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Abstract:11

We introduce a new approach for modeling the time varying behavior and12

time series evolution of asset returns co-movements. Here, the co-movement13

in each period is captured by a trajectory of returns correlation, then a14

sequence of this over time and the time series evolution are studied. We rely15

on functional principal components to achieve dimension reduction and to16

construct the dynamic space of interest, while introducing a new class of17

information criteria in order to identify the finite dimensionality of the curve18

time series. Our method is able to combine two of the most applied ideas in19

the literature, namely economics (or finance) based and time-series based20

time-varying correlation models. This offers a general specification that is21

able to model processes of time-varying time-series correlations generated22

under many existing models that have dominated the financial literature for23

several decades. To illustrate its empirical relevance, we apply our method24

to model the time varying co-movement of exchange rate returns for a25

group of small open economies with large financial sectors. Our empirical26

results indicate that concepts of time varying correlation enabled by existing27

methods are too restrictive to accommodate fully the time varying behavior28

and time series evolution of the returns correlation. On the other hand, our29

method gives a more complete picture and is able to provide more accurate30

correlation forecasts.31

1
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1. Introduction32

In the disciplines of economics and finance, co-movements between returns on33

financial assets are believed to carry many important implications. For instance,34

information about co-movements among international stock returns are needed35

to determine gains from international portfolio diversification when optimizing36

a portfolio. Also, a calculation of minimum variance hedge ratio needs updated37

information on the co-movements between returns of assets in the hedge.38

It is also well-known that such co-movements are time-varying. Overall, there39

are generally two main approaches to explaining the time-varying behavior. On40

the one hand, many studies follow the Engle’s (2002) Dynamic Conditional41

Correlation (DCC) idea, which imposes the GARCH-type dynamics on returns42

correlation (see e.g. Cappiello et al. (2006) and Kasch and Caporin (2013)),43

and generalize it to obtain models that allow asset return co-movements to be44

directly explained as a deterministic function of time (e.g. Aslanidis and Casas45

(2013)). On the other hand, a number of studies put forward market variables,46

such as measures of return and/or volatility, as keys determinants of returns47

correlation (see e.g. Ang and Chen (2002), Hafner et al. (2006), Silvernoinen48

and Terävirta (2015) and Jiang et al. (2016)).49

In this paper, we introduce a new approach that can take these two ideas50

into consideration simultaneously. To the best of our knowledge, Kasch and51

Caporin (2013) is the only work that attempts to combine economics (or finance)52

based and time-series based time-varying correlation models. They introduce53

the Threshold Generalized DCC (T-GDCC) model by directly introducing a54

threshold structure in either the DCC-GARCH specification or its asymmetric55

generalized DCC (GDCC) extension (Cappiello and Engle (2006)) to allow for56

the effects of returns volatility. Our approach differs significantly from these57

existing models.58

We take the view that co-movements between a pair of asset returns can59

be explained entirely by a trajectory of the returns’ correlation. The time-series60

evolution and serial dependence of such trajectories are captured by a functional61

process that is constructed in Section 2.1 as a combination of a time-invariant62

and a time-varying components. Here, the former is analogous to the concept of63

returns co-movement assumed in the Semparametric Correlation (SP-C) model64

of Hafner et al. (2006). Whereas, the latter is constructed by a stochastic process,65

which summaries the dynamics of the functional process in question. In this66

regard, we assume that the time-varying component admits the Karhunen-Loéve67

expansion, which is the stochastic parallel of the Fourier Expansion. However,68

unlike in traditional functional data analysis, which focuses on the covariance69

function as the Mercer kernel, this paper explores the use of the auto-covariance70

function. Analogously to the well-known Portmanteau test procedure in time71

series analysis, we focus our analysis on the first p lags, where p is a small integer.72

We consider an alternative linear operator, which can be intuitively viewed as73

the summation of the auto-covarainces, in order to empirically construct the74

Karhunen-Loéve expansion. The resulting procedure is not only able to address75

previous limitations of functional data analysis (FDA) in financial applications76
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(see, for example, Müller et al. (2011)), but also offers a general specification that77

can model processes of time-varying correlations generated under many existing78

models, which have dominated the financial literature for several decades.79

The first obstacle that we must face is the fact that the above-mentioned80

trajectory of returns’ correlation is not observable in practice. To address this,81

we treat the correlation coefficient of asset returns for each period (e.g. for82

each day), as a correlation trajectory that is assumed to be a realisation of the83

functional time series of interest. In Section 2.2, we introduce the local-linear84

estimator for such a correlation coefficient for each day by making use of the85

within-day returns (e.g. 1-minute or 5-minute returns). Accordingly, we estab-86

lish an estimator for the linear operator, which was discussed in the previous87

paragraph. Performing eigenanalysis in the Hilbert space is not a trivial matter,88

however. In Section 2.3, we discuss an alternative method, which transforms89

the problem into an eigenanalysis for a finite matrix. Such method is based on90

suggestions made in Bathia et al. (2010) and Benko et al. (2008).91

Section 2.4 focuses on asymptotic results. Firstly, we presents the uniform92

convergence rate for the local linear estimator mentioned in the above point. The93

uniform convergence is essential in our study since it ensures that the estimated94

functional correlation is close to the true function everywhere. We also present95

asymptotic results for the proposed estimation procedure. The proof of these96

deviates quite significantly from existing studies in functional data analysis.97

The key to such a difference is the interaction between nonparametrics and the98

operator theory used in this work. In addition, these results hold for a process99

with an infinite order of the Karhunen-Loéve expansion.100

The key to the practicality of our method is its ability to construct the dy-101

namic space for the functional correlation time series of interest. Our approach102

relies on functional principal components. When principal component analy-103

sis is involved, dimension reduction is achieved naturally and the truncated104

Karhunen-Loéve expansion becomes our main focus. In this paper, we present a105

set of theoretical results that help to verify the use of the truncated expansion106

as an acceptable approximation. Firstly, we establish the consistency of such a107

representation by showing that if the dimension is allowed to increase to infinity,108

then the mean squared error using the finite representation in the space of the109

deterministic function converges to zero. Secondly, we establish its optimality110

by showing that among all truncated expansions of the same form, the trun-111

cated Karhunen-Loéve expansion minimises the integrated mean squared error.112

Moreover, we introduce in Section 3 a new class of information criteria to help113

to identify the finite dimensionality of the curve time series. We present the114

consistency of our selection and show that it also holds for the case in which115

the dimensionality tends to infinity.116

To illustrate its empirical relevance, we conduct a series of simulation studies117

in Section 4 and apply our analytical framework to model time varying correla-118

tion of exchange rate returns for a group of small open economies with large fi-119

nancial sectors, namely the United Kingdom, Switzerland, Norway and Sweden,120

in Section 5. Here, let us summarize some important findings. Our empirical121

results indicate that concepts of time varying correlation enabled by existing122
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methods, e.g. the SP-C and the DCC-GARCH models, might still be too rigid123

to accommodate fully the time-varying behavior and temporal evolution of the124

returns correlation. The SP-C model, for example, does not allow functional125

variation of the correlation over time and is therefore not able to provide ac-126

curate in-sample forecasts of the functional correlation when compared to our127

method. In addition, the GARCH-type evolution offered by models within the128

DCC-GARCH family may not be able to capture the time series evolution of129

the correlation that truly takes place. Our empirical results suggests that the130

time series evolution of returns correlation involves both low frequency cycles131

with relatively lengthy periodicity and trend, and high frequency cycles (say,132

for example, the day-of-the-week effects) with a shorter periodicity.133

Finally, Section 6 concludes. All the technical discussion and proofs are rele-134

gated to the Appendix.135

2. Functional Correlation Time Series136

Throughout this paper, let t and τ denote two different indexes. For instance,137

in the empirical analysis presented in Section 5 we assume that within the tth138

day there are discrete grid of time points139

tτ = τ∆, τ = 1, . . . ,m

in which m = bI/∆c, where I denotes the overall length of time interval and140

bQc stands for the largest integer smaller than or equal to Q. In this regard,141

the motivating daily trading data are recorded on a regular grid often with ∆142

quantified as either 5 or 1 minute, such that ∆ → 0 signifies higher frequency143

trading data and implies that m→∞.144

Moreover, by letting Pk,t,τ be the price of asset k at the τ th time point in145

the tth day, then rk,t,τ = pk,t,τ − pk,t,τ−1 is the log-return, i.e. the continuous146

compounded return, by which pk,t,τ = ln(Pk,t,τ ). If they are relevant, the log-147

return of other assets, such as `, can also be similarly defined. In the analysis148

that follows, we assume that returns follow149

rk,t,τ = µk,t(Ut,τ ) + σk,t(Ut,τ )εk,t,τ and r`,t,τ = µ`,t(Ut,τ ) + σ`,t(Ut,τ )ε`,t,τ ,

where E{εk,t,τ |Ut,τ} = E{ε`,t,τ |Ut,τ} = 0 and E{ε2j,t,τ |Ut,τ} = 1 almost surely.150

Clearly, rk,t,τ and r`,t,τ depend on Ut,τ , but this dependence is omitted from151

the notation to simplify exposition. Assumption 7.1 in the appendix discuss the152

probability and time series properties of rk,t,τ , r`,t,τ and Ut,τ in detail.153

The correlation coefficient formulated in (2.1) below portrays the concept of154

co-movement that we are interested in, i.e. the correlation between a pair of155

returns as driven by Ut,τ ,156

Corrt{rk,t,τ , r`,t,τ |Ut,τ = u} =
µk`,t(u)− µ`,t(u)µk,t(u)√

σ2
`,t(u)σ2

k,t(u)
(2.1)
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for u ∈ I, where µk`,t(u) = E{rk,t,τr`,t,τ |Ut,τ = u}, σk,t(u) is positive over u157

in the support of Ut,τ and I signifies a compact interval. Since this is simply158

E[εk,t,τ ε`,t,τ |Ut,τ = u], we are indeed modeling the time series evolution of the159

error covariance, where Ut,τ can be any financial or economic variables.160

When a given day t is considered, providing availability of the returns in high161

frequency trading (e.g. based on closing prices that are recorded every 1 min), we162

should be able to formulate consistent estimates of Corrt{rk,t,τ , r`,t,τ |Ut,τ = u}163

for all t = 1, . . . , n. However, these estimates are not capable of explaining the164

time-varying behavior of the correlation. In this paper, we are interested in165

the time series evolution of the trajectory that explains the returns correlation166

with respect to Ut,τ . To this end we propose expressing the correlation process167

as a combination of a time-invariant and stochastic time-varying components.168

This idea is congruent with well-known existing models (e.g. the DCC-GARCH,169

GDCC and the T-GDCC) and will be thoroughly discussed in the next section.170

2.1. Basic Construction171

Let ρ1(u), . . . , ρn(u) denote the functional time series defined on a compact172

interval I. In this paper, we take the view that such functional process expresses173

the time series evolution of the the trajectory of returns correlation. Moreover,174

ρt(u) = %(u) + ϑt(u), u ∈ I, (2.2)

where I signifies a compact interval, %(u) = E{ρt(u)} takes into account the175

possible non-time-varying part and ϑt(u) is the stochastic process that drives176

the time-varying component. In addition, we assume that ρt(u) takes values in177

L2(I), i.e. the Hilbert space consisting of all square integrable functions defined178

on I with the inner product179

〈f, g〉 =

∫
I
f(u)g(u)du, f, g ∈ L2(I). (2.3)

In this regard, ρt(u) depicts the instantaneous correlation of the returns,180

whereas ρ1(u), . . . , ρn(u) form a strictly stationary time series process hereafter181

referred to as “functional correlation time series” (FC-TS). Assumption 7.2 in182

Appendix 7.4 discusses the strict stationarity and mixing properties in detail. It183

follows from the definition of stationarity, that a stationary time series should184

fluctuate around a constant level. Hence, for the stationary FC-TS, the level185

%(u) = E{ρt(u)} can be seen as the equilibrium value, while deviations from186

the mean ϑt(u) can be interpreted as deviations from equilibrium.187

A similar concept of time-variation was also studied by Müller et al. (2011),188

but within the context of the volatility (see also Dalla et al. (2015) for a similar189

treatment on the mean). Here, the FC-TS expresses a concept of time-varying190

correlations, while also providing a convenient vehicle to accommodate such a191

nonstationary feature into a stationary setup. In addition, such a formulation192

of the correlation is more general that it can handle processes of time-varying193
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correlations of time series suggested by existing models, which have dominated194

financial literature for many years. For example, the popular DCC-GARCH195

specification is resulted when return correlations are independent of Ut,τ and196

evolve temporally under the GARCH-type time series evolution. The correlation197

curve ρt(u) is reduced simply to a step function under the T-GDCC specification.198

By rewriting (2.2) as perturbation ρt(ut,τ ) − %(ut,τ ) = ϑt(ut,τ ), the concept of199

correlation considered by Hafner et al. (2006) is obtained when the time-varying200

component (i.e. the right hand side) is zero. We shall revisit these points and201

present some empirical illustration in Section 5.202

We now explain the construction of the functional process in (2.2) in detail.203

We begin with a common approach in functional data analysis; particularly by204

assuming that the continuous covariance function205

M (0)(u, v) = Cov{ρt(u), ρt(v)}, (2.4)

defined on I ×I, is the Mercer kernel satisfying the Fredholm integral equation206 ∫
I
M (0)(u, v)ϕj(v)dv = λjϕj(u), j ≥ 1, (2.5)

where λj and ϕj(u) respectively are eigenvalues and orthogonal eigenfunctions207

(i.e. 〈ϕi, ϕj〉 = 1 for i = j, and 0 otherwise) of the compact symmetric linear208

operator M(0) on L2(I). In this respect, ϑt(u) is a zero-mean square-integrable209

stochastic process indexed over I also with the continuous covariance function210

M (0)(u, v). Under these conditions, the Karhunen-Loéve Theorem suggests that211

we may decompose212

ϑt(u) =

∞∑
j=1

ξtjϕj(u), ξtj =

∫
I
ϑt(u)ϕj(u)du, (2.6)

where E(ξtj) = 0, V ar(ξtj) = λj and Cov(ξts, ξtj) = 0 for s 6= j (see e.g. Yao213

et al. (2005a,b), Hall and Vial (2006), Wang (2008) and the references therein).214

