I considered

three different carrying capacities: 10, 100, and 1000. A real tumour gland contains

about 105 cells, but the current understanding of how colorectal cancer evolves sug-

gests that not all of them are able to divide indefinitely, rather following a similar

hierarchical structure to real colonic crypts (Cernat et al. 2014). The results follow

intuition: higher carrying capacity leads to less likelihood of neutral fixation but

also more diversity in the presence of selection.

Fission rate

The fission rate in this model is tracked per cell, with a gland’s fission rate being the

sum of the fission rates of all cells in the gland. In testing, I considered per cell fission
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rates of 10−5, 10−4, and 10−3. As a consequence, the per deme fission rates ranged

from 10−4 to 1. This led to a complication in the form of unfinished simulations, as

with too low of a fission rate, the first deme never splits and the simulation never

ends. This is important to note when choosing priors in the ABC workflow. As we

only consider tumours which have grown in a reasonable time, the prior distribution

of fission rates will be chosen with the carrying capacity taken into account. The

results, as expected, show that tumours with a higher fission rate grow faster than

those with a lower fission rate. Further, fCpG array diversity depends on the fission

rate, epigenetic switching rates and the carrying capacity, as a high fission rate for

smaller demes can still produce a diverse array with a high epimutation rate, where

slower fissions still lead to a diverse array with a relatively low epimutation rate.

Driver mutation rate and selective advantage

The driver mutation rate is the probability of a cell acquiring a driver mutation upon

division. The selective advantage is the proliferative advantage of cells carrying a

driver mutation. In testing, I considered driver mutation rates of 10−5, 10−4, and

10−3, and selective advantages of 0, 0.1, and 1. For larger deme sizes, the presence

of selection seems to lead to more desynchronised arrays than the neutral case, as

neutral fixation is less likely. However, at very strong selection, array diversity again

decreases as the mutant quickly fixes in the population. Higher mutation rates lead

to more diverse arrays, but an overly high mutation rate leads to the emergence of

many mutants, effectively voiding the effect of selection in some cases due to clonal

interference.

Epimutation rates

The epimutation rates are the probabilities of a fCpG site changing state upon

cell division. These events may not necessarily be constrained to division events in

reality. In fact, models developed in (Gabbutt et al. 2022, 2023) consider epimutation

events independent from divisions. For the purpose of this model, I have chosen to

keep the epimutation rates tied to cell division as it simplifies the assignment of

parameters and maintains the temporal units of cell division−1.

In testing, I considered epimutation rates of 10−5, 10−4, and 10−3. The results

are consistent with the findings of (Gabbutt et al. 2022), where too slow switching

means less diversity, too fast means complete desynchronisation and regression to a
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normal distribution around 0.5.
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Figure 4.2: Epigenetic mutation rates and strength of selection impact the fCpG distribution
within a gland. x-axis: selective advantage of driver mutations from neutral to weak (s = 0.1)
to strong (s = 0.5). Strong selection leads to clonal interference and fewer dominant lineages,
reflected in the peaks between 0 and 0.5, and 0.5 and 1. Neutral and weak selection have similar
signatures in the simulations, with small intermediate peaks emerging occasionally due to the
stochastic nature of the model and the probability of neutral fixation. y-axis: epimutation
rates from slowest (10−4) to medium (10−3) to fastest (10−2). Slower switching shows very
little deviation from the progenitor cell’s fCpG array, while too fast switching makes the fCpG
distribution tend to a Gaussian around 0.5.
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Figure 4.3: Slower fission rates lead to more different fCpG arrays across the sides of the
simulated tumour. diagonal: Histograms of each gland’s fCpG array at the end of the simu-
lation. above diagonal: Pairwise scatter plots of the glands’ fCpG arrays. below diagonal:
Pairwise 2D histograms of the scatter plots showing the density of points.
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Figure 4.4: Increasing the fission rate leads to more closely related fCpG arrays.
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Figure 4.5: Too high a fission rate leads to much less time spent in independent turnover,
and thus the most closely related fCpG arrays.
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Figure 4.6: High driver mutation rate and strong selection can “compensate” for fast fission
rates, leading to slightly more diverse fCpG arrays. While not necessarily a realistic scenario
in a real tumour, this example shows how different parts of parameter space can lead to similar
results.
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4.2.4 Efficiency and memory requirements

Apart from standard C++ libraries, the model makes use of the boost library for

random number generation and reading in parameters from a config file.

Time complexity

The model’s time complexity is dominated by the fCpG array updates, both in in-

dividual calls and demes. Each fCpG site has an independent probability of flipping

upon division. This means that, if a cell has L fCpG loci, each time a cell division

occurs 2L random numbers have to be generated. Consider a tumour consisting of

N demes, each with a carrying capacity of K, and with a target of F mean fissions

per deme. If the fission rate per cell is ϕ, the expected number of cell births before

fission is 1/ϕ. The time complexity of the model is then

O(F ×N ×K × L× ϕ−1). (4.3)

