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A B S T R A C T

This study investigates the feasibility of utilising photoplethysmography signals to estimate continuous
intracranial pressure (ICP) values in patients with traumatic brain injury. A clinical dataset was compiled,
comprising synchronised data from a non-invasive optical sensor and an invasive gold standard ICP monitor
from 27 patients. Two datasets, derived from short and long-distance NIRS, were generated from this data.
For each dataset, 141 features were extracted for every one-minute window of non-invasive data. A total of 5
regression models were assessed. The study aimed to evaluate the models’ performance for the continuous, non-
invasive monitoring of ICP using a leave-one-patient out cross validation approach. The 5 models were trained
on both the long and short distance NIRS data. The lowest mean absolute error (MAE) and root mean squared
error (RMSE) were obtained using features derived from long-distance NIRS. A Random Forest (RF) model
achieved the lowest MAE and RMSE of 5.030 and 4.067 mmHg respectively. The RF exhibited wide limits
of agreement with the reference method. This was reflected in the 95% Bland–Altman limits of agreement,
ranging from 8.782 to -8.487 mmHg.
1. Introduction

Traumatic brain injury (TBI) is a condition marked by the impair-
ment of brain function resulting from sudden trauma, inflicting damage
on the brain. The severity of symptoms varies, ranging from mild to
moderate, or severe, depending upon the extent of damage to the
brain [1]. Annually, the global incidence of TBI is estimated at 69
million cases, 5.48 million of which are classified as severe [2]. This
condition imposes a considerable burden on affected individuals and
their families, through health loss and disability. Moreover, TBI poses
a large and growing burden on healthcare systems and nations, due
to the complex and expensive medical care that the condition neces-
sitates, coupled with substantial productivity loss, with an estimated
annual cost reaching USD 400 billion [3]. The incidence rate of TBI
is increasing, attributed to various factors such as population density,
population aging, and the growing use of motor vehicles, motorcycles,
and bicycles, particularly in low to middle-income countries (LMICs)
where road traffic collisions are the primary cause [4–6].

Intracranial pressure (ICP) monitoring plays a crucial role in neuro-
critical care for the timely identification of intracranial hypertension
(IH). Elevated ICP is associated with poor neuropsychological per-
formance and functional outcomes in TBI patients. ICP refers to the
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pressure inside the cranial vault, and changes in ICP result from al-
terations in brain volume, cerebral blood volume, and the production
or clearance of cerebrospinal fluid (CSF) [7,8]. Pathological processes,
often related to TBI, can cause changes in ICP through conditions
such as mass lesions, venous sinus obstruction, and cerebral edema.
If these changes lead to volumetric increases within the cranial vault,
compensatory mechanisms are activated to maintain ICP within normal
ranges, typically 10 to 15 millimetres of mercury (mmHg) for adults
and 3 to 7 mmHg for young children [9]. A critical threshold is
reached when space-occupying lesions can no longer expand, which
without efficacious monitoring and intervention can potentially lead
to secondary brain injury, herniation, and brain death [10–12].

ICP monitoring is used either as a guide to treatment or as a
diagnostic modality in a number of pathological conditions result-
ing in neurological injury. The gold standard for ICP monitoring is
intraventricular pressure monitoring using an extraventricular drain
(EVD) [13,14]. Intraventricular-based monitoring involves inserting a
catheter into a ventricle of the brain through a burr hole in the skull.
Despite being the gold standard, EVD monitoring is expensive and may
lead to a series of complications. The most common complications
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include intracranial hemorrhage (reported in 21.6% of patients), in-
fection (8.3% to 23.5% cumulative incidence rates), and ventricle tap
failure or misplacement (malplacement rate of 12.3%) [15–18]. The
estimated diagnostic, procedural, and material cost of EVD placement
has been suggested to be in the range of USD $1300–$3200 [19,20].

1.1. Current state of the art

Non-invasive ICP monitoring approaches have been explored but
there are no existing continuous and non-invasive ICP monitoring tech-
niques that are accurate across the pressure range in relation to invasive
monitors. Transcranial Doppler (TCD), has been shown to not be accu-
rate across the pressure range, particularly in elevated ICP values [21].
Additionally, TCD is susceptible to intra and inter-observer variabil-
ity [22–25]. Moreover, approximately 10%–15% of patients may not
benefit from TCD due to the inability of ultrasound waves to penetrate
the skull [26]. Similarly, the optic nerve sheath diameter (ONSD)
technique suffers from intra-observer variance [27–29]. Additionally,
there are a number of conditions that can affect the optical nerve sheath
diameter rendering the ONSD approach un-efficacious [30].