Furthermore, λ1 ≥ λ2 ≥ · · · ≥ 0, in the other words; the only possible limit215

point of a sequence of eigenvalues is 0.216

The decomposition in (2.6) carries various important methodological and217

empirical implications. We focus here on the former and revisit the latter point218

in Section 3. On the one hand, M (0)(u, v) can be expressed as219

M (0)(u, v) =

∞∑
j=1

λjϕj(u)ϕj(v) (2.7)

by venture of the Mercer’s theorem. In their study of daily functional volatility,220

Müller et al. (2011) associated to M (0)(u, v) the linear operator M(0) and solved221

the Fredholm integral equation (2.5). Nonetheless, doing so assumes that the222

process in question is temporally uncorrelated. To account for this, the authors223

must make an empirical compromise by randomly selecting only a sub-sample224

of days in order to enhance the temporal independence.225

imsart-generic ver. 2014/10/16 file: JoEFinalSub.tex date: November 10, 2020



/ 7

In this paper, we shall take a different approach. Let226

M (q)(u, v) ≡ Cov{ρt(u), ρt+q(v)} (2.8)

denote the continuous auto-covariance function defined on I × I for any q 6=227

0. Analogously to (2.7), we can formulate based on (2.6) the auto-covariance228

function229

M (q)(u, v) = E


( ∞∑
i=1

ξtiϕi(u)

) ∞∑
j=1

ξt+q,jϕj(v)


=

∞∑
i,j=1

σ
(q)
ij ϕi(u)ϕj(v) (2.9)

defined on I × I, in which230

σ
(q)
ij = E{ξtiξt+q,j}

denotes the autocovariance at lag q for i = j and cross-autocovariance for i 6= j.231

For any f ∈ L2(I) and M(q)f ∈ L2(I), let232

(M(q)f)(u) =

∫
I
M (q)(u, v)f(v)dv (2.10)

such that the linear operator M(q) is compact and may be decomposed as233

M(q) =

∞∑
i,j=1

σ
(q)
ij ϕi ⊗ ϕj . (2.11)

Or equivalently,234

(M(q)f)(u) =

∞∑
i,j=1

σ
(q)
ij 〈ϕj , f〉ϕi(u). (2.12)

These, together with (2.6), suggest that by focusing on M (q)(u, v) and M(q)
235

(instead of M (0)(u, v) and M(0)) the dynamics (i.e. the time series evolution)236

of the FC-TS can be explained entirely by that of the vector process ξt =237

(ξt1, ξt2 . . .)
′.238

Analogously to the well-known Portmanteau test procedure in the time series239

analysis, we suggest focusing on240

M(u, v) =
∑

1≤q≤p

M (q)(u, v), (2.13)

where p is a pre-specified positive integer. Under the strict stationarity and241

mixing properties outlined in Appendix 7.4, p can be specified as a small positive242

integer in practice since the serial dependence should decay quickly as the lag243
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increases. However, this idea is ineffective since it may not necessarily be the244

case that245 ∫
I

∑
1≤q≤p

M (q)(u, v)f(v) dv 6= 0. (2.14)

This is due to the fact that M(q) is not a nonnegative definite operator unlike246

M(0). In other words, ones cannot ensure that247

〈M(q)f, f〉 =

∞∑
i,j=1

σ
(q)
ij

∫
I

(∫
I
ϕj(v)f(v) dv

)
ϕi(u)f(u) du (2.15)

is greater than or equal 0 since σ
(q)
ij are the autocovariances at lag q.248

To address this problem, we follow the suggestion made by Bathia et al.249

(2010) and employ an alternative operator K whereby250

K(u, v) =
∑p
q=1N

(q)(u, v) (2.16)

N (q)(u, v) =
∫
IM

(q)(u, z)M (q)(v, z)dz =
∑∞
i,j=1 w

(q)
ij ϕi(u)ϕj(v) (2.17)

and W (q) =
(
w

(q)
ij

)
= Σ(q)Σ(q)′ is a nonnegative definite matrix. In this regard,251

(N(q)f)(u) =

∫
N (q)(u, v)f(v) dv

=

∞∑
i,j=1

w
(q)
ij 〈ϕi, f〉ϕj(u) = (M(q)M(q)*f)(u), (2.18)

where M(q)* signifies the adjoint of M(q). This suggests that N(q) = M(q)M(q)*
252

and also that253

Im(N(q)) = Im(M(q)M(q)*),

where Im signifies the image of the operator (see Appendix 7.1 for detailed254

definitions). In addition, K is a nonnegative definite operator since255

〈N(q)f, f〉 =

∞∑
i,j=1

w
(q)
ij

(∫
I
ϕi(u)f(u) du

)(∫
ϕj(v)f(v) dv

)
= 〈M(q)∗f,M(q)∗f〉 (2.19)

where (M(q)∗f)(u) =
∫
IM

(q)(v, u)f(v) dv. Furthermore:256

Lemma 2.1. Let {ψj(u)}∞j=1 denote the orthonormal eigenfunctions of K and257

θj signify the corresponding eigenvalue to the eigenfunction ψj(u). The relation258

Kψj = θjψj holds and259

Vt(u) = lim
d→∞

d∑
j=1

ηtjψj(u) uniformly, (2.20)
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where ηtj =
∫
I Vt(u)ψj(u) du, in the sense that260

E(Vt(u)−
d∑
j=1

ηtjψj(u))2 → 0. (2.21)

While the proof of Lemma 2.1 is presented in Appendix 7.2, the validity of using261

Vt(u) instead of ϑt(u) will be made clear in Section 3.262

2.2. Estimators263

This section and the next focus on estimation aspects of the concepts introduced264

in the previous section. Firstly, by following a common practice in functional265

data analysis, we may define the estimator of M (q)(u, v) as266

M̃ (q)(u, v) =
1

n− p

n−p∑
j=1

{ρj(u)− %̃(u)}{ρj+q(v)− %̃(v)}, (2.22)

where %̃(u) = n−1
∑

1≤j≤n ρj(u) is the estimator of the expected correlation.267

Accordingly, the estimator for K(u, v) can be written as268

K̃(u, v) =

p∑
q=1

Ñ (q)(u, v) =

p∑
q=1

∫
I
M̃ (q)(u, z)M̃ (q)(v, z) dz. (2.23)

However, these require observing the FC-TS, which is usually not possible in269

practice. To address this issue, we propose using Corrt{rk,t,τ , r`,t,τ |Ut,τ = u}270

to represent a trajectory that is assumed to be a realization of the stochastic271

function ρt(u).272

To this end, we rely on the formula in (2.1) to construct the needed estimator.273

In particular, our nonparametric estimator of the correlation is constructed as274

ρ̂t(u) =
µ̂k`,t(u)− µ̂`,t(u)µ̂k,t(u)√

σ̂2
`,t(u)σ̂2

k,t(u)
, (2.24)

where µ̂k`,t(u), µ̂k,t(u), µ̂`,t(u), σ̂2
k,t(u) and σ̂2

`,t(u) denote local-linear estimators275

of µk`,t(u), µk,t(u), µ`,t(u), σ2
k,t(u) and σ2

`,t(u), respectively. In a general sense,276

these local-linear estimators are obtained based on the following minimisation277

problem278

arg min
β0,β1

m∑
τ=1

{yt,τ − β0 − β1(Ut,τ − u)}2 κh(Ut,τ − u),

where κh(Ut,τ − u) = κ
(Ut,τ−u

h

)
/h, κ(·) is a kernel function and h is the band-279

width parameter. yt,τ is either rk,t,τr`,t,τ , rk,t,τ , r`,t,τ , (rk,t,τ − µ̂k,t(u))2 or280

(r`,t,τ − µ̂`,t(u))2. By letting281

Wt,τ (u) =
Wm,h(Ut,τ − u)∑m
τ=1Wm,h(Ut,τ − u)

, (2.25)
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where Wm,h(Ut,τ − u) = sm,h,2κh(Ut,τ − u)− sm,h,1κh(Ut,τ − u)(Ut,τ − u) and282

sm,h,r =
∑m
τ=1 κh(Ut,τ − u)(Ut,τ − u)r (for r = 0, 1, 2), these local-linear es-283

timators can be formulated as follows µ̂k`,t(u) = Wt,τ (u)rk,t,τr`,t,τ , µ̂k,t(u) =284

Wt,τ (u)rk,t,τ , µ̂`,t(u) = Wt,τ (u)r`,t,τ , σ̂
2
k,t(u) = Wt,τ (u)(rk,t,τ − µ̂k,t(u))2 and285

σ̂2
`,t(u) = Wt,τ (u)(r`,t,τ − µ̂`,t(u))2.286

Moreover, by replacing the time series ρ1(u), . . . , ρn(u) with ρ̂1(u), . . . , ρ̂n(u),287

the estimators M̃ (q)(u, v) and K̃(u, v) can be respectively replaced by288

M̂ (q)(u, v) =
1

n− q

n−q∑
j=1

{ρ̂j(u)− %̂(u)}{ρ̂j+q(v)− %̂(v)}, (2.26)

where289

%̂(u) =
1

n

∑
1≤j≤n

ρ̂j(u), (2.27)

and290

K̂(u, v) =

p∑
q=1

∫
I
M̂ (q)(u, z)M̂ (q)(v, z)dz (2.28)

=
1

(n− p)2
n−p∑
t,s=1

p∑
q=1

{ρ̂t(u)− %̂(u)}{ρ̂s(v)− %̂(v)}〈ρ̂t+q − %̂, ρ̂s+q − %̂〉.

2.3. Eigenanalysis291

Performing eigenanalysis in the Hilbert space is not a trivial matter. To this end,292

Bathia et al. (2010) suggest transforming the problem into an eigenanalysis for293

a finite matrix by making use of the well-known duality method introduced in294

Benko et al. (2008). To follow the Bathia et al. (2010) approach, we begin with295

the infeasible, i.e “tilde”, version as done in the previous section.296

Let us view the curves ρt(u) − %̃(u) and ρt+q(u) − %̃(u) as ∞ × 1 vectors297

denoted by %̃t and %̃t+q, respectively. Also, let %̃′t%̃t+q = 〈ρt − %̃, ρt+q − %̃〉,298

Ỹq = (%̃1+q, . . . , %̃n−p+q) and Ỹ ′q = (%̃1+q, . . . , %̃n−p+q)
′. Then, K̃(u, v) can be299

expressed as an ∞×∞ matrix300

K̃ =
1

(n− p)2
Ỹ0

p∑
q=1

Ỹ ′qỸqỸ ′0. (2.29)

By letting A = Y0 and B′ =
∑

1≤q≤p Ỹ ′qỸqỸ ′0, AB′ shares the same nonzero301

eigenvalues as B′A. In the other words, K̃ shares the same nonzero eigenvalues302

as the (n− p)× (n− p) matrix303

K̃∗ =
1

(n− p)2
p∑
q=1

Ỹ ′qỸqỸ ′0Ỹ0. (2.30)
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Moreover, let γ̃j = (γ̃1j , . . . , γ̃n−p,j)
′ be the eigenvectos of K̃∗. Then, the eigen-304

functions of K̃(u, v) can be calculated as305

n−p∑
t=1

γ̃tj{ρt(u)− %̃(u)}. (2.31)

Similarly, we let the curve ρ̂t(u) − %̂(u) be denoted by the ∞× 1 vector %̂t,306

from which %̂′t%̂t+q = 〈ρ̂t − %̂, ρ̂t+q − %̂〉 and Ŷq = (%̂1+q, . . . , %̂n−p+q). Then,307

K̂(u, v) can be transformed into an ∞×∞ matrix308

K̂ =
1

(n− p)2
Ŷ0

p∑
q=1

Ŷ ′qŶqŶ ′0, (2.32)

which shares the same nonzero eigenvalues as the (n− p)× (n− p) matrix309

K̂∗ =
1

(n− p)2
p∑
q=1

Ŷ ′qŶqŶ ′0Ŷ0. (2.33)

Let θ̂j denote a nonzero eigenvalue of K̂∗ and γ̂j = (γ̂1j , . . . , γ̂n−p,j)
′ be the310

corresponding eigenvector, i.e. K̂∗γ̂j = γ̂j θ̂j . Then, we are able to compute the311

eigenfunctions of K̂(u, v) as312

n−p∑
t=1

γ̂tj{ρ̂t(u)− %̂(u)}. (2.34)

2.4. Theoretical properties313

It is important that we first show the uniform convergence rate for the local314

linear estimator defined in (2.24). Such a uniform convergence is essential in our315

study since it ensures that the estimated functional correlation is close to the316

true function everywhere. Assumption 7.1 lists probability and other important317

time series properties required for all the time series that are involved.318

Theorem 2.1. Let Assumption 7.1 hold. Then we have uniformly:319

ρ̂t(u) = ρt(u) +
1

2
wκ2B1ρ̂(u)h2 − 1

2
wκ2B2ρ̂(u)h2 +Nρ̂(u) + δm, (2.35)

where δm = oP (h2 + {logm/(mh)}1/2),320

B1ρ̂(u) =
µ′′k`,t(u)− µk,t(u)µ′′`,t(u)− µ`,t(u)µ′′k,t(u)

σ`,t(u)σk,t(u)
,

321

B2ρ̂(u) =
ρt(u)(σ2

k,t(u))′′

2σ2
k,t(u)

+
ρt(u)(σ2

`,t(u))′′

2σ2
`,t(u)

,

imsart-generic ver. 2014/10/16 file: JoEFinalSub.tex date: November 10, 2020



/ 12

322

Nρ̂(u) =
1

mfU,t(u)

m∑
τ=1

κh,t,τ (u)Nρ̂,τ (u),

323

Nρ̂,τ (u) =
ek`,t,τ

σ`,t(u)σk,t(u)
−
ρt(u)σ2

k,t(Ut,τ )ξk,t,τ

2σ2
k,t(u)

−
ρt(u)σ2

`,t(Ut,τ )ξ`,t,τ

2σ2
`,t(u)

.