Memory usage

The bulk of the program’s memory usage comes from the tracking of each cell’s and

deme’s fCpG array, with other memory usage being negligible in comparison. A

cell’s fCpG array is a 1× 2L vector of integers, where L is the number of fCpG loci

per cell. A deme’s fCpG array is a 1 × L vector of floats, calculated as the average

of the fCpG arrays of all cells in the deme. For a tumour of N demes, each with

a carrying capacity of K, the total memory used by the program is approximately

2NKL× 4bytes +NL× 4bytes, for a total memory complexity of

θ(NKL). (4.4)

Output files

The model writes to at least one csv file, and at most two. The compulsory file

contains essential information about the simulated demes and is written at the end

of the simulation or every 10 generations. This file consists of the columns:

• Generation - time of writing the row

• Deme - unique identifier of the deme
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• Parent - unique identifier of the parent deme

• Population - number of cells in the deme at time of writing

• OriginTime - time of the deme’s birth

• AverageArray - the average fCpG array of the deme at time of writing

The other file contains information about all cells in the simulation and is written

every 10 generations. This file can be quite large, depending on deme size, and is

not necessary for the inference workflow described in the next section.

4.3 ABC workflow for inferring methdemon parameters

4.3.1 Overview

For black-box simulations, likelihood-free inference is the most popular method of

parameter estimation. Of these, ABC is preferred by most judging by its represen-

tation in the literature (Tavare et al. 1997, Sottoriva & Tavaré 2010, Sottoriva et al.

2015, Wang et al. 2024, Bondi et al. 2023). In its most basic form, ABC is a rejection

algorithm which draws parameter values from a prior distribution, simulates data

using a given model, and compares the simulated data to the observed data. If the

distance between the two is less than a given threshold, the parameter values are

accepted. This is repeated until a sufficient number of accepted parameter values

is obtained. The main issue with this approach is that a completely random search

of the parameter space is not efficient, and the number of simulations required to

obtain a sufficient number of accepted parameter values blows up as the dimension

of the parameter space increases. To address this, the pyabc package was developed

(Klinger et al. 2018, Schälte et al. 2022). The package uses a sequential Monte

Carlo algorithm to sample the parameter space, with the option of using dynamic

sampling, thresholds and particle population sizes for improved efficiency. I decided

to use this package for the inference workflow because of its robust implementation

and intuitive communication with high-performance infrastructure, such as the City,

University of London’s cluster, Hyperion.

While ABC is a powerful tool for complex models, it is limited by the way data is

compared to simulation outputs. This includes using a summary statistic to reduce

the dimensionality of the data and summarise the most important features of the

79



output. This also minimises the computational cost of the comparison step of the

workflow. Further, the choice of summary statistic can introduce a bias, as does

the non-zero tolerance threshold. The bias can be reduced with a smaller threshold,

but this increases the overall complexity of the workflow as more simulations are

required to obtain a sufficient number of accepted parameter values. Additionally,

it is difficult to say whether any bias observed during the inference is due to the

inference method or the model itself.

4.3.2 Distance functions

In the case of the methdemonmodel, the relevant output data is a set of average fCpG

arrays, one for each deme, at the end of the simulation. As the fCpG sites fluctuate

independently and stochastically, considering the absolute value of individual fCpG

loci is not meaningful. Instead, my focus is on the way arrays differ from each other

at the end of growth. There are two parts to this approach.

Inter-gland distance matrix

To reduce the dimensionality of a single tumour’s output, I have defined the inter-

gland distance matrix as a pairwise distance matrix of the average fCpG arrays of

the demes.

Definition 4.3.1. Let a simulated tumour consist of N demes, with the array of

deme i given by ai. The inter-gland distance matrix is then defined as

Dij =
1

L

L∑
k=1

(aki − akj )
2, (4.5)

where L is the number of fCpG sites in the array.

The idea behind this distance matrix is to emphasise larger differences between

sites, and reduce the impact of small differences. This is done to mitigate the impact

of the noise when comparing the arrays. To compare two distance matrices, I use

the Frobenius norm of their difference.

Definition 4.3.2. The distance between two inter-gland distance matrices is defined

as

δ(D1, D2) = ∥D1 −D2∥F /
√
2 =

1

2

N∑
i=1

N∑
j=1

a2ij

 1
2

, (4.6)

80



where aij is the element of the difference matrix D1 −D2 at the i-th row and j-th

column. The factor of
√
2 is included to account for the fact that the matrix is

symmetric, and therefore each pairwise distance is counted twice.

Distance of fCpG distributions

While the inter-gland distance matrix is an overall measure of the differeces between

two tumours, having independent methylation and demethylation rates means that

the fCpG distribution in a deme can be skewed in different ways. To make sure that

the model is capable of capturing the right relationship between methylation and

demethylation rates, I also compare individual demes’ fCpG distributions using the

Wasserstein distance (or the Kantorovich-Rubinstein metric) (Kantorovich 1960):

Definition 4.3.3. The Kantorovich-Rubinstein or Wasserstein distance between

two probability distributions P and Q is defined as

W (P,Q) = inf
γ∈Π(P,Q)

∫
R2

d(x, y)γ(x, y)dxdy, (4.7)

where Π(P,Q) is the set of all joint distributions with marginals P and Q, and

d(x, y) is the distance between x and y.

Intuitively, the Wasserstein distance is the minimum cost of transforming one

distribution into another.

4.3.3 Example inference

To demonstrate the utility of the methdemon model and the ABC workflow, I have

performed an example inference using synthetic data generated from the model.