There has been a growing body of work investigating approaches
utilising cardiac waveforms, including diffuse correlation spectroscopy
and near-infrared spectroscopy (NIRS) to estimate intracranial pres-
sure non-invasively. A pilot study in 1997 demonstrated that NIRS
values when ICP was > 25 mmHg were significantly lower than those
when ICP < 25 mmHg. These results suggested that NIRS could be of
value in the evaluation of increased ICP [31]. Ruesch et al.’s study
investigated the estimation of ICP non-invasively in non-human pri-
mates using near-infrared spectroscopy [32]. NIRS data was recorded
whilst varying ICP levels were induced. Hemodynamic responses to
ICP changes were measured and compared to changes detected by a
conventional intraparenchymal ICP probe. The results demonstrated
that there was a high correlation with haemoglobin concentrations and
induced ICP suggesting that NIRS has the potential for non-invasive
ICP monitoring. Ruesch et al.’s later study utilised morphological and
time series features extracted from diffuse correlation spectroscopy
(DCS) data in addition to mean arterial pressure for the prediction of
ICP non invasively [33]. This work demonstrated the potential to use
morphological and time series features derived from DCS pulsations to
monitor ICP non-invasively resulting in a Coefficient of determination
(R2) of 0.92 and an mean squared error (MSE) of 3.3 mmHg. The same
group extended this research to the use of NIRS derived photoplethys-
mography (PPG) features in combination to MAP to estimate ICP [34].
This study returned an increased R2 of 0.937 and a MSE of 2.703
mmHg. More recently there has been research demonstrating the use of
PPG waveform features and their relationship to ICP levels, reporting
a R2 of 0.66 suggesting that these features may provide a method for
measuring ICP non-invasively [35].

This field of research aims to contribute knowledge towards the
pioneering of continuous, non-invasive ICP monitoring helping reduce
the barrier to entry through the reduction in cost, complexity, and risk.
This specific study builds upon the research of Roldan et al. [36,37]. Its
contribution is an evaluation of the feasibility of continuous monitoring
of ICP non-invasively using morphological and time-series features
derived from PPG signal data from the largest and clinically collected
labelled dataset.

2. Materials and methods

2.1. Non-invasive sensor

This study is based upon data produced by an in-house near-infrared
spectroscopy (NIRS) reflectance non-invasive optical ICP sensor here-
inafter referred to as the ‘‘nICP’’ sensor [38]. The nICP sensor consists
of four LEDs at four different wavelengths (770, 810, 855 and 880 nm)
and two photodiodes ‘‘proximal’’ and ‘‘distal’’ arranged as shown in
2

Fig. 1. Pulsatile signals were acquired from both the proximal and distal
photodiodes of the nICP sensor positioned at 10 mm and 35 mm from
the light source we refer to this data as ‘‘NIR-PPG’’.

The reflected light from extracerebral tissue reached the proximal
photodetector placed 10 mm from the LEDs, and the non-absorbed
light from deeper tissues travelled back to the distal photodiode placed
35 mm from the LEDs. It is proposed that the data from the proximal
photodiode corresponds to extracerebral data, while the data from
the distal photodiode represents a combination of extracerebral and
cerebral data [39]. The nICP monitor was calibrated for each patient
through the adjustment of the LED intensity and amplification gain
according to patients’ characteristics and ambient light. Calibration
was performed before recording started. The data was sampled at a
frequency of 100 Hz.

2.2. Data

The primary dataset consists of data from 40 patients with severe
TBI recruited from the intensive therapy unit of the Royal London
Hospital. The non-randomised data collection was performed between
January 2020 and July 2021 (ClinicalTrials No. NCT05632302). Each
patient had an implanted invasive ICP probe (Raumedic® Neurovent-
P intra-parenchymal pressure probe) and the nICP sensor was affixed
to the patient’s forehead below the hairline. The non-invasive and
invasive data were collected synchronously. The patients’ average age
was 43.92 years, with a male-to-female ratio of 13:2. Data collection
lasted for an average of 42.16 h. None of the patients received an EVD.

This research focuses on the data collected from the 810 nm wave-
length collected from the proximal and distal photodiodes. The selec-
tion of the 810 nm wavelength is based on the property that oxyhe-
moglobin and deoxyhemoglobin exhibit the same absorption charac-
teristics at this wavelength, enabling the extraction of an optical signal
independent of blood oxygenation and eliminating it as a confounding
factor [40]. Fig. 2 depicts traces of the signal for the same patient
at elevated and low ICP values from both the proximal and distal
photodiodes.

2.3. Data preprocessing

Initially, the dataset consisted of data from 40 patients. Of these
40, the data of 6 patients were identified as either being corrupted or
missing information resulting in a dataset of 34 patients. Of these, the
data of 7 patients were removed due to data integrity, resulting in a
final dataset from 27 patients.