ξk,t,τ = ε2k,t,τ − 1, ek`,t,τ = rk,t,τr`,t,τ and fU,t(u) is the marginal density of Ut,τ324

whose properties are given in more detail in Assumption 7.1.325

Below let {ψ̂j}∞j=1 denote the eigenfunctions of K̂, for which326

(K̂ψ̂j)(u) =

∫
I
K̂(u, v)ψ̂j(v) dv (2.36)

=
1

(n− p)2
n−p∑
t,s=1

p∑
q=1

{ρ̂t(u)− %̂(u)}〈ρ̂s − %̂, ψ̂j〉〈ρ̂t+q − %̂, ρ̂s+q − %̂〉

and θ̂j signifies the corresponding eigenvalue to the eigenfunction ψ̂j . Moreover,327

let ‖L‖S denote the Hilbert-Schmidt norm for any operator L (see Appendix 7.1328

for detailed definitions). We can now state theoretical properties of K̂, θ̂j and329

ψ̂j . Necessary assumptions and proof are presented in Appendix 7.4.330

Theorem 2.2. Let Assumptions 7.2 hold. Furthermore, let331

n =

⌊(
m

logm

)4/5
⌋
, (2.37)

where bQc signifies the greatest integer less than or equal to Q. Then:332

(i) ‖K̂−K‖S = OP
(
n−1/2

)
333

(ii) supj≥1 |θ̂j − θj | = Op(n
−1/2)334

(iii)
[∫
I{ψ̂j(u)− ψj(u)}2 du

]1/2
= OP (n−1/2)335

In Theorem 2.2, condition (2.37) is given merely as a guideline and for the336

simplicity of notations. More generally, other combinations of n and m, for337

example n ≥ m, are allowed and should only alter the speed of convergence in338

the theorem. This is also illustrated empirically by simulation results, which are339

presented in Section 4.340

3. Modeling the functional dynamics341

For the purposes of correlation analysis and forecasting, it is imperative that we342

are able to model serial dependence of the FC-TS ρ1(u), . . . , ρn(u). To achieve343

such empirical goal, this section employs functional principal components to344

construct the dynamic space of the curve time series of interest. In other words,345
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we follow a widespread practice in the functional data analysis that is to focus346

on the truncated expansion in which only d0 terms is used, namely347

Vd0,t(u) =

d0∑
j=1

ηtjψj(u), ηtj =

∫
I
{ρt(u)− µ(u)}ψj(u)du (3.1)

(see e.g. Yao et al. (2005), Hall and Hosseini-Nassab (2006), Hall and Vial (2006),348

Wang (2008), Bathia et al. (2010) and Li et al. (2013)). Such a practice embodies349

the fact that functional data analysis can be viewed as the functional extension350

of the principal component analysis. Meanwhile, a parallel assumption is also351

used regularly in the factor analysis (see e.g. Assumption I1 in Körber et al.352

(2015) and expression (2.16) of Jiang et al. (2016)).353

Moreover, there are a number of results that can help to verify our use of354

the truncated expansion in (3.1) as an acceptable approximation. Firstly, we355

have already shown in Lemma 2.1 that the mean squared error using the finite356

representation in the space of the deterministic function converges to zero. In357

addition, by using Proposition 1(ii) of Bathia et al. (2010), it holds that358

ϑd0,t(u) =

d0∑
j=1

ξtjϕj(u) = Vd0,t(u). (3.2)

Using this result, we can also present the optimality of the truncated Karhunen-359

Loéve expansion as follows:360

Lemma 3.1. Among all truncated expansions expressed in the form of (3.1),361

the truncated Karhunen-Loéve expansion (3.1) is optimal in the sense that it362

minimised the integrated mean squared error363 ∫
I
E(e2d0,t(u)) du

where ed0,t(u) =
∑∞
j=d0+1 ηtjψj(u).364

In the sections that follow, we discuss how finite dimensionality is useful in365

the analysis of the FC-TS.366

3.1. Finite dimensional FC-TS367

Let us begin with the following truncated version of (2.9)368

M (q)(u, v) =

d0∑
i,j=1

σ
(q)
ij ϕi(u)ϕj(v), (3.3)

where d0 ≥ 1 and Σ(q) = E(ξtξ
′
t+q) ≡

(
σ
(q)
ij

)
is autocovariance matrix of369

the d0-dimensional vector process ξt = (ξt1, . . . , ξtd0)′. Under (3.3), the time370
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series evolution of ϑt(u) is driven by that of ξt = (ξt1, . . . , ξtd0)′. Hence, the dy-371

namic (function) space of interest is spanned by the deterministic eigenfunctions372

ϕ1(u), . . . , ϕd0(u), namely M = span(ϕ1(u), . . . , ϕd0(u)).373

Likewise, N (q)(u, v) and K(q)(u, v) (in (2.17) and (2.16) respectively) can374

be redefined based on the truncation in (3.3). Since the dynamic space M is375

now closed, we can show that, for a fixed finite integers d0 ≥ 1 and p ≥ 1,376

M̂ = span(ψ̂1(u), . . . , ψ̂d0(u)) is a consistent estimator ofM. Theorem 3.1 below377

ensures that, although ψ̂j are not direct estimators for the eigenfunctions ϕj of378

M(0), M̂ = span(ψ̂1(u), . . . , ψ̂d0(u)) is a consistent estimator of the dynamic379

space M = span(ϕ1(u), . . . , ϕd0(u)).380

Theorem 3.1. Let Assumptions 7.2 hold and n =

⌊(
m

logm

)4/5⌋
as required in381

Theorem 2.2. Then, for a given fixed d0,382

D(M̂,M) = OP (n−1/2) (3.4)

where D(·, ·) is a discrepancy measure, whose exact definition is given under383

Definition (v) in Appendix 7.1.384

Theorem 3.1 together with equation (3.2) suggest the fitting385

ϑ̂d0,t(u) =

d0∑
j=1

η̂tjψ̂j(u), (3.5)

where η̂tj =
∫
I{ρ̂t(u) − %̂(u)}ψ̂j(u)du. As the results, to model the dynamic386

behavior of the FC-TS, we only need to model that of the d0-dimensional vector387

process η̂t = (η̂t1, . . . , η̂td0)′ using one of the many multivariate time series model388

available in the literature, e.g. the VARMA model.389

Remark 3.1. If d0 is allowed to tend to infinity, we can also obtain the below390

consistency for ϑ̂d0,t(u). This result is closely related to that in Lemma 2.1 above.391

Lemma 3.2. Under the conditions of Theorem 2.2. For d0 →∞ and n→∞,392

it holds that393

lim
d0→∞

lim
n→∞

ϑ̂d0,t(u) = ϑt(u). (3.6)

3.2. Selecting the finite dimensionality, d0394

Under the finite dimensionality of functional time series, it is possible to de-395

compose the space L2(I) into M and M⊥, where M⊥ is the orthonormal396

complement of M. Since M is the dynamic space as explained in Section 3.1,397

M⊥ represents the serially uncorrelated component. In the current section, we398

construct a class of information criteria for selecting the dimension d0 (equiva-399

lently the number of eigenfunctions spanning the dynamic spaceM). To do so,400

we first focus on the basic construction, then explain a few operational issues.401
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For 1 ≤ d ≤ dmax, let402

Ŝ(d) =

d∑
j=1

〈ψ̂j , K̂ψ̂j〉,

where dmax denotes a fixed search limit and (K̂ψ̂j)(u) as given in (2.36). We403

suggest the following class of criteria404

IC(d) = Ŝ(d) − (d× Pn), (3.7)

where Pn is a penalty function satisfying the conditions stated in Theorem 3.2405

below, and identify d0 as406

d̂ = max
d

IC(d). (3.8)

Lemma 3.3 below will be useful for proving the consistency of such a selection.407

Lemma 3.3. Let Assumptions 7.2 hold and n =

⌊(
m

logm

)4/5⌋
as in Theorem408

2.2. Furthermore, let
∑d0
j=1 θ̂j =

∑d0
j=1〈ψj , K̂ψ̂j〉 and

∑d0
j=1 θj =

∑d0
j=1〈ψj ,Kψj〉.409

Then, as n→∞,410

d0∑
j=1

(θ̂j − θj) = OP (n−1/2) and

n∑
j=d0+1

θ̂j = OP (n−1). (3.9)

These results relate closely to
∑∞
j=1〈ϕj ,M(0)ϕj〉 =

∑∞
j=1 λj , which describes411

the total covariance in the traditional functional data analysis. In the context412

of this paper,
∑∞
j=1 θj signifies the total auto-covariance in the functional time413

series in question, so that
∑d0
j=1 θj/

∑∞
j=1 θj quantifies the proportion of the414

total auto-covariance explained by the d0-truncation.415

Theorem 3.2. Let Assumptions 7.2 hold and n =

⌊(
m

logm

)4/5⌋
as required in416

Theorem 2.2. Suppose that the penalty function Pn satisfies (a) Pn → 0, and417

(b) CnPn > 1 for n→∞, where Cn = n1/2.418

(i) Let d̂ be the maximiser of the information criteria among 1 ≤ d ≤ dmax,419

where dmax denotes a fixed search limit. Then:420

lim
n→∞

Prob(d̂ = d0) = 1 (3.10)

(ii) The consistency in (3.10) still holds for the case where d0 = dn is consid-421

ered a function of n and tends to infinity more slowly than n1/2.422

Under the conditions of the theorem, Theorem 3.2(i) confirms that d̂ selected423

based on (3.8) is a consistent estimator of d0. While Lemma 3.2 implies that424

we must also consider the case in which d0 = dn, where dn is a function of425

sample size n, tending to infinity in order to maintain the consistency of the426

representation, Theorem 3.2(ii) shows that theoretically d̂ selected based on427
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Table 1
Percentages of accurate dimension selection across the (m,n)-pairs and simulation

repetitions

m,n 16 45 60 80 114 200 300 400

75 36.5 50.5 56.5 58.0 69.5 77.5 86.5 91.5
390 35.0 71.5 69.5 82.0 90.0 97.5 97.5 100.0
600 24.0 63.0 75.5 81.0 59.0 98.5 100.0 100.0
1000 43.0 63.0 75.0 78.0 86.0 98.0 100.0 100.0
1600 35.0 63.0 76.0 85.0 90.0 100.0 100.0 100.0

(3.2) does also comply with such a tendency. It is required that dn must tend to428

infinity more slowly than n1/2, however. In this regard, it is consistent with the429

results of the theorem to set dmax = n/A for some A > 1 (e.g. dmax = n/ log n)430

since431
n∑
j=1

θ̂j =

∞∑
j=1

〈ψj , K̂ψ̂j〉

due to the Eigendecomposition K̂∗γ̂j = γ̂j θ̂j in Section 2.3.432

In the context of the factor analysis, Bai and Ng (2002) propose a class of433

information criteria whereby the penalty term shows symmetry in the roles of434

m and n. In this paper, we apply the local-linear estimators along m, and hence435

m and n play different roles in our rate. The information criteria that satisfy436

conditions (a) and (b) in Theorem 3.2 can be constructed as follows437

IC1(d) = Ŝ(d) −
(
d×

{
log n

n

}ν1)
, ν1 =

⌊
1

2

{
log n

log (n/ log n)

}⌋
and438

IC2(d) = Ŝ(d) − (d×Bν2) , ν2 =

⌊
1

2

{
logB

log (B/ logB)

}⌋
,

where B =
(
n+m
nm

)
log
(
nm
n+m

)
.439

4. Simulation studies440

In this section, we conduct a number of simulation exercises. In doing so, we are441

interested in examining the finite sample performance of (a) the information cri-442

teria IC(d) for selecting the number of eigenfunctions d0 that span the dynamic443

space M = span(ϕ1, . . . , ϕd0), (b) the estimator M̂ = span(ψ̂1, . . . , ψ̂d0) as an444

estimator of the dynamic space M and (c) the local linear estimator ρ̂t(u). Let445

us begin with IC(d) and M̂ as follows.446

4.1. Finite sample performance of IC(d) and M̂447

To this end, we consider again the pair of asset returns that were defined just448

above equation (2.1). In this regard the correlation coefficient defined in (2.1)449
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Table 2
Medians of the D measure (defined in (4.3)) across (m,n)-pairs and repetitions

m/n 16 45 60 80 114 200 300

75 0.5172 0.4810 0.4463 0.3845 0.3597 0.3314 0.3092
390 0.2813 0.2219 0.2031 0.1985 0.1851 0.1696 0.1523
600 0.2541 0.1927 0.2030 0.1653 0.1505 0.1423 0.1352
1000 0.2016 0.1805 0.1453 0.1383 0.1307 0.1192 0.1162
1600 0.1641 0.1398 0.1281 0.1260 0.1117 0.1204 0.1022

is in fact E[εk,t,τ ε`,t,τ |Ut,τ ]. Hence, we are able to generate as a model example450

εk,t,τ ε`,t,τ = %ε,t(Ut,τ ) + et,τ , et,τ
i.i.d.∼ N(0, 1), τ = 1, . . . ,m,

where %ε,t(Ut,τ ) ≡ E[εk,t,τ ε`,t,τ |Ut,τ ]. We shall assume in this section that451