The simulated tumour consists of 8 demes, each with a carrying capacity of 100.

The ground truth parameter values and the prior and posterior distribution of the

parameters are shown in table 4.2. The inference was performed over 3 generations

Parameter Ground truth Prior Posterior (mean±std dev)

Demethylation rate 0.0018 U [0, 0.5] 0.0091± 0.0046

Methylation rate 0.0022 U [0, 0.5] 0.010± 0.005

Fission rate per cell 0.009 U [0.001, 0.1] 0.056± 0.02

Driver mutation rate 0.0001 U [0, 0.01] 0.0044± 0.0027

Selective advantage 0.1 U [0, 0.5] 0.31± 0.12

Table 4.2: Broad priors lead to acceptance of multiple parts of parameter space, resulting in
broad posterior distributions.
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using 200 particles per generation, with a dynamic tolerance threshold calculated

using the SilkOptimalEpsilonmethod in the pyabc package. The prior distribution

of the parameters was chosen to be uniform and broad. The results of the inference

are shown in figure 4.7.

Figure 4.7: Results of the example inference of the methdemon model. The ground truth
parameter values are shown as dotted vertical lines in the plots on the diagonal. Posterior
distributions of the epigenetic mutation rates narrow down close to the ground truth values,
but other parameters’ posteriors remain broad.
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The results show a few interesting things. Firstly, the posterior distribution of

the epimutation rates has narrowed down to a small range, close to the ground truth

values. This is likely due to the way in which epimutation rates are expressed in

the fCpG array - too fast and the distribution becomes Gaussian, too slow and few

changes occur. The Wasserstein distance favours simulations with a similar bias to

the observed data, meaning that the ratio of the two is likely to stay preserved.

Additionally, the magnitude of the epimutation rates is encoded in the inter-gland

distance matrices in a similar way to the individual deme fCpG distributions, with

the difference between glands being more pronounced close to the sweet-spot of the

rates.

The posterior distributions of the other three parameters are less informative,

as they have remained broad. This could be the case for a few reasons. Firstly, the

data itself could be uninformative, meaning that the model is not capable of cap-

turing the relationship between the input parameters and the output data. Despite

prior testing showing that the outputs are sensitive to the input parameters, this

is a complex model and it is possible that the relationship between the parameters

and the output data is not straightforward. For example, a slowly growing tumour

(lower fission rate) with no to weak selection and a moderate mutation rate could

produce similar outputs to a fast-growing tumour with strong selection and a high

mutation rate. This is not a problem with the model, but a feature of the tumour’s

growth dynamics. The priors in this test were chosen to be broad, covering both re-

alistic and unrealistic behaviour of cancer. According to mathematical models, weak

selection or effectively neutral dynamics fit the growth of many tumours (Williams

et al. 2016). Secondly, the distance between observed and simulated data could be

uninformative. The choice of summary statistics was a natural one, but it is possible

that weaker signatures in the data are not captured by the distance metrics. This is

a common problem in ABC, and is usually addressed by refining the rejection step,

in addition to a more informative prior. Finally, having multiple possible parameter

combinations which produce similar outputs could lead to a broad posterior distri-

bution. This is an issue commonly debated in the literature, as selection is difficult

to quantify in real tumour data. None the less, the results of the example inference

are useful in that they show the ability of ABC to narrow down at least parts of the

parameter space even in the case of broad priors in a complex model.
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4.4 Discussion

In this chapter, I presented a novel agent-based model, methdemon, which is capable

of simulating the growth of a tumour and the corresponding fluctuating methylation

arrays. The model is developed with efficiency and dynamic memory management

in mind, and is based on well-established models of tumour growth and evolution.

The model is capable of simulating the growth of a tumour in a reasonable time,

and the outputs are sensitive to the input parameters to varying degrees. However,

the simplifying assumptions made should be put to the test in future work, such as

epimutations being possible only at cell division. An example of this could be using

tau leaping instead of the Gillespie algorithm for event scheduling in the simulations,

as its units of time are not necessarily tied to the cell cycle.

I also developed and tested an ABC workflow for inferring the parameters of the

model from observed data. The inference workflow is capable of narrowing down the

parameter space, and the results of a toy model inference show important features

which need to be addressed when expanding the discussion to real data. As is often

the case with ABC, the inference workflow can be hindered by the choice of overly

broad priors. Therefore, an informative prior distribution should be chosen when

considering real data.

84



Chapter 5

Modelling colorectal cancer

methylation data with methdemon

5.1 Introduction

The main motivation for the development of methdemon is to infer evolutionary

properties of colorectal cancer (CRC) from methylation data. CRC is the third most

common cancer worldwide, with over 40000 new cases diagnosed in the UK each year

on average (Bowel cancer statistics 2015). The scale of this issue is not the only

motivating factor, as insights into the evolutionary dynamics of colorectal cancer

could lead to the better understanding of how other adenocarcinomas progress. CRC

is characterised by the accumulation of genetic and epigenetic mutations in colonic

cells (Fleming et al. 2012). The most common type of CRC is adenocarcinoma,

which arises from the epithelial cells lining the colon, covering the majority of cases.