Within the dataset, two main sources of noise are hypothesised
to be present (i) motion artifacts, which are identified by irregular
signal morphology or high amplitude variance, and (ii) photodetector
saturation, characterised by areas with little or no amplitude variance
referred to as ‘‘flat lines’’. Fig. 3 shows an example of the noise
within the data. The non-invasive data were denoised utilising the
Envelope PPG Denoising Algorithm [41]. Any instances of data identified
as anomalous were removed from both the nICP data and the reference
ICP data to ensure temporal synchronicity between the datasets. Addi-
tionally, the assumption was made that values of ICP ≥ 60 mmHg or <
0 mmHg, could be erroneous or biologically implausible. Consequently,
these instances were removed from both the reference and nICP data.
Values above 60 mmHg may indicate potential measurement errors,
while negative values are physiologically implausible.

2.4. Feature engineering

The NIR-PPG dataset was segmented into 1-minute windows, with
the median ICP value over each window being used as a label. This
1-minute window size was chosen considering the possible clinical
relevance and practicality of the prediction frequency. Longer window
durations might be less favourable in a clinical setting, and our goal
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Fig. 1. nICP sensor’s design and interface.
Fig. 2. A three-subplot figure illustrating non-invasive ICP signal data. Two subplots showcase a 30-second window each, with one capturing data from a period of elevated ICP
and the other from a period of low ICP. The third subplot presents the entire ICP dataset, emphasising the sampled areas.
was to use a window size that maximises the amount of relevant data
available for prediction while still being clinically manageable. The
extracted features are derived from the AC, pulsatile component of
the signal. The pulsatility of the signal is as a consequence of the
absorption of light resulting from blood volume changes during the
cardiac cycle. During systole there is an increase in blood volume
resulting in increased absorbance of light compared to the diastolic
state. This change in light absorbance creates the pulsatile waveform
synchronous with each heartbeat. In order to capture as much of the
morphology of the signal which is linked to haemodynamic changes, for
each window of data 141 morphological and time-series features were
extracted across the original signal and its first and second derivative as
shown in Table 5 in the appendix. Figs. 4 and 5 depict the primary time
3

series and morphological features extracted from the cardiac pulses.
The feature representation for each window was determined by com-
puting the median of each feature across all pulses within that window.
The derivatives of the signal were calculated using a Savitzky–Golay
filter using a polynomial of 7 and a window size of 101.

In order to attempt to diminish the possible affect of calibration and
baseline wandering on the data collected from multiple patients the
alternating current (AC) and direct current (DC) components of each
patient’s signal data were isolated using a bandpass and lowpass filter
respectively. The bandpass frequency band ranged from 0.4 to 10 Hz,
the low pass cutoff frequency was set to 0.4 Hz. By dividing the AC
component of the signal by the DC component we aim to minimise
the effects of the patient level calibration and provide a normalised
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Fig. 3. Distal signal data with highlighted noise attributed to motion artifact and photodetector saturation. Visual aids emphasise the presence of noise within the window.
Fig. 4. A figure illustrating the key time-series and morphological features extracted from individual cardiac pulses. Within the figure, SW, DW, and PW represent systolic width,
diastolic width, and pulse width, respectively. The numerical value associated with SW, DW, or PW indicates the position along the pulse prominence where the corresponding
measurement is taken.
Fig. 5. A figure depicting the Area Under the Curve (AUC), along with the Diastolic AUC and Systolic AUC. Additionally, the start and end datum areas are identified.
representation of the signal that is less influenced by calibration vari-
ations and allows for better inter-patient comparison. Following this,
each window’s data were normalised to a range of (0,1) to account
for inter-patient amplitudinal variance and to aid in the creation of a
shared distribution across patients in the feature space.

The extracted features were predicated upon the detection of car-
diac cycles within the signal. In order to effectively extract features
a pulse detection algorithm was developed. The detection algorithm
4

is predicated upon the crossing points of the signal and the moving
average of the signal. The general concept of the algorithm is, if the
mean of the data between crossing points is greater than the mean
of the moving average between crossing points the location of the
maximum value between crossing points is classified as a peak. Vice
versa if the mean of the data between points is less than the mean of the
moving average between crossing points the index of data which has
the lowest value between points is classified as a trough. The identified
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Fig. 6. 1-minute window of NIR-PPG signal data with detected peaks, troughs and anomalous peaks.
peaks and associated troughs are filtered to ensure the correct peak–
trough association. Fig. 6 shows an example of the identified pulses
within a window of data.

In order to handle the presence of possible residual anomalous
peaks within each window of data a z-score outlier detection approach
was applied using three pulse characteristics: (i) difference between
consecutive peaks, (ii) pulse onset-peak difference and (iii) peak-end
difference. A z-score threshold of 3 was used. No features were ex-
tracted from pulses which were detected as anomalous. During model
training and testing the aggregate feature data across patients was nor-
malised using MinMaxScaler from the Python package Scikit-learn [42].
MinMaxScaler was fit to the training data and the transformation was
applied to the testing dataset.