E[εk,t,τ ε`,t,τ |Ut,τ = u] =

d0∑
i=1

ξitϕi(u) +

10∑
j=1

Zjt
2j−1

ζj(u),

≡ %ε,t(u), u ∈ [0, 1] (4.1)

where ϕi(u) =
√

2 cos(πiu) with loading series {ξit, t ≥ 1} following a linear452

AR(1) process with coefficient (−1)i(0.9 − 0.5i/2) and ζj(u) =
√

2 sin(πju)453

whereas Zjt are independent N(0, 1) variables. We then treat (4.1) as a correla-454

tion trajectory that is assumed to be a realisation of the functional correlation455

time series of interest.456

In this regard, the empirical estimation begins with constructing457

%̂ε,t(u) =

∑m
τ=1Wm,h(Ut,τ − u)εk,t,τ ε`,t,τ∑m

τ=1Wm,h(Ut,τ − u)
, t = 1, . . . , n, (4.2)

where Wm,h(Ut,τ − u) = sm,h,2κh(Ut,τ − u) − sm,h,1κh(Ut,τ − u)(Ut,τ − u),458

sm,h,j =
∑m
τ=1 κh(Ut,τ−u)(Ut,τ−u)j for j = 0, 1, 2, κh(Ut,τ−u) = κ

(Ut,τ−u
h

)
/h459

and κ(·) is a kernel function. h is the bandwidth parameter, which in practice460

is selected based on the cross-validation method. We then use the functional461

process %̂ε,1(u), . . . , %̂ε,n(u) in place of %ε,1(u), . . . , %ε,n(u) when selecting the462

number of eigenfunctions d̂ and computing M̂ = span(ψ̂1, . . . , ψ̂d0). Statistical463

validity of the above-discussed set-up for checking the finite sample performance464

of interest is ensured by noting that uniformly465

%̂ε,t(u)− %ε,t(u) =
1

2
wκ2%

′′
ε,t(u)h2 +

1

mfU,t(u)

m∑
τ=1

κh,t,τ (u)et,τ + δm,

where κh,t,τ (u) ≡ κh(Ut,τ −u) and δm = oP (h2t + {log m/(mh)}1/2), which was466

established in the proof of Theorem 3.1 of Jiang et al (2015). Such a result is in467

line with the uniform convergence rate shown in our Theorem 2.1.468
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Moreover, we measure the discrepancy between M̂ = span(ψ̂1, . . . , ψ̂d0) and469

the dynamic space M = span(ϕ1, . . . , ϕd0) by the metric470

D(M̂,M) =

√√√√1− 1

d0

d0∑
j,k=1

(〈ψ̂j , ϕk〉)2, (4.3)

where471

d0∑
j,k=1

(〈ψ̂j , ϕk〉)2 ≤ 1,

which suggests that D is a symmetric measure between 0 and 1.472

To conduct our simulation exercises, we set d0 = 2, so that the dynamics473

of the functional time series is driven only by that of ξ1t and ξ2t. In addition,474

let dmax = 5 and p = 5. The exercises are conducted under 200 simulation475

repetitions and results are compared among various combinations of m and n,476

which are shown by the rows and columns of Table 1. Quantities presented in477

the table are the percentages of correct selection made based on IC(d). Overall,478

it is clear that an increase in either m- or n-direction improves the accuracy of479

the dimension selection. In addition, at m = 390 the best possible outcome of480

100% accuracy is achieved at n = 400, while it is achieved at only n = 300 when481

m ≥ 600. Nonetheless, Figure 1 shows some evidence that improvement in the482

performance tails off when n increases beyond the relative magnitude recom-483

mended as a condition of Theorem 3.2. The most convenient way to perceive484

this is to recognize the curvature of the graphs with declining (positive) slope485

as n increases. Let us take as an example the case where m = 390. Here the486

percentage increases sharply as n = 16 increases to n = 45, but the improve-487

ment is at much slower rate when n is increased beyond this point. A similar488

argument is also applicable to other values of m.489

We now investigate how effective M̂ = span(ψ̂1, ψ̂2) is in finite sample as an490

estimator of the dynamic space M = span(ϕ1, ϕ2). Table 2 presents medians491

of the D measure defined in (4.3) across the (m,n)-settings. Overall, it can be492

concluded that an increase in either m or n leads to more accurate estimation of493

the dynamic functional space. However, Figure 2 shows some evidence that the494

improvement tails off when n increases beyond the relative magnitude recom-495

mended as a condition of Theorem 3.1. The most convenient way to establish496

this is to recognize the curvature of the graphs with declining (negative) slope497

as n increases. Let us take the case where m = 390 as an example. The drop of498

the median when n = 16 increases to n = 45, which is the recommended rate,499

is much sharper than other ones. Another example is when m = 600 when the500

rate of improvement declines as n increases beyond 60. A similar phenomenon501

is seen across all values of m. These provide empirical evidence in support of502

our argument that the asymptotic rates of functional time series analysis are503

affected by the estimation of correlation functions in question when n is beyond504

what recommended by the (m,n)-relation.505
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Table 3
Finite sample performance comparison: Our local linear (LL) versus Hafner’s et al. (2006)

local constant (LC) estimators of correlation function

ASECov ASES
LL LC LL LC

m

75 2.3872e-03 2.3996e-03 1.6938e-03 1.5022e-03
390 1.8404e-03 2.0811e-03 4.1834e-04 4.4751e-03
600 1.7630e-03 1.9861e-03 3.09904-04 3.4533e-04
1000 1.6092e-03 1.7708e-03 2.0121e-04 2.3924e-03
1600 1.5339e-03 1.6964e-03 1.7437e-04 2.0108e-04

4.2. Finite sample performance of ρ̂t(u)506

In this regard, the key motivation is to ensure that the estimated functional507

correlation is close to the true function everywhere. In addition, we shall also508

compare the finite sample performance our local linear estimator, ρ̂t(u), to that509

of the SP-C of Hafner et al. (2006). To this end, we assume that the return510

process follows511

rj,t,τ = ajt + bjtµj,t(Ut,τ ) + cj0,tεt,τ + cj1,tf1(Ut,τ )ε1,t,τ + cj2,tf2(Ut,τ )ε2,t,τ ,

where ajt, bjt, cj0,t, cj1,t, cj2,t are constant coefficients, j = k, `, and ε0,t,τ , ε1,t,τ ,512

ε2,t,τ , are random renovations with zero mean. We also assume µj,t(Ut,τ ) = Ut,τ ,513

ajt, bjt, cj0,t, cj1,t, cj2,t ∼ N(0, 0.2), ε0,t,τ , ε1,t,τ , ε2,t,τ ∼ N(0, 1),514

f1(Ut,τ ) =
√

1 + cos(2πUt,τ ) and f2(Ut,τ ) =
√

1 + sin(2πUt,τ ).

The correlation coefficient of the above returns can then be derived as515

Corrt(rk,t,τ , r`,t,τ |Ut,τ = u) =
Covt(rk,t,τ , r`,t,τ |Ut,τ = u)

St(u)
, (4.4)

where Covt(rk,t,τ , r`,t,τ |Ut,τ = u) = αt + βtf
2
1 (u) + γtf

2
2 (u) ≡ Covt(u), βt =516

ck1,tc`1,t, αt = ck0,tc`0,t + ck1,tc`1,t + ck2,tc`2,t, γt = ck2,tc`2,t and St(u) =517 √
σ2
k,t(u)σ2

k,t(u).518

To examine the finite sample performance of the estimators in questions, we519

consider the following measures of discrepancy:520

ASECov =
1

m

m∑
τ=1

{Ĉovt(Ut,τ )− Covt(Ut,τ )}2 (4.5)

521

ASES =
1

m

m∑
τ=1

{Ŝ(Ut,τ )− St(Ut,τ )}2 (4.6)

Our local-linear and Hafner et al (2006) local-constant estimators are referred522

to in Table 3 as “Local Linear” (LL) and “Local Constant” (LC), respectively.523
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Table 4
Table of Abbreviations

Abbreviations Definitions
JPY Japanese Yen
EUR European Union Euro
USD United States Dollar
CHF Swiss Franc
GBP British Pound
NOK Norwegian Krone
SEK Swedish Krona
jpy USD/JPY Exchange rate
eur USD/EUR Exchange rate
chf USD/CHF Exchange rate
gbp USD/GBP Exchange rate
nok USD/NOK Exchange rate
sek USD/SEK Exchange rate
ρchf,t(u) Correlation process between gbp and chf returns
ρnok,t(u) Correlation process between gbp and nok returns
ρsek,t(u) Correlation process between gbp and sek returns

Although the simulation results in Table 3 suggests that both estimators perform524

well in finite sample, our local linear estimator seems to have a clear edge on525

its local constant counterpart. An intensive graphical examination suggests that526

the local linear estimator enjoy better performance near the boundary as ones527

can expect.528

5. Empirical Analysis of Exchange Rate Returns and Correlations529

Table 4 presents a list of abbreviations used in the current section. Let us begin530

with a brief motivation.531

5.1. Overview and motivation532

In this section, we intend to study co-movements between three pairs of ex-533

change rate returns, namely (i) gbp and chf ; (ii) gbp and nok; and (iii) gbp534

and sek. This study is interesting due to the fact that the UK, Switzerland,535

Norway and Sweden are large trading partners of each other. Moreover, they536

share an important characteristic of being a small open economy with a large537

international financial sector.538

Even though Van Dijk et al. (2006) studied such co-movements previously539

based on the DCC-GARCH model, economic theory has connected exchange540

rates movements to a large number of macroeconomic factors. A candidate list of541

economic variables, which can potentially be key drivers of exchange rate returns542

correlations, is clearly very large so much so that searching over all possibilities543

might be infeasible. In contrast to this more traditional treatment, Verdelhan544

(2018) found that the evolution of exchange rates through time can be quite545

successfully explained by a small number of latent common factors. These factors546
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remained significant and were quantitatively important even after controlling for547

macroeconomic fundamental determinants of exchange rates (see also Engel et.548

al. (2015)). Similarly, Greenaway-McGrevy et. al. (2015) formulated three most549

significant common factors, which drove co-movements of a panel of 27 USD-550

based exchange rates in their study, and were able to established these factors551

as the empirical counterparts of the eur, chf and jpy. Due to the eur and jpy552

domination in foreign exchange trading and the safe-haven role of the jpy and553

chf, such identification seems economically reasonable.554

The objective of the empirical study in this section is to extend the work of555

Van Dijk et. al. (2006) to studying the time series properties of the FC-TS for556

(i) gbp and chf returns, (ii) gbp and nok returns and (iii) gbp and sek returns.557

We make use of the knowledge provided by Greenaway-McGrevy et. al. (2015)558

and Verdelhan (2018) and treat eur as the driver of the exchange rate return559

correlations. Below, let us begin with calculation of the returns series and their560

devolatilization.561

5.2. Returns series and devolatilization562

The data used in our study are regular interval exchange rate spot prices at563

1-minute interval provided by Olsen Data between 1 January 2016 to 30 June564

2017. For our dataset, we have found that the majority of the trades fall between565

midnight and 07:30PM each weekday and therefore excluded weekends and the566

periods of weekdays outside of these hours. We have also excluded Christmas567

and New Year holidays, which are 24 to 26 and 31 December 2016, and 1 to 2568

January 2017. By letting pj,t,τ denote the τ intraday spot price of the j exchange569

rate in the t day, then one-minute returns are computed as 100× log
{

pj,t,τ
pj,t,τ−1

}
,570

where j denotes either eur, chf, gbp, dkk, nok or sek. These data arrangements571

and calculations lead to m = 1, 185 one-minute returns in each of the n =572

388 days. Moreover, to encourage autoregressive homoscedasticity, we compute573

devolatilized returns, whereby the devolatilization is performed based on the574

ARMA(1,1)+GARCH(1,1) process. Then, these devolatilized returns are used575

in the local-linear estimation, from which the resulting estimates are treated576

as correlation trajectories that are assumed to be realisations of the functional577

correlation time series of interest.578

5.3. Model estimation and fitting579

Our analysis in this section aims to achieve two objectives as follows. Firstly, it580

is to compute the fitting581

ρ̂
(d̂k)
k,t (u) = %̂k(u) +

d̂k∑
j=1

η̂k,t,jψ̂k,j(u), (5.1)

where %̂k(u) is the estimate of the mean function, k is either chf, nok or sek,582

and d̂k is the number of eigenfunctions selected using the information criteria583
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discussed in Section 3.2. Secondly, it is to evaluate how well this approximation584

is able to capture time series evolution of the FC-TS in question.585

As pointed out in the previous section, we are interested in studying co-586

movements between three pairs of exchange rate returns, namely (i) gbp and587

chf, (ii) gbp and nok, and (iii) gbp and sek. To keep our discussion organised, in588

what follow we shall focus on each of these pairs in a separate section. However,589

since our analysis of the first pair provides an analytical structure for those that590

follow, it will be discussed in more detail.591

5.3.1. Correlation analysis for the gbp & chf returns592

Regarding the first objective, we shall present our results and discussion in four593

steps as follows:594

Step 5.1: Firstly, it is the local-linear estimation of daily correlation ρchf,t(u).595

Figure 3 presents the 2-dimension and 3-dimension plots of596

ρ̂chf,1(ut,τ ), . . . , ρ̂chf,n(u),

which are estimated FC-TS for the gbp and chf returns. In the panel (b) of the597

figure, ρ̂chf,1(u) is also drawn in the blue color as an example. Since various598

local-linear estimators are needed in the production of these estimates, a single599

theoretically-optimal bandwidth, namely {logm/m}1/5, is used.600

Step 5.2: The second step involves estimating the mean correlation function,601

%chf (u). This is done based on602

%̂chf (u) =
1

n

∑
1≤j≤n

ρ̂chf,j(u), (5.2)

which is analogous to that in (2.27). Figure 3 presents %̂chf (u) as a (right-scaled)603

thick blue curve in its top panel. This shows that correlations between the gbp604

and chf returns are higher at both ends of the eur return spectrum. In addition605

to (5.2), we compute an alternative estimate based on the formula in (2.24)606

by using the data across τ = 1, . . . ,m and t = 1, . . . , n. This is methodologi-607

cally comparable to the semiparametric estimator introduced in Hafner et al.608

(2006) and leads to a correlation trajectory, which shares similar features to609

that presented in Figure 3.610

Step 5.3: The third step involves using the above-introduced information611

criteria to select d̂chf . In doing so, we set the maximum search limit at dmax =612

10. Figures 4 presents ICchf (d) scores, which suggest that613

d̂chf = max
d

ICchf (d) = 5.