The tumour forms hierarchical cell structures similar to those of normal tissue,

organising into crypt-like glands (Ponz de Leon & Di Gregorio 2001). The tumour

spreads by the process of gland fission (Preston et al. 2003), which is similar to the

branching processes seen in normal crypts (Almet et al. 2018).

In this chapter, I will use the inference workflow introduced in chapter 4 to infer

evolutionary properties of colorectal cancer from methylation data. My approach,

similar to that of (Gabbutt et al. 2022, 2023), is not the first investigation of whether

methylation arrays can uncover evolutionary properties of colorectal cancer, as there

have been efforts to infer strength of selection (Siegmund et al. 2011) and the evo-

lutionary history (Hong et al. 2010) of the primary tumour. The model presented

85



in chapter 4 is informed by the assumptions used in these works, as well as other

recent models of colorectal cancer evolution and progression.

5.2 Data collection

The data used in this study were provided by Dr Darryl Shibata from the Keck

School of Medicine at the University of Southern California. The data consist of

DNA methylation arrays sequenced from multiple glands within colorectal tumours

post-surgery. All samples are anonymised. The arrays were obtained from bulk

samples of tumour glands, which means that the data are nominally not single-

cell resolved. Each tumour sample consists of 8 glands, with each gland’s array

containing some 850000 CpG sites. The arrays were obtained using the Illumina

Infinium MethylationEPIC BeadChip array. The data were pre-processed by Dr

Shibata to remove low-quality samples and normalise the arrays. The sample purity

was high, with the vast majority of cells in the samples being tumour cells.

5.3 Results

5.3.1 Identification of fCpG loci in colorectal cancer

The first step in the analysis was to identify the fCpG loci in the data. As multiple

samples come from the same tumour, a larger cohort of samples is needed to reli-

ably identify fCpG loci using the methods described by (Gabbutt et al. 2023), i.e.

isolating a set of CpG loci which are the least informative about the methylation

state across the cohort. Dr Gabbutt ran the analysis on colorectal cancer data from

the Cancer Genome Atlas (TCGA) and identified 1258 fCpG loci. For comparison,

I ran a similar analysis only on the data provided by Dr Shibata and identified a set

of some 950 loci. Of these, only 120 were common to both sets. The discrepancy is

likely due to the small sample size of the data provided by Dr Shibata. The fCpG

loci identified in one of the samples are shown in figure 5.1, with additional figures

in appendix B.

5.3.2 Spatial proximity predicts similarity between fCpG arrays

With the assumed hierarchical structure of the tumour in mind, it should make

sense intuitively that glands which are spatially close to each other likely diverged
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Figure 5.1: Visualisation of the set of fCpGs for tumour samples from patient S. diagonal
— histograms of fCpG arrays for each gland; above diagonal — scatter plots of correlations
between glands; below diagonal — 2D histograms of the above-diagonal plots, showing the
density of points.

more recently than glands which are further apart. As a result, they have spent

less time evolving independently and should have more similar fCpG arrays. To

test this hypothesis, I calculated the inter-gland distance matrix for each tumour

sample. The resulting matrices show a clear correlation between side and distance

values. The distance matrix for one of the samples is shown in figure 5.2 for tumour

S, and in appendix B for the other samples.

5.3.3 Development of the methdemon model

The methdemonmodel was developed for the purpose of simulating the data provided

by Dr Shibata. The model’s assumptions are based on the general understanding

of colorectal cancer evolution and, translated into the language of an agent-based
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Figure 5.2: The inter-gland distance matrix for tumour S. The distance values are, broadly
speaking, higher between distant glands than ones from the same side of the tumour (A or B).

model, are as follows:

(i) A single cell forms the first gland and initiates tumour growth. This

assumption skips over the process of tumorigenesis, during which a cell accu-

mulates mutations and becomes malignant (Tariq & Ghias 2016). This is a

simplification to be sure, but a reasonable one, given that the focus of this

work is on the evolutionary dynamics of the tumour rather than its initiation.

(ii) The rate of driver mutations is Poisson distributed and identical for

all cells. This assumption is consistent with most models of tumour evolution

(Metzcar et al. 2019, Niida et al. 2021).

(iii) The cell population within a gland grows exponentially and is well-

mixed. While not necessarily consistent with the biology of a solid tumour,

this assumption allows for more efficiency in the simulation as opposed to
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a multi-level spatial model. Further, as the data discussed in chapter 5 is

obtained from bulk samples of tumour glands, this assumption is not unrea-

sonable.

(iv) Once a gland reaches a certain size, which we call the carrying ca-

pacity, the population undergoes steady-state turnover according to

the Moran process.

(v) At carrying capacity, a gland has a certain probability of undergoing

fission, which splits the gland’s population randomly into two. As

a consequence of assumption (iii), fissions do not take into account a gland’s

spatial organisation.

(vi) Gland fission occurs as a neutral spatial branching process. The pre-

vious two assumptions and this one together form the basis of the model’s

spatial dynamics. While there are other mechanisms of colorectal adenocarci-

noma progression, gland fission is the principal way in which the tumour grows

(Preston et al. 2003). The assumption of neutrality in the spatial branching

process is consistent with the findings of (Sottoriva et al. 2015). Additionally,

this assumption is based on the fact that the data used in this study only

contains information about whether a gland was sample from side A or B,

without any further spatial information other than the approximate size of the

full tumour.