2.5. Feature selection

A significant amount of the features within the feature sets are
colinearly related due to being derived from similar or the same mor-
phological elements of the pulse. In order to perform feature selection
whilst dealing with the presence of colinearly related features a three
step feature selection process was performed. Initially the maximum
information coefficient (MIC) was calculated for each feature against
the label. MIC captures linear, non-linear and non-monotonic relation-
ships offering a more precise representation of complex dependencies
between features and the label.

To address the issue of collinearity among variables, we identified
pairs of features exhibiting a Pearson correlation coefficient ≥ 0.9.
Within each of these pairs, we then removed the feature with the lower
MIC score, prioritising the retention of features with higher potential
predictive power. Following this, Recursive Feature Elimination with
Cross-Validation (RFECV), utilising a 10-fold cross-validation scheme,
was implemented to further refine the selection of predictive fea-
tures. When conducting the RFECV we employed a group-wise holdout
method in the cross-validation, thereby preventing any patient’s data
from simultaneously appearing in both training and validation sets.

2.6. Model optimisation and evaluation

The proximal and distal datasets were both segmented into two dis-
tinct datasets: (i) evaluation and (ii) optimisation. In order to create the
evaluation and optimisation datasets, the aggregate dataset of both the
proximal and distal data was split by patients in a ratio of 70:30. Patients
5

were randomly sampled, the patient data of 19 patients and 8 patients
made up the evaluation and optimisation sets respectively. In order to
effectively evaluate the models’ ability for continuous monitoring the
temporal order of the windows was maintained. The data of the same
19 and 8 patients comprised the evaluation and optimisation datasets
for both the proximal and distal data.

Five regression models were evaluated: (i) K-Nearest Neighbours
(KNN), (ii) Light Gradient Boosting Machine (LGBM), (iii) Random
Forest (RF) (iv) Extreme Gradient Boosting (XGB) and Epsilon-Support
Vector Regression (SVR). The hyperparameters of the models were
optimised using the optimisation dataset exclusively.

The hyperparameters were optimised using the aggregate root mean
squared error (RMSE) across leave-one-patient-out cross-validation
(LOPOCV). For each model 50 hyperparameter optimisation ‘‘trials’’
were performed. To mitigate the risk of overfitting to the training
dataset during model optimisation, the hyperparameter search spaces
were tuned. Initially, the hyperparameter search spaces encompassed
broader ranges, but as the optimisation progressed if any instances
of overfitting to the training data were seen the search space was
refined. This involved narrowing the range of specific hyperparameters,
implementing stronger regularisation penalties, and adjusting learning
rates to encourage improved generalisation. Our primary objective
was to strike a balance, achieving good performance on the training
data while ensuring the model’s effectiveness in generalising to the
validation data. The hyperparameter search spaces for each model are
outlined in Table 1. The hyperparameter optimisation was carried out
twice, once for both the proximal and distal optimisation data.

Following optimisation the hyperparameters which returned the
lowest loss during optimisation were used when evaluating each model
using the evaluation dataset. The resultant optimised hyperparameters
are summarised in Table 1. In order to produce a robust evaluation of
the models ability to predict continuous ICP values each model was
evaluated using LOPOCV across the 19 patients which made up the
evaluation dataset.

The evaluation metrics MSE, Root mean squared error, Mean ab-
solute error (MAE), R2, the upper and lower Bland–Altman limits of
agreement as well as the correlation coefficient were calculated for
the testing and training datasets to provide an overview of model

performance.
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Table 1
Table containing the defined search spaces for each regression model and the resultant optimised hyperparameters.
Model Hyperparameter search space Optimised hyperparameters

(Proximal)
Optimised hyperparameters
(Distal)

RF max depth = 15 to 25
number of estimators = 100 to 500
min samples split = 10 to 20
min samples leaf = 10 to 15

max depth = 18
number of estimators = 101
min samples split = 13
min samples leaf = 11

max depth = 17
number of estimators = 196
min samples split = 10
min samples leaf = 11

KNN number of neighbours = 3 to 10
algorithm = [auto, ball tree, kd tree, brute]
metric = [euclidean, manhattan, chebyshev, minkowski]

number of neighbours = 10
algorithm = auto
metric = chebyshev

number of neighbours = 10
algorithm = auto
metric = chebyshev

LGBM max depth = 5 to 10
number of iterations = 100 to 250
learning rate = 0.1 to 0.5
number of leaves = 25 to 35
extra tress = True or False

max depth = 10
number of iterations = 102
learning rate = 0.179
number of leaves = 28
extra tress = False

max depth = 8
number of iterations = 241
learning rate = 0.160
number of leaves = 35
extra tress = True