It is important to note these scores are computed based on IC1(d), while the614

use of IC2(d) also results in a similar selection. In addition, such a selection is615

congruent with evidence we obtain from the autocorrelation functions (ACFs) of616

the time series of loadings η̂chf,t,1, . . . , η̂chf,t,6, which are presented in Figure 5.617
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The ACFs of η̂chf,t,j show much weaker evidence of serial correlation for j ≥ 5.618

Finally, Figure 6 presents estimated of the eigenfunctions corresponding to the619

first five nonzero eigenvalues, i.e. ψ̂chf,1(u), . . . , ψ̂chf,5(u).620

Step 5.4: By using the results of Steps 5.1 to 5.3, we can now compute621

ρ̂
(5)
chf,t(u), which can be treated as in-sample forecasts for ρchf,t(u). Figure 7622

presents ρ̂
(5)
chf,t(u) (black), ρ̂chf,t(u) (red) and %̂chf (u) (blue) for eight randomly623

selected days. Overall, the predictions are reasonably close to the consistent624

estimated of the daily realized correlation functions.625

We shall now focus on the second objective, i.e. to examine how well the626

functional process ρ̂
(5)
chf,t(u) can capture serial correlation in the functional time627

series ρchf,1(u), . . . , ρchf,n(u). We answer this question in three steps as follows.628

Firstly, analogous to a case of the traditional functional data analysis, here629

we construct a measure630

PAE
(
d̂chf

)
=

d̂chf∑
d=1

θ̂chf,d/

 n∑
j=1

θ̂chf,j

 . (5.3)

In accordance with Theorem 3.3, this should help to quantify the percentage of631

autocovariance of the time varying component being explained. In fact, such a632

measure can be computed over 1 ≤ d ≤ dmax = 10 as shown in Figure 8. The633

figure shows that up to 99.03% of autocovariance is explained at d̂chf = 5.634

Secondly, we compare our in-sample forecasts to those based on the SP-C635

model of Hafner et al. (2006). Recall firstly that by setting the time-varying636

component of the correlation to zero, the time-invariant part of our model, i.e.637

%chf (u), is analogous to an estimate ones can obtain using method introduced638

in Hafner et al. (2006) (see also discussion in Section 2.1 and in Step 5.2 above).639

In this regard, the results in Figure 7 does provide some useful information.640

Taking a role of an in-sample forecast, ρ̂
(5)
chf,t(u) clearly do reasonably well in641

predicting the correlation trajectories for the eight randomly selected t. On the642

contrary, %̂chf (u) is as accurate only around the zero eur return. In the figure,643

the differences between the black and blue trajectories becomes larger as we644

move further to both extreme ends of the eur returns spectrum.645

Finally, it should also be useful to compare the performance of our method646

to that of the DCC-GARCH model. Such comparison should be most meaning-647

ful when performed based on ρ̂
(5)
chf,t(u) and correlation forecasts based on the648

DCC-GARCH at the daily frequency. However, having based our model and its649

estimation on one-minute returns means that such a procedure could involve650

a high degree of uncertainty. As an alternative approach, we shall concentrate651

instead on contrasting the types of time series evolution enabled in our method652

against the GARCH-type dynamics specified in the DCC-GARCH. Following653

the functional time series approach, the dynamics of the FC-TS is driven by654

that of the loading time series ηchf,1,t, . . . , ηchf,5,t. Since the first three eigen-655

functions can already explain more than 96% of the total autocovariance (as656

indicated in Figure 8), we will only focus on η̂chf,1,t, η̂chf,2,t and η̂chf,3,t. In657

Figure 5, the ACFs of η̂chg,t,1 expresses a strong degree of persistence, while658
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those of η̂chf,t,2 suggest presence of some cyclical behavior. A careful look at659

the plots reveals that the former may be caused by some low frequency cycles660

with relatively lengthy periodicity and trend, while the latter is caused by high661

frequency cycles (say, for example, the day-of-the-week effects) with a shorter662

periodicity. Clearly, the GARCH-type dynamics specified in the DCC-GARCH663

is not able to capture these features. In this regard, the nonparametric method664

introduced by Aslanidis and Casas (2013) should be more effective in capturing665

these features.666

5.3.2. Correlation analysis for (i) gbp & nok, and (ii) gbp & sek returns667

The discussion in this section closely follow the analytical structure used in668

Section 5.3.1. Let us discuss some important findings below.669

Figure 9 presents 2- and 3-dimension plots of ρ̂sek,1(u), . . . , ρ̂sek,n(u), which670

are the FC-TS for the gbp and sek returns. Panel (b) of the figure also presents671

ρ̂sek,1(u) in the blue color as an example. On other hand, those estimates for the672

gbp and nok returns are presented in Figure 15. Judging from the color of the673

surface plot, overall the FC-TS computed for the gbp and sek returns appears674

to display weaker serial correlation compared to those of the remaining pairs.675

Figure 9(a) and 15(a) presents, as the dark blue curves, estimates of the676

expected correlations %̂sek(u) and %̂nok(u), respectively. These estimates repre-677

sent the time-invariant part, show that correlations between the gbp returns678

and those of nok and sek are higher at both ends of the eur return spectrum.679

In addition, there exists clear evidence of asymmetry in the effects of the eur680

return on the exchange rate return correlations.681

Figures 10 and 16 present the IC scores, ICsek(d) and ICnok(d), respectively.682

These figures show that683

d̂sek = max
d

ICsek(d) = 4 and d̂nok = max
d

ICnok(d) = 5.

These results are similar to that presented for the gbp and chf returns correlation684

and indeed congruent with the autocorrelation functions presented in Figures685

11 and 17. It is quite noticeable, however, that the autocorrelation function686

associated with η̂nok,t shown a high degree of persistence.687

Figures 12 and 18 presents the estimated eigenfunctions, ψ̂sek,1, . . . , ψ̂sek,6,688

and ψ̂nok,1, . . . , ψ̂nok,6, respectively. These correspond to the first five largest689

eigenvalues. Overall the shape of the first to forth eigenfunctions appears to690

be quite similar across the three pairs of returns under consideration. However,691

those based on the FC-TS of gbp and sek returns seem to display much stronger692

degree of curvature.693

Figures 13 compares the fittings ρ̂
(4)
sek,t(u), which represent the in-sample694

forecasts, to the estimates ρ̂sek,t(u) and those of the non-time-varying parts.695

Clearly, ρ̂
(4)
sek,t(ut,τ ) do reasonably well in predicting the correlation trajectories696

for the eight randomly selected t. An analogous comparison between ρ̂
(5)
nok,t(u)697
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and ρ̂nok,t(u) is presented in Figure 19 and draws a similar set of findings. How-698

ever, the performance of the time-invariant part as an in-sample forecaster seems699

to worsen.700

Figures 14 and 20 present the percentage autocovariance of the FC-TS of701

gbp and sek returns, and gbp and nok returns being explained, respectively.702

Although the plot of the latter is closely similar to the previous case in Section703

5.3.1, that of the former displays some peculiar features. Figure 14 shows that704

less 90% of the autocovaraince is explained by the first three functional principal705

components, compared to just below 97% and 99% for cases of chf and nok,706

respectively.707

6. Conclusions708

We studied an alternative approach for modeling time varying behavior of asset709

returns co-movements. To do so, we took the view that co-movements between710

a pair of asset returns could be explained entirely by a trajectory of the returns’711

correlation. The time-series evolution and serial dependence of such trajectories712

were captured by a functional process that was constructed as a combination713

of a time-invariant and a time-varying components. The resulting procedure714

was not only able to address previous limitations of FDA in financial applica-715

tions, but also offered a general specification that is able to model processes716

of time-varying time-series correlations generated under many existing models.717

For practical purpose, our approach treated the correlation coefficient of asset718

returns for each day as a correlation trajectory that was assumed to be a re-719

alisation of the functional time series of interest. Hence, our procedure began720

with the local-linear estimation of the correlation coefficient in question, which721

then led to construction of the linear operator based on an auto-covariance ker-722

nel. Subsequently, solving for the relevant eigenvalues and eigenfunctions are723

performed by transforming the problem into an eigenanalysis for a finite ma-724

trix. Moreover, our approach relied on functional principal components in our725

construction of the dynamic space for the functional correlation time series of726

interest. In this paper, we established a new class of information criteria to help727

to identify the finite dimensionality of the curve time series. To verify the use728

of the truncated expansion as a reasonable approximation, we established both729

consistency and optimality of such a representation. We also established a set730

of asymptotic results in order to show the statistical validity of the proposed731

estimation procedure. To illustrate its empirical relevance, we conducted a series732

of simulation studies and applied our analytical framework to model time vary-733

ing correlation of exchange rate returns for a group of small open economies734

with large financial sectors. Our empirical results indicated that concepts of735

time varying correlation enabled by existing methods, especially the SP-C and736

the DCC-GARCH models, are too restrictive to accommodate fully the time-737

varying behavior and temporal evolution of the returns correlation. Finally, our738

empirical results suggested that the time series evolution of returns correlation739

involved both low frequency cycles with relatively lengthy periodicity and trend,740
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and high frequency cycles (say, for example, the day-of-the-week effects) with a741

shorter periodicity.742

7. Appendix743

7.1. Definitions744

The below definitions will be useful in the discussion that follows.745

(i) Let H be a real separable Hilbert space with respect to some inner product 〈·, ·〉.746

Also, let L be a linear operator from H to H. For x ∈ H, let us denote by Lx the747

image of x under L. In addition, the adjoint of L is denoted by L∗ and satisfies748

〈Lx, y〉 = 〈x,L∗y〉, x, y ∈ H.

Accordingly, L is said to be self adjoint if L∗ = L and nonnegative definite if749

〈Lx, x〉 ≥ 0 ∀x ∈ H.

(ii) For a real separable Hilbert space, e.g. H, let ‖ · ‖ denote norm generated by750

an inner product 〈·, ·〉. Let B = B(H,H) denote the space of bounded linear751

operators form H to H.752

(iii) When H = L2(I) equipped with the inner product defined in (2.3), a compact753

operator L ∈ B is defined as (Lx)(u) =
∫
I L(u, v)x(v)dv. In addition, if there754

exists two orthonormal sequences {ej} and {fj} of H, and a sequence of scalars755

{λj} decreasing to zero, then756

(Lx)(u) =

∞∑
j=1

λj〈ej , x〉fj(u).

(iv) The Hilbert-Schmidt norm of the compact linear operator L is defined as757

‖L‖S =

(
∞∑
j=1

λ2
j

)1/2

.

In addition, let S denote the space consisting of all the operators with a finite758

Hilbert-Schmidt norm.759

(v) Let N1 and N2 be any two d0-dimensional subspaces of L2(I), where L2(I)760

denotes the Hilbert space consisting of all the square integrable curves defined761

on I. In addition, let {ζi1(·), . . . , ζid0(·)} be an orthonormal basis of Ni, i = 1, 2.762

Then the projection of ζ1k ontoN2 may be expressed as
∑d0
j=1〈ζ2j , ζ1k〉ζ2j(u), u ∈763

I, while the discrepancy between N1 and N2 is measured by764

D(N1,N2) =

√√√√1− 1

d0

d0∑
j,k=1

(〈ζ2j , ζ1k〉)2. (7.1)

(vi) Let Z be the set consisting of all the d0-dimensional subspaces in L2(I). Then765

(Z, D) forms a metric space in the sense that D is a well-defined distance measure766

on Z (Lemma 4, Bathia et al. (2010)).767
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(vii) For any L ∈ S, note that768

‖L‖S =
√

tr(L∗L),

where tr denotes the trace operator. Now, for any χi ∈ Z (i = 1, 2, 3), let Πχi769

denote its corresponding d0-dimensional projection operators defined as follows770

Πχi =

d0∑
j=1

ζij ⊗ ζij (7.2)

where {ζij : j = 1, . . . , d0} is some orthonormal basis of χi.771

7.2. Proof of Lemma 2.1772

For the sake of convenience, let773

Vd,t(u) =

d∑
j=1

ηtjψj(u) and Vt(u) =

∞∑
j=1

ηtjψj(u).

Let us begin by noting that E[Vd,t(u)Vd,t+q(v)] reduces to E[Vd,t(u)Vd,t(v)] ≡ E[ϑd,t(u)ϑd,t(v)]774

when q = 0. Similarly,775

M(q) =

d∑
i,j=1

σ
(q)
ij ϕi ⊗ ϕj =

d∑
i=1

λ
(q)
i ϕi ⊗ ρ(q)i ,

where ρ
(q)
i =

∑d
j=1 σ

(q)
ij ϕj∥∥∥∑d

j=1 σ
(q)
ij ϕj

∥∥∥ and λ
(q)
k =

∥∥∥∑d
j=1 σ

(q)
ij ϕi

∥∥∥ , reduces to776

M(0) =

d∑
i,j=1

σ
(0)
ij ϕi ⊗ ϕj =

d∑
i=1

λiϕi ⊗ ϕi.

Now observe that777

E|Vd,t(u)− Vt(u)|2 = E[V2
d,t(u)]− 2E[Vd,t(u)Vt(u)] + E[V2

t (u)].

In this regard, the above arguments suggest that778

E[V2
d,t(u)] = E

[(
d∑
i=1

ξtiϕi(u)

)(
d∑
j=1

ξtjϕj(u)

)]
=

d∑
i,j=1

ϕi(u)ϕj(u)E[ξtiξtj ]

=

d∑
k=1

λkϕ
2
k(u)

and779

E[Vd,t(u)Vt(u)] = E

[(
d∑
j=1

ξtjϕj(u)

)
Vt(u)

]
=

d∑
j=1

ϕj(u)E[ξtjVt(u)].