5.3.4 Higher deme carrying capacity requires stronger selection to

recapitulate the data

To begin the analysis of cancer data using the methdemon model, I tested the ranges

of parameters based on the assumption that each cancer cell has infinite proliferative

potential. This would mean setting the carrying capacity of a gland to about 10000

cells, which is consistent with the size of the glands in the literature (Sottoriva

et al. 2015) and our data. Due to the glandular structure of the tumour, this is

an effectively neutral model, as selection acts within glands but not between them,

leading to progressive diversification of the population, as discussed in chapter 3 and

(Noble et al. 2022).

As a first test, I ran the model with weak selection, s = 0.1. The resulting outputs

are shown in figures 5.3 and 5.4. There are a few notable features about the output
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Figure 5.3: Visualisation of the output fCpG arrays from the methdemon model with weak
selection (s = 0.1) and deme carrying capacity 10000. While The individual gland distributions
are trimodal and the inter-gland correlation plots show epigenetic switching between sides, the
distributions have narrowed down towards the mean (0.5) considerably. This happens in the
case when the epimutation rate outpaces the tumour growth rate.

fCpG arrays and the distance matrix. The most obvious is that the peaks associated

with homozygous methylation and demethylation states have moved towards the

middle. This is to be expected, as we are treating all 10000 cells in a deme as

being able to divide ad infinitum, leading to a lot of stochastic noise. This is a

consequence of the time spent in turnover, and is adjusted by increasing the fission

rate. However, the distance matrix shows that the glands are still very similar to

each other, especially when compared to the data. This is likely due to the fact that

there is only a small probability of a partial or full sweep of a lineage within a gland.

The similarity is a consequence of the large deme carrying capacity, which allows for

a lot of stochastic noise to accumulate over time but lowers the probability of fixation
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Figure 5.4: Inter-gland distance matrix for the output fCpG arrays from the methdemon

model with weak selection (s = 0.1). While the distance values between glands on opposite
sides of the tumour are still on average higher than within one side, the numerical values are
around an order of magnitude off those observed in data.

in the weak selection regime. Increasing the selection coefficient to s = 0.3 leads to

more divergence between the glands, since emerging lineages are more likely to fully

or partially sweep the gland’s population and establish more distinct fCpG arrays

between glands. However, as discussed in chapter 4, strong selection can quickly

become problematic in an ABM like this due to the accumulation of advantageous

drivers. An example of strong selection at deme size 10000 is in appendix B.

Considering that the number of stem cells in a normal crypt is on the order of

10 (Gehart & Clevers 2019, Gabbutt et al. 2022), with the total number of cells in

a crypt being on the order of 1000, I next tested the model with a deme carrying

capacity of 100 i.e. about 1% of the total cell population in the gland. The currently

available data supports this percentage as a reasonable estimate of the proportion

of cancer stem cells (CSCs) in colorectal cancer (O’Brien et al. 2007, Munro et al.
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2018). In this case, the model’s outputs are as expected, with the fCpG arrays

diverging over time even with no or weak selection. Examples are shown in figures

5.5 and 5.6.

Figure 5.5: Output fCpG arrays from the methdemon model with weak selection (s = 0.1)
and deme carrying capacity 100. The outputs of runs with a lower deme carrying capacity
reflect the data better than larger deme carrying capacity.
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Figure 5.6: Inter-gland distance matrix corresponding to the run from figure 5.5. The values
in the distance matrix are comparable to those seen in the molecular data sets.
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5.3.5 Parameter inference from colorectal cancer data

Regular model

Having established methdemon’s ability to output data which resembles observations,

I next attempted to fit the model to the colorectal cancer data. For this, I used

the ABC workflow described in chapter 4. Considering the results of the previous

section, I set the deme carrying capacity to 100 for all inference runs. I made

this choice as there is no evidence to suggest different numbers of stem cells across

tumours or even glands within a tumour. Furthermore, having the deme carrying

capacity as a free parameter would slow down the inference process significantly. In

the first instance, I ran the inference with parameter ranges given in table 5.1. The

results of the inference are shown in figure 5.7, with more details in appendix B.

Parameter Prior

methylation rate U(0, 0.1)
demethylation rate U(0, 0.1)
fission rate U(10−4, 10−2)
driver mutation rate U(0, 10−2)
selective advantage U(0, 0.2)

Table 5.1: Parameter priors for the first inference run.

The first inference run did produce some results, but the posterior distributions

of some parameters remained broad. There are a few possible reasons for this.