XGB number of estimators = 10 to 20
max depth = 10 to 15
learning rate = 0.3 to 0.7
min child weight = 45 to 55

number of estimators = 19
max depth = 10
learning rate = 0.351
min child weight = 53

number of estimators = 18
max depth = 14
learning rate = 0.382
min child weight = 55

SVR C = 10 to 50
gamma (DISTAL) = 5 to 10
gamma (PROXIMAL) = 1 to 6
epsilon = 0.0001 to 0.01

C = 10.855
gamma = 5.986
epsilon = 0.000164

C = 10
gamma = 9.972
epsilon = 0.002
Fig. 7. A figure with two subplots illustrating recursive feature elimination plots applied to a subset of features. The plots demonstrate the variation in negative Root Mean Squared
Error as the number of features changes. A dashed red line represents the number of features with support returned by recursive feature elimination. The left subplot corresponds
to the proximal dataset, while the right subplot corresponds to the distal dataset.
3. Results

3.1. Feature selection

To address the issue of collinearity among variables, we first identi-
fied pairs of features exhibiting a Pearson correlation coefficient ≥ 0.9.
Within the proximal and distal sets, 377 and 162 correlated feature
pairs were identified. Once the features with the lower MIC score were
removed and a unique set of the remaining features was taken, the
resultant feature sets had a length of 52 and 61 features for the prox-
imal and distal sets respectively. With the resulting features, RFECV
was applied to the feature subsets to determine the most predictive
features. Fig. 7 depicts plots for both the proximal and distal datasets,
demonstrating the number of features selected and subsequent optimal
number of features determined by RFECV.

The feature selection approach returned 48 features with support for
the proximal dataset and 3 features with support for the distal dataset.
The features with support for the distal dataset led to underfitting,
to counteract this, the number of features which returned the second
lowest loss for the distal dataset was selected (n=18). Table 2 contains
the selected features for both the proximal and distal datasets.

3.2. Model evaluation

Five regression models where evaluated. The MSE, RMSE, MAE, R2,
the upper and lower Bland–Altman limits of agreement as well as the
6

correlation coefficient were calculated. The training and testing results
are presented in Tables 3 and 4.

Extrapolating from the results presented in Table 3, an examination
of predictive performance is conducted by focusing on four key metrics:
RMSE, MAE, correlation coefficient and Bland–Altman limits of agree-
ment. MAE assesses the average absolute errors between predicted and
actual values. Unlike MSE, MAE does not square errors meaning it does
not amplify the influence of outliers or large errors. By not penalising
large errors, MAE offers a balanced view of model performance.

On the other hand, RMSE also gauges the discrepancy between
predicted and actual values. In contrast to MAE, RMSE calculates the
square root of the average of squared errors. Squaring the errors gives
more weight to larger errors, meaning they have a proportionally
greater impact on the RMSE. This makes RMSE sensitive to outliers
and large errors, emphasising their importance. We posit that in the
context of estimating ICP, the clinical implications of errors can vary
significantly. Larger errors in ICP prediction can have critical conse-
quences for patient care and safety. For instance, underestimating ICP
might lead to inadequate intervention, risking patient health. There-
fore, prioritising the reduction of larger errors is crucial to enhance
the clinical utility and safety of the model. RMSE aligns well with this
objective. Given this, the feature selection process using RFECV and
model hyperparameter optimisation were centred around minimising
squared errors as the primary cost function. RMSE, being the square
root of MSE, allows for a more intuitive interpretation of the model’s
performance as it brings the evaluation metric back to the original units
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Table 2
Table containing the selected features for both the proximal and distal datasets.
Proximal Distal