Accordingly,780

E|Vd,t(u)− Vt(u)|2 =

d∑
k=1

λkϕ
2
k(u)− 2

d∑
j=1

ϕj(u)E[ξtjVt(u)] + E[V2
t (u)].

imsart-generic ver. 2014/10/16 file: JoEFinalSub.tex date: November 10, 2020



/ 28

With regard to the second term, observe that781

E[ξtjVt(u)] = E

[
Vt(u)

∫
I
Vt(v)ϕj(v)dv

]
=

∫
I
M (0)(u, v)ϕj(v)dv = λjϕj(u). (7.3)

As the results,782

E|Vd,t(u)− Vt(u)|2 = E[V2
t (u)] +

d∑
j=1

λjϕ
2
j (u)− 2

d∑
j=1

λjϕ
2
j (u)

= E[V2
t (u)]−

d∑
j=1

λjϕ
2
j (u) −→

d→∞
0. (7.4)

uniformly in u ∈ I. Such a convergence follows directly from the Mercer’s Theorem.783

(See e.g. Appendix 7.1, Mercer (1909), Porter and Stirling (1990), for details.)784

7.3. Proof of Theorem 2.1785

Let us begin with a list of assumptions. These are standard and can be found in studies786

on the kernel estimation of dependence data; see, for example, Fan and Yao (2003),787

and Hansen (2008).788

Assumption 7.1. (a) Let fU,t(·) and fs,t(·, ·) denote the marginal density of Ut,τ789

and joint density of (Ut,τ , Ut,τ+s), respectively. Assume that fU,t(·) has a bounded790

support, e.g. [c, d]. In addition: (i) fU,t(u) > 0, |fU,t(u) − fU,t(u′)| ≤ ∆1|u − u′|791

for u, u′ ∈ [c, d] and some ∆1 > 0; (ii) fs,t(u0, us) > 0 for u0, us ∈ [c, d]; (iii)792

supu∈[c,d] fU,t(u) ≤ L0 <∞ and supu0,us∈[c,d] fs,t(u0, us) ≤ L1 <∞.793

(b) For t = 1, . . . , n, {(rk,t,τ , rk,t,τ , Ut,τ ) : τ = 1, . . . ,m} are strictly stationary and794

strong mixing time series with coefficient α(N) ≤ CN−β for some C > 0, β > 2+ 2
δ

795

and δ > 0. In addition: E|rk,t,τ |4(1+δ) ≤ L2 <∞ and E|r`,t,τ |4(1+δ) ≤ L2 <∞.796

(c) Assume that µk`,t(u), µk,t(u), µ`,t(u), σ2
k,t(u) and σ2

`,t(u) are differentiable, while797

µ′′k`,t(u), µ′′k,t(u), µ′′`,t(u), σ2′′
k,t(u) and σ2′′

`,t (u) are uniformly continuous.798

(d) Assume that κ(·) is continuous symmetric kernel function, while
∫
|κ(v)|dv <∞,799 ∫

κ2(v)dv < ∞,
∫
κ(v)dv = 1,

∫
vκ(v)dv = 0,

∫
v2κ(v)dv = wκ2 and

∫
κ2(v)dv =800

ν2κ. For some 0 < C1 < ∞ and 0 < ∆2 < ∞, either κ(·) is a bounded function801

with a bounded support on R (such as [−C1, C1]), satisfying the Lipschitz condition,802

|κ(v1)−κ(v2)| ≤ ∆2|v1− v2|, or κ(·) is differentiable, when v →∞, κ(v)ec0v → 0803

(c0 > 0).804

(e) Suppose m
h2

(
logm
mh

) βδ−1
2(δ+1) = o(1) and h = {logm/m}1/5, which is allowed for805

sufficiently large β.806

Lemma 7.1 below present uniform convergence rates that will be useful for the proof807

that follows.808

Lemma 7.1. Under the conditions of Assumption 7.1 and rk,t,τ = µk,t(Ut,τ ) +809

σk,t(Ut,τ )εk,t,τ for τ = 1, . . . ,m, where E{εk,t,τ |Ut,τ} = 0. In addition, let µ̂k,t(u)810

denote the local linear estimator of µk,t(u). Then:811
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(i) We have uniformly812

µ̂k,t(u) = µk,t(u) +
1

2
wκ2µ

′′
k,t(u)h2 +N1(u) + δm, (7.5)

where N1(u) = 1
mfU,t(u)

∑m
s=1 κh(Ut,s − u)σk,t(Ut,s)εk,t,τ and δm = oP (h2 +813

{logm/(mh)}1/2).814

(ii) In addition:815

sup
u∈[c,d]

|A1(u)| = Op({logm/(mh)}1/2), sup
u,v∈[c,d]

|A2(u)| = OP (
1

h t
{logm/(mh)}1/2),

where A1(u) = 1
m

∑m
s=1 [κh(Ut,s − u)rk,t,s − E {κh(Ut,s − u)rk,t,s}] and A2(u) =816

1
m

∑m
s=1[κh(Ut,s − u)κh(Ut,s − v)rk,t,s − E {κh(Ut,s − u)κh(Ut,s − v)rk,t,s}].817

These results are well-known and their proof can be found in studies on the uniform818

convergence properties for kernel estimation with dependent data (see, for example,819

Fan (1996), Fan and Yao (2003) and Hansen (2008)).820

Similar uniform convergence rates can be obtained for those local linear estimators821

that are involved in ρ̂t(u) in (2.24). For convenience, let κh,t,τ (u) ≡ κh(Ut,τ − u).822

(a) Regarding the local linear estimator of µk,t(u)µ`,t(u), it is the case that823

µ̂k,t(u)µ̂`,t(u)− µk,t(u)µ`,t(u)

=
1

2
wκ2 {µk,t(u)µ′′`,t(u) + µ′′k,t(u)µ`,t(u)}h2 +N2(u) + δm (7.6)

uniformly, where824

N2(u) =
1

mfU,t(u)

m∑
s=1

κh,t,τ (u){µ`,t(u)σk,t(Ut,s)εk,t,s + µk,t(u)σ`,t(Ut,s)ε`,t,s}.

(b) Regarding the local linear estimator of σ2
k,t(u), we have825

σ̂2
k,t(u) = σ2

k,t(u) +
1

2
wκ2σ

2′′
k,t(u)h2 +N3(u) + δm (7.7)

uniformly, where826

N3(u) =
1

mfU,t(u)

m∑
s=1

κh,t,τ (u)σ2
k,t(Ut,s)ξk,t,s

and ξk,t,s = ε2k,t,s − 1. In addition, we can also obtain based on (7.7)827

1√
σ̂2
k,t(u)σ̂2

`,t(u)
=

1√
σ2
k,t(u)σ2

`,t(u)

[
1− wκ2

(
(σ2
k,t(u))′′

4σ2
k,t(u)

+
(σ2
`,t(u))′′

4σ2
`,t(u)

)
h2

− 1

mfU (u)

m∑
s=1

κh,t,τ (u)

(
σ2
k,t(Ut,s)ξk,t,s

2σ2
k,t(u)

+
σ2
`,t(Ut,s)ξ`,t,s

2σ2
`,t(u)

)]
+ δm. (7.8)

(c) Regarding the local linear estimator of µk`,t(u), we have828

µ̂k`,t(u) = µk`,t(u) +
1

2
wκ2µ

′′
k`,t(u)h2 +N4(u) + δm (7.9)
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uniformly, where829

N4(u) =
1

mfU,t(u)

m∑
τ=1

κh,t,τ (u)ẽk`,t,τ

and ẽk`,t,τ = r`,t,τrk,t,τ − E(r`,t,τrk,t,τ |Ut,τ = u).830

(d) Regarding the local linear estimator of µk`,t(u)− µk,t(u)µ`,t(u), we have831

µ̂k`,t(u)− µ̂`,t(u)µ̂k,t(u) = µk`,t(u)− µ`,t(u)µk,t(u) (7.10)

+
1

2
wK2
[
µ′′k`,t(u)− µk,t(u)µ′′`,t(u)− µ`,t(u)µ′′k,t(u)

]
h2 +N5(u) + δm,

uniformly, where832

N5(u) =
1

mfU,t(u)

m∑
s=1

κh,t,τ (u)ek`,t,s

and833

ek`,t,s = (rk,t,s − µk,t(Ut,s))(r`,t,s − µ`,t(Ut,s))
− E{(rk,t,s − µk,t(Ut,s))(r`,t,s − µ`,t(Ut,s))|Ut,s}.

Proof of Theorem 2.1. Regarding the local linear estimator of ρt(u), results (a) to834

(d) above suggest that we have835

ρ̂t(u) = ρt(u) +
1

2
wκ2B1ρ̂(u)h2 − 1

2
wκ2B2ρ̂(u)h2 +Nρ̂(u) + δm, (7.11)

uniformly, where δm = oP (h2 + {logm/(mh)}1/2,836

B1ρ̂(u) =
µ′′k`,t(u)− µk,t(u)µ′′`,t(u)− µ`,t(u)µ′′k,t(u)

σ`,t(u)σk,t(u)
,

837

B2ρ̂(u) =
ρt(u)(σ2

k,t(u))′′

2σ2
k,t(u)

−
ρt(u)(σ2

`,t(u))′′

2σ2
`,t(u)

,

838

Nρ̂(u) =
1

mfU,t(u)

m∑
s=1

κh,t,τ (u)Nρ̂,τ (u)

and839

Nρ̂,s(u) =
ek`,t,s

σ`,t(u)σk,t(u)
−
ρt(u)σ2

k,t(Ut,s)ξk,t,s

2σ2
k,t(u)

−
ρt(u)σ2

`,t(Ut,s)ξ`,t,s

2σ2
`,t(u)

.

Theorem 2.1 follows immediately from (7.11).840
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7.4. Proof of Theorems 2.2841

Providing the proof for Theorems 2.2 requires some additional conditions as follows.842

Assumption 7.2. (i) Assumption 7.1 holds.843

(ii) The FC-TS, {ρt(·)}, is strictly stationary and ψ-mixing with mixing coefficient844

defined as845

ψ(l) = sup
A∈F0

∞, B∈F∞l , P (A)P (B)>0

∣∣∣∣1− P (B|A)

P (B)

∣∣∣∣ ,
where Fji = σ{ρi(·), . . . ρj(·)} for any j ≥ i and

∑∞
l=1 l × ψ

1/2(l) <∞.846

(iii) The FC-TS is square integrable curve series, i.e.847

E

{∫
I
ρt(u)2 du

}2

<∞ and

∫
I
E{ϑt(u)2} du <∞.

(iv) All nonzero eigenvalues of K are different.848

Moreover, the following observations will be useful at various stages of the proof.849

(a) Since N (q)(u, v) =
∫
IM

(q)(u, z)M (q)(v, z)dz, we have850

(N (q)f)(u) =

∫
N (q)(u, v)f(v) dv

=

∞∑
i,j=1

w
(q)
ij 〈ϕi, f〉ϕj(u) = (M(q)M(q)*f)(u),

which suggests therefore that N(q) = M(q)M(q)*.851

(b) For convenience, let ρ̂t(u) − ρt(u) = ∆ρ̂,ρ. In this regard, Theorem 2.1 and the852

bandwidth given in Assumption 7.1(e) suggest that853

∆ρ̂,ρ = OP ((logm/m)2/5). (7.12)

Since854

n1/2 =

⌊(
m

logm

)2/5
⌋

(7.13)

as required in condition (2.37), n1/2 ≤ (m/ logm)2/5, then it must be the case855

that856 (
logm

m

)2/5

≤ 1

n1/2
. (7.14)

In other words,857

∆ρ̂,ρ ≤ OP (n−1/2). (7.15)

(c) With regard to the expected correlation %(u) = E{ρt(u)}, we have considered a858

pair of estimators, namely859

%̃(u) = n−1
∑

1≤j≤n

ρj(u) and %̂(u) = n−1
∑

1≤j≤n

ρ̂j(u).

Here, observe that860

|%̂(u)− %(u)| ≤ |%̂(u)− %̃(u)|+ |%̃(u)− %(u)|,
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where |%̃(u)− %(u)| = OP (n−1/2) following a simple U-statistic argument (see Lee861

(1990)). Regarding the first term, we have862

|%̂(u)− %̃(u)| ≤ n−1
n∑
t=1

|ρ̂t(u)− ρt(u)| = |∆ρ̂,ρ|

≤ OP (n−1/2),

where the second inequality is due to (7.14). Observe also that863

{ρ̂j(u)− %̂(u)}{ρ̂j+q(u)− %̂(u)} ≤ {ρ̂j(u)− %(u)}{ρ̂j+q(v)− %(v)}
+ |%(u)− %̂(u)||%(v)− %̂(v)|+ |%(u)− %̂(u)||ρ̂j+q(v)− %(v)|
+ |ρ̂j(u)− %(u)||%(v)− %̂(v)|

= {ρ̂j(u)− %(u)}{ρ̂j+q(v)− %(v)}
+ |∆ρ̂,ρ|2 + |ρ̂j+q(v)− %(v)||∆ρ̂,ρ| + |ρ̂j(u)− %(u)||∆ρ̂,ρ|.(7.16)

Without loss of generality, results (7.15) and (7.16) suggest that we can consider864

{ρ̂j(u) − %(u)}{ρ̂j+q(v) − %(v)} instead of {ρ̂j(u) − %̂(u)}{ρ̂j+q(u) − %̂(u)} in the865

remaining of the proof.866

(d) Furthermore:867

{ρ̂j(u)− %(u)}{ρ̂j+q(v)− %(v)} ≤ {ρj(u)− %(u)}{ρj+q(v)− %(v)}
+ |ρ̂j(u)− ρj(u)||ρ̂j+q(v)− ρj+q(v)|+ |ρj(u)− %(u)||ρ̂j+q(v)− ρj+q(v)|
+ |ρ̂j(u)− ρj(u)||ρj+q(v)− %(v)|

= {ρj(u)− %(u)}{ρj+q(v)− %(v)}
+ |∆ρ̂,ρ|2 + |ρj(u)− %(u)||∆ρ̂,ρ|+ |ρj+q(v)− %(v)||∆ρ̂,ρ| (7.17)

(e) Let Z̃tq(u, v) = {ρt(u)− %(u)}{ρt+q(v)− %(v)}. In this regard,868

Z̃iqZ̃
∗
jq(u, v) =

∫
I
Z̃iq(u, r)Z̃jq(v, r) dr

= {ρi(u)− %(u)}{ρj(v)− %(v)}〈ρi+q − %, ρj+q − %〉. (7.18)

Furthermore,869 ∫
I
Z̃iqZ̃

∗
jq(u, v)f(v) dv = {ρi(u)− %(u)}〈ρj − %, f〉〈ρi+q − %, ρj+q − %〉. (7.19)