Firstly, I intentianally used overly broad priors to see how well the ABC workflow

would delineate the parameter space. This choice makes the inference process more

dificult, as the prior distributions are not informative and the parameter space is

large. However, it allows for future runs with more informative priors. The second

reason may just be that the model is not able to recover all of the parameters in

its current form. Selective advantage and driver mutation rate in particular seem to

be difficult to infer for the model. This could be due to the signature of selection

being too weak in the model or data (or both). It could also be down to the distance

functions in the ABC rejection step not being able to capture the differences between

the arrays well enough. Either way, the results prompted further testing with the

important change of log-transforming the parameters. This change allows for more

efficient exploration of the parameter space, as parameters are sampled on the same

scale and steps between generations will cover more of the space.
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A

B

Figure 5.7: Inference outputs from the first run, performed by sampling parameters from
uniform priors on the original scale. While the epimutation rates’ posteriors narrow down
considerably, other parameter distributions remain broad - likely due to too coarse traversal
of the parameter space. A — posterior distributions of fCpG fluctuation rates have narrowed
down rapidly, but other parameters’ posteriors remain broad. B — box plots of the posteriors
show that the model is not able to resolve the effects of selection from the data, and leaves a
lot of uncertainty in the fission rates.
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Log-transformed model

The second inference run was done with similar parameter ranges as the first. The

log-transformed parameter ranges are give in table 5.2 and the results of the inference

are shown in figure 5.8, with more details in appendix B. All log transformations

were done with base 10.

Parameter Prior

log methylation rate U(−4,−2)
log demethylation rate U(−4,−2)
log fission rate U(−3.3,−1)
log driver mutation rate U(−5,−2)
selective advantage U(0, 0.2)

Table 5.2: Log-transformed priors for the second inference run.

The results of the second inference run are more promising than the first, with the

fission rate posterior distribution being considerably narrower. However, selection

and driver mutation rate are still difficult to narrow down. This further supports

the idea that the model is not able to detect weak selection at the gland level.
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B

Figure 5.8: Inference outputs from the alternative run, performed by sampling parameters
from uniform priors on the log-transformed scale. The posterior distribution of deme fission
has now narrowed down in a similar way to the epimutation rates, indicating a more efficient
traversal of parameter space. A — posterior distributions of fCpG fluctuation rates have
narrowed similar to before, but now the fission rate’s posterior is also narrower than before.
Mutation rate and selective advantage are still not inferred by the model. B — box plots of
the posteriors.
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5.3.6 Fast- and slow-growing tumours

The data provided by Dr Shibata contains samples from different patients, with each

tumour being potentially at a different stage of growth. From exploratory analysis,

it seems that some tumours are growing faster than others, if we work under the

assumption that gland fission is the only mechanism of growth. This hypothesis is

supported by the inference results, as samples with higher values in the inter-gland

distance matrix tend to grow slower, and ones where gland fCpG arrays are more

similar have grown faster. The inferred median fission rates are shown in table 5.3.

The inferred epimutation rates are included in appendix B, in table ??.

Tumour Inferred me-
dian fission rate
[cell−1cell div−1]

L2 half-norm Tumour size [cm] Stage

E 0.0025 0.481 6.1 I

I 0.017 0.176 3.6 III

J 0.003444 0.421 5 III

S 0.007 0.295 6 n/a

X 0.0032 0.338 2.5 n/a

Table 5.3: Inferred median fission rates for different tumours and their sizes. The L2 half-
norm of a tumour’s inter-gland distance matrix appears to be inversely correlated with the
inferred fission rate.

As the inferred fission rates from table 5.3 are set per cell per cell division, the

fission rate per gland would be 100 times higher, or roughly in the interval (0.1, 1)

— one order of magnitude less, or about the same as the stem cell division rate. In

my model, the tumour grows as a pure birth branching process, meaning that the

growth is exponential. Let ϕ be the fission rate and N(t) the number of glands in

the tumour at time t. Then

N(t) = eϕtN(0). (5.1)

As the tumour grows from a single gland, the time τ to reach a certain size Nτ is

τ =
1

ϕ
logNτ . (5.2)

The literature does not provide clear estimates for cancer stem cell division rates,

but I think a reasonable estimate would be from about 1 per month to 1 per week,

or about 0.034 to 0.1 per day. This would mean that the time to reach a size of

107 glands would lie in the interval (230, 7000) days, or about 8 months to 20 years.

This range is broad, and is not meant as a precise estimate, but rather a sanity
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check of the model’s outputs. Considering that the orders of magnitude are correct,

the model seems to be able to describe the observed data well.

5.4 Discussion

In this chapter, I modelled colorectal cancer methylation data using methdemon and

the associated ABC workflow. A notable feature of the data is that some samples

show a clear bias towards either hyper- or hypomethylation after filtering with the

help of TCGA data. This was also the case for fCpG arrays filtered using only the

samples provided by Dr Shibata. This suggests that the progenitor cell’s methylation

state is not necessarily random, but could be affected by internal or external factors.

Furthermore, I developed the model under the assumption that methylation and

demethylation rates are constant and independent across all cells and fCpG loci.

While this may be reasonable on average, there might be mutations which affect

these rates, leading to the observed distributions of fCpG loci states. Despite biases

in the data, the model was able to recapitulate the patterns observed in the data,

and the inferred parameters lay within reasonable ranges. I think it is clear that the

methylation and demethylation rates are inferred based on the Wasserstein distance

between individual glands in the data and the model output, and the fission rates

from the overall similarity between the inter-gland distance matrices. Additionally,

the L2 half-norm of the inter-gland distance matrix is inversely correlated with the

inferred fission rate. This is consistent with the idea that faster-growing tumours

have had less time for the glands’ arrays to diverge.