onset-end slope (deriv 1) pulse width 100
ds ratio 25 kurt (deriv 2)
std ibi (deriv 2) pulse width 10
rise time - decay time ratio (deriv 1) diastolic width 50 (deriv 1)
systolic width 100 systolic width 75
upslope rise time - decay time ratio
kurt rise time - decay time ratio (deriv 1)
rise time - decay time ratio max end datum difference
pulse length - height ratio ibi (deriv 2)
std ibi skew
ds ratio 25 (deriv 1) ds ratio 50 (deriv 2)
kurt (deriv 1) start datum difference
systolic width 10 kurt (deriv 1)
systolic width 75 (deriv 2) zcr
max start datum difference (deriv 2) skew (deriv 1)
zcr ds ratio 50 (deriv 1)
ds ratio 75 (deriv 2) skew (deriv 2)
skew systolic width 25 (deriv 2)
end datum difference (deriv 1)
downslope length (deriv 2)
onset-end slope (deriv 2)
pulse length - height ratio (deriv 2)
end datum difference (deriv 2)
max start datum difference
start datum area (deriv 1)
end datum area (deriv 1)
systolic width 100 (deriv 1)
max end datum difference
ds ratio 10
downslope
downslope (deriv 1)
std ibi (deriv 1)
systolic width 25 (deriv 2)
end datum difference
onset-end slope
zcr (deriv 2)
ds ratio 25 (deriv 2)
start datum difference (deriv 2)
skew (deriv 1)
ds ratio 75
max end datum difference (deriv 1)
start datum difference (deriv 1)
diastolic width 10 (deriv 1)
end datum area (deriv 2)
diastolic width 75 (deriv 2)
pulse width 10 (deriv 2)
systolic width 10 (deriv 1)
diastolic width 10
Table 3
Table containing the results (test) for the 5 regression models, estimating intracranial pressure. The table contains the mean squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), coefficient of determination (R2), the upper and lower Bland–Altman limits of agreement as well as the correlation coefficient (corr coef) values for
each model.

Distal results (Evaluation)

Model RMSE test MSE test MAE test R2 test Bland–Altman upper test Bland–Altman lower test Bland–Altman bias test Test corr coef

KNN 5.529 32.735 4.445 −1.496 10.057 −9.202 0.427 0.021
LGBM 5.253 29.902 4.233 −1.217 9.220 −8.862 0.179 −0.016
RF 5.030 27.364 4.067 −1.046 8.782 −8.487 0.147 −0.007
SVR 5.473 32.148 4.404 −1.370 9.266 −9.348 −0.041 0.027
XGB 5.379 30.986 4.338 −1.354 9.372 −9.154 0.109 0.001

Proximal results (Evaluation)

Model RMSE test MSE test MAE test R2 test Bland–Altman upper test Bland–Altman lower test Bland–Altman bias test Test corr coef

KNN 5.734 35.212 4.650 −1.766 10.055 −8.995 0.530 −0.052
LGBM 5.627 33.680 4.634 −1.677 9.414 −8.661 0.376 −0.022
RF 5.538 32.969 4.538 −1.555 9.423 −8.598 0.413 −0.026
SVR 5.640 33.268 4.608 −1.701 9.289 −9.159 0.065 −0.020
XGB 5.689 34.444 4.663 −1.729 9.625 −9.025 0.300 −0.013
7
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Table 4
Table containing the results (train) for the 5 regression models, estimating intracranial pressure. The table contains the mean squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), coefficient of determination (R2), the upper and lower Bland–Altman limits of agreement as well as the correlation coefficient (corr coef) values for
each model.

Distal results (Evaluation)

Model RMSE train MSE train MAE train R2 train Bland–Altman upper train Bland–Altman lower train Bland–Altman bias train Train corr coef

KNN 3.063 9.387 2.011 0.625 6.021 −5.986 0.017 0.792
LGBM 2.993 8.961 2.121 0.642 5.866 −5.866 0.000 0.807
RF 2.709 7.341 1.854 0.707 5.316 −5.303 0.006 0.861
SVR 3.203 10.267 1.986 0.590 5.965 −6.542 −0.288 0.772
XGB 2.573 6.625 1.816 0.735 5.041 −5.045 −0.002 0.862

Proximal results (Evaluation)

Model RMSE train MSE train MAE train R2 train Bland–Altman upper train Bland–Altman lower train Bland–Altman bias train Train corr coef

KNN 3.613 13.058 2.586 0.478 7.128 −7.034 0.047 0.696
LGBM 3.052 9.316 2.198 0.628 5.981 −5.981 0.000 0.798
RF 2.556 6.540 1.738 0.739 5.019 −5.002 0.008 0.877
SVR 2.427 5.892 1.199 0.765 4.474 −4.985 −0.256 0.880
XGB 2.643 6.991 1.876 0.721 5.177 −5.184 −0.003 0.855
Fig. 8. A bar chart presenting the root mean squared error of each model for both the short and long distance near-infrared spectroscopy data.
of the target variable. Both MAE and RMSE are presented in the same
units as the target variable (mmHg), facilitating easier comprehension
and comparison (see Fig. 8).

Overall the models developed using distal features performed better
than model developed using proximal features. The mean MAE and
RMSE across models developed using distal features were 4.297 and
5.333 mmHg, approximately 5.7% and 7.2% lower than the mean MAE
and RMSE across models developed using proximal features. Of the
models developed using distal data, the best performing model with
reference to RMSE and MAE was a RF model which returned a mean
RMSE and MAE across the testing folds of LOPOCV of 5.030 and 4.067
mmHg respectively. The worst performing distal model with reference
to RMSE and MAE was a KNN model which produced an RMSE and
MAE of 5.529 and 4.445 mmHg.