It is therefore the case that870

Z̃ikZ̃
∗
jk = (ρi − %)⊗ (ρj − %)〈ρi+q − %, ρj+q − %〉. (7.20)

Accordingly, one can write871

M̃
(q)

M̃
(q)*

=
1

(n− p)2
n−p∑
i,j=1

Z̃ikZ̃
∗
jk, (7.21)

which is a S valued von Mises functional. In this regard, Lemma 3 of Bathia et872

al. (2010) suggests that we have873

E‖M̃(q)
M̃

(q)* −M(q)M(q)*‖2S = O(n−1). (7.22)
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(f) Given the definition in (2.36), we can also construct N̂
(q)

= M̂
(q)

M̂
(q)*

by following874

a similar procedure to that in point (e). Then, this leads to875

K̂ =

p∑
q=1

M̂
(q)

M̂
(q)*

. (7.23)

(g) Let us recall876

K̂∗γ̂j = γ̂j θ̂j

from just above (2.34). Decomposing this component by component leads to877

1

(n− p)2
n−p∑
t,s=1

p∑
k=1

〈ρ̂t+q − %, ρ̂s+q − %〉〈ρ̂s − %, ρ̂t − %〉γ̂tj = γ̂tj θ̂j . (7.24)

Regarding 〈ρ̂t+q − %, ρ̂s+q − %〉, a similar decomposition to (7.17) together with878

Theorem 2.1 and the bandwidth given in Assumption 7.1(e) suggest879 ∫
(ρ̂t+q(u)− %(u))(ρ̂s+q(u)− %(u)) du

=

∫
(ρt+q(u)− %(u))(ρs+q(u)− %(u)) du+ ∆ρ̂,ρ,(7.25)

which holds for all q = 1, . . . , p. A similar result can also be worked out for880

〈ρ̂s− %, ρ̂t− %〉. We then obtain by applying these results to all components of K̂∗881

K̂∗ = K̃∗ + ∆ρ̂,ρ1n−p1
′
n−p, (7.26)

where K̃∗ is as defined in (2.30) and 1n−p is a column vector of length n − p.882

In this sense, differentiation using the results in Magnus (1985) and the Taylor’s883

expansion in a similar fashion to the proof of Theorem 3.5 of Jiang et al. (2016)884

lead to885

θ̂j − θ̃j = γ̃′j(K̂
∗ − K̃∗)γ̃j (7.27)

γ̂j − γ̃j = (θ̃jI− K̃∗)+(K̂∗ − K̃∗)γ̃j , (7.28)

where I is the identity matrix of size n − p and (·)+ denotes the Moore-Penrose886

inverse.887

Proof of Theorem 2.2 (i) We begin by writing888

M̂ (q)(u, v) = M̃ (q)(u, v) + ∆1(u, v), (7.29)

where889

∆1(u, v) =
1

n− p

n−p∑
j=1

(
{ρ̂j(u)− %̂(u)}{ρ̂j+q(v)− %̂(v)}

− {ρj(u)− %(u)}{ρj+q(v)− %(v)}
)

≤ 1

n− p

n−p∑
j=1

(
{ρ̂j(u)− %(u)}{ρ̂j+q(v)− %(v)} − {ρj(u)− %(u)}{ρj+q(v)− %(v)}

)
+ |∆ρ̂,ρ|2 + |ρ̂j+q(v)− %(v)||∆ρ̂,ρ| + |ρ̂j(u)− %(u)||∆ρ̂,ρ|, (7.30)
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where the inequality is due to (7.16). Accordingly, the finding in point (c) above890

suggests that it is reasonable to focus instead on891

∆1(u, v) =
1

n− p

n−p∑
j=1

(
{ρ̂j(u)−%(u)}{ρ̂j+q(v)−%(v)}−{ρj(u)−%(u)}{ρj+q(v)−%(v)}

)
.

This can be written as ∆1(u, v) = ∆11(u, v) + ∆12(u, v) + ∆13(u, v) in which892

∆11(u, v) =
1

n− p

n−p∑
j=1

{ρ̂j(u)− ρj(u)}{ρ̂j+q(v)− ρj+q(v)}

∆12(u, v) =
1

n− p

n−p∑
j=1

{ρj(u)− %(u)}{ρ̂j+q(v)− ρj+q(v)}

∆13(u, v) =
1

n− p

n−p∑
j=1

{ρ̂j(u)− ρj(u)}{ρj+q(v)− %(v)}.

Such a decomposition leads to893

K̂(u, v) =

p∑
q=1

∫
M̂ (q)(u, z)M̂ (q)(v, z) dz = K̃(u, v) + ∆2(u, v), (7.31)

where894

K̃(u, v) =

p∑
q=1

∫
M̃ (q)(u, z)M̃ (q)(v, z) dz

and895

∆2(u, v) =

p∑
q=1

∫
∆(u, z)∆(v, z)dz +

p∑
q=1

∫
∆(u, z)M̃ (q)(v, z) dz

+

p∑
q=1

∫
M̃ (q)(u, z)∆(v, z) dz. (7.32)

Then, for ψ̂j computed based on (2.34), we write896 ∫
I
K̂(u, v)ψ̂j(v) dv =

∫
I
{K̃(u, v) + ∆2(u, v)}ψ̂j(v) dv. (7.33)

Moreover, since897

γ̂tj{ρ̂t(u)− %(u)} = γ̂tj{[ρ̂t(u)− ρt(u)] + [ρt(u)− %(u)]}
= (γ̃tj + ∆ρ̂,ρ){[ρ̂t(u)− ρt(u)] + [ρt(u)− %(u)]}
= γ̃tj{ρt(u)− %(u)}+ ∆ρ̂,ρ

under (7.28), the first term of (7.33) is898 ∫
I
K̃(u, v)ψ̂j(v) dv =

∫
I
K̃(u, v)(ψ̃j(v) + ∆ρ̂,ρ) dv + ∆ρ̂,ρ, (7.34)
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where ψ̃j(v) is defined in (2.31). To break
∫
I ∆2(u, v)ψ̂j(v) dv down, let us consider899

the third term on the right side of (7.32) as an example. In this respect,900 ∫
I
M̃ (q)(u, z)∆1(v, z) dz

=
1

(n− p)2
n−p∑
t,s=1

{ρt(u)− %(u)}{ρ̂j(v)− ρj(v)}〈ρt+q − %, ρ̂s+q − ρs+q〉∫
I
M̃ (q)(u, z)∆2(v, z) dz

=
1

(n− p)2
n−p∑
t,s=1

{ρt(u)− %(u)}{ρj(v)− ρj(v)}〈ρt+q − %, ρ̂s+q − ρs+q〉∫
I
M̃ (q)(u, z)∆3(v, z) dz

=
1

(n− p)2
n−p∑
t,s=1

{ρt(u)− %(u)}{ρ̂j(v)− ρj(v)}〈ρt+q − %, ρs+q − %〉.

Hence, Theorem 2.1 and the bandwidth given in Assumption 7.1(e) suggest that901 ∫
M̃ (q)(u, z)∆(v, z) dz = ∆ρ̂,ρ, (7.35)

which holds for all q = 1, . . . , p. The rest of the terms can be similarly worked out.902

These results suggest that903 ∫
I
K̂(u, v)ψ̂j(v) dv =

∫
I
K̃(u, v)ψ̃j(v) dv + ∆ρ̂,ρ. (7.36)

By making use of (7.23) and taking into consideration the definition in (2.23), we write904

K̂ =

p∑
q=1

M̂
(q)

M̂
(q)*

=

p∑
q=1

(
M̃

(q)
M̃

(q)*
+ (1/p)∆ρ̂,ρ

)
, (7.37)

where Ñ
(q)

= M̃
(q)

M̃
(q)*

. In other words, we have for a given q905

M̂
(q)

M̂
(q)* − M̃

(q)
M̃

(q)*
= (1/p)∆ρ̂,ρ. (7.38)

Moreover, since906

{M̂(q)
M̂

(q)* −M(q)M(q)*} = {M̃(q)
M̃

(q)* −M(q)M(q)*}+ {M̂(q)
M̂

(q)* − M̃
(q)

M̃
(q)*},

the Triangle inequality suggests that907

E‖M̂(q)
M̂

(q)* −M(q)M(q)*‖2S ≤ E‖M̃(q)
M̃

(q)* −M(q)M(q)*‖2S
+ E‖M̂(q)

M̂
(q)* − M̃

(q)
M̃

(q)*‖2S . (7.39)

Regarding the first term, (7.22) and the Chebyshev inequality lead to908

‖M̃(q)
M̃

(q)* −M(q)M(q)*‖S ≤ OP (n−1/2). (7.40)

imsart-generic ver. 2014/10/16 file: JoEFinalSub.tex date: November 10, 2020



/ 36

Given the result in (7.38), the second term can be viewed as a compact linear operator909

E‖M̂(q)
M̂

(q)* − M̃
(q)

M̃
(q)*‖2S ≤ OP (n−1), (7.41)

where the inequality is due to (7.15). A similar application of the Chebyshev inequality910

to (7.40) also gives911

‖M̂(q)
M̂

(q)* − M̃
(q)

M̃
(q)*‖S ≤ OP (n−1/2). (7.42)

Then, the required result is obtained by writing912

‖K̂ −K‖S ≤ ‖K̂− K̃‖S + ‖K̃ −K‖S (7.43)

and noting that913

‖K̃−K‖S ≤ Op(n−1/2) and ‖K̂− K̃‖S ≤ Op(n−1/2), (7.44)

which are based on (7.40) and (7.42), respectively.914

Proof of Theorems 2.2 (ii) and 2.2 (iii) The proof of there results relies on the915

results in (7.43) and (7.44). While ‖K̃ − K‖S = Op(n
−1/2), Lemmas 4.2 and 4.3 of916

Bosq (2000) suggest that917

sup
j≥1
|θ̃j − θj | ≤ ‖K̃−K‖S and sup

j≥1
|ψ̃j − ψj | ≤ ‖K̃−K‖S , (7.45)

respectively. Then, Theorem 2.2 (ii) is obtained by noting (7.27) and the fact that918

‖K̂ − K̃‖S ≤ Op(n
−1/2). Given that all the nonzero eigenvalues of K are different,919

which is assumed in Assumption 7.2(iv), Theorem 2.2 (iii) is obtained by noting the920

definition in (2.34), the result in (7.28) and that ‖K̂− K̃‖S ≤ Op(n−1/2).921

7.5. Proof of Lemma 3.1922

For the sake of convenience, let923

ed0,t(u) =

∞∑
j=d0+1

ηtjψj(u).

Observe that E[ed0,t(u)ed0,t+q(v)] reduces to E[ed0,t(u)ed0,t(v)] ≡ E[εd0,t(u)εd0,t(v)]924

when q = 0, where925

εd0,t(u) =

∞∑
j=d0+1

ξtjϕj(u).

These arguments suggest that the mean squared error is926

E[e2d0,t(u)] =
∑

i≥d0+1

∑
j≥d0+1

ϕi(u)ϕj(u)

∫
I

∫
I
E[ϑt(t1)ϑt(s1)]ϕi(t1)ϕj(s1)dt1ds1.

Integrating both sides of the equation and applying the orthogonality lead to927 ∫
I
E[e2d0,t(u)]du

=
∑

i≥d0+1

∑
j≥d0+1

∫
I
ϕi(u)ϕj(u)du

∫
I

∫
I
E[ϑt(t1)ϑt(s1)]ϕi(t1)ϕj(s1)dt1ds1

=
∑

j≥d0+1

∫
I

∫
I
E[ϑt(t1)ϑt(s1)]ϕj(t1)ϕj(s1)dt1ds1
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Minimising the integrated mean squared error subject to the orthogonality condition928

for the function of the eigenfunction, i.e.929

min

∫
I
E[e2d0,t(u)]du subject to

∫
I
ϕj(u)ϕj(u) = 1,

leads to the objective function930

Q =
∑

j≥d0+1

{∫
I

∫
I
M (0)(t1, s1)ϕj(t1)ϕj(s1)dt1ds1 − δj

(∫
I
ϕj(t1)ϕj(t1)− 1

)}
.

Differentiating Q with respect to ϕi(u) (for i ≥ d0 + 1) leads to931

d

dϕi(u)
Q = 2

∫
I
M (0)(u, v)ϕi(v)dv − 2λiϕi(u). (7.46)

Hence, setting the above equation to zero leads to932

(M(0)ϕi)(u) = λiϕi(u), (7.47)

which is the Fredholm integral equation. Proposition 1(ii) of Bathia et al. (2010)933

suggests that934

Vd0,t =

d0∑
j=1

ηtjψj(u) =

d0∑
j=1

ξtjϕj(u). (7.48)

The expansion in (7.48) has a one-to-one relationship with (7.47) and therefore min-935

imises the integrated mean squared error.936

7.6. Proof of Theorem 3.1937

From Definitions (v) to (vii) given in Appendix 7.1, we have by applying the triangle938

inequality939

√
2d0D(M̂,M) = ‖ΠM̂ −ΠM‖S

≤ ‖ΠM̂ −ΠM̃‖S + ‖ΠM̃ −ΠM‖S , (7.49)

where ΠM̂ =
∑d0
j=1 ψ̂j ⊗ ψ̂j and ΠM̃ =

∑d0
j=1 ψ̃j ⊗ ψ̃j . Regarding the first term on the940

right side of the inequality, we have941

‖ΠM̂ −ΠM̃‖S = ‖
d0∑
j=1

ψ̂j ⊗ ψ̂j −
d0∑
j=1

ψ̃j ⊗ ψ̃j‖S ≤
d0∑
j=1

‖ψ̂j ⊗ ψ̂j − ψ̃j ⊗ ψ̃j‖S

= OP (n−1/2) (7.50)

since ‖K̂− K̃‖S ≤ Op(n−1/2). In addition,942

‖ΠM̃ −ΠM‖S = OP (n−1/2) (7.51)

since ‖ψ̃j ⊗ ψ̃j − ψj ⊗ ψj‖S = OP (n−1/2), where the convergence rate is based on the943

second part of (7.45). The proof is therefore completed.944
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7.7. Proof of Lemma 3.2945

Note that946

|V̂d0,t(u)− Vt(u)| ≤ |V̂d0,t(u)− Vd0,t(u)|+ |Vd0,t(u)− Vt(u)|.