However, the model struggled to infer the selection coefficient and the driver

mutation rate. This could be due to the signature of selection being too weak in

the model or data, or the distance functions in the ABC rejection step not being

fine-grained enough to detect the differences between evolutionary modes. Having

said that, the results do support an effectively neutral evolutionary mode of col-

orectal cancer growth, with the effects of selection constrained to within glands.

Furthermore, it seems clear that multi-region sequencing of methylation arrays from

solid tumours can be used to draw inferences about the evolutionary dynamics of

the tumour, and warrants further research both in terms of obtaining more data

and refining the model to address the evolutionary properties not recovered in this

chapter.
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An additional point to consider is that, as the methdemon model is based on a

branching process, it should be straightforward to recover trees from the model’s

output. In (Gabbutt et al. 2023), the authors used a tree reconstruction workflow

to infer phylogenies from blood cancer data with high degrees of accuracy. This

would be a useful extension of the current work as, in conjunction with the methods

discussed in chapters 2 and 3, it could provide a more complete picture of the mode

of evolution of colorectal cancer.
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Chapter 6

Discussion

6.1 Summary

Modelling cancer evolution is difficult. Like with any data-driven approach, straying

too far into general laws may lead to underfitting of patient-specific data. Focussing

too much on the individual, however, makes overfitting the main issue. As novel

sequencing techniques, or at least public data sets which use them, have become

more available, there is an increased emphasis on multi-pronged approaches (Heide

et al. 2022, Househam et al. 2022). In my view, a similar conundrum extends one

level of abstraction above this, as focussing on data too much may lead to missing

the proverbial forest. Much like some branches of mathematics grew out of necessity

to quantify physical phenomena, so has mathematical theory informed experiments

decades after development. I believe a similar approach is essential in mathematical

oncology as well, with robust mathematical frameworks translating into the labora-

tory or even clinical trials. A good example would be adaptive therapy, which has

the potential to revolutionise patient care and is based on optimising drug scheduling

(West et al. 2023).

In chapter 2, I investigated properties of the universal tree balance index J1.

Originally introduced to analyse cancer phylogenies, I show that the roots of the idea

for such a metric go surprisingly deep, with pioneering works in computer science

defining an effectively identical formula. The expected value of the index under even

the simplest tree generation processes was too complex to calculate analytically, so I

relied on the relationship derived in the original J1 paper (Lemant et al. 2022) which

connects it with the Sackin index to obtain an accurate approximation. Another
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challenge came from deriving tree families which minimise the index. While I proved

that there exists a family of trees on which the value of J1 is lower than on the

caterpillar tree, traditionally the tree that minimises balance indices, I could only

conjecture that this family indeed minimises the index across all trees on a given

number of leaves.

Balance is only one property of many trees posses. This meant that the next

logical step was to consider the values of a set of indices during a tree generating

process. Inspired by (Noble et al. 2022), I used a modified set of evolutionary indices

on the outputs of an agent-based model to test how well one can distinguish different

evolutionary trajectories in the space described by the indices. These results I com-

pared to a new set of tree shape indices (Noble & Verity 2023), which generalise J1

further on trees with defined branch lengths. While these indices have not produced

different results from the smaller set, the fact that they still show a clear separation

between different evolutionary modes is promising.

In chapter 4, I narrowed down my consideration of the modes of tumour evolu-

tion to the specific case of effectively neutral evolution, which manifests itself via

progressive differentiation. The model I developed in this chapter restricts the ef-

fects of selection to patches of cells, with the patches themselves not interacting

or interacting neutrally. I demonstrated that ABC could be employed to recover

parameters of the model with varying degrees of accuracy.

Having established a workflow inspired by a concrete data set, in chapter 5 I

recovered aspects of evolutionary dynamics of colorectal cancer using its methylation

array data. Building on prior work on fluctuating methylation clocks, I modelled

multi-site bulk sequences of tumour glands. By considering the differences between

spatially close and distant glands, as well as individual gland fCpG arrays, I was

able to approximate the epimutation and gland fission rates relative to cancer stem

cell division rates. By inferring the rate of tumour growth, it may be possible to

more accurately estimate the age of individual tumours in future studies.

6.2 Hybrid modelling and inference

ABM is a powerful tool for studying the evolutionary dynamics of cancer, but the

stochastic nature of small-scale events can make it difficult to obtain results which

are closely aligned with the data, and methdemon is no exception. Prior work in
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fCpG modelling was done using a likelihood-based approach (Gabbutt et al. 2022,

2023), and has shown promising results. Due to the complexity of colorectal cancer,

an exclusively likelihood-based approach may not be feasible, but a hybrid model

which leverages likelihood-based inference locally for detecting potentially small ef-

fects of selection, with ABC on the global scale could be a good compromise. The

main hurdle in this approach is reconciling fissions with the steady-state turnover

process. An approach I am currently exploring is combining tau-leaping for intra-

gland dynamics and Gillespie’s algorithm for gland fissions.