To complement the RMSE and MAE we investigate the correlation
coefficient and Bland–Altman limits of agreement of the developed
models. Fig. 9 depicts the Bland–Altman limits of agreement for each
developed model. Bland–Altman is a statistical technique used to assess
the agreement between two quantitative measurements. The Bland–
Altman plot provides insights into the extent of agreement and any
potential biases between the predicted and actual values. The limits
of agreement, marked in the plot, illustrate the range within which
most of the differences between predicted and actual values lie. Specif-
ically, they represent the mean difference between the predicted and
actual values, with 95% confidence intervals meaning that 95% of the
differences fall within this range, offering a valuable indication of the
agreement’s reliability.
8

The mean upper and lower limits of agreement of the distal and
proximal derived models are 9.334 and −9.011 and 9.561 and −8.888
mmHg accordingly. The limits of agreement between the models
trained using distal and proximal data are similar. Both groups of
models returned negligible mean biases of 0.337 and 0.164 mmHg
suggests a minimal systematic difference between the predicted and
actual ICP values. This implies that, on average, the ICP predictions
from the models are within approximately 8 mmHg of the actual values.

In the case of ICP prediction a preferable correlation coefficient
would be a strong positive correlation with label. The mean correlation
coefficient returned by both the distal and proximal derived models
are very low. The distal derived models returned a mean correlation
coefficient of approximately 0.005, 118.5% greater than the mean
correlation coefficient returned by the proximal derived models. The
higher and positive mean correlation coefficient of the distal derived
models apposed to the mean negative correlation coefficient of the
proximal derived models suggests that distal features may be more
useful for the prediction of ICP. Despite this, the correlation coefficients
remain low.

4. Discussion

This study has investigated the effectiveness of non-invasive ICP
monitoring using NIR-PPG derived features. Five classical machine
learning models were optimised and evaluated on both short distance
and long distance NIR-PPG data.

From the models developed, the distal models returned lower RMSE
and MAE errors on average than the models developed using proximal
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Fig. 9. A bar chart representing the Bland–Altman upper and lower limits of agreement for each model, calculated at the 95% confidence level. The bars in the chart indicate
the upper and lower limits of agreement, representing the range within which most of the differences between predicted and actual values lie with 95% confidence.
derived features. This supports our hypothesis that long distance NIR-
PPG data is associated with changes in ICP. Additionally although
both groups of models returned low correlation coefficients the distal
models returned a higher mean correlation coefficient in comparison
to the proximal models which returned a mean negative correlation
coefficient.

The low correlation coefficients and wide limits of agreement ob-
served in our analysis suggest that the models struggled to generalise
to new, unseen data. We hypothesise that this challenge is primarily at-
tributable to noise within the data and inter-patient data heterogeneity.
Specifically, variances in the distribution of ICP among patients may
impact model performance.

Moreover, the presence of inter-patient feature data heterogeneity
and the consequential challenge of creating a shared distribution exac-
erbates the difficulty in achieving optimal model generalisation. This
heterogeneity can stem from diverse patient characteristics, disease
severity, and treatment responses among others. This coupled with
varying distributions of ICP levels among the patients, can impair the
model’s ability to learn underlying patterns effectively thereby resulting
in wider limits of agreement.

Addressing these challenges could involve increasing the dataset,
particularly with more data collected at the high and low ends of
the ICP distribution as well as increasing the diversity of the patient
population which comprise the dataset. A larger and more diverse
dataset could help in reducing the observed wide limits of agreement by
enabling the model to better learn and predict the outcomes for patients
with less common characteristics.

Animal studies have investigated the estimation of ICP non-
invasively using NIRS, features extracted from DCS pulsations and NIR-
PPG cardiac waveforms [32–34]. These approaches within these studies
have demonstrated significant agreement with ICP returning R2 of up
to 0.937 and MSE lower than < 3 mmHg. Despite this, these studies use
MAP as an additional feature for model development. MAP was found
to be the strongest predictive feature across both studies [33,34]. This
study aimed to investigate the efficacy of predicting ICP non-invasively
using NIR-PPG morphological and time-series features exclusively.

The evaluation and optimisation methodology could be optimised
further. The overall patient data was divided into two distinct datasets:
(i) the evaluation set and (ii) the optimisation set. Random sampling was
employed, with 19 patients (70%) contributing to the evaluation set
and 7 patients (30%) forming the optimisation set. The feature selection
and model optimisation were performed using the optimisation dataset
exclusively to minimise potential data leakage. Model optimisation
utilised the aggregate RMSE across LOPOCV. Following hyperparam-
eter optimisation, model evaluation occurred through LOPOCV on the
evaluation dataset.
9

This methodology was chosen over nested cross-validation to strike
a balance between performance and computational efficiency. Despite
this choice, there remains a possibility of bias in the models towards
the optimisation set’s data. The 30% of patients’ data constituting the
optimisation dataset was deemed a reasonably representative sample.
Even if the models exhibit bias towards the optimisation dataset, they
do not positively bias the evaluation results; if anything, they could
negatively impact them. This approach was considered reasonable and
serves to prevent data leakage and provide a robust evaluation of model
performance.