Lemma 2.1 implies that Vd0,t(u)
P→ Vt(u) as d0 → ∞. For a fixed d0, observe that947

η̂tj
P→ ηtj as n→∞, then, by Theorem 2.2(iii), sup

u∈I
|V̂d0,t(u)−Vd0,t(u)| P→ 0 as n→∞.948

For a given ε, δ > 0, this implies that there exists d̄ such that for d0 ≥ d̄,949

P{|Vd0,t(u)− Vt(u)| > ε/2} ≤ δ/2.

For each d0, there exists n̄(d0) such that, for n ≥ n̄(d0),950

P{|V̂d0,t(u)− Vd0,t(u)| ≥ ε/2} ≤ δ/2.

Thus, for d0 ≥ d̄ and n ≥ n̄(d0)951

P{|V̂d0,t(u)−Vt(u)| ≥ ε} ≤ P{|V̂d0,t(u)−Vd0,t(u)| ≥ ε/2}+P{|Vd0,t(u)−Vt(u)| > ε/2} ≤ δ,

which leads to (3.6).952

7.8. Proof of Lemma 3.3953

Observe that954

θ̂j − θj = 〈ψj , K̂ψ̂j〉 − 〈ψj ,Kψj〉
= 〈ψj , (K̂ −K)ψj〉+ 〈ψj , K̂ψ̂j〉 − 〈ψj , K̂ψj〉 (7.52)

We shall begin by showing that955

θ̂j − θj = 〈ψj , (K̂ −K)ψj〉+OP (n−1) (7.53)

for j = 1, . . . , d0.956

From the second equality in (7.52),957

〈ψj , K̂ψ̂j〉 − 〈ψj , K̂ψj〉 = 〈ψj , K̂ψ̂j〉 − 〈ψj ,Kψ̂j〉+ 〈ψj ,Kψ̂j〉 − 〈ψj , K̂ψj〉

by which958

〈ψj , K̂ψ̂j〉 − 〈ψj ,Kψ̂j〉 = 〈ψj , (K̂ −K)ψ̂j〉, (7.54)
959

〈ψj ,Kψ̂j〉 − 〈ψj , K̂ψj〉 = 〈ψj ,Kψ̂j〉 − 〈ψj ,Kψj〉+ 〈ψj ,Kψj〉 − 〈ψj , K̂ψj〉
= 〈ψj , (K̂ −K)ψ̂j〉+ 〈ψj ,K(ψ̂j − ψj)〉 (7.55)

Let Kj = 〈ψj , (K̂ − K)ψ̂j〉 for the sake of convenience. Regarding the first term in960

(7.55), we want to show that, for j = 1, . . . , d0,961

|〈ψj , (K̂ −K)ψj〉 −Kj | = OP (n−1) (7.56)

Observe that962

|〈ψj , (K̂ −K)ψj〉 −Kj | = |〈ψj − ψ̂j , (K̂ −K)ψj〉| ≤ ‖ψj − ψ̂j‖ ‖(K̂ −K)ψj‖
≤ ‖ψj − ψ̂j‖ ‖K̂ −K‖S . (7.57)
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Hence, the result in (7.56) is obtained based on the results in Theorem 2.2. Now for963

the second term in (7.55)964

|〈ψj ,K(ψ̂j − ψj)〉| ≤ ‖ψj‖‖K(ψ̂j − ψj)‖ ≤ ‖K‖‖ψ̂j − ψj‖
= OP (n−1), (7.58)

which is also based on the results in Theorem 2.2. Hence, (7.53) is obtained by showing965

that, for j = 1, . . . , d0,966

|Kj − (θ̂j − θ)| ≤ OP (n−1) (7.59)

In this regard, observe that967

|Kj − (θ̂j − θ)| = |〈ψj , K̂ψ̂j〉 − 〈Kψj , ψ̂j〉 − (θ̂j − θj)|
= |(θ̂j − θj))(〈ψj , ψ̂j〉 − 1)| ≤ |θ̂j − θj ||〈ψj , ψ̂j〉 − 1|, (7.60)

due to the fact that K is self-adjoint and Kψj = θjψj , respectively. Furthermore,968

|〈ψj , ψ̂j〉 − 1| =

∣∣∣∣∫ (ψj(u)ψ̂(u)− ψj(u)ψ(u)) du

∣∣∣∣
=

∣∣∣∣∫ ψj(u)(ψ̂(u)− ψj(u)) du

∣∣∣∣ = |〈ψj , ψ̂j − ψj〉| ≤ ‖ψ̂j − ψ‖. (7.61)

Therefore, Theorem 2.2 leads to (7.59). This complete the proof of (7.53).969

Now, we have by using (7.53)970

d0∑
j=1

(θ̂j − θj) =

d0∑
j=1

〈ψj , (K̂−K)ψj〉+OP (n−1). (7.62)

Note that θj = 0, span{ψj : j > d0} =M⊥ and Kψj = 0 for j > d0. These and (7.62)971

lead to972
n∑

j=d0+1

θ̂j =

∞∑
j=d0+1

〈ψj , (K̂−K)ψj〉+OP (n−1).

Moreover, by letting K̄ =
∑p
q=1 M̃(q)M(q)∗, we have973

n∑
j=d0+1

θ̂j =

∞∑
j=d0+1

〈ψj , (K̃ −K)ψj〉+OP (n−1)

=

∞∑
j=d0+1

〈ψj , (K̄ −K)ψj〉+OP (n−1), (7.63)

where the first equality is due to the second result in (7.44) and the second equality974

is obtained by noting that975

‖K̃− K̄‖S ≤
p∑
q=1

‖M̃(q)
M̃

(q)* − M̃
(q)

M(q)*‖S = OP (n−1), (7.64)

which is implied by Lemma 3 of Bathia et al. (2010). Since ψj ∈ M⊥ for j ≥ d0 + 1976

and Ker(M̄(q)) = Ker(K̄) = Ker(K) =M⊥, it holds that977

∞∑
j=d0+1

〈ψj , (K̄ −K)ψj〉 = 0. (7.65)
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Finally, by noting (7.65), the claimed result is obtained based on (7.62) and978

|〈ψj , (K̂ −K)ψj〉| = |〈ψj , (K̂ −K)ψj〉| ≤ ‖ψj‖ ‖(K̂ −K)ψj‖
≤ ‖K̂ −K‖S

by which Theorem 2.2 suggests that979

|〈ψj , (K̂ −K)ψj〉| ≤ OP (n−1/2). (7.66)

7.9. Proof of Theorem 3.2(i)980

Let us observe firstly that981

IC(d)− IC(d0) =
{
Ŝ(d) − Ŝ(d0)

}
− (d− d0)Pn

=
{
Ŝ(d) − S(d)

}
−
{
Ŝ(d0) − S(d0)

}
+
{
S(d) − S(d0)

}
− (d− d0)Pn.

When d > d0,982

{
Ŝ(d) − S(d)

}
−
{
Ŝ(d0) − S(d0)

}
=

d0∑
j=1

(θ̂j − θj) +

d∑
j=(d0+1)

(θ̂j − θj)−
d0∑
j=1

(θ̂j − θj)

= (d− d0)OP (n−1/2) (7.67)

by using Theorem 3.3, and983

IC(d)− IC(d0) =
{
S(d) − S(d0)

}
+ (d− d0)OP (n−1/2)− (d− d0)Pn

= (d− d0)OP (n−1/2)− (d− d0)Pn < 0, (7.68)

where the above inequality holds by the condition (b) of the the theorem. Furthermore,984

when d < d0,985

{
Ŝ(d) − S(d)

}
−
{
Ŝ(d0) − S(d0)

}
=

d∑
j=1

(θ̂j − θj)−
d∑
j=1

(θ̂j − θj)−
d∑

j=(d0+1)

(θ̂j − θj)

= (d− d0)OP (n−1/2) (7.69)

also by using Theorem 3.3, and986

IC(d)− IC(d0) =
{
S(d) − S(d0)

}
+ (d− d0)OP (n−1/2)− (d− d0)Pn < 0, (7.70)

where the inequality holds almost surely for sufficiently large n. Only when d = d0 that987

IC(d)− IC(d0) = 0. Accordingly, d̂ that maximizes IC(d) converges in probability to988

d0 as n→∞.989
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7.10. Proof of Theorem 3.2(ii)990

Let us observe firstly that991 {
S(d) − S(d0)

}
= −

∑d0
j=d+1 θj for d < d0,

{
S(d) − S(d0)

}
= 0 for d = d0, and992 {

S(d) − S(d0)
}

= 0 for d > d0.993

Now, let us introduce d′0 > d0. Then994 {
S(d) − S(d′0)

}
= −

(∑d0
j=d+1 θj +

∑d′0
j=d+1 θj

)
for d < d0,

{
S(d) − S(d′0)

}
= −

∑d′0
j=d0+1 θj995

for d = d0, and
{
S(d) − S(d′0)

}
= −

∑d′0
j=d0+1 θj for d > d0.996

Let us also introduce d′ > d. Then997 {
S(d′) − S(d′0)

}
= −

∑d′0
j=d′+1 θj for d′ < d′0,

{
S(d′) − S(d′0)

}
= 0 for d′ = d′0, and998 {

S(d′) − S(d′0)
}

= 0 for d′ > d′0.999

The above two points suggest therefore that S(d′) > S(d). Furthermore, we have by1000

Theorem 3.31001

IC(d) = Ŝ(d) + dPn = (Ŝ(d) − S(d)) + S(d) + dPn

= S(d) + dPn +OP (n−1/2) (7.71)

and1002

IC(d′) = Ŝ(d′) + d′Pn = (Ŝ(d′) − S(d′)) + S(d′) + d′Pn

= S(d′) + d′Pn +OP (n−1/2), (7.72)

which suggest that IC(d′) > IC(d). Hence, when d0 increases to d′0, i.e. d′0 > d0,1003

d′ > d is selected. In this regard, Theorem 3.3 suggests therefore that1004

lim
n→∞

Prob(d̂′ = d′0) = 1. (7.73)

This holds for the case in which d0 = dn is considered to be a function of n and dn1005

tend to infinity.1006

Nonetheless, dn must not converge to infinity faster than n1/2. To see this, observe1007

that (7.70) in the proof of Theorem 3.2(i) can be re-written as1008

IC(d)− IC(d0) =
{
S(d) − S(d0)

}
+ (d− d0)OP (n−1/2) + (d0 − d)Pn < 0. (7.74)

Therefore, we are able to ensure that such an inequality hold for the case in which1009

d0 = dn tends to infinity faster n1/2.1010
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Fig 1: Percentages of accurate selection in Table 1 plotted by m

Fig 2: Medians of the D measure in Table 2 plotted by m
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Fig 3: 2D and 3D plots of functional correlations time series (FC-TS) of the
British Pound and Swiss Franc, i.e. ρ̂chf,1(u), . . . , ρ̂chf,n(u)

(a)

(b)
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Fig 4: Information criterion 1 ≤ d ≤ 10 for selecting number of eigenfunctions
based on FC-TS for the British Pound and Swiss Franc
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Fig 5: Autocorrelation functions for the estimated loading time series,
η̂chf,t,1, . . . , η̂chf,t,6, based on FC-TS for the British Pound and Swiss Franc
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Fig 6: Estimated eigenfunctions corresponding to first five eigenvalues based on
FC-TS of the British Pound and Swiss Franc
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Fig 7: Fitting or in-sample forecasts (ρ̂
(5)
chf,t(u)) [black], estimated FC-TS of the

British Pound and Swiss Franc (ρ̂chf,t(u)) [red] and estimated mean correlation
function (%̂chf (u)) [blue]
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Fig 8: Percentage of the auto-covariance being explained based on FC-TS of the
British Pound and Swiss Franc
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Fig 9: 2D and 3D plots of FC-TS for the British Pound and Swedish Krona, i.e.
ρ̂sek,1(u), . . . , ρ̂sek,n(u)

(a)

(b)
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Fig 10: Information criterion 1 ≤ d ≤ 10 for selecting number of eigenfunctions
based on FC-TS for the British Pound and Swedish Krona
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Fig 11: Autocorrelation functions for the estimated loading time series,
η̂sek,t,1, . . . , η̂sek,t,6 based on FC-TS of the British Pound and Swedish Krona
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Fig 12: Information criterion 1 ≤ d ≤ 10 for selecting number of eigenfunctions
based on FC-TS of the British Pound and Swedish Krona
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Fig 13: Fitting or in-sample forecasts (ρ̂
(5)
sek,t(u)) [black], estimated FC-TS of

the British Pound and Swedish Krona (ρ̂sek,t(u)) [red] and estimated mean
correlation function (%̂sek(u)) [blue]
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Fig 14: Percentage of the auto-covariance being explained based on FC-TS of
the British Pound and Swedish Krona
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Fig 15: 2D and 3D plots of FC-TS of the British Pound and Norwegian Krone,
i.e. ρ̂nok,1(u), . . . , ρ̂nok,n(u)

(a)

(b)
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Fig 16: Information criterion 1 ≤ d ≤ 10 for selecting number of eigenfunctions
based on FC-TS of the British Pound and Norwegian Krone
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Fig 17: Autocorrelation functions for the estimated loading time series,
η̂nok,t,1, . . . , η̂nok,t,6 based on FC-TS of the British Pound and Norwegian Krone
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Fig 18: Information criterion 1 ≤ d ≤ 10 for selecting number of eigenfunctions
based on FC-TS of the British Pound and Norwegian Krone
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Fig 19: Fitting or in-sample forecasts (ρ̂
(5)
nok,t(u)) [black], estimated FC-TS of

the British Pound and Norwegian Krone (ρ̂nok,t(u)) [red] and estimated mean
correlation function (%̂nok(u)) [blue]
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Fig 20: Percentage of the autocovariance of FC-TS of the British Pound and
Norwegian Krone being explained
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