6.3 Gland phylogenies

Another piece of the colon cancer fCpG puzzle is the reconstruction of gland phylo-

genetic trees. In (Gabbutt et al. 2023), the authors used a custom BEAST pipeline,

a Bayesian phylogenetic inference tool (Bouckaert et al. 2019), to infer clone phy-

logenies from blood cancer data. The main differences between the two data sets

include the fact that the blood cancer data is non-spatial, and therefore possible for

meaningful sequencing at multiple points in time. In the case of colorectal cancer, it

is not possible to obtain multiple samples from the same gland over time. Further,

the spatial nature of the data means that sequencing it in the first place may not

be possible before the tumour has been removed. This means that the clock rate of

the gland phylogenies is unknown. However, sequencing multiple glands does allow

for accurate reconstruction of tree topologies, with the clock rate being a nuisance

parameter. Having discussed the potential for tree shape indices being used in evo-

lutionary mode inference, the next logical step would be testing whether they point

to signs of global selective pressures in the data. Because of the way methdemon is

written, phylogenies are easily constructed as a byproduct of the simulation, making

it easy to test effectively neutral growth as a null model. Resources permitting, it

would be informative to use a larger-scale spatial model to test different ways of

gland organisation in space, which could result in different modes of evolution, and

thus tree shapes.
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6.4 Conclusion

In this thesis, I have taken a multi-faceted approach to modelling cancer evolution.

Chapters 2 and 3 go down the path of tree shape indices, which are emerging as

a powerful tool for analysing driver phylogenies, as well as trees more generally.

Condensing the information contained in a tree into an array of indices allows for a

meaningful comparison of trees, which could easily be integrated in popular statisti-

cal packages for tree inference. On the other hand, chapters 4 and 5 explore evolution

of colorectal cancer using agent-based modelling and approximate Bayesian compu-

tation. There is a rich literature on the topic of colorectal cancer ranging from

tumourigenesis to metastasis, but this is the first time that the evolutionary dynam-

ics of the disease have been modelled based on fluctuating methylation clocks. As

discussed in chapter 5, the model is based on a certain set of assumptions, which

may at times be too restrictive. Despite this, the model has been capable of recov-

ering evolutionary properties of the disease, and seems to reliably estimate how fast

the tumour has grown.

The research presented in this thesis, based on mathematical and computational

modelling of evolutionary dynamics of cancer, contributes to the better understand-

ing of the ways in which cancer can evolve. From differentiating evolutionary tra-

jectories to leveraging the mode of evolution of a tumour in developing a model to

describe it, the work presented here offers ample scope for applying and extending

these methods in future work.
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Appendix A

Trajectories

Parameter Values

Deme carrying capacity 1, 512, 8192,∞
Driver mutation rate 10−6, 10−5, 10−4

Selection coefficient 0.05, 0.1, 0.2
Baseline death rate (non-
spatial)

0.98

Baseline death rate (spatial) 0

Table A.1: Parameters used for the simulations. The deme carrying capacity is varied
across spatial configurations (boundary growth, invasive glandular, gland fission, non-spatial
respectively), while other parameter variations are common to all simulations.
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Figure A.1: All trajectories in time for the new set of indices plotted for gland fission with
the average trajectories for different sets of indices plotted in colour.

106



Figure A.2: All trajectories in time for the new set of indices plotted for invasive glandular
evolution with the average trajectories for different sets of indices plotted in colour.
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Figure A.3: All trajectories in time for the new set of indices plotted for boundary growth
with the average trajectories for different sets of indices plotted in colour.
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Figure A.4: All trajectories in time for the new set of indices plotted for non-spatial tumours
with the average trajectories for different sets of indices plotted in colour.
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Figure A.5: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−6, and selective coefficient s = 0.05.
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Figure A.6: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−6, and selective coefficient s = 0.1.
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Figure A.7: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−6, and selective coefficient s = 0.2.
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Figure A.8: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−5, and selective coefficient s = 0.05.

113



Figure A.9: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−5, and selective coefficient s = 0.2.
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Figure A.10: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−4, and selective coefficient s = 0.1.
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Figure A.11: Trajectories plotted for the four different spatial configurations for the driver
mutation rate µ = 10−4, and selective coefficient s = 0.2.
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Figure A.12: Individual replicates’ index trajectories of boundary growth for the parameters
used in figure 3.5.
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Figure A.13: Individual replicates’ index trajectories of gland fission for the parameters used
in figure 3.5.
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Figure A.14: Individual replicates’ index trajectories of non-spatial growth for the parameters
used in figure 3.5.
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Appendix B

Parameter inference

Tumour Median methylation
rate

Median demethyla-
tion rate

E 0.0021 0.002
I 0.005 0.0009
J 0.0012 0.0018
S 0.001 0.0033
X 0.0008 0.0025

Table B.1: Inferred epimutation rates for the tumour samples modelled in this thesis.
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Figure B.1: Visualisation of fCpG arrays for patient E and the inter-gland correlation plots.
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Figure B.2: Parameter inference plots for patient E.
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Figure B.3: Visualisation of fCpG arrays for patient I and the inter-gland correlation plots.
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Figure B.4: Parameter inference plots for patient I.
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Figure B.5: Visualisation of fCpG arrays for patient J and the inter-gland correlation plots.
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Figure B.6: Inference of the parameters for patient J.
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Figure B.7: Visualisation of fCpG arrays for patient X and the inter-gland correlation plots.
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Figure B.8: Inference of the parameters for patient X.
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Figure B.9: Inter-gland distance matrices for the tumours modelled in this thesis. Clockwise
from top left: E, I, X, J.
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