This research brings novel insights to non-invasive ICP monitoring
through the investigation of the largest clinically collected NIR-PPG
dataset from patients with severe TBI and invasive ICP monitoring to
date. The outcomes of this study provide solid groundwork for future
research within this domain especially the investigation of the causes
of possible inter-patient heterogeneity.

The search for non-invasive alternatives to ICP monitoring is sig-
nificant. The potential of NIR-PPG technology to change TBI diagnosis
and ICP monitoring arises as a promising prospect. NIR-PPG based
monitoring offers the potential for an inexpensive, easy-to-use, safe,
and real-time alternative. Moreover, a NIR-PPG device as a conse-
quence of its non-invasive nature and simplicity of use could make
an ideal point-of-care monitor in various settings, from emergency
rooms and ambulances to sports events and remote locations. The cost-
effectiveness of NIR-PPG further improves its appeal, as it offers a more
affordable approach to TBI diagnosis and ICP monitoring.

5. Conclusion

This study aimed to assess the potential of non-invasive ICP moni-
toring using NIR-PPG derived features. Five classical machine learning
models were optimised and evaluated on both short distance proximal
and long distance distal NIR-PPG data. The models results indicated
that distal models returned better results than models developed using
proximal features returning a higher mean RMSE, MAE and correlation
coefficient. The best performing model was a RF model which returned
a mean RMSE and MAE across the testing folds of LOPOCV of 5.030 and
4.067 mmHg respectively with Bland–Altman limits of agreement of
approximately 8.5 mmHg and a low correlation coefficient of −0.007.

This research brings novel insights to non-invasive ICP monitoring
through the investigation of the largest clinically collected NIR-PPG
dataset from patients with severe TBI and invasive ICP monitoring and
the investigation into the possibility of predicting ICP non-invasively
using exclusively morphological and time series features from NIRS-
PPG. This research area is nascent and evolving and future work is
required. The outcomes of this study provide a solid groundwork for
future research within this domain.
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Table 5
Table containing the list of features extracted from the original, first derivative and second
derivative of the signal.
Features

AUC

Systolic AUC

Diastolic AUC

Ratio between the systolic and diastolic AUC

Rise time (samples between the pulse onset and peak)

Decay time (samples between the pulse peak and end)

Ratio between the rise time and decay time

Number of beats

Inter-beat interval

Standard deviation of the inter-beat interval

Prominence

Upslope (slope between pulse onset to peak)

Downslope (slope between peak to pulse end)

Onset-end slope (slope between pulse onset and end)

Ratio between the upslope and downslope

Ratio between the pulse length and height

Start datum area
(area between a straight line between the pulse onset
and peak and pulse data between those points)

End datum area
(area between a straight line between the pulse peak
and end and pulse data between those points)

Ratio between the start datum area and end datum area

Max start datum difference
(maximum element-wise difference between a straight line between
the pulse onset and peak and pulse data between those points)

Max end datum difference
(maximum element-wise difference between a straight line between
the pulse peak and end and pulse data between those points)

The median of the element-wise difference between a straight line between
the pulse onset and peak and pulse data between those points

The median of the element-wise difference between a straight line between
the pulse peak and end and pulse data between those points

Pulse width at 10% of the pulse prominence (in samples)

Pulse width at 25% of the pulse prominence (in samples)

Pulse width at 50% of the pulse prominence (in samples)

Pulse width at 75% of the pulse prominence (in samples)

Pulse width at 100% of the pulse prominence (in samples)

Systolic width at 10% of the pulse prominence (in samples)

Systolic width at 25% of the pulse prominence (in samples)

Systolic width at 50% of the pulse prominence (in samples)

Systolic width at 75% of the pulse prominence (in samples)

Systolic width at 100% of the pulse prominence (in samples)

Diastolic width at 10% of the pulse prominence (in samples)

Diastolic width at 25% of the pulse prominence (in samples)

Diastolic width at 50% of the pulse prominence (in samples)

Diastolic width at 75% of the pulse prominence (in samples)

Diastolic width at 100% of the pulse prominence (in samples)

Ratio between the diastolic and systolic pulse width at 10% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 25% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 50% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 75% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 100% of the pulse prominence

Variance of the pulse data

Skew of the pulse data

Kurtosis of the pulse data

Zero-crossing rate of the pulse data
10
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